program extraction

logical verification

week 7
2004 10 20
why intuitionism?

foundational crisis

Russell, start 20th century:

\[\{ x \mid x \not\in x \} \in \{ x \mid x \not\in x \} \] ?

shows that naive set theory / type theory is inconsistent
Brouwer

three schools:

- **formalism**

 Hilbert ... leads eventually to **ZFC set theory**

- **logicism**

 Russell ... early version of **type theory**

- **intuitionism**

 Brouwer rejects excluded middle, proves **all functions continuous**

 \[
 \downarrow
 \]

 Heyting the **logic** of intuitionism

 \[
 \downarrow
 \]

 Bishop variant that is **strictly weaker** than classical mathematics
constructivism

Brouwer-Heyting-Kolmogorov interpretation

proof of \bot . . . doesn’t exist

proof of $A \rightarrow B$ \leftrightarrow function that maps proofs of A to proofs of B

proof of $A \land B$ \leftrightarrow pair of a proof of A and a proof of B

proof of $A \lor B$ \leftrightarrow either a proof of A or a proof of B

proof of $\forall x. P(x)$ \leftrightarrow function that maps object x to proof of $P(x)$

proof of $\exists x. P(x)$ \leftrightarrow object a together with proof of $P(a)$

proof of existence corresponds to constructing an example
proofs are programs

program extraction

intuitionistic proof

†

executable algorithm

intuitionism the natural logic for computer science?

‘code-carrying proofs’
verified programs

two approaches

• correctness proofs

\[
\text{program} \quad \rightarrow \quad \ldots \quad + \quad \text{proof}
\]

• program extraction

\[
\text{program} \quad \leftarrow \quad \text{proof}
\]
Hoare logic

imperative program

\[\downarrow\]

annotated imperative program

formulas of predicate logic

\[\downarrow\]

proof obligations
why & caduceus

Jean-Christophe Filliâtre

• why
 Hoare logic for small programming language
 union of imperative and functional programming language
 programming language independent
 proof assistant independent
 designed to be used with Coq

• caduceus
 Hoare logic for almost full ANSI C
 built on top of why
example

/*@ requires \valid_range(t,0,n-1)
 @ ensures
 @ (0 <= \result < n => t[\result] == v) &&
 @ (\result == n => \forall int i; 0 <= i < n => t[i] != v)
 @*/

int index(int t[], int n, int v) {
 int i = 0;
 /*@ invariant 0 <= i && \forall int k; 0 <= k < i => t[k] != v
 @ variant n - i */
 while (i < n) {
 if (t[i] == v) break;
 i++;
 }
 return i;
}
program extraction

specification

\[\downarrow \]

constructive proof of existence of solution to the specification

\[\downarrow \]

automatically generated functional program

guaranteed correct with respect to the specification
extraction to functional programs

Coq proof \rightarrow \text{type theory}

ML program \rightarrow \text{Haskell program} \rightarrow \text{functional languages}
example: mirroring trees

bintree

inductive type

Inductive bintree : Set :=
 leaf : nat -> bintree
| node : bintree -> bintree -> bintree.
mirror

recursive function

Fixpoint mirror (t : bintree) : bintree :=
 match t with
 leaf n => leaf n
 | node t1 t2 => node (mirror t2) (mirror t1)
end.
Mirrored

inductive predicate

Inductive Mirrored : bintree -> bintree -> Prop :=
 Mirrored_leaf :
 forall n : nat, Mirrored (leaf n) (leaf n)
| Mirrored_node :
 forall t1 t2 t1' t2' : bintree,
 Mirrored t1 t1' -> Mirrored t2 t2' ->
 Mirrored (node t1 t2) (node t2' t1').
correctness of mirror

Lemma Mirrored_mirror :
 \forall t : bintree, Mirrored t (mirror t).

induction t.
simpl.
apply Mirrored_leaf.
simpl.
apply Mirrored_node.
exact IHt1.
exact IHt2.
Qed.
two kinds of existential statements

\[\exists x : A. P(x) \]

