
Formal Verification of On-Chip
Communication Fabrics

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Radboud Universiteit Nijmegen,

op gezag van de Rector Magnificus prof. mr. S.C.J.J. Kortmann,

volgens besluit van het college van decanen

in het openbaar te verdedigen op

dinsdag 26 maart 2013 om 13:30 uur precies

door

Freek Verbeek

geboren op 17 september 1983

te Nijmegen

Promotoren:

prof. dr. F.W. Vaandrager
prof. dr. M.C.J.D. van Eekelen

Copromotor:

dr. J. Schmaltz

Samenstelling manuscriptcommissie:

prof. dr. H. Geuvers
prof. dr. N. Bagherzadeh (University of California, Irvine, CA)
prof. dr. D. Borrione (University Joseph Fourier, FR)
prof. dr. A. Jantsch (KTH Royal Institute of Technology, SW)
dr. M. Kishinevsky (Intel Corporation, OR)

Cover: Pim Sebok

This research is supported by the Netherlands Organisation for Scientific
Research (NWO) under the project Formal Validation of Deadlock Avoidance
Mechanisms (FVDAM) under grant no. 612.064.811, and is supported by a grant
from Intel Corporation.

isbn 978-94-61083-91-3

Dankwoord

Er zijn ontzettend veel mensen die de afgelopen vier jaar in meer of mindere mate
aan de totstandkoming van dit proefschrift hebben bijgedragen. Ik wil deze mensen
hiervoor bedanken en een aantal er hier uitlichten.

Mijn copromotor, Julien, is essentieel geweest bij iedere stap die ik de afgelopen
vier jaar heb gezet. Vier jaar lang hebben we samen hard gewerkt, vele discussies
gehad, geluncht, aan conferenties deelgenomen, universiteiten en bedrijven ver-
spreid over Europa en de VS bezocht, nieuwe contacten gelegd en af en toe een
biertje gedronken. Ook al kunnen we een diepgaand meningsverschil hebben over
de opzet van een intro – en ook al moest ik vaak een paper tot treurens toe “meer
structuur” geven – in die vier jaar is er nooit een frustratie ontstaan en heb ik de
samenwerking altijd als bijzonder prettig ervaren. Ik ben blij dat we ook in de
toekomst nog samen zullen werken. Merci.

Frits en Marko, mijn promotoren, wil ik bedanken voor het vertrouwen en
de vrijheid die ik de afgelopen vier jaar heb genoten. Enerzijds hebben jullie
me volledig mijn eigen gang laten gaan, maar tegelijkertijd waren jullie altijd
betrokken en hebben jullie constructief, gedetailleerd en bovenal nuttige feedback
gegeven op mijn proefschrift.

Many thanks go to my manuscript committee, who did not only take the con-
siderable effort of reading and critiquing my thesis to the last detail, but also of
traveling many miles to be present at my defense. Professor Borrione, professor
Jantsch and dr. Kishinevsky, I hope the future will hold many more collaborations.
Professor Geuvers, Herman, to you I am greatly indebted for supervising my mas-
ter thesis, suggesting me as a PhD candidate to Frits, and finally for presiding at
my defense. A special thanks to professor Bagherzadeh and Abdulaziz Alhussien,
whose inspiring ideas have had a great influence on this thesis and whose generous
hospitality has left a great impression upon me.

Er is een hele lijst aan collega’s om te bedanken, te veel om hier op te sommen.
Mijn kamergenoten Bas, Faranak, Maarten, Martijn en Thomas hebben het pro-
moveren af en toe stukken leuker gemaakt dan het eigenlijk is (de USB gestuurde
rocket launcher heb ik altijd een goede investering gevonden). De mensen van
MBSD, maar ook de rest van ICIS, wil ik bedanken voor de lunches, koffiepauzes,
leesclubjes en borrels. Bas, Bernard en Tom, het was geweldig om met jullie samen
te werken.

Het promoveren had ik hoogstwaarschijnlijk nog geen twee maanden volge-
houden zonder alle vrienden om mij heen. Ik hoop dat iedereen zich realiseert dat
ik ze hiervoor ontzettend dankbaar ben. In het bijzonder verdient Pim hier wat
lovende woorden voor zijn prachtige design van de voorkant van dit proefschrift.
Ik vind het fantastisch dat je niet alleen uitgebreid hebt geluisterd naar mijn uitleg
over mijn promotie onderwerp, maar er ook nog genoeg van oppikte om een mooie
deadlock in het ontwerp te verwerken.

Arthur en Fabian, paranimfen, het is voor mij een eer naast jullie te staan
tijdens de verdediging [Mulders07]. En ook daarbuiten, natuurlijk.

Een promotietraject is nogal een aparte tijd. Een tijd vol onzekerheid over wat
je moet doen en of dat gaat lukken, een tijd met veel deadlines en stress, een tijd
waarin veel nieuwe en spannende ervaringen tegelijkertijd plaatsvinden. In zo’n
tijd is de kennis dat er een constante factor is – namelijk dat er een plek is waar je
altijd onvoorwaardelijk terecht kan – van onschatbare waarde. Lia en Jos, ik kan
jullie niet genoeg bedanken voor alles wat jullie hebben gedaan.

Nijmegen, januari 2013

Contents

I Preamble 1

1 Introduction 3
1.1 Formal Verification . 6
1.2 Communication Networks . 7
1.3 Network Layer Isolation versus Integration 9

1.3.1 Example 1 . 10
1.3.2 Example 2 . 11
1.3.3 Isolated versus Integrated 12

1.4 Contribution of this Thesis . 13
1.5 The Role of ACL2 in this Thesis 15

2 Advances to the State-of-the-art 17
2.1 Communication Networks . 17
2.2 Deadlocks in Communication Networks 20

2.2.1 Necessary and Sufficient Conditions 20
2.2.2 Determining Deadlock Freedom 22

2.3 Mechanical Verification of Interconnects 23
2.3.1 ACL2 . 24
2.3.2 GeNoC . 26

II Proving Productivity of Communication Networks 29

3 GeNoC for Productivity Proofs 31
3.1 Correctness of Communication Networks 31
3.2 Generic Communication Network 33

3.2.1 Informal Overview . 33
3.2.2 Formal Network Model . 35
3.2.3 Generic Constituents . 36
3.2.4 Deadlock Configuration . 37
3.2.5 The Behavior of the Generic Network 37

3.3 Functional Correctness . 40
3.3.1 Definition of Functional Correctness 40
3.3.2 Proof Obligations for Functional Correctness 40

Contents

3.3.3 Functional Correctness Theorem 42
3.4 Evacuation . 42

3.4.1 Proof Obligations for Evacuation 43
3.4.2 Evacuation Theorem . 45

3.5 Local Liveness . 46
3.5.1 Proof Obligations for Local Liveness 47
3.5.2 Local Liveness Theorem . 48

3.6 Productivity . 49

4 Application to HERMES 53
4.1 HERMES . 53
4.2 User Input, Part I: Executable Specification 54
4.3 User Input, Part II: Proofs . 57

4.3.1 Discharging Proof Obligations 57
4.3.2 Deadlock Verification . 62

5 Conclusion 63
5.1 Definition of Productivity . 63
5.2 Productivity in Literature . 65
5.3 The GeNoC Framework . 67

III Isolated Network Layer Deadlock Verification 69

6 Necessary and Sufficient Conditions for Deadlock-free Routing 71
6.1 Notation and Definitions . 72
Packet Switching . 76
6.2 Formal Condition . 76

6.2.1 Our Condition . 76
6.2.2 Proof . 78

6.3 Definition of Deadlock . 82
6.4 Relation to Duato . 85

6.4.1 Duato’s Condition . 85
6.4.2 Relation to our Condition 85

Wormhole Switching . 86
6.5 Formal Condition . 86

6.5.1 Our Condition . 87
6.5.2 Proof . 89

6.6 Definition of Deadlock . 91
6.7 Relation to Duato . 92

6.7.1 Duato’s Condition . 92
6.7.2 A Counterexample . 94
6.7.3 Relation to our Condition 96

6.8 Relation to Schwiebert and Jayasimha 98
6.8.1 Schwiebert and Jayasimha’s Condition 98
6.8.2 Relation to our Condition 99

6.9 Relation to Taktak et al. 99
6.9.1 Taktak’s Condition . 99

Contents

6.9.2 Relation to our Condition 100
6.10 Conclusion . 101

7 Deadlock Detection Algorithms 103
Packet Switching . 103
7.1 Algorithm by Example . 104

7.1.1 Deadlock-immunity and -sensitivity 104
7.1.2 Example Trace . 105
7.1.3 Post-processing . 107

7.2 Pseudo Code . 108
7.3 Analysis . 109

7.3.1 Computational Complexity 110
7.3.2 Correctness . 111

Wormhole Switching . 113
7.4 Algorithm by Example . 114

7.4.1 Deadlock-attainability . 114
7.4.2 Example Trace . 115

7.5 Pseudo Code . 117
7.6 Analysis . 118

7.6.1 Computational Complexity 118
7.6.2 Correctness . 120

7.7 Proof of co-NP-completeness . 122
7.7.1 Transformation Example . 123
7.7.2 Formal Proof . 125
7.7.3 Deadlock Freedom versus Deadlock Prediction 128

7.8 Related Work . 129
7.9 Conclusion . 130

8 Applications 131
8.1 DCI2 . 131
8.2 Benchmarks . 132
8.3 NePA with Fault-tolerant Routing 134

8.3.1 Routing Logic . 135
8.3.2 Results . 140

8.4 NePA with Wireless Routers . 142
8.4.1 Routing Logic . 142
8.4.2 Results . 143

8.5 Comparison to Taktak et al. 144
8.6 Conclusion . 145

IV Integrated Network Layer Deadlock Verification 147

9 Microarchitectural Deadlock Verification 149
9.1 MaDLS . 150

9.1.1 xMAS: a MaDL for communication fabrics 150
9.1.2 A Family of MaDLs . 152
9.1.3 Examples . 153

Contents

9.2 Deadlock Detection Algorithm . 155
9.2.1 Definition of Deadlock . 156
9.2.2 Deadlock LIAPs . 157
9.2.3 Algorithm Paraphernalia 158
9.2.4 Deadlock Detection Algorithm 160
9.2.5 Restrictions . 163

9.3 Correctness Proof . 165
9.3.1 Automatic Generation of Blocking and Idle Formulas 165
9.3.2 Correctness Proofs of Translations 167
9.3.3 Correctness Proof of the Algorithm 171

9.4 Experimental Results . 173
9.5 Conclusion . 174

Epilogue 177
Summary . 177
Future Work . 180

A Datastructures and Notation 181
A.1 Sets . 181
A.2 Lists . 182
A.3 Tuples . 184
A.4 Graphs . 184

B List of Terms 187

Bibliography 189

Samenvatting 203

Curriculum Vitae 205

Part I

Preamble

1

Chapter 1

Introduction

As technology advances, microchips become more and more complex. To grasp
the complexity of a future chip, consider the streets of a large city from an aerial
view. Buildings – like black boxes – continuously inject and consume cars from the
infrastructure, helicopters fly around and underneath it all a subway transports
masses of people between fixed points. The integral behavior is dazzlingly complex
and chaotic. Future microchips may well achieve a similar degree of complexity.
On a single chip, hundreds of cores (the buildings) are performing parallel com-
putations. A future on-chip infrastructure can integrate channels (the streets),
wireless transmitters (the helicopters), or optical interconnects (the subways) on
a few square centimeters. Even three-dimensional chips are feasible, essentially
stacking several mutually connected cities upon each other.

The cause of all this on-chip complexity, is the ability of modern manufacturers
to integrate huge amounts of transistors on a small surface. Currently, chips
are built from transistors being only 22 nanometers long. Smaller transistors
are expected (latest research has even developed a transistor consisting of only
a single atom [57]) allowing more on-chip possibilities. It is up to both industry
and academia to exploit this nano technology and to cope with the complexity
inherent to running more than a billion transistors in one integrated circuit.

A general approach is to reduce the overall complexity by raising the level
of abstraction of the design phase. Instead of building a chip from scratch, de-
signers use prefabricated building blocks called intellectual properties or cores. A
System-on-Chip (SoC) integrates different cores on one die. Examples of cores
are processors, memory controllers, and video processing units. Cores are cre-
ated, verified and tested individually, allowing a divide-and-conquer approach in
designing complex microchips.

Essential to the performance of the chip is an efficient communication inter-
connect between these cores. Traditionally, a bus is used to facilitate all on-chip
communications. The major drawback of a bus is scalability. It is possible to
connect dozens of cores on one bus, but not hundreds. To deal with this issue,
Networks-on-Chip (NoC) have been proposed [8]. In an on-chip network, several
cores communicate with each other by transmitting messages which move through
the interconnect until they arrive at their destination. An NoC is a “city on chip”
with packets of data as its inhabitants.

3

1 Introduction

The NoC paradigm introduces new challenges to the world of SoC designers. In
a chip with a bus, it is relatively easy to ensure that a message sent from one core
to another will always eventually arrive. In an on-chip network this becomes more
troublesome. In the interconnect of an NoC scenarios may occur in which messages
never arrive at their destination. A deadlock is such a situation. Figure 1.1 shows
an example. The cubes represent cores that make use of an on-chip interconnect
to transmit and receive messages. The on-chip infrastructure is depicted as a
set of streets, and the messages moving through this interconnect are depicted as
cars. Each message has a destination, and it knows which direction to take to get
towards its destination. However, each message is waiting for another message.
All messages are waiting permanently.

A deadlock is not the only scenario in which messages never arrive at their
destination. Various network-related issues can occur such as misrouting, livelocks,
and starvation. None of these issues may occur, if a network is to be called correct.

!"

#"

#" #"
$"

$"

%"

#"

$"

$"

%" %" %"

!"

!"

!"

Figure 1.1: Deadlock Scenario

Complex as microchips may be, we base our everyday lives on the assumption
that these chips correctly do what we expect them to do. Microchips are omni-
present, ranging from our laptops, to home appliances, to safety-critical systems.
A chip that performs correctly often remains unnoticed. It is when bugs occur that
we realize how consequential it is to assume correctness of all the hugely complex
chips surrounding us. For example, in 2011 Intel identified a problem with its
Cougar Point chipset. They had to halt shipments and repair existing systems,
with a total cost of about 700 million dollars.

Establishing chip correctness – beyond any doubt – is a hard problem. With
cores being validated separately, this thesis focuses on verification of the intercon-
nect between the cores. A major difficulty is that correctness of the interconnect
is an emergent property depending on many different facets of the NoC, such
as which cores run on top of it, which routes can be taken by messages in the
interconnect, and under which conditions messages are stalled.

4

Formal verification is a technique for assessing that a system is correct, i.e.,
that it meets a specification formalized in some mathematical language. Generally,
a formal model of the system is created using, for example, state machines or Petri
nets. A specification is formulated in a logic such as Linear Temporal Logic (LTL).
It is then proven that the model always satisfies the specification.

Whether it concerns the formulation of definitions, the implementation of an
algorithm, or the proof of a theorem, humans’ labor is always error-prone. Wolper
asserts that “manual verification [of a program] is at least as likely to be wrong as
the program itself” [146]. A proof can only reliably be called sound if it is built
from very small logical reasoning steps. However, even in the proofs of the smal-
lest theorems humans have the tendency to think in larger steps, eschewing the
rigority enforced by logic. The result is that human proofs are often unreliable.
In contrast, the rigorous and fine-grained nature of logic perfectly suits a com-
puter. The soundness of logical proofs can be verified more reliably by computers
than by humans. It is therefore common practice to perform formal verification
mechanically, that is, in such a way that its soundness can be ascertained by a
computer.

Applying formal methods to on-chip interconnects provides trustworthy claims
on their correctness. However, mechanical verification generally has to deal with
a trade-off between ease of use and scalability. Automated and general techniques
such as model checking are push-button solutions, but do not scale to the complex-
ity of realistic NoCs. On the other hand, interactive and parametric techniques
such as theorem proving are laborious and hard to use, which tends to prevent
their widespread adoption. Currently, there is no way of formally verifying inter-
connects on the scale demanded by the NoC paradigm.

The contribution of this thesis consists of easy and scalable mechanical verific-
ation methods for communication networks. We formalize a notion of correctness,
stating that a network is always eventually able to inject messages and that any
injected message will always eventually arrive at its destination. We show that
in order to establish this emergent correctness property for some NoC, it suffices
to prove several smaller properties on isolated constituents. With a realistic ex-
ample we conclude that many of these properties can easily be verified. Deadlock
freedom, however, remains difficult to prove due to the interactions between the
different constituents of the network. Therefore we provide formally proven correct
tools and algorithms to hunt for deadlocks in communication networks.

This thesis advances the state-of-the-art both theoretically and practically.
We provide new theories identifying deadlocks in communication networks. We
prove that deciding deadlock freedom of wormhole networks is co-NP-complete.
On the practical side, we design deadlock detection algorithms. A new tool is
presented, which runs optimized C implementations of these algorithms in parallel.
We present examples that could previously not be proven deadlock-free, due to
either scalability issues or the complexity of dealing with many different facets of
NoCs all at once. Our algorithms are able to either prove absence of deadlocks or
report a counterexample. The correctness of our theories and algorithms has been
established mechanically using the ACL2 theorem prover.

5

1 Introduction

Before discussing the outline of this thesis, we present a short introduction into
formal verification and communication networks. We then motivate the structure
of this thesis using two examples. More background information and related work
can be found in the next chapter.

1.1 Formal Verification

The current state-of-the-art in verifying on-chip networks is simulation [17, 15, 91].
Simulation can be used to predict the behavior of complex and interactive sys-
tems. An inherent disadvantage of simulation is the difficulty to obtain full cov-
erage. Corner cases are hard to find and debug. Finding simulation patterns
that cover them all is even more intricate. Simulation does not scale to future
communication-centric SoCs [121]. The focus of this thesis is therefore on analyt-
ical formal verification approaches to complement simulation.

Analytical approaches do not consider dynamic and runtime behavior of a
system, but statically analyze a system. Various different flavors of analytical
mechanical verification exist. Model checking is an automated technique to check
whether some model of a system satisfies a certain specification [81, 5]. The model
is described in some sort of state machine and the specification is described in a
temporal logic. A model checking algorithm uses the transition function associated
to the state machine to explore the state space and to find states that do not satisfy
the specification. If it finds such a state, both the state and the trace leading to
this state are reported. If such a state is not found, the system is proven correct.
Model checking is widely adopted by academia and industry alike, mostly because
it is completely automatic and it can provide counterexamples. The major issue is
a combinatorial blow-up of the number of states that needs to be explored, referred
to as state space explosion. This severely limits the scalability of model checking.

Theorem proving is a technique where the proof of some mathematical theorem
is formalized in such a way that a computer program can ensure its correctness.
Theorem proving is an interactive process, during which the user supplies hints
and lemma’s to the theorem prover until the proof can be derived by the system.
A theorem prover can guide the user while making his proof, by breaking down
large proofs into smaller ones, by simplifying and rewriting the current goal, or
by automatically searching for lemma’s that can be used to prove the current
theorem. The major advantage of theorem proving is the ability to deal with
parametric systems. For example, the size of a network can remain unspecified,
meaning that the theorem is proven to hold for networks with any size. Scalability
is then measured by the amount of interaction with the user. Theorem proving
is generally considered an academic effort, even though it has been adopted by
various industry such as Intel and AMD. The process of theorem proving requires
a relatively steep learning curve, and even for an experienced user it still often
requires a great amount of interaction to prove non-trivial theorems.

SAT solvers are automated algorithms that decide whether some formula is
satisfiable [100, 62]. Even though the satisfiability problem is well-known to be NP-
complete, SAT solvers can prove truthness of propositional formulae with millions
of variables. Satisfiability Modulo Theories (SMT) adds a background theory to a
SAT solver, effectively giving an interpretation to some symbols [6]. For example,

6

1.2 Communication Networks

the integer arithmetic theory assigns the expected interpretation to symbols such
as <, +, and 0. Other examples of theories deal with various data structures such
as lists, arrays, or bit vectors. The use of SAT solvers is completely automatic,
but it requires the problem or theory that is to be proven to be formulated as a
SAT instance. Many model checkers and theorem provers make use of SAT and
SMT solvers under the hood.

This thesis applies both theorem proving and SMT solvers to perform para-
metric and scalable verification of NoCs. The ultimate purpose of this effort is
to remove the traditional objection against theorem proving – namely that it is
a difficult and time consuming process – while preserving the major advantage of
scalable and analytical verification.

1.2 Communication Networks

In this thesis, the term communication network denotes a synchronous message
passing network with a static topology. The behavior of all the switches in the
network is predetermined and is assumed to be reliable. There is no packet loss,
and communication wires do not cause any bit loss.

It is common practice to reason about the total functionality of a network
in terms of different layers of abstraction defined by the OSI model [139]. This
approach has also been adopted for on-chip networks [130, 88, 48]. Figure 1.2
shows the three different layers used in this thesis.

