Cross-layer deadlock detection in communication fabrics

Julien Schmaltz, Open Universiteit Nederland Freek Verbeek, Radboud Universiteit Nijmegen Sebastiaan Joosten, Open Universiteit Nederland Bernard van Gastel, Open Universiteit Nederland

Multicore Communication Fabrics

Figure 1. Transistors, frequency, power, performance, and processor cores over time. The original Moore's law projection of increasing transistors per chip remains unabated even as performance has stalled. Moore's law: integration capabilities are still growing fast
Limited power budget prevents increase of clock speed
More performance thanks to more cores
Multi-core communication architectures
are key for both performance and correctness
are complex and large systems
formal methods required for design and verification

•formal methods required for design and verification

Cross-layer Deadlocks

Intel's Description Language

Open Universiteit

Virtual channels

Link layer

Creditbased flows Message counting

Entire System

Deadlocks may emerge from deadlock-free layers

Results & Applications

2D Mesh

Request/response message dependencies

Masters/slaves in various layouts

Model-based All facets of fabric in one model

Formal

Accurate semantics for each primitive

Tailored

High expressivity vs. Efficient verification

Future Work

Formal proof of correctness

Use earlier work on GeNoC to model and verify our deadlock detection methodology

Lower levels of abstraction

Translate xMAS to Verilog and formally verify absence of deadlocks on the Verilog code **Hierarchical Verification**

See: http://www.cs.ru.nl/~freekver/

Acknowledgments

NWO/EW free competition 612.064.811 NWO/EW free competition 612.001.108

Netherlands Organisation for Scientific Research

Use composite objects to structure both the model of the communication fabric and its verification

References

 F. Verbeek and J. Schmaltz. *Hunting deadlocks* efficiently in micro-architectural models of communication fabrics (FMCAD '11).
 ----. Towards the Formal Verification of Cache

 ----. Towards the Formal Verification of Cache Coherency at the Architectural Level. ACM Transactions on Design Automation of Electronic Systems (ACM TODAES).

 ----. Automatic Generation of Deadlock Detection Algorithms for a Family of Microarchitecture Description Languages of Communication Fabrics (HLDVT'12).