- existential in Prop

 \[
 \text{exists } x : A, P \ x
 \]

- existential in Set

 \[
 \{ x : A \mid P \ x \}\]
definition of \texttt{ex}

inductive type

Inductive \texttt{ex} (A : Set) (P : A -> Prop) : Prop :=
\texttt{ex_intro} : forall x : A, P x -> ex P

in practice

\texttt{exists x : A. P x}

is syntax for

\texttt{ex A (fun x : A => P x)}
definition of sig

inductive type

Inductive sig (A : Set) (P : A -> Prop) : Set :=
 exist : forall x : A, P x -> sig P

in practice

{x : A | P x}

is syntax for

sig A (fun x : A => P x)
existence proof for specification

Lemma Mirror :
 \(\forall t : \text{bintree}, \{ t' : \text{bintree} \mid \text{Mirrored } t \ t' \} \).

induction \(t \).
exists (leaf \ n).
apply Mirrored_leaf.
elim IHt1.
intros \(t1' \ H1 \).
elim IHt2.
intros \(t2' \ H2 \).
exists (node \(t2' \ t1' \)).
apply Mirrored_node.
exact \(H1 \).
exact \(H2 \).
Qed.
extracting the program

\[
\text{Coq} < \text{Extraction Mirror.}\n\]

/** val mirror : bintree \rightarrow bintree sig0 **)

let rec mirror = function
 | Leaf n \rightarrow Leaf n
 | Node (b0, b1) \rightarrow Node ((mirror b1), (mirror b0))

\[
\text{Coq} <
\]

\[
\text{type } 'a \text{ sig0 } = 'a
\]
summarizing

- **specification**

 Inductive `Mirrored : bintree → bintree → Prop := ...`

- **implementation**

 Fixpoint `mirror (t : bintree) : bintree := ...`

- **correctness**

 `forall t : bintree, Mirrored t (mirror t)`

- **program extracted from existence proof for specification**

 `forall t : bintree, {t’ : bintree | Mirrored t t’}`
the general pattern

\(\Pi_2 \) sentences

program specification

\[\forall x : A. P(x) \rightarrow \exists y : B. Q(x, y) \]

\(A \) input type

\(B \) output type

\(P(x) \) precondition

\(Q(x, y) \) input/output behavior
the proof term versus the extracted program

\begin{align*}
\text{coq type theory} & = \text{functional programming language} \\
\text{coq proof term} & = \text{functional program} \\
\text{ML language} & = \text{functional programming language} \\
\text{ML program} & = \text{functional program}
\end{align*}

program extraction is \textbf{almost} the identity function

\begin{itemize}
\item differences in type system
\item not all parts of coq terms are computationally relevant
\end{itemize}
Prop versus Set

not all coq terms are computationally relevant
‘Curry-Howard-de Bruijn’ terms don’t need to be calculated

terms of type in Prop ‘non-informative’ discarded
terms of type in Set ‘informative’ kept
‘elimination of Prop over Set’

Inductive or (A : Prop) (B : Prop) : Prop :=
 or_introl : A -> A \/ B
| or_intror : B -> A \/ B.

Definition foo (A : Prop) (H : A \/ ~A) : bool :=
 match H with
 or_introl _ => true
 | or_intror _ => false
 end.