!"#$#%#&'()$*))+'

,--&.%,/#+0'

!"#%)00.+1'+#2)03'

"#4$)"03'%5,++)&0'

!"#$#%#&'()$*))+'

"#4$)"0''

6--&.%,/#+'&,7)"'

8)$*#"9'&,7)"'

:,$,'&.+9'&,7)"'

Figure 1.2: Three layers occurring in this thesis.

Application Layer

The highest layer considered in this thesis is the application layer. At this layer,
applications (or cores) such as processors or memory controllers run in parallel.
These cores communicate with other cores by transmitting messages back and forth

7

1 Introduction

over the network. The behavior of the cores dictates where, when, and which types
of messages are injected into the network. It also dictates where, when, and which
types of messages are consumed from the network. The behavior of the cores will
also be called the application-layer protocol.

For example, a cache coherency protocol between the cores might induce that
some of the cores (e.g., the processors) send out requests, while others transmit
responses (e.g., the memory controllers). In this example, the protocol determines
that two types of messages exists. It provides the destinations of these messages.
It also determines that, e.g., a response is injected only when a request has arrived.
In this case, the application-layer protocol causes a message dependency between
requests and responses [68].

Network Layer

The second layer considered in this thesis is the network layer. In the OSI model,
this layer coincides with both the network and the transport layer. Each core
is connected to a processing node (see Figure 1.3). This node is able to inject
messages received from the core into the network, and to remove messages sent to
the core from the network. Any message arriving at the processing node is sent
through a switch.

Switches are connected to each other via channels. Each channel has a certain
capacity to store messages. Channels are the only components in the network that
buffer messages. Generally, channels are directed, i.e., they are used to transmit
messages from switch to switch unidirectionally.

A switch applies arbitration to determine which of their in-going channels is
served. A routing function decides where the message is sent to. It can choose
between one of the channels going out of the processing node, or the local outgoing
channel leading to the core. The set of possible channels to which a message can
be routed in one step is called the set of next hops of the message. Each time
a message moves from channel to channel, the processing node at the end of its
current channel decides a set of next hops and selects one that is able to receive
the message. Routing can be deterministic, in which case each message has at
most one next hop. This implies that routes are static and can be precomputed.
In contrast, adaptive routing may supply multiple next hops per message. In
case of adaptive routing, a selection function determines which of the next hops
is taken [44]. Note that in case of adaptive routing at each time the set of next
hops is static, i.e., the routing function itself does not change. However, since it
supplies multiple next hops of which only one is to be selected, the route that a
message can take from source to destination can vary.

We assume there is some atomic unit of transfer called a flow control digit
(flit) [36]. The size and the type of this unit depend on the type of network.
Messages are transformed into flits before they traverse the network. A message
may consist of one or more flits, but each flit belongs only to one message.

Link Layer

The lowest layer considered in this thesis is called the link layer. This layer contains
the transfer protocol between two nodes. This protocol determines under which

8

1.3 Network Layer Isolation versus Integration

!"#$%&'

()%*('#+',')-$'

%&*++.(!' %&*++.(!'

/&*++.('

01)%.!!#+2'+)3.'

/)1.'

415#$1*6)+'!'7)-6+2'!'8.(.%6)+'

Figure 1.3: Processing nodes in a network.

conditions a message may move from channel to channel.
For example, a network may have wires between each pair of connected channels

to facilitate a handshaking protocol. When the target channel is ready to receive,
it will send out a signal on such a wire. The transmitting channel does the same
when it is ready to send. The transfer protocol states that if both signals are high,
a messages moves.

More complicated protocols can be applied. A network with credit-based flow
control has extra wires to count the messages in the network. It prevents messages
from moving to their next channel if a certain bound has been reached, even if
the next channel has free buffers. Also, the transfer protocol may take care of
synchronization between messages in the network. In this case, a message is moved
only if some other message(s) in the network have reached a certain channel.

1.3 Network Layer Isolation versus Integration

The main structure of this thesis is based on two points of view on the network
layer. In the first view, we formulate assumptions which abstract away from both
the application layer and the link layer. This yields the isolated network model. In
contrast, the integrated network model considers the three layers all at once. We
first informally introduce both points of view.

In the isolated network model, the assumptions on the application layer state
that cores are homogeneous and fair. As for the link layer, we assume that the
transfer protocol moves a flit towards a next hop if this next hop is available, i.e.,
if the next hop is able to store the flit. This abstracts away among others counters
or synchronizations. As a result, the isolated network model focuses on routing
and topology. The isolated network model is based on the following assumptions:

• There is only one type of messages.

• Each core may send messages to all other cores.

• At each core, injection is fair, i.e., given some destination d each core will
always eventually want to send a message to d.

9

1 Introduction

• At each core, consumption is fair, i.e., if a message arrives at a switch con-
nected to the destination core of the message, it will eventually be consumed.
This is commonly referred to as the consumption assumption.

• The size of messages is always finite.

• A flit moves, if there exists a next hop that has available capacity to store
the flit.

While the isolated network model abstracts away from details, the integrated
network model incorporates all details concerning all three layers. The integrated
network model encompasses among others the behavior of the cores, different
message types, the interfaces between the cores and the processing nodes, the
network topology, the routing logic, the injection method, and the transfer protocol
between channels.

With two examples, we illustrate the different facets of both points of view.

1.3.1 Example 1

Consider the following simple application-layer protocol: a set of masters (e.g.,
processors) and slaves (e.g., memory controllers) communicate through request
and response messages. A master sends a request to a slave and waits for the slave
to return a response. Figure 1.4a shows the corresponding finite state machine.
We use the handshaking operator ‖α from Baier and Katoen [5]. At the network
layer, masters and slaves are organized in a two dimensional mesh (Figure 1.4b).
Messages are routed using XY routing [103]. This routes messages first in the
horizontal direction to the right column and then vertically towards the right row.
As for the link layer, messages move whenever there is an available next hop.

rspactive wait

req

rsp rsp

active

Master Slave

(a) FSM for protocol with one master and

one slave

(b) Two dimensional mesh topology

Figure 1.4

Taken in isolation, all components are deadlock-free. The protocol at the ap-
plication layer is obviously deadlock-free. Masters wait for slaves, but slaves never
wait and therefore there is no terminal state. The network is deadlock-free, as a
2D mesh with XY routing induces no circular dependencies [36]. There also are
no circular message dependency, as a response can be generated by a node receiv-
ing a request, but not the other way around [68]. We show how deadlocks still
may emerge from these deadlock-free components, depending on among others the
layout of the masters and slaves.

10

1.3 Network Layer Isolation versus Integration

Consider the layout in Figure 1.5 where every odd (even) column is filled with
masters (slaves). Each request packet has a source s (the master where the re-
sponse needs to be directed to) and a destination d (the slave where the request
needs to be directed to). Each response package has a destination d only. A dead-
lock can occur when responses get blocked by requests and cannot arrive at their
destination.

Figure 1.5 shows the smallest deadlock possible in this layout. Requests in-
jected at Master 0 and destined for Slave 3 are heading east. At Slave 3, these
requests are turned into responses destined for the original source, Master 0. These
responses are blocked by western bound requests injected by Master 2. These re-
quests are turned into responses heading east at Slave 1. A circular wait has been
created, and no message has an escape possibility out of this cycle. The com-
bination of the routing logic with message dependencies has caused a deadlock.

Figure 1.5: Message-dependent deadlock in a 4x1 mesh. Nodes are identified by their
x-coordinate.

Now consider the layout where all masters (slaves) are put on the left (right)
side of the mesh. In such a layout, requests can be blocked by responses and
other requests. This introduces new dependencies with respect to the routing
dependencies. However, these new message dependencies cannot introduce a cycle.
This is implied by the fact that a western bound message never needs to wait for
a vertical channel or an eastern channel. Any western bound message is always
a response, as masters are on the left side of the mesh. The XY routing logic
ensures that a western bound message is not routed north or south. The only way
a western bound response can be blocked is by another western bound response.
Eventually, some western bound response will arrive at its destination. As it is
a response, it will be consumed and no further message dependencies will occur.
Since a western bound message can wait only for western channels, no cycles occur.
In this layout the network is deadlock-free.

1.3.2 Example 2

In this example, we abstract from the applications running on top of the network.
The cores are simply assumed to be homogeneous. At the network layer, we
consider the Spidergon NoC with shortest path routing [32] (see Figure 1.6a).
Without further modification, the chip suffers from routing deadlocks. A deadlock
can occur if each clockwise channel going out of processing node n is filled with
messages destined for node n+ 2 mod N with N the total number of processing

11

1 Introduction

nodes (see Figure 1.6b).

(a) Spidergon ring topology (b) A deadlock. Each channel has capacity

to store two messages.

Figure 1.6: Spidergon of STMElectronics

However, whether this deadlock actually occurs can depend on the link layer.
For example, a credit-based flow control can make the network deadlock-free. This
transfer protocol moves messages towards a channel only if the total number of
messages in the network is below a certain bound B. The described deadlock can
occur only when there are at least kN messages in the network, with k the capacity
of the channels. Consequently, the transfer protocol ensures deadlock freedom for
any B less than kN .

1.3.3 Isolated versus Integrated

Example 1 shows that a network can be deadlock-free when considered in isolation,
whereas considering the system integrally yields deadlocks. Conversely, Example 2
shows that a network that is considered to have deadlocks when viewed in isolation,
can actually be deadlock-free when the system in analyzed in its entirety.

Considering the network layer in isolation has been common practice for many
years. More so, it is the entire purpose of the OSI model to facilitate a divide-
and-conquer approach. First of all, dealing with the huge complexity of the whole
system is practically infeasible. Secondly, separating the network from the ap-
plications running on top of it allows a modular approach. This separation is
often even necessary, when during the design of a communication network it is not
known which specific applications run on top of it. In such cases, correctness of
the network can only be assessed under generic assumptions on the behavior of
the possible applications. This approach has the additional advantage that design
and verification efforts are reusable: they are correct for any application that sat-
isfies the assumptions. Thirdly, even though it is the case that when analyzing
a network in isolation yields a deadlock this deadlock might not actually occur,
the knowledge that the network has deadlocks when considered in isolation is still
valuable. This knowledge tells a designer that additional precautions are required
to ensure deadlock freedom, i.e., that it is necessary to add deadlock-preventing
elements to either the application or the link layer.

The greatest disadvantage of the isolated network model is that it is a very
abstract model of communication networks. At the application layer it does not

12

1.4 Contribution of this Thesis

allow different types of cores, or different types of messages. At the link layer it
does not allow counters, scoreboards, or synchronizations. Therefore, the result
of the analysis does not provide trustworthy results: deadlocks are not necessarily
actual deadlocks, and deadlock freedom does not ensure actual deadlock freedom.

The integrated approach has the obvious advantage that the result is more reli-
able: if the system is proven deadlock-free while considering all three layers mono-
lithically, deadlock freedom of the entire system can be stated with a high degree
of confidence. Also, the integrated network model is not restricted in any way:
it allows for all kinds of applications such as cache coherency and master/slave
protocols and for all kinds of flow control such as synchronizations, duplications,
and packet transformations.

The major disadvantage of the integrated network layer model is the enormous
increase in complexity. Also, results of a verification effort are not reusable since
the effort has been done taking all facets of the system into account.

1.4 Contribution of this Thesis

This thesis consists of four parts. Part I, the preamble relates the contributions
of this thesis to the current state-of-the-art and provides background information
required for the remaining three parts. The contents of the remaining parts are
based on fourteen publications, including five journal articles, six peer-reviewed
conference papers, and three peer-reviewed workshop papers.

In Part II we apply the ACL2 theorem prover to prove correctness of on-chip
interconnects. This part contains two major contributions.

1. We formalize a novel notion of correctness for NoCs.

2. We extend GeNoC, a formal theory of communication networks in the ACL2
theorem prover, with this new notion of correctness. We formulate a set of
assumptions and prove a generic theorem which states that any intercon-
nection network that satisfies the assumptions is correct. GeNoC will be
discussed in detail in the next chapter.

Part II is based on the following publications:

• Freek Verbeek and Julien Schmaltz. Easy Formal Specification and Valida-
tion of Unbounded Networks-on-Chips Architectures. ACM Transactions on
Design Automation of Electronic Systems (TODAES), volume 17 (issue 1),
pages 1:1–1:28, January 2012.

• Freek Verbeek and Julien Schmaltz. Formal Specification of Networks-on-
Chips: Deadlock and Evacuation. Proceedings of Design, Automation and
Test in Europe (DATE’10), pages 1701–1706, March 2010.

One of the conclusions presented in Part II is that the absence of deadlocks is
the most difficult assumption required to prove correctness. The remainder of this
thesis is concerned with establishing deadlock freedom of communication networks.

Part III considers deadlock verification in the isolated network model. It
presents the following contributions:

13

1 Introduction

3. We formalize necessary and sufficient conditions for deadlock freedom of com-
munication networks. A careful analysis of existing conditions is presented
to show the relevance of our new conditions.

4. We present the tool DCI2 (for: Deadlock Checker In Designs of Communic-
ation Interconnects), which automatically decides whether these conditions
hold for a given network. Additionally, it detects livelocks and various rout-
ing related issues under the isolated network model.

5. We prove deadlock detection NP-complete for wormhole networks.

6. Extensive experimental results are provided for non-trivial examples like
adaptive fault-tolerant routing and for a chip with wireless transmissions.

The experimental results have been obtained in cooperation with Abdulaziz Al-
hussien and Nader Bagherzadeh from the University of California, Irvine (UCI).
Part III is based on the following publications:

• Abdulaziz Alhussien, Freek Verbeek, Bernard van Gastel, Nader Bagherza-
deh and Julien Schmaltz. A Formally Verified Deadlock-Free Routing Func-
tion in a Fault-Tolerant NoC Architecture. Proceedings of the 25th Sym-
posium on Integrated Circuits and Systems Design (SBCCI’12), august 2012.

• Freek Verbeek and Julien Schmaltz. Automatic verification for deadlock in
networks-on-chips with adaptive routing and wormhole switching. Proceed-
ings of Networks-on-Chips Symposium (NOCS’11), pages 25–32, May 2011.

• Freek Verbeek and Julien Schmaltz. A Fast and Verified Algorithm for Prov-
ing Store-and-Forward Networks Deadlock-Free. Proceedings of The 19th
Euromicro International Conference on Parallel, Distributed and Network-
Based Computing (PDP’11), pages 3–10, February 2011.

• Freek Verbeek and Julien Schmaltz. On Necessary and Sufficient Conditions
for Deadlock-Free Routing in Wormhole Networks. IEEE Transactions on
Parallel and Distributed Systems (TPDS), volume 22 (issue 12), pages 2022–
2032, December 2011.

• Freek Verbeek and Julien Schmaltz. A Comment on “A Necessary and Suffi-
cient Condition for Deadlock-Free Adaptive Routing in Wormhole Networks”.
IEEE Transactions on Parallel and Distributed Systems (TPDS), volume 22
(issue 10), pages 1775–1776, October 2011.

Part IV presents a deadlock detection algorithm in the integrated network
model. It contains the following contributions:

7. We provide a syntax to enable the description of micro architectural models
of communication fabrics.

8. We provide an algorithm detecting deadlocks in communication fabrics de-
scribed in this syntax.

14

1.5 The Role of ACL2 in this Thesis

Our algorithm is able to deal with many different facets of monolithical network
verification such as message dependencies and different types of link layers. In
essence, the algorithm reduces the decision of deadlock freedom to solving many
SMT instances. The examples presented in this chapter can be proven deadlock-
free with this algorithm. Part IV is based on the following publications:

• Freek Verbeek and Julien Schmaltz. Automatic Generation of Deadlock De-
tection Algorithms for a Family of Microarchitecture Description Languages
of Communication Fabrics. Proceedings of the IEEE International High
Level Design Validation and Test Workshop (HLDVT’12). To appear.

• Freek Verbeek and Julien Schmaltz. Towards the Formal Verification of
Cache Coherency at the Architectural Level. ACM Transactions on Design
Automation of Electronic Systems (TODAES), volume 17 (issue 3), pages
20:1–20:16, June 2012.

• Freek Verbeek and Julien Schmaltz. Hunting deadlocks efficiently in microar-
chitectural models of communication fabrics. Proceedings of Formal Methods
in Computer Aided Design (FMCAD’11), pages 223–231, November 2011.

1.5 The Role of ACL2 in this Thesis

The ACL2 theorem prover (see Section 2.3.1 for a short introduction and references
for further reading) has played a vital role in the realization of this thesis. It has
been used extensively to establish the validity of the definitions and proofs of many
theorems. The focus of this thesis is on the theorems and the algorithms, but not
on their verification in ACL2. Any reader interested in details on the ACL2 proofs
can find these in the following publications:

• Freek Verbeek and Julien Schmaltz. Proof Pearl: A formal proof of Dally
& Seitz’ necessary and sufficient condition for deadlock-free routing in in-
terconnection networks. Journal of Automated Reasoning (JAR), volume 48
(issue 4), pages 419–439, April 2012.

• Freek Verbeek and Julien Schmaltz. Formal verification of a deadlock de-
tection algorithm. Proceedings of the International Workshop on the ACL2
Theorem Prover and its Applications (ACL2’11), pages 103–112, November
2011.

• Freek Verbeek and Julien Schmaltz. Proof Pearl: A formal proof of Duato’s
condition for deadlock-free adaptive networks. Proceedings of Interactive
Theorem Proving (ITP’10), pages 67–82, July 2010.

• Freek Verbeek and Julien Schmaltz. Formal Validation of Deadlock Preven-
tion in Networks-On-Chips. Proceedings of the International Workshop on
the ACL2 Theorem Prover and its Applications (ACL2’09), pages 128–138,
May 2009.

Figure 1.7 provides an overview of the ACL2 proof effort. The arrows do not
represent implications, but stand for the structure in which the theorems have

15

1 Introduction

been proven. The upper theorems and the definitions used to prove them have
been used in proofs of lower theorems. Theorems 3.1, 3.2 and Corollary 3.1 are
part of our extension of the GeNoC framework. The proofs in Sections 4.2 and 4.3
are examples of proofs established applying GeNoC. Theorems 6.1, 6.2, and 7.2
and Lemma’s 6.4, 6.6 and 6.9 formulate correctness of our necessary and suffi-
cient conditions. The proofs of these theorems rely upon the GeNoC framework.
Finally, Theorems 7.1 and 7.3 formulate correctness of our algorithms, i.e., that
they correctly check whether the necessary and sufficient conditions hold for some
particular network.

Theorems

Corollary 3.1

4.2, 4.3

7.1, 7.3

3.1, 3.2

Theorems Sections

Theorems

6.1, 6.2, 7.2

Lemma’s
6.4, 6.6, 6.9

Figure 1.7: Mechanically proven theorems

All the theorems in Part IV have not yet been verified mechanically. Addition-
ally, our proof that deciding deadlock freedom of wormhole networks is co-NP-
complete, Theorem 3.3 and Lemma 6.5 have not been formalized in ACL2.

The total proof effort related to this thesis consists of 39.321 lines of ACL2
code. This includes 3446 theorems (ACL2 defthm statements) and 858 definitions
(ACL2 defun statements). ACL2 performs – while proving all the theorems –
about 2.352.273.987 prover steps. All books are available upon request.

The added value of verifying all these theorems in ACL2 is twofold. First, it
helped with getting all definitions completely correct. As example, the definition
of a valid configuration in a wormhole network contains many subtleties. Sec-
tion 6.7.2 (see Page 94) will show that the definitions as they were used in existing
literature were incorrect. It was due to our formalization in ACL2 that we were
able to formulate accurate and precise definitions. Secondly, the ACL2 theorem
prover has greatly helped while designing the algorithms presented in this thesis.
Our initial proof effort started with flawed algorithms. The final versions presen-
ted in Chapter 7 are the result of a mutual recursion between reformulating the
algorithms and proving theorems about them. The algorithms contain a post-
processing step, which is only required when for some very specific network, some
specific trace of the algorithms yields an erroneous result. We would not have
found the necessity of this post-processing step without proving correctness of the
algorithms in ACL2.

16

Chapter 2

Advances to the State-of-the-art

This chapter discusses background information to facilitate the reading of the re-
maining parts of this thesis. We present the current state-of-the-art in formal
verification of interconnection networks, with a focus on the architectures used
on-chip. Whenever possible, we clearly show how this thesis advances the cur-
rent state-of-the-art. After providing background information on interconnection
networks, we give an overview on research related to deadlocks in communication
networks. Finally, we provide an overview of the mechanical verification efforts
related to communication networks.

2.1 Communication Networks

During the ’00s, a multi-core shift occurred [94, 58]. In 2000, it was already possible
to design SoCs with dozens of mutually communicating IP blocks. Following
Moore’s Law, more and more transistors could be put on a chip each year [98].
In 2009, the Intel single-chip cloud was able to run 48 general purpose – fully
programmable – processing cores on one single die [74].

This revolution evoked a discussion on the interconnect between the cores.
In 2000, Guerrier and Greiner discuss that the increase in complexity caused by
multiple systems on a chip requires a shift from the traditional bus towards an
on-chip network [67]. In the same year, Hemani et al. present an NoC, where
resources communicate using addressed packets routed to their destination via a
communication fabric [72]. Dally and Towles present an example of an on-chip
network and discuss several challenges in their design [37]. In 2002, Benini and
Micheli state that with more and more cores on a chip, the bus becomes the
bottleneck in the overall performance of the system and coin NoC a new paradigm
in chip design [8].

Interconnection networks, however, are not new. The importance of network-
ing to communicate between processes was already recognized in the 70’s. The
ARPA network (the precursor of the Internet) triggered a great amount of research
related to the performance, reliability and correctness of interconnects between
computers [25]1. During the 80’s and 90’s, the interconnection networks inside

1This paper describes a deadlock on the “Internet” between UCLA and Stanford University.

17

2 Advances to the State-of-the-art

multicomputers were widely studied [36, 44]. NoCs brought interconnection net-
works to the level of integrated circuits. What first took hundreds of square meters
(e.g., the ASCI Red Super Computer reaching 1 teraflops in 1996), is now embed-
ded on a single die (i.e., Intel’s Teraflops Research Chip with 80 cores).

Wolf recognizes two crucial differences between the early computer networks
and the modern on-chip ones [145]. First, embedded systems require predictable
performance. Due to the close cooperation between cores, bounds on the latency
and throughput become crucial for the performance and correctness of the system.
Secondly, constraints posed by power and energy become an issue on every level of
abstraction. For example, whereas the interconnect between computers can simply
drop and resend messages in order to resolve a deadlock, this becomes very costly
in an on-chip network. In addition, Vermeulen et al. note that the topology of
an on-chip network is static, whereas off-chip networks often dynamically add and
remove links [143].

Switching in NoCs

Generally, three types of switching are being used: circuit, packet2 and wormhole
switching. Packet and wormhole switching are the most commonly used [112, 107,
140]. Therefore, this thesis is not concerned with circuit switching.

Packet Switching

In a network with packet switching, messages are packetized before being injected.
A packet consists of a payload and a header. The payload is the data of the message
that is to be transmitted. The header contains the destination of the packet. A
packet is the atomic unit of transfer.

As a packet contains all the information needed to route the packet through
a network, it can move autonomously from channel to channel. At each router in
the network, one or more next hops are determined. If one of these next hops is
able to accept the packet, the packet is forwarded to that next hop. There is no
reservation or prebooking of channels.

A crucial feature of packet networks is that the size of the packets is fixed and
that the network is set up accordingly. A channel with capacity n can store exactly
n packets. A packet is stored completely in a buffer of a channel. If it is routed
towards a next channel, it is removed from its old position and moved integrally
to a buffer of the next channel.

Since packets are stored and require new channels to be able to store them
before they can move, contention may occur. A channel is available if it has at
least one empty buffer. A packet is blocked if all its next hops are unavailable.

Channels can be implemented in two ways: queues and central buffers. With
queues, the order in which packets arrive at the channel is relevant. Only the
packet that arrived first, i.e., the packet at the head of the queue, is considered
for forwarding to a next hop. With central buffers, any packet in the channel can
be chosen to be forwarded to a next hop.

2In this thesis, packet switching denotes store-and-forward switching.

18

2.1 Communication Networks

n0

n1

B

A

C

Figure 2.1: Network with packet switching. The circle (cross) packets are destined for
n0 (n1).

To stress this difference, consider Figure 2.1. The network contains three chan-
nels all with capacity 2. Channel A stores two packets, one destined for processing
node n0 and one destined for processing node n1. Channel C is full. Under queue
semantics, none of the packets in channel A can move if the packet destined for
n1 arrived first. Only the packet at the head of the queue is considered, and this
packet cannot move because channel C has no empty buffer. Under central-buffer
semantics, the packet in channel A destined for n0 can move.

Packet networks generally tend to have low contention, as packets do not oc-
cupy many resources. Adaptive routing can decrease contention even further, as
packets move autonomously through the network. However, the storing of the
packets in buffers makes latency unpredictable as it depends on the load of the
network. Also, the size of the packets bounds the size of the messages that can
be transmitted. If one message is divided into multiple packets, then some order-
ing mechanism has to ensure that packets are delivered in-order. For an in-depth
discussion on packet switching, we refer to standard textbooks [38, 48].

Wormhole Switching

In a network with wormhole switching, messages are split into worms before being
injected. A worm consists of an arbitrary but finite number of flits. Two types
of flits exist. A header flit is a flit containing the destination of the message. A
tail flit, is a flit containing a part of the message that is to be sent. Each message
has one header flit, but typically many tail flits. It is common practice to further
distinguish between data flits, end-of-worm flits or flits storing the length of the
worm. In this thesis, however, this distinction is not necessary and all these flits
are denoted simply as tail flits.

When injecting a message, the header flit is injected first and leads the way.
The header flit is routed autonomously from channel to channel. Similar to a
packet, at each router a set of next hops is determined and the header flit is sent
to a next hop that is ready to receive it. As the tail flits do not contain any
information on their destination, they follow the header flit in a pipelined fashion.

At each successive channel, flits are stored before they are forwarded to their
next hops. Each channel with capacity n is able to store exactly n flits. Contention
occurs when the header flit has to wait for its next hops to become available.

A channel is available to accept tail flits if it has free buffers to store these
flits. A channel is available to accept a header flit only if all its buffers are empty.
This is of importance for the pipelining process. If channels store flits belonging
to different messages, there is no way to distinguish which flits belong to which

19

2 Advances to the State-of-the-art

message. A channel with tail flits cannot even accept the header flit of its own
message.

Consequently, a header flit is blocked if all its next hops are non-empty. A tail
flit is blocked if the next channel in the worm is full.

The most important advantage of wormhole networks is that they allow for
relatively small buffers, as messages can be split up into many flits. However, as
messages may hold many resources simultaneously, contention can be higher. For
more details, we refer to standard text books [38, 48].

2.2 Deadlocks in Communication Networks

A deadlock is a situation where a set of processes is permanently blocked and no
progress is ever possible. This can occur due to a competition for finite resources or
reciprocal communications. Classically a deadlock is associated with a circular wait
between processes: each process holds a resource needed by the next process [134].
In the context of interconnection networks, processes are messages and resources
are channels. A deadlock can occur as messages compete for available channels.

There are three ways to deal with deadlocks: avoidance, prevention, and de-
tection. In networks where deadlocks are avoided, deadlock freedom is ensured
dynamically. The on-chip switching has some look-ahead mechanism and bases its
decisions on extra information. In contrast, deadlock prevention statically ensures
deadlock freedom. The routes messages can take are restricted, e.g., in such a way
that messages are not sent into a circular wait. In networks with deadlock de-
tection, routing can be less restricted. An online deadlock detection and recovery
mechanism deals with deadlocks that occur as a result of these relaxed routing
schemes.

In typical on-chip networks, routing decisions must be taken in a few nano-
seconds. On-chip deadlock avoidance is too costly and is generally not considered
a solution for NoCs. Some on-chip deadlock detection mechanisms have been pro-
posed by Pinkston [116] and Martinez-Rubio et al. [93]. The most practical way of
dealing with deadlocks is to prevent them by designing deadlock-free routing func-
tions. This has been a fruitful research area for many years [11, 35, 18, 61, 28, 132].

2.2.1 Necessary and Sufficient Conditions

This research has lead to a search for generic conditions ensuring that a routing
function is deadlock-free [36, 43, 44, 128, 54, 138]. Typically, the dependencies
between channels are captured by a dependency graph. Early work by Dally and
Seitz has shown that an acyclic dependency graph is a necessary and sufficient
condition for deadlock-free routing [36]. This original condition only applies to
deterministic routing functions.

An interconnection network can have an adaptive routing function. If a mes-
sage is blocked on its way, an adaptive routing function proposes an alternative
next hop allowing further progress. To the best of our knowledge, Chen was the
first to notice that a cyclic dependency is not sufficient for deadlock in 1974 [25].
Cypher and Gravano prove a routing function deadlock-free that allows circular
dependencies in a packet network [34]. Duato was the first to propose necessary

20

2.2 Deadlocks in Communication Networks

n0 n1

cA0

cH0

n3 n2

cH2

cA2

cA3 cA1 cH1

(a) Interconnection network

cA0

cH0

cH2

cA2

cA3 cA1 cH1

(b) Channel dependency graph

Figure 2.2: Example of cyclic dependencies without deadlock[48]

and sufficient conditions for deadlock-free routing in adaptive networks [44, 45].
He noticed that alternative paths could be used to escape deadlock situations and
that a cyclic dependency is not a sufficient condition to create a deadlock [43]. He
used Example 2.1 to demonstrate this [48].

Example 2.1 Consider the interconnection network in Figure 2.2a. Routing
is defined as follows: when routing a message from source ni to destination nj ,
the routing function always returns channel cAi. It returns channel cHi only if
j > i. The cHi channels do not form a dependency cycle, implying that they will
always eventually become available. The cAi channels do form a dependency cycle.
However, even if all channels of this cycle are unavailable, messages in node n0

can always escape the cycle by using channel cH0. After this, the messages in the
cycle can progress.

Based on his intuition, he defined and proved a condition capturing the fact
that an adaptive network can still be deadlock-free even in the presence of cyclic
dependencies between channels [44]. This was a breakthrough in the field as it
enables a dramatic reduction in the number of resources to implement fully ad-
aptive routing networks. It is also counterintuitive as it seems that a circular wait
is not sufficient for deadlock. Duato’s work was not easily accepted by his peers.
On Duato’s webpage one can read [46]:

Only a complex mathematical proof can show that deadlock freedom
can be guaranteed if certain conditions are met. This research was so
disruptive when it was developed that it was rejected by several peers
and considered to be incorrect, even by the most prominent researchers
at that time. However, it was finally accepted and several well-known
researchers developed their own version of this theory.

Several more papers have been devoted to generic necessary and sufficient condi-
tions for deadlock-free routing. Duato’s condition holds for routing functions which
are based on the current location of the message and its destination. Schwiebert
and Jayasimha present a condition that holds for routing functions which also base
their decisions on the direction from which the message came [128]. Fleury and
Fraigniaud extended Duato’s result to a broad class of routing functions [54]. Tak-

21

2 Advances to the State-of-the-art

tak et al. were the first to present a condition that can be checked automatically
in polynomial time [138]. Their condition is logically equivalent to Duato’s one.
These conditions will be discussed in more detail in Chapter 6.

All these papers are devoted to wormhole switching. Wormhole networks are
generally more prone to deadlock than packet networks. Messages can hold mul-
tiple channels at once. Channels are unavailable more often, as they can only store
flits belonging to one message. Both types of network require different definitions
and conditions for deadlock freedom. Duato also defined his condition for packet
networks [45]. To the best of our knowledge, this is the only necessary and suffi-
cient condition for adaptive deadlock-free routing in packet networks.

The contribution of this thesis: Chapter 6 will present new necessary and
sufficient conditions for packet and wormhole networks. The proofs of correct-
ness of existing conditions are often complex, highly abstract and counterintuit-
ive. Therefore, we have applied the ACL2 theorem prover to mechanically prove
correctness of our conditions. We will show that Duato’s seminal condition for
wormhole networks is not necessary and sufficient. Our condition is the first static
necessary and sufficient condition for deadlock freedom in wormhole networks.

2.2.2 Determining Deadlock Freedom

Once necessary and sufficient conditions for the absence of deadlocks have been
established, a natural next question is how to determine whether some network
actually satisfies such a condition. In other words, how can we use these conditions
to establish deadlock freedom of a given design? The condition of Dally and Seitz
can easily be by checked by computing the dependency graph and performing a
linear search for cycles [33]. For adaptive routing however, this is more complicated
as cycles are not necessarily deadlocks.

The most straightforward approach of determining that some network satisfies
a condition is to just prove this by hand. Such a proof can be done mechanically
or with pencil and paper. Advantage is that such proofs can be done leaving the
size of the network parametric. However, such proofs become tedious very quickly.
They are very time-consuming and require a lot of user interaction.

Another approach of determining that the network is deadlock-free is to limit
the design process using some design methodology. Duato, Silla, et al. present
a design methodology based on Duato’s condition [44, 132]. Consider a network
and a routing function that are already known to be deadlock-free. New channels
and routing capabilities can be added to this network as long as once a message
arrives in an original channel, it cannot be routed towards new channels. Duato’s
condition holds for any network obtained in this way.

Various design methodologies are based on a turn model [61, 29]. This model
restricts the routing function in such a way that no cyclic dependencies occur. It
was initially defined for 2D-mesh topologies. Starobinksi et al. use the network
calculus to generalize this methodology to general topologies [135]. Palesi et al.
incorporate message dependencies, induced by a model of the applications run-
ning on the cores, into the dependency graph and provide a design methodology
breaking all cycles [110].

22

2.3 Mechanical Verification of Interconnects

These methodologies target static and fault-free networks. Duato, Lysne, et
al. present a theory and a corresponding methodology to dynamically reconfigure
a routing function in such a way that deadlock freedom is ensured [47, 90]. Their
methodology applies to broad class of interconnection networks, both on-chip and
off-chip.

An inherent disadvantage of such design methodologies is that they limit the
designer. All these methods cannot be applied to arbitrary topologies and rout-
ing functions. Also, these methodologies are restrictive, in the sense that many
deadlock-free designs are excluded. Most of these methodologies break all de-
pendency cycles. As for adaptive routing a dependency cycle is not necessarily
a deadlock, this is very limiting. Finally, these methodologies are manual and
therefore error-prone.

A third approach of determining deadlock freedom is to add new channels –
either virtual or physical – to a given design [36]. Seiculescu et al. automatically
detect cyclic dependencies and determine where new channels can be added to
break these [129]. Their approach is based on the sufficient condition that an
acyclic dependency graph ensures deadlock freedom.

In 2008, Taktak et al. presented a different approach. They presented a ded-
icated algorithm to either detect deadlocks or prove deadlock freedom [137, 138].
The work of Taktak et al. will be discussed in more detail in Section 7.8 (see
Page 129).

The contribution of this thesis: Our approach is similar to that of Taktak
et al. Chapter 7 will present two fully automatic decision procedures for deadlock
freedom in both packet and wormhole networks. Our wormhole algorithm checks
a modified version of our necessary and sufficient condition. This version is only
sufficient and therefore our algorithm may identify false deadlocks. We will show
that deciding deadlock freedom of wormhole networks is co-NP-complete. This
implies that the polynomial algorithm of Taktak et al. does not check a necessary
and sufficient condition as well. Indeed, as the correctness of the algorithm of
Taktak et al. is – indirectly – based on Duato’s condition, it is subject to false
negatives. In contrast, the correctness of our algorithms has been established
mechanically, using the ACL2 theorem prover. Our wormhole algorithm is one
degree faster than that of Taktak et al. We will show that this improvement has
a significant practical impact. As our tool is able to analyze millions of different
network topologies efficiently, we are able to apply it to the verification of a fault-
tolerant routing function in a mesh of 400 cores. This degree of scalability is not
reachable with state-of-the-art tools.

2.3 Mechanical Verification of Interconnects

Several specific NoC architectures have been studied using model checking [122,
124, 27], theorem proving [60] or combinations thereof [1]. Regarding formal proofs
of deadlock prevention, Gebremichael et al. formally prove a sufficient condition
for the Æthereal protocol of Philips in a packet-switched network [60]. The main
property that has been verified is the absence of deadlock for an arbitrary number
of masters and slaves. These works target very specific designs described at a low

23

2 Advances to the State-of-the-art

level of abstraction. Goossens recognizes the need for more parametric verification:
“Ideally, deadlock freedom would be proven for any instance of the NoC.” [63]

A different methodology is presented by Chatterjee et al. of the Intel Corpora-
tion. Recently, Chatterjee et al. proposed xMAS as a formal description language
for microarchitectures [24, 23]. This language is based on a restricted set of prim-
itives with well-defined semantics. The methodology consists of automatically
generating inductive invariants and using this these to model check a design [22].
This way they can establish, among others, deadlock freedom. Chapter 9 will
discuss the xMAS language in-depth.

This thesis applies theorem proving to do parametric proofs over NoCs. Since
the mid 70’s, interactive theorem provers have been designed to mechanically
check formal and detailed proofs. Their development and application in various
domains are active research fields. These proof assistants are used in projects
about formalizing mathematics (e.g., the FlySpeck project [104, 106]) or in the
verification of hardware and software designs (e.g., microprocessors [14, 55, 75],
floating point units [123, 76, 10, 69], operating systems [87], entire computing
systems [13]). The most popular tools are ACL2 [85], Coq [12], HOL [64], HOL-
Light [70], Isabelle [105], and PVS [109].

To the best of our knowledge, the only work that targets parametric proofs over
interconnection networks is by Schmaltz et al. [127, 21]. Schmaltz created a generic
framework called GeNoC for reasoning about NoCs in the ACL2 theorem prover.
We shortly introduce the ACL2 theorem prover and the GeNoC framework.

2.3.1 ACL2

ACL2 (for A Computational Logic for Applicative Common Lisp) denotes a lan-
guage, a logic, and an interactive theorem proving system. It is the last of the
Boyer-Moore family of provers and has been developed at the University of Texas
at Austin. Currently, it is maintained by Kaufmann and Moore [85]. ACL2 has
been used in academia to verify, for example, the mu calculus [86], theorems on
real and complex numbers [59], and graph theory [86]. It has also been adopted by
industry for the verification of, e.g., the floating point division microcode on the
AMD-K5 processor [80], the X86-compatible microprocessor at Centaur [77], and
verifying compilers at Rockwell Collins [115]. ACL2 has won the ACM System
Software Awards in 2005.

The language of ACL2 consists of a superset of a subset of common LISP.
Its logic consists of a classical first-order logic with induction. Axioms are added
which assign interpretation to common symbols from the language such as car
(i.e., the first element of a list) and natp (i.e., a recognizer for natural numbers).
The result is called the ground zero theory. This theory allows ACL2 to reason
over common LISP symbols.

Extension principles allow ACL2 to extend the ground zero theory with ad-
ditional axioms, and are key to the use of ACL2 to reason about any non-trivial
theorem [84]. There are three different extension principles. The definitional prin-
ciple can extend the theory with axioms that assign a definition to a new function.
As long as this function is terminating and does not contain fresh variables, sound-

24

2.3 Mechanical Verification of Interconnects

ness of the theory is preserved. The defchoose principle allows the introduction of
Skolemized formulas, which brings the abilities of quantifiers to the ACL2 logic.
Thirdly, the encapsulation principle extends the theory with functions without a
definition. Since this thesis does not present details on ACL2 proofs, we will not
further introduce the first two principles. The encapsulation principle, however, is
key to the GeNoC methodology. We explain it in more detail.

Encapsulation allows the introduction of a fresh function symbol f that sat-
isfies a certain set of theorems t0, t1, . . . tn. As example, one might add the func-
tion symbol sort to the current theory, with as axioms ordered(sort(x)) and
perm(sort(x), x). Here we assume that ordered and perm have already been
defined with their obvious interpretations. Function symbol sort is called a con-
strained function and the theorems t0, t1, . . . tn are called proof obligations.

Extending a theory with a constrained function can possibly make the theory
inconsistent. Therefore, the following conditions have to be satisfied before a
constrained function f with axioms t0, t1, . . . tn can be admitted to the theory:

• Symbol name f must be fresh.

• It is logically consistent to add a witness function fw to the current theory,
and the theorems t0[f = fw], t1[f = fw], . . . , tn[f = fw].

In other words, we must provide a witness function fw for which all the proof
obligations are proven. This witness is local, meaning that it will not actually be
admitted to the current theory. Its only purpose is to ensure the soundness of the
extension. Constrained function f has no definition when it is admitted.

The crux of encapsulation is that any theorem that holds for a constrained
function, also holds for any function that satisfies all the proof obligations. This is
stated by the rule of inference called functional instantiation. Encapsulation and
instantiation enable the following methodology:

1. First, a generic theorem is proven, e.g., the idempotence of sort:

sort(sort(x)) = sort(x)

2. An instantiation is made of the generic function. As example, one might
program merge sort, yielding a function mergesort.

3. For the instantiation, all proof obligations must be discharged. That is, we
must establish:

ordered(mergesort(x)) and perm(mergesort(x), x)

4. By functional instantiation, we can now safely conclude that our generic
theorem also holds for our instantiation. That is, without any further proving
we have established:

mergesort(mergesort(x)) = mergesort(x)

25

2 Advances to the State-of-the-art

2.3.2 GeNoC

The GeNoC framework (for Generic Network-on-Chip) provides a methodology to
do parametric proofs over NoCs. The proof methodology applies the concepts of
encapsulation and instantiation to reason about the generic object “Communica-
tion Network”. This generic network will be referred to with the bold capital N.
Schmaltz et al. formulate proof obligations and use them to prove generic theor-
ems. This yields a set of proof obligations and a theorem of the following form:

PO1(N),PO2(N), . . . |= correctness(N) (1)

This theorem allows a user to do proofs by instantiation. If we want to prove
correctness of an actual communication network n, the proof obligations must be
discharged.