Elimination of an inductive object of sort : ‘Prop’
is not allowed on a predicate in sort : ‘Set’
because non-informative objects may not construct informative ones.
example: negation in the booleans

forall b : bool, {b’ : bool | ~(b = b’)}
extracted program

(** val negation : bool -> bool sig0 **)

let negation = function
 | True -> False
 | False -> True
proof term

fun b : bool =>

bool_rec (fun b0 : bool => b' : bool | b0 <> b')
 (exist (fun b' : bool => true <> b') false
 (fun H : true = false =>
 let H0 :=
 eq_ind true (fun ee : bool => if ee return Prop then True else False)
 I false H in
 False_ind False H0))
 (exist (fun b' : bool => false <> b') true
 (fun H : false = true =>
 let H0 :=
 eq_ind false
 (fun ee : bool => if ee return Prop then False else True) I true H in
 False_ind False H0)) b

bool_rec :
forall P : bool => Set, P true => P false => forall b : bool, P b
example: the predecessor function

statement

\[\text{forall } n : \text{nat}, \neg(n = 0) \rightarrow \{m : \text{nat} | S m = n\} \]
extracted program

(** val pred : nat -> nat sig0 **)

let rec pred = function
| 0 -> assert false (* absurd case *)
| S n0 -> n0

the assert corresponds in the proof term to ...

False_rec {m : nat | S m = 0} (H (refl_equal 0))
 : {m : nat | S m = 0}

... recursion on a proof of False
extraction in the large

FTA project

coq formalization of non-trivial mathematical theorem

Fundamental Theorem of Algebra

every non-constant complex polynomial has a root

finished in 2000

Herman Geuvers, Randy Pollack, Freek Wiedijk, Jan Zwanenburg

intuitionistic proof
extracting the Fundamental Theorem of Algebra

complex polynomials

$$\forall p. \ (p \text{ not constant}) \rightarrow \exists z. \ p(z) = 0$$

program extraction

program for calculating roots of polynomials

- **input**: complex polynomial
- **output**: sequence converging to a root
extracting the Intermediate Value Theorem

real polynomials

\[\forall p. (p(0) < 0 \land p(1) > 0) \rightarrow \exists x. (0 < x \land x < 1 \land p(x) = 0) \]

take \(p(x) = x^2 - 2 \)

program extraction

program for approximating \(\sqrt{2} \)
example: sorting lists

natlist

inductive type

Inductive natlist : Set :=
 nil : natlist
 cons : nat -> natlist -> natlist.
\textbf{Sorted}

\begin{itemize}
 \item \textbf{inductive predicate}
 \begin{itemize}
 \item Inductive \texttt{Sorted} : natlist \rightarrow Prop :=
 \begin{itemize}
 \item \texttt{Sorted_nil} : Sorted nil
 \item \texttt{Sorted_one} : \forall n : nat, Sorted (\texttt{cons\ n\ nil})
 \item \texttt{Sorted_cons} :
 \begin{itemize}
 \item \forall (n\ m : nat) (l : natlist),
 \item n \leq m \rightarrow Sorted (\texttt{cons\ m\ l}) \rightarrow Sorted (\texttt{cons\ n\ (cons\ m\ l)}).
 \end{itemize}
 \end{itemize}
 \end{itemize}
\end{itemize}
Inserted

inductive predicate

Inductive Inserted (n : nat) : natlist -> natlist -> Prop :=
 Inserted_front :
 forall l : natlist, Inserted n l (cons n l)
 | Inserted_cons :
 forall (m : nat) (l l' : natlist),
 Inserted n l l' -> Inserted n (cons m l) (cons m l').
Permutation

inductive predicate

Inductive Permutation : natlist -> natlist -> Prop :=
 Permutation_nil : Permutation nil nil
| Permutation_cons :
 forall (n : nat) (l l’ l’’ : natlist),
 Permutation l l’ -> Inserted n l’ l’’ ->
 Permutation (cons n l) l’’.
forall l : natlist,
{l’ : natlist \ Permutation l l’ \ Sorted l’}
insert

recursive function

Fixpoint insert (n : nat) (l : natlist) struct l : natlist :=

 match l with
 nil => cons n nil
| cons m k =>
 match le_lt_dec n m with
 left _ => cons n (cons m k)
 | right _ => cons m (insert n k)
 end
end.

sort

recursive function

Fixpoint sort (l : natlist) : natlist :=
 match l with
 nil => nil
 | cons m k => insert m (sort k)
 end.