PO1(n), PO2(n), . . . (2)

From this, it automatically follows that our network n is correct:

(1), (2) =⇒ correctness(n)

The value of the methodology enabled by GeNoC lies in the fact that even
though proving a generic theorem can be difficult and require a lot of user inter-
action, this work is done once-and-for-all. As it is a generic theorem, it holds for
all instances and it needs not be proven again. The easier it is to discharge the
proof obligations, the greater the value of the methodology. For example, proving
that a complicated sorting function s is idempotent might be difficult. The generic
theorem presented in the previous subsection reduces this proof to a proof that s
orders and permutes. Similarly, GeNoC reduces difficult proofs of correctness to
the discharging of simple proof obligations.

The central part of the methodology is a generic theorem such as Equation 1.
Such a theorem requires the study of four different problems.

1. The theorem mentions a generic communication network N. We need to
know what a generic network is. This entails the question which constituents
are common to all communication networks.

2. We need to define correctness.

3. It must be determined what proof obligations we may assume. If the as-
sumptions we make are too strong, this will limit the applicability of the
methodology. If they are too weak, we cannot prove anything significant.

4. The generic theorem must be proven, i.e., we need to show that the proof
obligations imply correctness.

GeNoC deals with all of these problems. It contains the definition of generic
communication network N, consisting of an injection method, a routing function,
and switching policy. The GeNoC framework will be presented in detail in Part II.

26

2.3 Mechanical Verification of Interconnects

GeNoC has been used to prove correctness theorems over a wide range of
NoCs. Borrione et al. made an instantiation of the HERMES NoC [99] with XY
routing [19, 20]. Schmaltz formalized double y-channel routing in a 2D mesh [125].
Schmaltz et al. used GeNoC to prove functional correctness of the Spidergon NoC
architecture [32] with a ring topology and shortest path routing [126]. Helmy
et al. have made an instantiation of the Nostrum chip with fully adaptive hot-
potato routing [71]. Tsiligiannis and Pierre present an approach complementary to
GeNoC that focuses on the verification of register transfer level implementations
of communication interconnects [141].

In the current version of GeNoC [127, 21], the routing function is required to be
deterministic and routes must be computed from the current position of the mes-
sage all the way to its destination. Even if non-minimal and adaptive routing can
be represented, the formalization is restricted to special cases and the verification
is cumbersome. The correctness criterion currently supported by GeNoC is restric-
ted to a safety property. The theorem states that messages reaching a destination
will reach the expected destination without modification of their content. This is
rather weak, as the theorem holds trivially if no message ever reaches a destination.

The contribution of this thesis: Chapter 3 extends the GeNoC frame-
work with a new notion of correctness and a new theorem stating this correctness.
This correctness property – which will be referred to as productivity – is a strong
liveness property stating that always eventually messages are injected and always
eventually messages correctly arrive at their destination. We argue that productiv-
ity is a relevant correctness property by showing that it is commonly used as an
implicit assumption in related work. The generic network is further generalized to
support adaptive routing, which no longer needs to be computed all the way to the
destination. Chapter 4 provides a complete instantiation of a 2D mesh NoC with
adaptive west-first routing, FIFO arbitration, wormhole switching and time-based
injection.

27

Part II

Proving Productivity of

Communication Networks

29

Chapter 3

GeNoC for Productivity Proofs

In this part, we extend the GeNoC framework for proving correctness of commu-
nication networks. Up to now, GeNoC supported the proof of partial functional
correctness only. This chapter informally introduces a new correctness criterion.
We call our correctness criterion productivity and relate it to other correctness cri-
teria such as deadlock freedom and liveness. We break down a proof of productivity
into a proof of several smaller proof obligations. The next chapter illustrates our
approach on an example. We prove productivity of a realistic Network-on-Chip.
For this particular example, 86% of the entire proof effort can be derived automat-
ically using GeNoC. Chapter 5 reflects on both our approach and our correctness
criterion.

3.1 Correctness of Communication Networks

Intuitively, a communication network is correct if any message can always eventu-
ally be injected into the network and if any injected message will always eventually
be correctly consumed. A correct network behaves – from the point of view of the
application layer – just like a point-to-point network with nondeterministic delay.
This notion of correctness supports the design of distributed applications without
considering the details of the underlying communication structure.

We capture this type of correctness in the property we named productivity. It
states that:

1. any finite list of messages can eventually be injected;

2. for any injected message a bound can be defined on its time in the network,
independent of the messages that are still to be injected;

3. any message is eventually consumed correctly, i.e., at its desired destination
and without modification of its contents.

Our definition of productivity considers finite executions only. In Section 5.1 we
show that this is indeed sufficient to capture correctness.

Deadlock freedom is often considered as correctness property of interconnects.
Some consider deadlock freedom a global property, that is, a deadlock is a situ-
ation in which all messages are blocked [48]. Some consider deadlock freedom a

31

3 GeNoC for Productivity Proofs

local property, stating that it is not possible for any message to be permanently
blocked [73, 65]. Productivity encapsulates both types of deadlock freedom. In
case of a deadlock some set of messages have been injected in the network, but
they never arrive at their destination as they are permanently blocked. A deadlock
can also cause input queues to be permanently blocked, preventing messages from
being injected.

Productivity also subsumes livelock freedom and starvation freedom. Several
correctness properties on communication networks are considered in this thesis.
We present a short overview to show how the different properties relate to each
other.

Deadlock freedom A network is deadlock-free if there is no reachable configur-
ation in which some set of messages is permanently blocked. Note that as
we consider deadlock prevention (see Section 2.2 on Page 20) a network is
considered deadlock-free only if no execution leads to a deadlock. Deadlocks
can be caused by incorrect routing, by injecting too many messages, or by
contention caused by switching.

Livelock freedom A livelock is a scenario in which some message moves around
infinitely in the network. A routing function can cause livelocks by sending
messages into cycles.

Starvation freedom A starvation scenario occurs when a message wants to ac-
quire some resource but is denied access infinitely often. Starvation is gen-
erally caused by unfair arbitration at merges.

Liveness of injection Injection of a network is live if always when the network
is empty and there is a message to be injected, eventually a message will
be injected. This property is trivial, but necessary for a formal proof of
productivity.

Functional correctness Functional correctness is a safety property stating that
if a message is moving through the network it moves in a correct way, i.e.,
it follows a correct path between connected resources, its contents are not
modified and if it is consumed, it is consumed at its desired destination.

Evacuation A network is evacuatable if any injected message is always eventually
consumed. Evacuatability does not state anything on functional correctness.
For example, a network in which all messages are dropped after a fixed
number of hops is evacuatable.

Local liveness A network is locally live if at all times no injected message can
be permanently blocked. Any message will always eventually move from its
current resource to a next one. Both absence of deadlock and absence of
starvation are required for local liveness.

Reliability Reliability, or robustness, is a term commonly used in fault-tolerant
related research [101, 133, 96, 119, 149]. Reliability is generally considered
a probabilistic property representing the degree in which a system operates
correctly in presence of faults. Reliability is not considered in this thesis,

32

3.2 Generic Communication Network

but is mentioned here to emphasize the difference between reliability and
productivity.

Productivity Productivity is the main property proven in this thesis and repres-
ents the intuitive correctness criterion that messages can always be injected
and will alway correctly be consumed.

In-order delivery In-order delivery states that messages are consumed in some
specified order. For example, in a network it may be required that requests
are always consumed before responses.

Figure 3.1 provides an overview. The five upper properties are the primary
correctness properties. They are all required to prove productivity. In-order deliv-
ery is a stronger notion of correctness than productivity. Reliability is a separate
property independent of the others.

Figure 3.1: Relation between correctness properties.

3.2 Generic Communication Network

We prove a generic theorem that states that productivity is implied by several
proof obligations. This proof is structured in three parts for functional correctness,
evacuation and local liveness. Each of these properties has a section where we
formalize the property, provide proof obligations, and prove a generic theorem
stating that the proof obligations are sufficient. All these proofs revolve around
the generic communication network, which will be referred to with N. This section
introduces our generic model of communication networks.

3.2.1 Informal Overview

In a communication network, a set of resources can store messages. Messages are
injected into resources, subsequently moved from resource to resource, until they
can be consumed.

33

3 GeNoC for Productivity Proofs

The generic network consists of constituents that can be found in all commu-
nication networks. Such constituents are called generic constituents. From these
constituents, we build function Nbeh that determines the behavior of the generic
network N. We prove, e.g., that this function never drops a message, that it
never moves messages between unconnected resources and, ultimately, that it is
productive.

We define the correctness properties using two sources of information. First,
the current configuration stores all the information in the network, i.e., which
messages are currently injected and which resources are held by these messages.

Besides storing the current state of the network, a configuration also stores
meta data. This is data that is not actually present in the network, but which
is required to formulate properties and prove theorems. For example, with each
message some unique identifier is associated. In the configuration, each bit of
information that is stored in some place in the network is linked to a message via
this identifier. Other meta data includes which messages have arrived in previous
steps and which messages are still to be injected.

Function Nbeh takes as input the current configuration and the current meta
data. It executes one step and recursively calls itself. It terminates when no
progression is possible. This means that it terminates when either the network
is empty and there are no new messages to be injected, or a deadlock has been
reached.

We establish functional correctness by proving invariants over function Nbeh.
For example, an invariant states that at any time, all messages have at least one
way to reach their destination. Evacuation is formulated and proven using meta
data. We prove that the list of consumed messages eventually equals the initial
list of uninjected messages. Local liveness is proven by computing an upper bound
on the time a message can wait in one resource.

Many of the proofs involve measure functions (also called ranking functions
in the literature). A measure function is a function that returns a value that
decreases – under some conditions – with each step. For example, we will define
a measure function for the time it takes for a message to be injected, under the
condition that the network is empty. The value of this measure function decreases,
under some well-founded relation, as long as the network is empty. From several
measure functions, we construct a measure proving termination of function Nbeh.

We let function Nbeh record a log for each message. The log stores the pro-
gression of a message as it traverses the network. We define functional correctness
using these logs. For example, we prove that it is an invariant that the logs of
enroute messages always constitute valid connected paths in the network. We
prove that uninjected messages have empty logs, and that the logs of consumed
messages are not altered. From these theorems, it follows that messages always
follow a correct route through the network.

Proof obligations which do not concern the behavior of the network, but meta
data only, are not mentioned in this thesis. For example, we require proof obliga-
tions that ensure the logs are kept correctly. Also, some proof obligations that are
considered trivial have been omitted. For example, a proof obligation states that
at all times the current configuration is a syntactically valid data structure. These
omitted proof obligations are used as assumptions in the proofs in this thesis. We

34

3.2 Generic Communication Network

denote the set of implicit proof obligations with POι. All other proof obligations
have been included in this thesis.

Generic functions, such as Nbeh, will be denoted by bold capital letters. Func-
tions using meta data, such as the measures, will be denoted by bold Greek letters.
The correctness properties that are proven are denoted in sans serif font, e.g., pro-
ductivity is denoted by PROD.

The next section presents the generic network. The generic constituents are
presented, together with function Nbeh. This section introduces notation used
in the remainder of this part of the thesis. At the end of each section, a table
will provide an overview of the notation, generic functions, and proof obligations
presented in that section. The three next sections prove generic theorems related
to functional correctness, evacuation and local liveness. We then formally define
productivity and formulate our final generic theorem.

3.2.2 Formal Network Model

We formally introduce the concepts of resources, messages and configurations.

Resources

Network N consists of a set of resources R. Generic function RGen generates
the resources given some instantiation specific parameters (e.g., the dimension of
a 2D mesh topology). These parameters are implicitly provided to most of the
generic functions mentioned in this paper. Each resource r has a certain capacity,
i.e., a certain number of places to store data of messages, denoted |r|. We assume
resources to be static, in the sense that neither the resources nor their capacities
change during execution of the network.

Messages

Messages are the unit of communication at the network layer. When a message
is injected into the network, it is wrapped into a data structure called a travel.
A travel t is a formal representation of an injected message. A travel stores the
progress of sending a message across a network. It is a tuple 〈id, org,msg, l, d, log〉
where id is a unique identifier, org is the resource where the travel is to be injected,
msg represents the actual contents of the message, l represents the current location
of the travel (i.e., the resources it currently occupies), d is the destination, and log
is a history variable storing the path of resources the travel has occupied from its
injection to its current location. The domain of all travels is denoted T.

Note that a travel contains both meta data (e.g., an id and the log) and state
data (e.g., the contents of the message and the location). In the ACL2 code,
there is a clear distinction between both types of variables. It is ensured that the
behavior of any network constituent is based only on the network state, and not
on meta data. In this thesis, we do not distinguish between a message and its
formal representation as a travel including meta data. We always use the term
“message”.

Given a list of messages T and an identifier id, let T [id] return the message in
T with identifier id. As identifiers are unique, there is always at most one such

35

3 GeNoC for Productivity Proofs

message. If there is no such message, an error value is returned. We let T.ids
denote the list of ids of the messages in T .

Configuration

A configuration σ is a tuple 〈U,E,C〉, where E denotes the list of enroute messages,
i.e., messages that have been injected into the network, U is a list of uninjected
messages, and C is a list of consumed messages, i.e, messages that have been
en route but are removed from the network. The domain of all configurations is
denoted Σ. Given a list of messages U , let σǫ(U) denote the empty network con-
figuration where U is the list of uninjected messages, formally, σǫ(U) = 〈U, [], []〉.

Again, note that a configuration contains both meta data (i.e., U and C) and
state data (i.e., E). Any network constituent bases its behavior on the state only.
For example, the routing function takes a configuration and yields a configuration.
However, the routes may not be based on U or C, and additionally they cannot
make use of, e.g., the logs of the enroute travels.

Given a configuration, function place can be used to retrieve the contents of
a place in a resource. For example, place(r, n, σ) returns the contents of the nth
place of resource r in configuration σ. An empty place is denoted by ǫ. If n is
out of bounds, i.e., if n is greater than |r|, an error value is returned. Finally,
generic function υ(r, σ) returns true if and only if resource r is unavailable in
configuration σ.

3.2.3 Generic Constituents

We informally describe the behavior of the generic constituents. Their exact be-
havior is axiomatized by the proof obligations presented in the next section.

Generic function I : Σ × N 7→ Σ represents the injection method. Given a
configuration and the current time, it decides which uninjected messages are ready
for departure. It partitions list U of uninjected messages into a list D of departing
messages and a list P of postponed messages. Departing messages are injected in
the network and added to the list E of enroute ones. The list of departing messages
is denoted I(σ, z).D. The list of postponed messages is denoted I(σ, z).P .

Generic function R : R×R 7→ P(R) represents the routing function. From the
current resource and a destination it computes a set of next hops. We overload
this function to apply to a configuration. Function R : Σ 7→ Σ loops over the set
of enroute messages and applies function R : R × R 7→ P(R) to each message. It
stores the set of next hops as meta data in each enroute travel. The configuration
yielded by function R : Σ 7→ Σ is thus equivalent to its input, with for each enroute
travel the next hops added as meta data. Note that function R : R × R 7→ P(R)
does not precompute an entire path for the message. It only supplies the next
steps the message may take. After each move, the routing function is applied to
the current location to recompute the set of next hops the message can take from
that location.

Generic function O : Σ 7→ Σ represents the starvation prevention mechanism.
Starvation can be avoided using a correct resource assignment scheme [48]. Ef-
fectively, such a scheme tells the switching policy which messages have priority in
case of contention. We represent a starvation prevention mechanism as a function

36

3.2 Generic Communication Network

which reorders the list of enroute messages of a configuration, so that messages
with high priority are placed at the start of the list of enroute messages.

Generic function S : Σ 7→ Σ represents the switching policy . It performs two
tasks. First, it moves enroute messages. To move a message, it checks whether
there exists a next hop that is available and – in case of contention – whether
it has priority over other messages. If so, the message will be moved from its
current resource to the next. Secondly, it consumes messages that arrive at their
destination. An arrived message is removed from the list of enroute messages σ.E
and added to the list of consumed messages σ.C.

3.2.4 Deadlock Configuration

A configuration is defined as a tuple of three lists. Not any tuple is a legal configur-
ation. First, the list of enroute messages assigned to some resource may not exceed
the capacity of that resource. This is expressed by function fits : Σ 7→ B. Secondly,
the list of enroute messages may not violate invariants induced by the switching
policy. For example, in a packet-switched network an induced invariant is that
each message occupies at most one resource. Generic function ιS : Σ 7→ B returns
true if and only if the generic switching invariant holds for the given configuration.

Definition 3.1 Configuration σ is legal, notation legal(σ), if and only if no
capacities are exceeded and the generic switching invariant is satisfied.

legal(σ)
def
= fits(σ) ∧ ιS(σ)

The definition of deadlock is dependent on the type of network. In some
networks, deadlock can be defined as a global property where all messages are
stuck. In some networks, deadlock is defined as a local property, where some
message is permanently blocked. Generic predicate Ω : Σ 7→ B returns true if
and only if the given configuration σ is a legal deadlock configuration. Deadlock
freedom is defined as the absence of deadlocks.

Definition 3.2 Network N is deadlock-free, notation DLF(N), if and only if
there exists no deadlock configuration.

DLF(N) ≡ ∀σ ∈ Σ · ¬Ω(σ)

3.2.5 The Behavior of the Generic Network

We now have the means to define function Nbeh which defines the behavior of the
generic network. Besides the current configuration, function Nbeh takes as input
the current time. Each recursive call corresponds to one step.

Nbeh(σ, z)
def
=







σ if σ.E = [] ∧ σ.U = []
σI if Ω(σI) ∧ σI.D = []
Nbeh(〈σI.P, σS.E, σS.C〉, z + 1)

where σS = S(σO)
σO = O(σR)
σR = R(σI)
σI = I(σ, z)

37

3 GeNoC for Productivity Proofs

First, function Nbeh checks whether there are enroute or uninjected messages.
If there are none, it terminates as all messages have been evacuated. If there are
messages, function Nbeh first applies the injection method to the current config-
uration σ, resulting in configuration σI. Messages are injected. If the resulting
configuration is a deadlock and there are no new injections, function Nbeh ter-
minates. Secondly, it applies the routing function to configuration σI, resulting in
configuration σR. Routes are computed. Messages are reordered by a call to the
starvation prevention mechanism O, resulting in configuration σO. Then function
Nbeh applies the switching policy to σO. Each message advances by one hop if
possible, yielding a new list of enroute message σS.E. The switching policy may
consume some messages, yielding a new list of consumed messages σS.C. The
new list of uninjected messages is the list of messages postponed by the injection
method. Time is increased by 1. Function Nbeh is called recursively with these
new parameters.

Note that – without further proof obligations on the behavior of the generic
constituents – this function does not necessarily terminate. For example, if the net-
work contains a livelock, function Nbeh executes the network perpetually. Proving
termination is a major issue addressed in this chapter. In Section 3.4 we provide
proof obligations which ensure termination.

In the next sections, we will reason about execution steps. We will denote one
step of Nbeh with step(σ, z), i.e.,:

step = S ◦O ◦R ◦ I

Table 3.1 summarizes the different functions and parameters of the GeNoC
framework.

38

3.2 Generic Communication Network

Description

R Set of resources R
|r| Capacity of resource
t = 〈id, org,msg, l, d, log〉 Message t
T Domain of message lists
T [id] The message with identifier id
T.ids The list of ids in T
σ = 〈U,E,C〉 Configuration Uninjected, Enroute, Consumed
σǫ(U) Empty network configuration 〈U, [], []〉
fits(σ) No resource capacities are exceeded
legal(σ) Configuration σ is legal
Σ Set of all configurations
place(r, n, σ) The content of a place
ǫ An empty place
step(σ, z) One step
POι Implicit proof obligations
DLF(N) Deadlock freedom
N Generic communication network
RGen Generic resource generator
υ Generic unavailability predicate
I Generic injection method
R Generic routing function
S Generic switching policy
O Generic starvation prevention mechanism
ιS Generic switching invariant
Ω Generic deadlock configuration
Nbeh Generic network behavior

Table 3.1: Notation and generic functions

39

3 GeNoC for Productivity Proofs

3.3 Functional Correctness

The previous section presented a formal model of communication networks. We
proceed with formulating correctness properties for this model. This section con-
siders functional correctness. We first define the correctness property. Then we
formulate a set of proof obligations sufficient for functional correctness. Finally,
we formulate and prove our functional correctness theorem.

3.3.1 Definition of Functional Correctness

Functional correctness consists of the following properties:

1. When a message is consumed, its current location is its destination.

2. All messages traverse a correct route through the network.

3. The content of messages does not change.

Before we formalize functional correctness, we define the notion of a correct route.

Definition 3.3 List r = [r0, r1, . . . rn] is a correct route for destination d, nota-
tion correctroutep(r, d), if and only if it is path that can be established by the
routing function.

correctroutep(r, d)
def
= r0 ∈ R ∧ ∀0 < i ≤ n · ri ∈ R ∧ ri ∈ R(ri−1, d)

A correct route is a path of valid resources where each element is supplied as
a next hop by the routing function from the previous element.

Definition 3.4 Network N is functionally correct, notation FC(N), if and only if:

FC(N)
def
= ∀U ⊆ T · ∀t ∈ Nbeh(σǫ(U), 0).C ·







last(t.log) = t.d
correctroutep(t.log, t.d)
t.msg = U [t.id].msg

The definition considers all consumed messages after termination of function
Nbeh. It checks the logs and returns true only if the last element of each log
corresponds to the desired destination of the message. The logs must constitute
correct routes. Finally, if the content of the message is compared to its original
content, these must be equal. A network is functionally correct if this holds for any
list of uninjected messages U . We provide proof obligations sufficient for functional
correctness. Functional correctness holds trivially if no message is consumed. A
network that is stuck in a deadlock can still be functionally correct, as long as its
route so far has been correct.

3.3.2 Proof Obligations for Functional Correctness

To ensure that messages traverse a correct route, the routing function must always
supply at least one next hop. Also, no next hops may be supplied if a message has
arrived at its destination.

40

3.3 Functional Correctness

Proof Obligation 1 Existence next hops
The routing function supplies a non-empty set of next hops as long as the message
has not arrived at its destination.

∀c, d ∈ R · c 6= d ⇐⇒ R(c, d) 6= ∅

To prove functional correctness we need to know that messages do not suddenly
appear in the network. The injection method can only inject messages from the
list of uninjected messages. All messages must either be injected or postponed.
Also, the set of injected messages must be disjunct from the postponed messages: a
message cannot be duplicated. Similarly, the switching policy can only advance en-
route messages. All enroute messages must either remain enroute or be consumed.
The sets of enroute messages, consumed messages, and uninjected messages are
always pairwise disjoint. This is expressed by the following proof obligations.

Proof Obligation 2 Partitioning injection method
The injection method partitions the uninjected messages into postponed and de-
parting messages.

{σI.P, σI.D} ⊕ σ.U where σI = I(σ, z)

Proof Obligation 3 Partitioning switching policy
The switching policy partitions the enroute messages into enroute and consumed
messages.

{σS.E, σS.C} ⊕ σ.E where σS = S(σ)

The switching policy can consume messages according to some consumption
criterion. A restriction is that messages are consumed at their destination only,
i.e., messages are not dropped at some intermediate location.

Proof Obligation 4 Consumption only at destinations
The switching policy consumes messages only at their destination.

∀t ∈ σS.C · last(t.log) = t.d

Finally, both the injection method and the switching policy must always yield
a legal configuration.

Proof Obligation 5 Legal configuration (injection)
Given a legal configuration, the injection method yields a legal configuration.

legal(σ) =⇒ legal(σI) where σI = I(σ, z)

Proof Obligation 6 Legal configuration (switching)
Given a legal configuration, the switching policy yields a legal configuration.

legal(σ) =⇒ legal(σS) where σS = S(σ)

41

3 GeNoC for Productivity Proofs

3.3.3 Functional Correctness Theorem

Theorem 3.1 Proof Obligations 1 to 6 ensure functional correctness of generic
network N.

PO1(N) to PO6(N),POι(N) |= FC(N)

Proof. The proof of functional correctness is by structural induction on function
Nbeh. We do the proof for route correctness. The proofs that messages are
consumed only at their destination and have unchanged content are similar.

An implicit proof obligation states that the logs for all uninjected messages
are initially empty. The base case is therefore trivial. For the inductive case, we
need to prove that if the logs contain correct routes, after one step the routes are
still correct. We only need to consider the enroute messages, as we will prove that
the logs of the uninjected messages are always empty and the logs of consumed
messages remain unchanged.

Consider the call of the injection method in one step. New messages are injected
and we must prove that these new enroute messages have correct routes. This is
trivial, as the uninjected messages have empty logs. The calls of both the routing
function and the starvation prevention mechanism do not alter the logs or the
enroute messages and therefore preserve route correctness. It remains to be shown
that the call of the switching policy preserves route correctness.

By construction of Nbeh, the switching policy takes as parameter a configur-
ation where next hops have been computed by the routing function. By Proof
Obligation 1 there exists at least one. If an enroute message moves, the switching
policy adds the chosen next hop to the log. By typing of the routing function,
it is a valid resource. The last element of the logs is the current position of the
message. Adding the next hop as new element preserves the route correctness, as
the new element is a next hop for the previous element and the rest of the route
is correct by the induction hypothesis. This concludes the proof.

Two assumptions have been made here, which have yet to be proven. First,
the logs of the uninjected messages are assumed to remain empty until injection.
This holds since Proof Obligation 2 ensures that the list of uninjected messages is
always disjunct from the departing messages. By induction, this implies that the
list of uninjected messages is always disjunct from the enroute messages. Secondly,
the logs of the consumed messages are assumed to remain unchanged. This holds,
since Proof Obligation 3 ensures that the list of consumed messages is always
disjunct from both the enroute and uninjected messages.

Table 3.2 summarizes the notions and proof obligations related to functional
correctness.

3.4 Evacuation

A network is evacuatable if and only if every uninjected message will eventually
be injected and if every injected message will eventually be consumed. If, after
termination of function Nbeh, the list of consumed messages is equal to the initial

42

3.4 Evacuation

Description

correctroutep(r, d) List of resources r is a valid route
FC(N) Functional Correctness
Proof Obligation 1 Existence next hops
Proof Obligation 2 Partitioning injection method
Proof Obligation 3 Partitioning switching policy
Proof Obligation 4 Consumption only at destinations
Proof Obligation 5 Legal configuration (injection)
Proof Obligation 6 Legal configuration (switching)

Table 3.2: Notation and proof obligations related to functional correctness

list of uninjected messages, all messages have been injected and all messages have
been consumed.

Definition 3.5 Network N is evacuatable, notation EVAC(N), if and only if any
list of uninjected messages U can be injected and processed by the network.

EVAC(N) ≡ ∀U ⊆ T · Nbeh(σǫ(U), 0).C.ids ⋍ U.ids

We define evacuation using the unique identifiers of the messages. After ter-
mination of function Nbeh the list of consumed messages must contain the same
identifiers as the initial list of uninjected messages. This does not state anything
about the actual contents of the messages. That is, given an identifier id of some
consumed message mc, our definition of evacuation does not require that this
message is indeed equal to the initial uninjected message mu with the same iden-
tifier. However, functional correctness ensures that identifiers indeed always refer
to the same messages. Combined with functional correctness, we can prove that
all messages correctly arrive at their destination.

3.4.1 Proof Obligations for Evacuation

If a network may reach a deadlock configuration, it is not evacuatable. We require
deadlock freedom to prove evacuation. For now, deadlock freedom is not split up
into proof obligations. Proof obligations sufficient to prove deadlock freedom is
the major focus of this thesis. For sake of completeness, we formulate a proof
obligation that simply requires the network to be deadlock-free.

Proof Obligation 7 Deadlock Freedom
The network is deadlock-free.

DLF(N)

The remaining proof obligations for evacuation will be defined using two meas-
ures. The injection measure, denoted µI, represents the progress of injection.
Initially, when no message has been injected, the value of the injection measure
is its maximum value. It decreases with each injection until all messages have
been injected. The switching measure, denoted µS represents the progress of the
enroute messages. It decreases with the progression of each enroute message. It
may increase when new messages are injected.

43

3 GeNoC for Productivity Proofs

Injection Measure

Function µI : T×N 7→ N takes as parameters the list of uninjected messages and
the current time. It returns the injection measure. We define the following proof
obligations:

Proof Obligation 8 Liveness of injection
Given an empty network and a non-empty list of uninjected messages, the injection
measure decreases after one call of the injection method.

σ.E = [] ∧ σ.U 6= [] =⇒ µI(σI.P, z + 1) < µI(σ.U, z)

where σI = I(σ, z)

Note that the injection measure only needs to decrease in case of an empty
network. This proof obligation effectively formulates liveness: if nothing has been
injected yet, at some point injection must start.

At each step where the network is empty, the injection measure decreases.
If in other steps it increases, the measure cannot be used to prove termination of
injection. An infinite injection sequence can exist where the measure decreases and
increases infinitely often. We therefore need to ensure that the injection measure
never increases.

Proof Obligation 9 Partial ordering injection measure
The injection measure never increases.

µI(σI.P, z + 1) ≤ µI(σ.U, z)

where σI = I(σ, z)

Proof Obligation 10 Correctness injection measure
If after injection the injection measure has not changed, then no injections have
occurred.

µI(σI.P, z + 1) = µI(σ.U, z) =⇒ σI = σ

where σI = I(σ, z)

Proof obligation 10 formulates correctness of the injection measure: if the
injection method injects new messages into the network, the injection measure
decreases.

Combined, Proof Obligations 8, 9, and 10 are sufficient to prove termination
of injection. In each step, injection method I is called. As long as the network
is empty, the injection measure decreases. At some point injection must start.
With each consecutive injection the injection measure decreases. Since it never
increases, the sequence of injections terminates.

Switching Measure

Function µS : Σ 7→ L(N) takes as parameter the current configuration. It returns
the switching measure, which is a list of natural numbers. We define the following
proof obligation:

44

3.4 Evacuation

Proof Obligation 11 Livelock freedom
If there is no deadlock and there are enroute messages, the switching measure

decreases under lexicographical ordering after one call of switching and routing.

¬Ω(σR) ∧ σR.E 6= [] =⇒ µS(S(σR)) < µS(σ)

where σR = R(σ)

This proof obligation ensures livelock freedom. If the network is not in a dead-
lock, at least one message can progress towards its destination. There must exist a
measure which decreases with each step where the switching policy is applied to a
deadlock-free configuration. This excludes livelock, as messages cannot infinitely
move around in the network.

The switching measure represents the progress of the enroute messages. Re-
ordering the list of enroute messages does not influence the progress of these mes-
sages. The switching measure must remain equal if the list is reordered. This is
expressed as a proof obligation.

Proof Obligation 12 Irrelevance ordering enroute messages
The ordering of the messages passed to the switching measure is irrelevant for the
result.

σ0.E ⋍ σ1.E =⇒ µS(σ0) = µS(σ1)

Finally, we need to know that the starvation prevention mechanism reorders
the list of messages in its configuration.

Proof Obligation 13 Reordering starvation prevention mechanism
The starvation prevention mechanism reorders the list of enroute messages.

O(σ).U = σ.U ∧O(σ).E ⋍ σ.E ∧O(σ).C = σ.C

3.4.2 Evacuation Theorem

Theorem 3.2 Proof Obligations 7 to 13 ensure generic network N is evacuatable
if and only if it is deadlock-free.

PO8(N) to PO13(N),POι(N) |= EVAC(N)

Proof. Function Nbeh terminates in two cases. In the first case, all initially un-
injected messages have been injected into the network and have been consumed.
In this case Nbeh(σ, z).C.ids ⋍ σ.U.ids. In the second case, a deadlock configura-
tion has occurred. In this case Nbeh(σ, z).C.ids 6⋍ σ.U.ids. By Proof Obligation 7,
the second case cannot occur. Thus a network is evacuatable if function Nbeh

terminates.
Termination is proven using a termination measure, i.e., a measure that de-

creases under some well-founded relation. The termination measure of function
Nbeh is defined as follows:

µN(σ, t)
def
= [µI(σ.U, t)] ⊔ µS(σ)

45

3 GeNoC for Productivity Proofs

The termination measure is a list of two elements: first the injection measure and
second the switching measure. It decreases with each recursive call of Nbeh under
lexicographical ordering.

In one recursive call function Nbeh applies injection, routing, reordering, and
switching. The proof proceeds by case distinction: the injection measure either
increases, decreases, or stays equal. By Proof Obligation 9 the first case cannot
occur. In the second case, the termination measure decreases under lexicographical
ordering, regardless of the switching measure. It remains to be shown that in the
third case the switching measure decreases.

Assume that the injection measure stays equal. By Proof Obligation 10 there
are no new injections. We can ignore the injection method in this recursive call of
function Nbeh. By Proof Obligations 12 and 13, the call of starvation mechanism
O has no influence on the switching measure. Thus Proof Obligation 11 can be
applied: the switching measure decreases after one call of switching and routing.
This completes the proof, as measure µN decreases. However, Proof Obligation 11
has two assumptions which have to be discharged: the current configuration is not
a deadlock configuration and there are enroute messages. If the first assumption
does not hold then there is a deadlock configuration. Since by Proof Obligation
10 there are no departing messages, the second termination condition of function
Nbeh is satisfied and it terminates. If the second assumption does not hold then
there are no enroute messages. The network is empty. By Proof Obligation 8 the
injection measure decreases, which contradicts the assumption that the injection
measure stays equal.

From Proof Obligations 8 to 13 it follows that function Nbeh terminates. As by
Proof Obligation 7 there does not exist a deadlock, Nbeh(σǫ(U), 0).C.ids ⋍ U.ids
for any list of uninjected messages U .

Note that the return values of the injection and the switching measure are
restricted to respectively a natural number and a list of natural numbers. The
corresponding well-founded relations are respectively < and the lexicographical
ordering. From these values, it is easy to construct the termination measure µN

and the corresponding well-founded relation. Ideally, the proof obligations would
allow the values of the measures to decrease under arbitrary well-founded relations.

Theorem 3.2 states that evacuation follows from deadlock freedom, livelock
freedom, and liveness. Table 3.3 summarizes the different notions and proof ob-
ligations related to deadlock freedom and evacuation.

3.5 Local Liveness

We formalize local liveness with another measure. We call this measure the waiting
measure, denoted µwait. The waiting measure takes as parameters a message t and
the current configuration. It represents the maximum time it takes for t to wait
in its current location, i.e., the maximum time t can be blocked.

Definition 3.6 Network N is locally live, notation LL(N), if and only if:

LL(N) ≡ ∀σ ∈ Σ · ∀t ∈ σ.E · ∀z ∈ N ·

step(σ, z).E[t.id] = t =⇒ µwait(t, step(σ, z)) < µwait(t, σ)

46

3.5 Local Liveness

Description

EVAC(N) Network N is evacuatable
µI Generic injection measure
µS Generic switching measure
Proof Obligation 7 Deadlock freedom
Proof Obligation 8 Liveness
Proof Obligation 9 Partial ordering µI

Proof Obligation 10 Correctness µI

Proof Obligation 11 Livelock freedom
Proof Obligation 12 Irrelevance ordering enroute messages
Proof Obligation 13 Reordering starvation prevention

Table 3.3: Notation, generic functions, and proof obligations related to evacuation

Notation step(σ, z).E[t.id] = t expresses the fact that message t does not
move during one step. The message is enroute and is not modified. Measure µwait

decreases with each step in which message t does not move. If measure µwait

can be defined in any configuration, for any enroute message, the time a message
remains in one resource is always finite.

3.5.1 Proof Obligations for Local Liveness

Local liveness requires absence of deadlocks. We need an additional proof obliga-
tion to enforce that messages move when possible. This excludes, e.g., a switching
policy that delays messages arbitrarily. The proof obligation states that if there is
a message that is permanently blocked with unavailable next hops, there exists a
deadlock configuration. Local liveness also requires starvation freedom. We define
two proof obligations which are sufficient for starvation freedom. In combination
with Proof Obligation 7, these three proof obligations are sufficient to prove the
existence of the measure µwait, and thereby the absence of permanent blocking.

Proof Obligation 14 states that if a network is deadlock-free, it possible to
define a measure called the deadlock measure. Function µΩ : T× Σ 7→ N returns
this measure. It takes as parameters a message t and the current configuration.
This measure represents the maximum time that message t can wait for unavailable
resources. It decreases with each step where all next hops are unavailable.

Proof Obligation 14 Deadlock measure
Deadlock freedom implies that messages are not permanently blocked due to un-
available next hops.

DLF(N) =⇒ ∀σ ∈ Σ · ∀t ∈ σ.E · ∀z ∈ N ·

(∀r ∈ R(t.l, t.d) · υ(r, σ)) =⇒ µΩ(t, step(σ, z)) < µΩ(t, σ)

The proof obligations sufficient for starvation freedom use another measure
called the starvation measure, denoted µO. Starvation occurs when a message
has to wait infinitely many times to acquire a resource, even though this resource
becomes available from time to time. If the time a message has to wait for an
available resource is bounded, no starvation can occur. The starvation measure

47

3 GeNoC for Productivity Proofs

represents the maximum time a message has to wait for an available resource. If
such a measure can be defined, the number of times a message is not granted a
required available resource is finite.

Function µO : T× R × Σ 7→ N represents the starvation measure. It takes as
parameters a message t, a next hop of message t, and the current configuration.
We define the following proof obligation:

Proof Obligation 15 Starvation Freedom
The time a message is not granted an available resource is finite.

∀t ∈ σ.E · ∀r ∈ R(t.l, t.d) · ¬υ(r, σ) ∧ step(σ, z).E[t.id] = t =⇒

µO(t, r, step(σ, z)) < µO(t, r, σ)

For any enroute message t and for any next hop r, if the next hop is available
and the message does not move, then the starvation measure decreases. This
implies that resource r is not granted to other messages infinitely often. Here, we
need to ensure that the starvation measure never increases.

Proof Obligation 16 Partial ordering starvation measure
The starvation measure never increases.

∀t ∈ σ.E · ∀r ∈ R(t.l, t.d) · step(σ, z).E[t.id] = t =⇒

µO(t, r, step(σ, z)) ≤ µO(t, r, σ)

For any enroute message and for any next hop r, as long as message t does not
move, the starvation measure does not increase.

Defining a waiting measure is a hard problem, as it requires defining worst-
case bounds on latency of messages in the network. Defining a deadlock measure
is equally hard. It is however relatively easy to prove the contrapositive version
of Proof Obligation 14, i.e., that if a message is permanently blocked, there exists
a deadlock. Such a proof merely shows the existence of a deadlock measure for a
deadlock-free network. The starvation measure is easy to define. Because we do
not define the deadlock measure, but merely show its existence, we also do not
define the waiting measure, but just show its existence.

3.5.2 Local Liveness Theorem

We now prove local liveness from the proof obligations.

Theorem 3.3 Proof Obligations 7 and 14 to 16 ensure local liveness of generic
network N.

PO7(N),PO14(N) to PO16(N),POι(N) |= LL(N)

Proof. Let t be an enroute message in configuration σ waiting for next hop r. We
prove the existence of waiting measure µwait.

Proof Obligation 7 ensures network N is deadlock-free. By Proof Obligation 14,
this means that no message can be infinitely blocked by unavailable next hops.
From the deadlock measure µΩ and the starvation measure µO we construct µwait.
Message t waits to acquire a next hop. It takes at most µΩ(t, σ) steps before a

48

3.6 Productivity

next hop becomes available. When this happens, either message t acquires it or
not. By Proof Obligations 15 and 16, the second case happens at most µO(t, r, σ)
times per resource r. Figure 3.2 graphically depicts this process.

unavailable unavailable unavailable unavailable

= µO

µΩ µΩ µΩ µΩ

Figure 3.2: Waiting measure

Thus the waiting measure can be defined as follows:

µwait(t, σ)
def
= µΩ(t, σ) ·

∑

∀r∈R(t.l,t.d)

µO(t, r, σ)

Table 3.4 summarizes the different notions and proof obligations related to
local liveness.

Description

LL(N) Local Liveness
µwait Generic waiting measure
µΩ Generic deadlock measure
µO Generic starvation measure
Proof Obligation 14 Deadlock measure
Proof Obligation 15 Starvation freedom
Proof Obligation 16 Partial ordering µO

Table 3.4: Notation, generic functions, and proof obligations related to local liveness.

3.6 Productivity

We can now formally define productivity.

Definition 3.7 Network N is productive, notation PROD(N), if and only if any
list of uninjected messages U can be injected and correctly processed by the net-
work.

PROD(N) ≡ FC(N) ∧ EVAC(N) ∧ LL(N)

The final theorem of correctness is a direct corollary of the theorems in this
chapter.

Corollary 3.1 Proof Obligations 1 to 16 ensure productivity of generic net-
work N.

PO1(N) to PO16(N),POι(N) |= PROD(N)

49

3 GeNoC for Productivity Proofs

Table 3.5 gives an overview of all generic functions. To make an instantiation
of a complete network, one needs to provide a definition of all these functions.
From these definitions, an executable specification of the network is automatically
generated.

Function Description

RGen Resource generator
I Injection method
R Routing function
S Switching policy
O Starvation prevention mechanism
Ω Deadlock configuration
ιS Switching invariant
υ Unavailability predicate
µI Injection measure
µS Switching measure
µO Starvation measure

Table 3.5: Generic functions

Table 3.6 gives an overview of all proof obligations. Proof Obligations 1 to 6
are sufficient to prove functional correctness. Proof obligations 7 states deadlock
freedom. Proof obligations 8 to 13 are sufficient for evacuation. Finally, Proof
Obligations 14 to 16 formulate starvation freedom. The third column shows the
generic constituents on which the proof obligations depend.

PO Name Generics

1 Existence next hops R

2 Partitioning injection method I

3 Partitioning switching method S

4 Consumption only at destinations S

5 Legal configuration (injection) I

6 Legal configuration (switching) S

7 Deadlock freedom I,R,O,S
8 Liveness I

9 Partial ordering injection measure I

10 Correctness injection measure I

11 Livelock freedom R, S
12 Irrelevance ordering enroute messages R, S
13 Reordering starvation prevention mechanism O

14 Deadlock measure Ω, S
15 Starvation freedom O

16 Partial ordering µO O

Table 3.6: Proof Obligations

Figure 3.3 gives an overview of the proof structure. In order to prove productiv-
ity, one first needs to prove functional correctness. This amounts to discharging

50

3.6 Productivity

Proof Obligations 1 to 6. Evacuation requires a proof of deadlock freedom and
termination. Proof Obligations 7 to 13 are sufficient for this. Local liveness re-
quires a proof of deadlock freedom and the discharging of the three additional
proof obligations 14 to 16 to prove starvation freedom. The proofs of evacuation
and functional correctness do not depend on these three constraints.

Figure 3.3: Overview of the proof structure

Our methodology requires an instantiation of 11 generic functions and a proof
of 16 proof obligations. The next chapter demonstrates our methodology on a
realistic example of a Network-on-Chip.

51

Chapter 4

Application to HERMES

The previous chapter extended the GeNoC framework for productivity proofs. A
formal model of communication networks has been introduced, together with 16
proof obligations sufficient for productivity. The methodology is valuable as long
as discharging the proof obligations is significantly easier than proving productivity
from scratch. This chapter demonstrates our methodology on an academic example
of a NoC called HERMES [99]. We instantiate all generic functions and discharge
all proof obligations. An overview is presented of the proof effort required to prove
productivity of HERMES using our methodology.

4.1 HERMES

HERMES is based on a 2D mesh architecture (Figure 4.1a). Each core is connected
to a processing node. Each processing node contains a switch connected to five
bi-directional ports. Ports East, West, North, and South connect to the neighbor
switches. Port Local connects to the core (Figure 4.1b). The resources of the
network are the ports.

(a) 3x3 HERMES mesh

Switch

N

EW

S

L

(b) Node with two places per port

Figure 4.1: A 2D-Mesh HERMES NoC

We specify a HERMES chip with west-first routing and wormhole switch-
ing [61]. West-first routing is an adaptive routing function for a 2D mesh which
first routes west and then adaptively south, east, and north. The principle of

53

4 Application to HERMES

Figure 4.2: Turns in west-first routing. Dashed turns are prohibited.

west-first routing is that all turns to the west are restricted. This breaks many
dependency cycles (see Figure 4.2).

Restricting all turns to the west does not break all cycles. There may be a
cycle if one first routes north, turns from north to south, and then from south to
north again. One of these turns must be prohibited as well. Arbitrarily, we have
chosen to restrict the south-north turn. This breaks all dependency cycles and
consequently there is no deadlock.

Even though the principle behind west-first routing is straightforward, there
are subtleties in defining it formally. First, in some ports the set of possible
destinations of the messages located in the port is restricted, e.g., a message in an
eastern out-port cannot be destined for any destination west of that port, as this
would mean that the message would have to turn west after going east.

Secondly, routing is not memoryless. That is, routing does not solely depend
on the current processing node and the destination. West-first routing needs to
be defined from channel to channel, instead of from processing node to channel.
When a message arrives at a processing node, to be forwarded to another, one
step of its history is needed to make the routing decision: from which direction
the message entered the processing node. For example, whether a message can
be routed west depends on at which in-port the message had arrived, i.e., from
which channel the message came. Only if a message arrives at the eastern or local
in-port of the processing node can it be routed west.

The cores generate and consume messages. Injection occurs in the local in-
ports of the processing nodes. Consumption occurs at local out-ports. We assume
that once a message arrives at the local out-port of the destination it is consumed
by the core. The GeNoC framework models the behavior of the cores, i.e., mes-
sage generation, by assuming an arbitrary and unbounded – but finite – list of
uninjected messages. With each message, an arbitrary desired injection time is
associated, representing the time at which the core generates the message. After
generation of the message it is injected into the local in-port as soon as all places
of this port are empty.

Messages are handled in a first-in-first-out (FIFO) order. During the time a
message m waits to acquire a port p, new messages that want to acquire port p are
put back in line and therefore served after message m. This prevents starvation,
as an available port cannot be granted to other messages infinitely often.

4.2 User Input, Part I: Executable Specification

In this section we provide instantiated functions for each generic function of the
GeNoC framework (see Table 3.5). An instantiation i of a generic function F is

54

4.2 User Input, Part I: Executable Specification

denoted Fi.

Resource generator

Each port p is represented as a tuple 〈x, y, c, d〉 where x and y specify the coordin-
ates of the processing node to which p belongs, c is the channel name of the port (N,
S, E, W or L) and d is the direction (I or O). The resource generator takes a single
parameter dim which represents the dimension of the mesh. Function RGen2D

generates up to ten ports for each processing node (x, y) such that x < dim.x and
y < dim.y. Some ports on the border of the mesh are never used. For example,
both the northern and western ports of processing node (0, 0) are useless. We let
the resource generator remove these border ports from the set of resources.

Switching Policy

We reuse the specification of the wormhole switching policy provided by the GeNoC
framework [21]. Let Swhs be that function. For each message, function Swhs checks
whether there exists an available next hop. If so, the message advances by one
hop. If it arrives at its destination, it is removed from the configuration and added
to the list of consumed messages.

A port accepts a header flit if it is completely empty. Thus predicate υ
whs is

defined as follows:

υ
whs(p, σ)

def
= ∃0 ≤ i < |p| · place(p, i, σ) 6= ǫ

A deadlock is a configuration in which all enroute messages are blocked. A
message is blocked if and only if all its next hops are unavailable.

Ωwhs(σ)
def
= |σ.E| > 0 ∧ ∀t ∈ σ.E · ∀r ∈ R(t.l, t.d) · υ(r, σ)

Injection Method

We assume that a desired injection time is associated with each message, denoted
t.z. Function Iz injects messages as soon as possible after their desired injection
time.

Let function put(id, r, σ) place id in an empty buffer of resource r in configur-
ation σ. Let function postpone(t, σ) add travel t to the list of uninjected travels
σ.U . Function Iz checks for all messages whether its desired injection time has
been reached and whether the origin port of the message is available. If so, the
message is injected. Otherwise injection of the message is delayed. The instan-
tiation of the injection method uses recursive function Izrec, which is defined as
follows.

Izrec(σ, z, n)
def
=















σ if n >= |σ.U |

Izrec(put(un.id, un.org, σ), z, n+ 1) if

{

¬υwhs(un.org, σ)
un.z ≤ z

Izrec(postpone(un, σ), z, n+ 1) if otherwise

where un = σ.U [n]

55

4 Application to HERMES

Injection method Iz is defined as:

Iz(σ, z)
def
= Izrec(σ, z, 0)

Routing Function

Function next_in(p) returns the in-port connected to out-port p. For example, the
in-port connected to the eastern out-port of processing node (0, 0) is the western
in-port of processing node (1, 0):

next_in(〈0, 0, E, O〉) = 〈1, 0, W, I〉

Function next_in is not defined for local out-ports. Function trans(p, P, D) returns
the port specified by P and D in the same processing node as p:

trans(p, P, D)
def
= 〈p.x, p.y, P, D〉

Routing function Rwf computes a set of next ports from the current port, a des-
tination and the dimension of the mesh. Routing depends on the dimension of the
mesh as the routing logic is not equal in all processing nodes. For example, nodes
in the rightmost column cannot route east, whereas all other nodes can always
route east.

Rwf(p, d, dim)
def
=







































next_in(p) iff p.d = O

trans(p, W, O) iff p.c ∈ {E, L} ∧ p.x > 0
trans(p, E, O) iff d.x > p.x ∧ p.x < dim.x
trans(p, N, O) iff d.x ≥ p.x ∧ p.y > 0 ∧ p.c 6= N

trans(p, S, O) iff

{

(d.x > p.x ∨ (d.x = p.x ∧ d.y > p.y))
p.y < dim.y

trans(p, L, O) iff d.x = p.x ∧ d.y = p.y

We provide detailed information on each case distinction:

• If the current port is an out-port, simply route to the connected in-port.

• It is only possible to route west if the message has just been injected – the
current port is local-in – or if the message was already going west – the
current port is east-in.

• It is possible to route east as long as the destination is east and as long
as it does not lead out of the dimension of the network. Going east if the
destination is not east, would mean that at some point we would have to
route west again, resulting in a violation of the west-first principle.

• It is possible to route north as long as we are either in the right column
or if the destination is east of us. Routing north if the destination is west
would mean that after going north we would have to route west, resulting in
a violation of the west-first principle. Furthermore, we can only route north
if it does not lead outside of the dimension. Lastly, we prevent south-north
turns. We cannot go north if we have been going in southern direction, i.e.,
if we are in a northern in-port.

56

4.3 User Input, Part II: Proofs

• It is always possible to route south if the destination is east of us. If we
are already in the right column, it is only possible to route south if the
destination is south. Otherwise, a south-north turn would be required to
reach the destination, whereas such turns are prohibited.

• Lastly, it is only possible to route to the local out-port if we have reached
the destination.

Starvation prevention method

Function OF : Σ 7→ Σ represents a FIFO starvation prevention mechanism. It
sorts the list of messages by pushing all messages that have moved in the latest
step to the back of the list of enroute messages. We let switching function Swhs

keep track of whether messages move or not. Function starving(t) returns true if
and only if message t has not moved in the last call of Swhs. We define function
OF as follows:

OF(σ)
def
= 〈σ.U, [t ∈ σ.E | starving(t)] ⊔ [t ∈ σ.E | ¬ starving(t)], σ.C〉

4.3 User Input, Part II: Proofs

There are sixteen proof obligations to discharge. Table 4.1 gives an overview of
these proof obligations and the effort required to discharge them. Six proof ob-
ligations are automatically discharged by ACL2 and no effort is required. Proof
Obligations 3, 4, 6, and 14 depend on the switching policy only. They have been
discharged in the wormhole switching module. Proof Obligation 5 could be proven
completely with theorems from the wormhole switching module. Only five proof
obligations require interaction with the ACL2 system. Two of them are straight-
forward. The final three are more difficult. They are related to the measures and
to deadlock freedom. These two aspects are detailed hereafter.

The complete proof presented in Part II, including the generic model, the proofs
of all the generic theorems, the specification of the HERMES NoC in the ACL2
logic, and discharging of all proof obligations consists of 12258 lines of ACL2 code.
Only 1741 lines of code deal with the HERMES specific topology, routing function,
the injection method and the discharging of the corresponding proof obligations.
We will now provide details on the proofs.

4.3.1 Discharging Proof Obligations

The most intricate part of discharging the proof obligations is defining correct
measures. We define the injection, switching and starvation measures and prove
them correct. For each measure, we first provide the formal definition of the
measure and then formulate the major assisting lemma’s that were required to be
proven in ACL2. We prove informally that there exists a deadlock measure.

57

4 Application to HERMES

PO Lines Aux. Theorems Proof Effort (hrs)

1 6 0 0
2 142 27 1
3 N/A N/A N/A
4 N/A N/A N/A
5 N/A N/A N/A
6 N/A N/A N/A
7 834 70 12
8 11 0 0
9 5 0 0
10 10 0 0
11 307 18 4
12 17 5 0.5
13 0 0 0
14 N/A N/A N/A
15 367 38 8
16 63 0 0

Table 4.1: Proof effort

Injection measure: Definition

We need to define a measure that decreases with each injection and if the network
is empty. We define function µ

z
I

as follows:

µ
z
I(U, z)

def
=

∑

t∈U

(1 + |t.z − z|)

The injection measure adds at least a value of one for each uninjected message.
If the message is uninjected and its desired injection time has not been reached,
the difference between the desired injection time and the current time is added,
i.e., the time the message has to wait before its desired injection time has been
reached.

With each injection this measure decreases, as each message adds at least 1 to
the measure. If the network is empty, there are two cases: either there exists a
message whose injection time has been reached or not. In the first case, at least
one message will be injected and the measure decreases. In the second case, the
time the messages have to wait decreases, i.e., for each message t the value of
|t.z − z| decreases with one. If the network is empty, the measure decreases with
each call of Iz, regardless of whether there are injections or not.

Injection measure: Proof

Proof obligations 8 to 10 required no further proof effort, i.e., no further auxiliary
theorems, hints, or interactive theorem proving, to be discharged.

58

4.3 User Input, Part II: Proofs

Switching measure: Definition

For the switching measure we consider the maximum route, i.e., the longest route
that can be taken from the current port to some destination. As Figure 4.3 shows,
the maximum route is always the route destined for the upper-right processing
node. Regardless of the actual destination, the length of this maximum route
always decreases when progressing towards the actual destination, because the
actual destination is always somewhere on the maximum route.

Figure 4.3: The maximum west-first route from curr

The maximum route is taken if a message first goes west to column 0, then goes
east column for column, where for each column one goes first completely to the
north, then completely to the south. Therefore we take as measure a list [w, e, n, s]
such that each element denotes the maximum number of steps that can be taken
in respectively the western, eastern, northern and southern direction. This list
decreases under lexicographical ordering. Function µ

wf computes this measure. It
takes as parameters the current port and the dimension of the network.

If we do a step in the western direction, the second element of the list increases.
However, as the first element decreases, the measure as a whole decreases under
lexicographical ordering. As long as we are heading in the western direction (de-
noted with ←), the other elements of the list actually do not matter and are set
to zero.

Once we are heading in the eastern direction (→), no more western steps can
be done, because west-first routing routes in western direction first. Thus the first
element w must be zero. In this case the second element e represents the number
of steps that can be done in eastern direction. The remaining elements n and s
do not matter as long as the packet is heading east. They are both set to zero.

Similarly, if we are heading in the northern direction (↑), the number of steps
that can be taken in the southern direction increases. However, the measure
decreases as n – the number of steps that can be taken in the northern direction
– decreases. Once we do a north-south turn, we are heading in the southern
direction (↓). No more steps can be taken in northern direction, thus n is set to
zero. Element n remains zero until we do a step east in which case e decreases
and n and s can be reset.

59

4 Application to HERMES

µ
wf(c, dim)

def
=

[c.x, 0, 0, 0] if ←
[0, dim.x− c.x, 0, 0] if →
[0, dim.x− c.x, c.y, dim.y] if ↑
[0, dim.x− c.x, 0, dim.y − c.y] if ↓

Function µ
wf
S

computes the switching measure. It is simply the pairwise addition
of the measure for all enroute messages.

µ
wf
S (σ, dim)

def
=

∑

t∈σ.E

µ
wf(t.l, dim)

Switching measure: Proof

Proof obligation 11 uses some auxiliary theorems. First we prove that measure µwf

indeed decreases under lexicographical ordering when a message advances from a
current port to a next hop, i.e., we prove:

µ
wf(n, dim) < µ

wf(c, dim) for all n ∈ Rwf(c, dest, dim)

This can be proven without further interaction. Secondly, we prove that measure
µ
wf
S

never increases after a call of the wormhole switching policy. For each travel
t, assuming it remains enroute and is not consumed, the measure µ

wf is computed
before and after switching. It never increases, intuitively meaning that messages
are not switched further away from their destination.

∀t ∈ Swhs(σ).E · µwf(Swhs(σ).E[t.id].l, dim) ≤ µ
wf(t.l, dim)

When the wormhole switching policy is called with a deadlock-free configuration,
at least one message can move, i.e., one message can progress from its current
location to a next hop. The first lemma states that for this message the switching
measure decreases. For all other messages, the second lemma states that the
measure does not increase. Combining the two auxiliary theorems, we prove Proof
Obligation 11, i.e., that if the wormhole switching policy is called with a deadlock-
free configuration, the switching measure decreases.

¬Ω(σ) ∧ σ.E 6= [] =⇒ µ
wf
S
(Swhs(σ), dim) < µ

wf
S
(σ, dim)

Proof Obligation 12 states that the switching measure must be independent of
the ordering of the enroute messages. This holds as function µ

wf
S

is a sum. Proof
obligation 12 can easily be discharged.

Starvation measure: Definition

Let message t wait for next hop n. The characteristic of the FIFO starvation
prevention mechanism is that each time n becomes available, message t advances
in the list of all messages that wait for n. Therefore, we can take as measure the
index of message t in this list. Let function index(t, E) return the index of message
t in the list of messages E. We define function µ

F
O

as follows:

µ
F
O(t, n, σ)

def
= index(t, [t′ ∈ σ.E | n ∈ R(t′.l, t′.d)])

Function µ
F
O

filters all messages t′ that wait for next hop n and returns the index
of message t in this list.

60

4.3 User Input, Part II: Proofs

Starvation measure: Proof

Proving correctness of the starvation measure requires some proof effort. We first
prove that for any starving message t, i.e., any message t that has not moved in
the call of switching method Swhs even though a next hop n was available, the
index of t in the list of messages waiting for n decreases.

starving(t) =⇒ µ
F
O
(t, n,Swhs(σ)) < µ

F
O
(t, n, σ)

We require an auxiliary lemma. The switching module tries to move each message
in the list of enroute travels, starting with the first travel in the list. If message t
did not move, a message t′ preceding t in the list of enroute messages acquired the
next hop. We prove that if a message preceding t is not starving, then the index
of t in the list of enroute messages decreases.

starving(t) ∧ ¬ starving(t′) ∧ µ
F
O(t′, n, σ) < µ

F
O(t, n, σ) =⇒

µ
F
O(t, n,Swhs(σ)) < µ

F
O(t, n, σ)

Then we prove that injecting new messages does not influence the measure of the
enroute travels. If a message is injected, it is initially non-starving. Appending
non-starving messages to the list does not influence the starvation measure of
starving messages. Let function add_enroute append a message at the end of the
list of enroute messages. We prove:

starving(t) ∧ ¬ starving(t′) =⇒ µ
F
O
(t, n, add_enroute(t′, σ)) = µ

F
O
(t, n, σ)

This holds as function OF appends non-starving message t′ at the end of the list,
thereby not influencing the index of t. This concludes the proof of both Proof
Obligations 15 and 16.

Deadlock measure

Proof Obligation 14 requires a proof that given a permanently blocked message,
there exists a deadlock. Our definition of deadlock, i.e., predicate Ωwhs, identifies
deadlocks in which all messages are permanently blocked. We have to prove that if
there exists a configuration in which at least one message is permanently blocked,
there exists a configuration in which all messages are permanently blocked.

This proof has been done by Duato [48]. Assume a configuration σ in which
the next hops of some message t are permanently unavailable. As there is no
starvation, this is due to a local deadlock. We drain the configuration, by stopping
all injections and by waiting for all messages not participating in the local deadlock
to be consumed. This yields a deadlock configuration σ′, in which all messages
are permanently blocked, i.e., for which Ωwhs(σ′) returns true.

Proof Obligation 14 assumes deadlock freedom. Consequently, the existence
of deadlock configuration σ′ is a contradiction. This means that the existence
of configuration σ – in which the next hops of some message t are permanently
unavailable – is a contradiction as well. Thus there does not exist a configuration
σ in which the next hops of some message t are permanently unavailable. As for all
configurations no message can be permanently blocked by unavailable next hops,
there exists a deadlock measure that decreases with each step in which all next
hops are unavailable. Proof Obligation 14 is discharged.

61

4 Application to HERMES

4.3.2 Deadlock Verification

Discharging Proof Obligation 7 is a major task. We reused an earlier proof effort
on the theorem of Dally and Seitz that an acyclic dependency graph is sufficient for
deadlock freedom [36]. In order to discharge Proof Obligation 7, we have defined
the dependency graph Gwf

dep, proven that this dependency graph accurately reflects
the waiting relations in the network, and proven the graph acyclic. The latter
proof reused measure µ

wf: as there is a strict partial ordering on the vertices of
the dependency graph, the graph is acyclic.

First, we prove that if there exists a strict partial ordering ⊏ on the vertices
of a graph, the graph is acyclic. We prove a lemma stating that for any path
π = v0, v1, . . . vk any vertex vj (0 < j ≤ k) is smaller than the first vertex.

path(π,G) ∧ 0 < j < |π| =⇒ vj ⊏ v0

This lemma follows directly from the transitivity of the partial ordering. The
proof proceeds by contradiction: assume there is some cycle c = c0, c1, . . . ck. We
instantiate the lemma with π = c0, c1, . . . ck, c0 and j = k + 1. Since c is a cycle,
π is a path. The lemma proves that c0 ⊏ c0. The contradiction follows from the
irreflexivity of the strict partial ordering.

Next, we prove that if the vertices of the dependency graph are converted to
lists of natural numbers using function µ

wf, the lexicographical ordering is a strict
partial ordering on the vertices of the dependency graph.

µ
wf(n, dim) < µ

wf(c, dim) for all n ∈ Awf
dep(c, dim)

This proof needs no further interaction.
Besides proving that the dependency graph is acyclic, we also need to prove

correctness of the graph. We prove two theorems. First, we prove that if there is
an edge (r0, r1) in the graph, there exists a destination d such that if a travel with
destination d is located in r0 it is routed to r1.

r1 ∈ Awf
dep(r0, dim) =⇒ ∃d ∈ P · r1 ∈ Rwf(r0, d, dim)

For this proof we define a function which computes a witness destination d for
the dependency. For west-first routing, this is simply the processing node closest
to r1. Secondly, we prove that if a travel can be routed from r0 to r1, there is a
corresponding dependency edge. This proof is a straightforward case distinction.

Part of the proof for deadlock is general and could be re-used in other efforts.
Proving that a graph is acyclic from a partial order is not specific to west-first
routing, but should be part of some graph theory library. The same holds for
the proofs of e.g., transitivity, trichotomy, and irreflexivity of the lexicographical
ordering. These parts constitute approximately 168 lines of the total number of
834 lines required for this proof. However, the major part of the code is truly
instantiation-specific. Discharging Proof Obligation 7, i.e., proving deadlock free-
dom, requires the most interaction of the user and constitutes the major part of
the proof effort.

62

Chapter 5

Conclusion

In this chapter, we reflect on our methodology. First, we consider the correctness
criterion presented in this part. Our definition of productivity takes finite execu-
tions into account only. Traditionally, starvation freedom is defined using infinite
executions. We defend our definition and argue about the relevance of our correct-
ness criterion by showing that productivity is commonly – but implicitly – used
as an assumption in papers dealing with applications of communication networks.
We proceed with a discussion on the strengths and weakness of the new GeNoC
framework.

5.1 Definition of Productivity

Our definition of productivity is constructive and deals with an arbitrary but finite
number of messages only. We prove theoretical worst-case finite bounds on the
time it takes for messages to be consumed. If such a bound can be defined for
each message m, any message m will eventually reach its destination, provided
that this bound does not depend on the total number of uninjected messages.
It will not be permanently blocked in a deadlock, it will not permanently move
around in a livelock, or permanently wait due to a starvation scenario. Important
is that these bounds are required to be independent of the communications that are
still pending. Without this requirement, our finite definition would not correctly
distinguish starvation-free networks from networks where starvation may occur.

Traditionally, starvation is defined using infinite executions [5]. In order for a
starvation to occur, some infinite execution must occur where some process – in our
case a message – never acquires the resources it requires, even though this resource
becomes available infinitely often [48]. Even though the definition of starvation
requires the notion of infinity, the definition of starvation freedom does not.

Figure 5.1 provides a network with a starvation scenario. The network has two
sources src1 and src2 where messages are injected into queues. Source src1 injects
only one message m at the first clock cycle. Source src2 eagerly injects a continuous
stream of messages from the first clock cycle. Both queues are connected to an
arbiter which merges the incoming messages in the queues. It grants the turn to
one of its inputs and sends the message at the head of this queue to queue q. In

63

5 Conclusion

the next clock cycle, the message in queue q is sent to a sink where it is consumed
immediately. The arbiter gives priority to the lower queue.

src1

src2

m

stream

q

Figure 5.1: Starvation Scenario

As the arbiter gives priority to one of its inputs, it is not fair and does not
prevent starvation. We describe the starvation that occurs. Queue q becomes
available infinitely often. At the first clock cycle it is empty and thus available.
At each odd clock cycle it is empty and able to receive a message from the stream
injected by source src2. At each successive even clock cycle it is full as it still
has to transmit its message to the sink to be consumed. Message m is in a
starvation scenario as it permanently waits to acquire queue q, even though this
queue becomes available infinitely often. The network is not productive.

Even though we have formulated our definition of productivity for finite com-
munications only, it correctly identifies this network as unproductive. Property 2
of our definition (see Page 31) – stating that any message spends a finite time
in the network – does not hold. It is not possible to define a suitable bound on
the time message m spends in the network, i.e., on how long it takes for m to be
granted the turn by the arbiter.

Without the addition that the bound cannot depend on what messages are
to be injected, the definition would identify the network as productive. As we
consider finite communications only, the length of the stream at source src2 is ar-
bitrary but bounded by some number n. This means that at clock cycle 2n+1 all
messages from the stream have been injected, have moved through the network,
and have been consumed. At this point, message m can move. Thus a bound
can be defined on the time message m is in the network, namely 2n + 2. This
bound depends on n, i.e., it depends on the number of messages that is still to be
injected. Our definition does not allow such bounds.

The term “productivity” has been borrowed from the stream community [131,
53, 52, 147]. In the stream community the term productivity captures an intuitive
correctness property expressing that a stream where sufficient data is coming in
is always able to produce correct data at the output. It represents the notion of
“unlimited progression” [52]. More formally, a stream is productive if every nth
element of the stream can be computed in finite time [147].

The notion of productivity in the stream community has similarities to our
notion of productivity. They both state that always eventually some token or
message will correctly and in finite time pass through some set of computations.
A difference is that we define and prove productivity over finite data structures.

64

5.2 Productivity in Literature

5.2 Productivity in Literature

We will now argue that our correctness criterion is a relevant and desired property
of communication networks. The major part of the literature on applications built
on top of communication networks assume the availability of a reliable network.
A well-built network should appear as a wire to its clients [37, 15]. Processes that
use the network to communicate assume that messages can be injected into the
network, can traverse the network, and will arrive intact at the intended destina-
tion [96]. Such behavior is ensured by productivity.

Productivity as assumption in the design of application layer protocols

The major part of the literature on application layer protocols built on top of
communication networks is on cache coherency. We provide some examples and
provide details on the assumptions they make on the network.

Bolotin et al. propose a hardware-based mechanism for efficient distributed
directory-based cache-coherent access for NoCs [16]. A round-trip of a request
and response message between a processor and an L2-cache bank over the NoC
may induce delay, but this delay is assumed to be finite. This assumption is tan-
tamount to assuming productivity. They also assume that the network maintains
the ordering of messages for each source-destination pair. Productivity does not
deal with in-order packet delivery.

Pétrot et al. propose a software solution to the problem of sharing data in mul-
tiprocessor SoC’s [114]. They assume a generic system architecture which enforces
separation between IP functionality and IP communication. The interconnect is
assumed to behave like it provides direct point-to-point communication channels
between requesting nodes and target nodes. Assuming such bus-like behavior
equates to assuming productivity.

Massas and Pétrot provide a comparison of different cache coherency protocols
implemented on top of a NoC [39]. They characterize the protocol actions with a
hop as atomic unit. A hop is defined as the delay needed to cross the NoC from one
node to another. It is assumed that this delay is finite, i.e., that the interconnect
can always inject a message and deliver it at its desired destination.

Marescaux et al. provide a comparison between different ways of achieving
memory sharing on NoCs [92]. Their comparison is based on a specific NoC ar-
chitecture with deterministic routing to guarantee deadlock freedom and in-order
packet delivery.

Without exception, these works assume productivity to decouple the design and
validation of application layer protocols from the underlying network architectures.

Productivity as assumption in the verification of application layer pro-
tocols

We provide examples on formal verification efforts related to application layer pro-
tocols. Again, we focus on cache coherency as this has been an active research field
for many years. All methodologies mentioned in this section decouple the verific-
ation of the protocol from the verification of the interconnect. They all abstract

65

5 Conclusion

from the communication network by assuming availability of the interconnect and
by assuming that messages are reliably delivered to their destination.

Model-checking has been successfully applied to the verification of high-level
descriptions of cache coherency protocols. Symbolic model checking is applied
to parameterized versions of write-invalidate and write-update cache coherency
protocols [41, 42]. The verification is parametric in the number of processors
in the system. Emerson and Kahlon apply a custom model checking method to
verify snoopy cache coherence protocols such as MESI, MOESI, Illinois, Berkeley
and Dragon [51]. Each protocol is verified within a fraction of a second. Similar
results have been achieved with the Murphi model checker [30, 108, 26]. All these
studies verify safety properties at a high level of abstraction.

McMillan verifies both safety and liveness properties [95]. He uses the SMV
model checker to support a counterexample driven methodology. The approach
first naively tries to prove a property and when a counterexample arises, it dia-
gnoses the cause of the error and rules it out. SMV has also been used to verify
both safety and liveness properties [50]. Baukus et al. model a parameterized sys-
tem as a higher order transition system in a decidable logic [7]. These transition
systems are given to a model checker to check both safety and liveness properties.

Another verification approach is theorem proving. Moore formalized a simple
write-invalidate cache scheme using the ACL2 theorem proving system [79]. An
arbitrary number of processor-cache pairs interacts with a global memory via a
bus which is snooped by the caches. Moore models both the cache system and the
memory system without cache as first order functions and proves that executing
read and writes in the system with caches equals executing in the system without
caches. Park and Dill apply the PVS theorem prover to verify a directory-based
cache coherence protocol developed for the Stanford FLASH multiprocessor [113].
Their method compares a state graph representing the implementation of the
protocol with a state graph representing the desired abstract behavior. Some hy-
brid methods have been proposed, combining theorem proving with model check-
ing [120].

SMT solvers are applied in [111]. They generate invariants to verify directory
based protocols using a solver for first order logic with uninterpreted functions
(EUF).

The efforts reported so far focus on applying general verification techniques
to cache coherency protocols. Application-specific tools have been proposed as
well. Plakal et al. present a special reasoning technique that assigns timestamps
to relevant protocol events [117]. These timestamps are used to construct a total
ordering of events. These total orderings are used to verify that the requirements
of a particular memory consistency model have been satisfied. Pong and Dubois
propose the tool SSM [118]. It is a state-based verification tool based on an
abstraction technique preserving the properties to verify. Recently, Zhang et al.
proposed a correct by construction approach [148].

With exception of two recent papers [108, 26], processes communicate through
a bus instead of a network. However, O’Leary et al. abstract this network into a
set of point-to-point channels.

66

5.3 The GeNoC Framework

Productivity is commonly used as assumption in the design and verification of
application layer protocols. Assuming productivity is used commonly to decouple
the application layer from the network layer.

5.3 The GeNoC Framework

We address the applicability, the restrictions and the usability of our methodology.

Applicability of GeNoC

The generality of our approach ensures a wide applicability. All proof obligations
have been defined to be as weak as possible. They apply to a large family of
communication networks. Section 2.3.2 (see Page 26) gives some examples of
different instantiations from the literature.

Switching can be instantiated with different flavors of packet, wormhole and
circuit switching. Injection can be, e.g., greedy, based on a per message desired
injection time, or credit-based. The starvation prevention mechanism can be in-
stantiated with, e.g., FIFO or round-robin arbitration. Routing and topology can
be instantiated with many different functions.

As Table 3.6 shows (see Page 50), livelock freedom depends on both the routing
function and the switching policy. Some networks are livelock-free because of the
routing function, e.g., the routing function prevents messages from going into a
cycle. In such networks, the switching measure could be the sum of the lengths of
the routes of all messages. Some networks are livelock-free because of the switching
policy, e.g., networks where the time a message can spend in the network depends
on a counter in the header of the message [132]. In such networks, the switching
measure could be the sum of the counters. Both measures are sums and thus
irrelevant of the order of the messages. For both measures, Proof Obligations 11
and 12 can be discharged and thus both types of networks can be proven livelock-
free with our methodology.

Restrictions of GeNoC

The proof obligations enforce some limitations. First, the consumption assump-
tion is required. A message arriving at its destination is eventually consumed.
Without the consumption assumption, message dependencies occur [68] which can
currently not be modelled in GeNoC. The current definition of functional cor-
rectness (Definition 3.4 on Page 40) does not deal with dropping, duplication or
joining of packets. This prevents modelling of synchronizations in the network.
Each message is assumed to have one destination, making verification of multicast
and broadcast algorithms difficult. Finally, the network model is assumed to be
static. Dynamic failure of, e.g., channels or switching in the network cannot be
represented.

67

5 Conclusion

Usability of GeNoC

We have shown in Chapter 4 that for a non-trivial example, approximately 86% of
the proof of productivity can be derived automatically from the GeNoC framework.
Part of this is due to the fact that those proof obligations that depend only on
the switching policy have been discharged once and for all for both packet- and
wormhole switching. These are the most commonly used switching policies. For
any network with either packet- or wormhole-switching, these proofs can be reused
without any modification. Our ultimate goal is to develop a library containing
most common injection methods, switching techniques, and starvation prevention
mechanisms. These components are easily reusable.

Proof Obligation 7, which states that the network must be deadlock-free, is
hardest to discharge. The remainder of this thesis will focus on this proof oblig-
ation. We have examined weak sets of proof obligations under different network
models. The weakest possible proof obligation is a necessary and sufficient condi-
tion. Chapters 6 presents necessary and sufficient conditions for deadlock freedom.
These conditions can replace Proof Obligation 7.

Still, discharging these necessary and sufficient conditions for some specific net-
work is a difficult task. It requires a great deal of manual theorem proving. These
proofs are not easily reused for other instantiations. Chapters 7 and 9 present
algorithms that automatically prove deadlock freedom. For fixed-size networks,
one can simply use these algorithms to discharge Proof Obligation 7.

In Chapter 8, the tool DCI2 is presented, which checks deadlock freedom and
discharges all proof obligations related to the topology, the resources and the rout-
ing function. DCI2 allows a user to automatically discharge all proof obligations
– and thereby prove productivity – for packet- and wormhole-switched networks.
In combination with an ACL2 library of common network modules, DCI2 provides
a completely automatic way of proving productivity for a large family of commu-
nication networks.

We presented a formal specification and verification environment for high-level
descriptions of communication networks. The environment supports the proof of
safety and liveness properties. Proofs are performed for parametric descriptions,
i.e., the number of nodes and the size and the number of messages are all left
uninterpreted. Key is the reusability of proofs.

Productivity has been broken down into five network properties: functional
correctness, deadlock freedom, livelock freedom, starvation freedom and liveness
of injection. Except for deadlock freedom, each of these properties has been broken
down into simple and elementary proof obligations. Breaking down deadlock free-
dom into smaller proof obligations is a hard problem. The next part of this thesis
is devoted to automatic ways of proving deadlock freedom of communication net-
works.

68

Part III

Isolated Network Layer

Deadlock Verification

69

Chapter 6

Necessary and Sufficient Conditions

for Deadlock-free Routing

This chapter discusses new necessary and sufficient conditions for deadlock-free
routing in packet and wormhole networks. A detailed analysis of existing the-
orems will reveal the relevance of our new conditions. Existing conditions are
often counterintuitive and require many different concepts and definitions. We
will expose a subtle discrepancy in Duato’s seminal condition for deadlock-free
routing in wormhole networks [44], showing that it is not complete. In contrast,
the conditions presented in this chapter are simple, correct and require only a few
concepts. This makes it possible to discharge them automatically using dedicated
algorithms. Our conditions satisfy the following properties:

Static A static condition does not consider the dynamic evolution of the network.
It does not consider the state of the network at a given time. Dally and
Seitz’ condition is static, as it solely depends on the dependency graph [36].
This graph can statically be computed from a specification of the network
topology and the routing function. The major benefit of a static condition is
that it is easier to discharge. Even for a small network, analysis of all possible
states, i.e., all possible injection sequences and all possible configurations
that can be reached during the evolution of such an injection sequence can be
impossible. In contrast, Dally and Seitz’ static condition can be discharged
just by computing the dependency graph and searching for cycles.

Wide Applicability Our conditions have as few assumptions as possible, widen-
ing their applicability. We do not require routing to be coherent (see Sec-
tion 6.7.1 for a discussion on coherency). Defining a static necessary and
sufficient condition for incoherent routing functions has been an open prob-
lem up to now [48]. We do not require the routing function to prevent live-
locks. Livelocks can be prevented by other mechanisms such as hop counters
or packet dropping. Our conditions separate the proof of deadlock freedom
from the proof of livelock freedom and enable the verification of networks
employing such mechanisms.

71

6 Necessary and Sufficient Conditions for Deadlock-free Routing

Mechanically proven We have mechanically proven necessity and sufficiency of
our conditions for absence of deadlocks using the ACL2 theorem prover. This
enabled us to get all definitions and proofs completely correct.

The first part of this chapter deals with packet networks. The condition presen-
ted in this thesis is based on the notion of escapes. It states that “in any set of
channels there is at least one escape” is necessary and sufficient for the absence of
deadlocks. Of course, this depends on the definition of “escape”. We formalize the
exact requirements for a channel to be an escape. A discussion of our definition
of deadlock will show that it is irrelevant whether channels are implemented with
queues or buffers.

The second part of this chapter deals with wormhole networks. Again, our
condition states that in any set of channels there must be at least one escape.
However, a channel that is an escape in a packet configuration is not necessarily
an escape in a wormhole network. We will stress the differences between the
conditions. Again, we discuss our definition of deadlock. This discussion will
show that our simplified definition of deadlock is logically equivalent to the more
complicated one used in the literature.

6.1 Notation and Definitions

All chapters in this part share the notations and definitions presented in this
section. At the end of this section, an overview is given.

We start by giving the formal definition of a network. This definition refines
the network model presented in Section 3.2.2 (see Page 35).

Definition 6.1 A network N is a tuple with a finite set of processing nodes P ,
a finite set of arcs C, a routing function R : P × P 7→ P(C), a domain of flits
F , a domain of message identifiers M , two topology functions src : C 7→ P and
end : C 7→ P , a capacity function cap : C 7→ N, a function msg : F 7→ M , and a
function dest : M 7→ P .

N ::= 〈P,C,R, F,M, src, end, cap,msg, dest〉

The topology of network N is defined by functions src : C 7→ P and end : C 7→
P . These functions return the processing nodes at the source and at the end of a
channel, respectively. The routing function computes from each processing node
s and each destination node d a set of next hops R(s, d). This set is non-empty if
s 6= d. Each channel c has a certain number of places, where each place can either
be empty or store exactly one flit. An empty place is denoted with ǫ. We assume

ǫ /∈ F and let Fǫ
def
= F ∪ {ǫ} denote the domain of flits plus the empty place.

The capacity of channel c, denoted cap(c), is defined as the number of places of
channel c.

Flits are the atomic units of transfer that are transmitted through channels,
i.e., they are concrete pieces of data that are to be communicated. At any time,
channels may contain many non-unique flits. Each flit belongs to at most one
message, but each message may consist of multiple flits. In our definitions and
proofs, we need to be able to distinguish equal flits belonging to different messages.

72

6.1 Notation and Definitions

To this end, the set of unique message identifiers M is used. Function msg is able
to retrieve, given a flit f , the unique message id of the message to which flit f
belongs. Since flits are not unique, some additional bookkeeping is required for
the actual implementation of this function. Finally, function dest returns the
destination of the message corresponding to the given message identifier.

For sake of presentation, we introduce some shorthand notations. Let f be a
flit, and let list L be a subset of Fǫ.

dest(f) = dest(msg(f))

dests(L) = {d ∈ P | ∃f ∈ L− ǫ · dest(f) = d}

msgs(L) = {m ∈M | ∃f ∈ L− ǫ ·msg(f) = m}

Figure 6.1a gives an example of a network. There are two processing nodes
P = {n0, n1}, and two channels C = {A,B}. Figure 6.1b shows the routing
function R. The set of flits F consists of tuples 〈data, header〉 representing a packet
with data that is to be transmitted and a header that contains the destination of
the packet. Each packet can be uniquely identified by some natural number, i.e.,
M = N. The topology functions src and end can be derived from Figure 6.1a.
The capacity function cap assigns 3 places to each channel. Function dest looks
up the packet referred to by id n and returns its header.

n0 n1

A

B

(a) Network

n R(n, n0) R(n, n1)

n0 B
n1 A

(b) Routing Function

Processing Node

Channel
(c) Legend

Figure 6.1: Example of network

Since channels store messages and there are no further state holding compon-
ents in the network, the state of the network is determined completely by the state
of the channels. A state or configuration contains information on which flits are
in which places.

Definition 6.2 A configuration σ is an assignment of lists of flits or empty places
to channels.

σ : C 7→ L(Fǫ)

Function σ returns a list of flits. The list of flits in channel c can be accessed
through σ(c). This list contains the flit stored in the head of the channel first,
followed by flits stored in the tail of the channel. That is, given a channel c, the
flit which occupies the head of the channel is returned by σ(c)[0]. The number of
flits in c is denoted |σ(c)|. The empty configuration is denoted by σǫ. The set of
all configurations is denoted by Σ.

Given a configuration σ and a message id m, it is possible to compute the set
of channels that is occupied by the message corresponding to message id m. This
set of channels is denoted by channels(m,σ).

73

6 Necessary and Sufficient Conditions for Deadlock-free Routing

Not any assignment of flits to channels constitutes a legal configuration. Con-
sider the network in Figure 6.1a. A possible configuration is:

σ(A) = [f1, f1, f1] where dest(f1) = n1

σ(B) = [f0, f0, f0] where dest(f0) = n0

This configuration assigns flits belonging to a message destined for processing node
n1 to channel A. However, as processing nodes consume messages as soon as they
arrive, channel A can never contain such flits. We introduce function τ : C 7→ P(P)
which given a channel returns the typing information of that channel, i.e., which
types of flits can be in the channel. In other words, if d is a type of channel
c, channel c is reachable by messages destined for d. As example, the typing
information of channel A in Figure 6.1a is the set {n0}, as only flits belonging to
messages destined for processing node n0 can ever reach channel A. A flit with
destination d can reach channel c if and only if the processing node at the source
of c routes flits destined for d towards c.

Definition 6.3 The typing information of channel c, notation τ(c) is defined as
the set of destinations for which there exists a message that can be in channel c.

τ(c)
def
= {d ∈ P | c ∈ R(src(c), d)}

When drawing a network, we will sometimes add the typing information of the
channels. In this case, each channel name will be followed by a semicolon and
the typing information. For example, the network in Figure 6.1a will additionally
have the following information:

A : n0

B : n1

A routing path is a simple path established by the routing function for messages
destined for destination d.

Definition 6.4 Let d ∈ P be a destination in the network. Path πd is a routing
path for destination d, notation R -path(πd), if and only if πd is a list of channels
[c0, c1, . . . , ck] that constitute a route for a message destined for d.

R -path(πd)
def
=







c0 ∈ R(src(c0), d)
∧ ∀0 < i ≤ k · ci ∈ R(end(ci−1), d)
∧ ∀0 ≤ i, j ≤ k · i 6= j =⇒ ci 6= cj

We denote a set of routing paths {πd0 , πd1 . . . , πdk} with Π⋆.

A dependency between two channels c0 and c1 indicates that in some config-
uration a packet in c0 waits for channel c1 to become available. The dependency
graph reflects all dependencies in the network.

Definition 6.5 The dependency graph Gdep of network N is a directed graph
with as vertices the set of channels C. Function Adep : C 7→ P(C) represents the
arcs of the dependency graph. There is an arc between vertex c0 and c1 if and
only if there is a routing dependency between these channels:

Adep(c0)
def
= {c1 | ∃d ∈ τ(c0) · c1 ∈ R(end(c0), d)}

74

6.1 Notation and Definitions

For example, the dependency graph of the network in Figure 6.1a consists of
two vertices, namely channel A and B. There are no edges, indicating that there
are no waiting relations between the channels.

A dependency (c0, c1) is caused by destination d if and only if d is in the typing
information of c0 and if c1 ∈ R(end(c0), d). When drawing a dependency graph,
the destinations causing the dependencies will be used to label edges. We will
overload function Adep so that if an extra parameter d is given, it returns only the
dependencies caused by destination d. Finally, function τ(c0, c1) returns the labels
of dependency edge (c0, c1), i.e., the set of destinations causing the dependency.

Table 6.1 provides an overview of the definitions and notation used in this part.

Description Notation

Processing nodes P
Channels C
Source of channel src(c)
End of channel end(c)
Routing R(s, d)
Channel capacity cap(c)
Empty place ǫ
Domain of flits F
Domain of flits plus empty place Fǫ

Domain of message identifiers M
Message id of flit msg(f)
Destination of message dest(m)
Destination of message of flit dest(f)
Destinations of list of flits dests(F)
Messages of list of flits msgs(F)
Configuration σ
Empty configuration σǫ

Domain of configurations Σ
Channels occupied by message channels(m,σ)
Routing path R -path(πd)
Set of routing paths Π⋆

Typing information τ(c)
Channel c has type T c : T
Dependency graph Gdep = 〈C,Adep〉
Destinations causing a dependency τ(c0, c1)

Table 6.1: Overview of definitions and notation

75

6 Necessary and Sufficient Conditions for Deadlock-free Routing

6.2 Packet Switching: Formal Condition

A deadlock configuration is a legal configuration that is reachable from the initial
empty configuration. The behavior of packet switching induces some constraints
on which configurations are legal and which are not. As each channel with capacity
n can store at most n packets and as packets are the atomic units of transfer, a legal
configuration σ cannot assign more than cap(c) packets to channel c. Secondly, if
a packet p is assigned to channel c, channel c must be reachable by packets with
destination dest(p).

Definition 6.6 In a packet network a configuration σ is legal, notation legalps(σ),
if and only if for all channels the capacity is not exceeded and all packets can be
routed towards their current channel.

legalps(σ)
def
= ∀c ∈ C · |σ(c)| = cap(c) ∧ dests(σ(c)) ⊆ τ(c)

If it is clear from the context that the definition concerns packet networks, the
superscript ps will be omitted.

Definition 6.7 For packet network N , a configuration σ is a deadlock config-
uration, notation Ωps(σ), if and only if it is a legal and non-empty configuration
where all packets are blocked.

Ωps(σ)
def
= legal(σ) ∧

σ 6= σǫ ∧

∀c ∈ C · ∀f ∈ σ(c)− ǫ · ∀n ∈ R(end(c), dest(f)) · |σ(n)− ǫ| = cap(n)

For any packet f in any channel c, all next hops n supplied by the routing
function from the processing node connected to the end of c to the destination of
f must be full.

Even though not explicitly stated, Definition 6.7 correctly deals with the fol-
lowing aspects:

• Any deadlock is actually reachable;

• A configuration in which some part of the network is in deadlock, but in
which some other set of messages can still move is correctly recognized as a
deadlock;

• The definition is correct both for packet networks where channels are imple-
mented with buffers and with queues.

Section 6.3 provides lemma’s which justify Definition 6.7 and which allow us to
proceed with this trimmed definition.

6.2.1 Our Condition

In a deadlock configuration, the set of channels that are involved in the deadlock
forms a subgraph of the dependency graph. We consider subgraphs as a subset of
the vertices, removing edges only if the source or end of the channel is not in the
subset. An escape for a subgraph is a channel where any packet can be routed

76

6.2 Formal Condition

outside of the subgraph, regardless of the destination. This is either because
messages are routed to channels not in the subgraph, or because messages arrive
at their destination to be consumed. A channel with no dependency neighbors at
all is a channel where any message arrives at its destination. We will call such
channels sinks.

Definition 6.8 Given a subgraph S, a channel e ∈ S is an escape for S, notation
esc(e, S) if and only if it is a sink or if for all possible reachable destinations there
exists a dependency neighbor that is not contained in S:

esc(e, S)
def
= e ∈ S ∧ (Adep(e) = ∅ ∨ ∀d ∈ τ(e) ·Adep(e, d) * S)

Using two examples, we will show that a deadlock can never contain an escape
and conversely, that if some subgraph has an escape, this set of channels does not
form a deadlock. The first example has a deadlock, the second is deadlock-free.

Example 6.1 Consider the interconnection network in Figure 6.2a without the
dashed channel F . The network consists of five processing nodes. For sake of clar-
ity, only processing nodes d0 and d1 are destination nodes. The routing function
is depicted in Figure 6.2b. There is exactly one deadlock possible, in subgraph
S = {A,B,C}. If channel A is filled with messages destined for d1, channel B
is full, and channel C is filled with messages destined for d0, a circular wait oc-
curs. This circular wait is represented by the cycle in the dependency graph in
Figure 6.2c. None of the messages can be routed outside of the cycle. As subgraph
S has no escape, there is a deadlock.

n0

n1

n2

d0 d1

A

B C

E DF

(a) Interconnection network

n R(n, d0) R(n, d1)

n0 B, E B
n1 C C
n2 A A, D

(b) Routing Function

d0

B

A CE D

d1

d0, d1 d0, d1

d0, d1

d0

F

(c) Dependency graph

Processing Node

Channel (in network)

Channel (in graph)

Dependency

(d) Legend

Figure 6.2: Example of deadlock in a packet network. The dashed arrows are used in
Example 6.2 only.

77

6 Necessary and Sufficient Conditions for Deadlock-free Routing

Example 6.2 Consider again the interconnection network in Figure 6.2a, in-
cluding the dashed channel F . Routing is extended with R(n2, d0) = {A,F}. The
network is deadlock-free. Subgraph S = {A,B,C} can contain packets particip-
ating in a circular wait. However, channel C is an escape for subgraph S. For all
destinations, i.e., for both d0 and d1, there is a dependency neighbor not in sub-
graph S. Any message in C can be routed outside of the subgraph. As subgraph
S has an escape, it cannot form a deadlock.

If a channel is in deadlock it must either be in some dependency cycle or there
must exist a path that leads to some deadlocked cycle. The condition is based on
the idea that as long as dependency cycles have an escape, there is always a way to
prevent the creation of deadlocks. Assume a cycle of full channels, i.e., a circular
wait. As long as such a cycle has an escape there is always at least one message
with a next hop outside the cycle. If all sets of such cycles have an escape, it is
always possible to prevent deadlocks. Hence, the following condition:

A packet network is deadlock-free if and only if all sets of cycles in the
dependency graph have an escape.

Figures 6.3a, 6.3b, and 6.3c illustrate the condition. Assume a deadlock-free net-
work such that its routing function has a cyclic dependency graph. Figure 6.3c
shows the strength of the theorem. At some point, the escape of a cycle may lead
to next hops which are included in cycles which have already been escaped. The
theorem states that this set of cycles again has an escape, so that at least one
message will eventually be able to escape this cycle of cycles.

(a) The escape leads mes-

sages out of the cycle.

(b) The escape leads to a

cycle with a new escape.

(c) The escape leads to a

cycle of cycles with a new

escape.

Figure 6.3: Sets of cycles with escapes

The necessary and sufficient condition is formulated as follows:

Theorem 6.1 A packet network is deadlock-free if and only if all subgraphs have
an escape.

DLF(N) ⇐⇒ ∀S ⊆ C · S 6= ∅ =⇒ ∃e ∈ S · esc(e, S)

Theorem 6.1 is logically equivalent to stating that all sets of cycles have an
escape. This formulation is easier to formalize and to prove.

6.2.2 Proof

Our proof transforms configurations to graphs in such a way that a deadlock always
yields a graph with a knot1. A knot is a subgraph where every vertex has at least

1Knots have proven to be a useful concept in deadlock detection [97].

78

6.2 Formal Condition

one outgoing edge, and all outgoing edges from vertices in the knot end in the knot
itself (see Appendix A.4 for a formal definition). Consider the following deadlock
configuration σ for the network in Figure 6.2a:

σ(A) = [p1, p1, p1]

σ(B) = [p0, p1, p0]

σ(C) = [p0, p0, p0]

where p0 and p1 denote packets destined for d0 and d1 respectively

Figure 6.4a shows the first step of this transformation. Given a configuration, we
define the waiting graph. This graph depicts the waiting relations in configura-
tion σ. There is a waiting edge if and only if a packet is waiting to acquire a
channel. A deadlock always yields a knot in the waiting graph: as all packets wait
for each other, all waiting edges point to each other.

B

A CE D

p1, p1, p1 p0, p1, p0

p0, p0, p0

(a) Waiting graph. The labels denote the packets

that are waiting.

B

A CE D

d0

d0

d1

(b) Restricted dependency graph.

Figure 6.4: Transformation from deadlock to knot in a graph. Per channel only one
destination is considered.

The waiting graph is not static as it depends on which packets are assigned
to which channels in configuration σ. It is only used as an intermediary between
a configuration and a knot in a static graph. Figure 6.4b shows the second step
of the transformation. We show that if the dependency graph is restricted to
contain dependencies caused by one destination per channel only, this restricted
dependency graph is a subgraph of the waiting graph. Thus, given a deadlock, this
graph contains a knot as well.

This completes the proof, as a knot in the restricted dependency graph is a
subgraph that has no escape. Since for each channel in the knot there is one
destination that leads back into the knot, there is no channel in the knot for which
all destinations lead out of the knot. The knot has no escape. We have therefore
proven the contrapositive version of Theorem 6.1: given a deadlock, there exists a
subgraph without an escape.

Definitions

The waiting graph is dynamically defined by configuration σ. Informally, two
channels c0 and c1 are connected in the waiting graph if there is packet in a place
of c0 that is routed to c1. Figure 6.5 gives an example.

79

6 Necessary and Sufficient Conditions for Deadlock-free Routing

(a) Configuration (b) Waiting graph

Figure 6.5: An example configuration and its waiting graph. In the configuration each
channel has two places. Each arrow points to the next hop of the packet in the place.

Definition 6.9 Given a configuration σ, the waiting graph is defined by set of
vertices C and arc function Aσ

wait. There is an arc (c0, c1) ∈ Aσ
wait if and only if

there exists a packet in a place of c0 with c1 as next hop.

In the proof we consider subgraphs of the dependency graph defined by some
restriction function δ : C 7→ P . This restriction function maps channels to des-
tinations. At each channel c, it restricts the dependency graph to arcs leading to
destination δ(c). Figure 6.6 gives an example.

A

B

C

(a) Dependency graph

A

B

C

(b) Restricted dependency

graph

A

B

C

(c) Restricted dependency

graph

Figure 6.6: Let B and C be the only destinations. There are two δ-restricted dependency
graphs: graph 6.6b is defined by δ(A) = B; graph 6.6c is defined by δ(A) = C.

Definition 6.10 Given a restriction function δ : C 7→ P , the δ-restricted de-
pendency graph is defined by set of vertices C and arc function Aδ

dep. There is an
arc (c0, c1) ∈ Aδ

dep if and only if c1 ∈ Adep(c0, δ(c0)).

The Proof

We prove that there is a deadlock if and only if there exists a δ-restricted depend-
ency graph with a knot. Assume a deadlock configuration σ. We show that this
deadlock configuration implies a knot S in the waiting graph of σ (Lemma 6.1).
We then construct a restriction δ, such that S is a knot in the δ-restricted depend-
ency graph as well (Lemma 6.2). Assume a restriction δ and a knot S. We can
construct a deadlock configuration by filling all channels in S with packets destined
for the destinations provided by δ (Lemma 6.3). Hence, the contrapositive version
of our theorem has been proven.

Lemma 6.1 A deadlock configuration σ implies there exists a knot S in the

80

6.2 Formal Condition

waiting graph of σ.

∀σ ∈ Σ ·Ω(σ) =⇒ ∃S ⊆ C · knot(S,Gσ
wait)

Proof. Take as S the set of full channels in σ. We prove that S is a knot by
contradiction. All the waiting-graph neighbors of S are full, since otherwise there
would exist a channel with a packet with a next hop that is not full. This would
imply that this packet can move, which contradicts the assumption of deadlock.
Since all waiting-graph neighbors of S are full, and since S is the set of all full
channels, S is a knot.

The deadlock does not necessarily consist of full channels only: there can be
a packet in an available channel, as long as each next hop for this packet is full.
However, these available channels are not needed for the deadlock: the deadlock
can be reduced to a set of full channels only, while preserving the fact that each
packet is stuck.

Lemma 6.2 A knot S in the waiting graph of σ implies there exists a restriction
δ such that S is a knot in the δ-restricted dependency graph.

∀S ⊆ C · (∃σ ∈ Σ · knot(S,Gσ
wait) =⇒ ∃δ : C 7→ P · knot(S,Gδ

dep))

Proof. Choose δ such that for all channels c ∈ S, δ(c) returns the destination of
one of the packets that is located in c in configuration σ. The set of neighbors
created by this destination is a subset of the waiting-graph neighbors of c – and
thus also a subset of S – since the waiting-graph neighbors include all next hops
created by the destinations of all packets in c.

Lemma 6.3 A knot in the δ-restricted dependency graph implies the existence
of a deadlock configuration.

∃S ⊆ C∃δ : C 7→ P · knot(S,Gδ
dep) =⇒ ∃σ ∈ Σ ·Ω(σ)

Proof. Construct a configuration σ by filling each channel c ∈ S completely with
packets destined for δ(c). The set of next hops of a packet in c is the set of
dependency neighbors created by destination δ(c). Since this is a subset of S
and since each channel in S is filled completely, all next hops of all packets are
unavailable. Thus the configuration is in deadlock.

From Lemma’s 6.1 to 6.3 it follows that there exists a deadlock if and only
if there exists a restriction δ such that the corresponding restricted graph has a
knot. The existence of an escape for all subgraphs is exactly the negation of the
existence of such a knot.

∃S ⊆ C · ∃δ : C 7→ P · knot(S,Gδ
dep)

= ∃S ⊆ C · ∃δ : C 7→ P · S 6= ∅ ∧ ∀c ∈ S ·Aδ
dep(c) 6= ∅ ∧Aδ

dep(c) ⊆ S

⇐⇒ ¬∀S ⊆ C · ∀d ∈ P · S 6= ∅ =⇒ ∃c ∈ S ·Adep(c) = ∅ ∨Adep(c, d) * S

= ¬∀S ⊆ C · S 6= ∅ =⇒ ∃e ∈ S · esc(e, S)

Thus a new necessary and sufficient condition for deadlock-free routing has been
obtained: all subgraphs must contain an escape.

81

6 Necessary and Sufficient Conditions for Deadlock-free Routing

6.3 Definition of Deadlock

We justify our definition of deadlock. We prove Lemma 6.4 to show that it is not
necessary to include reachability in Definition 6.7. Static analysis suffices to check
for the absence of deadlocks, i.e., expensive reachability analysis is not necessary.
Lemma 6.5 is used to prove that it suffices to check for deadlocks in which all
packets are permanently blocked. Finally, Lemma 6.6 shows that Definition 6.7
applies both to networks with buffers and networks with queues.

Reachability

Duato has informally proven a lemma stating that any legal configuration is reach-
able [45]. This lemma allows us to omit reachability from Definition 6.7. Here, we
formalize the lemma and its proof. This requires a formalization of reachability,
and thus a transition relation. Such a transition relation contains two types of
transitions. First, transitions that take a configuration and move packets from
channel to channel according to the routing function and the semantics of packet
switching. Secondly, transitions that take a configuration and inject a packet.
Formalizing the first type of transitions is quite involved. It depends among others
on whether packets move synchronously or asynchronously, and on the implement-
ation of the channels. For the proof of the reachability lemma, it is only necessary
to formalize the second type of transitions. Since routing is memoryless, we can
consider each packet as injected by the source node of its current channel [45].
This formalization makes use of function repl(L, l1, l2) which takes a list L and
replaces the rightmost occurrence of l1 with l2, if l1 ∈ L.

Definition 6.11 The transition relation
ps
−→ ⊆ Σ×Σ is defined by the following

transitions:
σ

ps
−→ σ′ if σ′ is the result of moving one or more injected packets from their

current channel to a next hop

σ
ps
−→ σ′ if ∃ci ∈ C·

{

∀c ∈ C · c 6= ci =⇒ σ′(c) = σ(c)
σ′(ci) = repl(σ(ci), ǫ, f) with R(src(ci), dest(f)) = ci

We use the transitive closure of this transition relation, denoted with →
ps
−→, to

define reachability.

Definition 6.12 A configuration σ is reachable, notation reachable(σ), if and
only if there is a sequence of transitions from the empty configuration to σ.

reachable(σ)
def
= σǫ →

ps
−→ σ

We prove a lemma stating that any legal configuration is also reachable.

Lemma 6.4 A configuration σ is reachable if it is legal.

legal(σ) =⇒ reachable(σ)

Proof.
Let σ be a legal configuration. We build a sequence starting in σǫ leading to σ,
using only the second, completely formalized type of transition. Since the routing
function has no memory, i.e., is of type P ×P 7→ P(C), and since we assume that

82

6.3 Definition of Deadlock

all processing nodes can send messages destined for all other processing nodes,
each packet f stored in some channel c in σ can be considered as generated by
the processing node S at the source of channel c. Therefore, the sequence can be
constructed as follows. Let c be some channel not empty in σ. Initially, channel c is
empty, since we start with σǫ. All packets assigned to channel c in configuration σ
are injected starting with the rightmost packet. With each injection, the transition
relation requires 1.) the destination d of the packet to adhere to R(S, d) = c,
and 2.) at least one of the places in c to be empty. As the definition of a legal
configuration enforces that all packets can be routed towards their current channel,
the first requirement is met. As the definition of a legal configuration enforces that
at most k packets are assigned to a channel with k places, an empty place always
exists.

Non-canonical deadlocks

Definition 6.7 recognizes canonical deadlocks, i.e., deadlocks in which all packets
are permanently blocked. Generally, non-canonical deadlocks are of interest as
well. We prove that the existence of a non-canonical deadlock is logically equivalent
to the existence of a canonical deadlock. Therefore checking only for canonical
deadlocks suffices to check for non-canonical deadlocks.

The proof uses the concept of sub-configurations.

Definition 6.13 Configuration σS is a sub-configuration of σ, notation σS ⊆ σ,
if and only if for some set of channels its assignment is equivalent to that of σ,
and for the remaining channels it is empty.

σS ⊆ σ
def
= ∃C ′ ⊆ C · ∀c ∈ C · σS(c) =

{

σ(c) if c ∈ C ′

[ǫ, . . . , ǫ] if c /∈ C ′

Definition 6.14 A configuration σ is a non-canonical deadlock configuration,
notation Ψ(σ), if and only if there exists a sub-configuration that is in deadlock.

Ψ(σ)
def
= legal(σ) ∧

∃σS ⊆ σ ·Ω(σS)

Lemma 6.5 There exists a non-canonical deadlock configuration if and only if
there exists a canonical deadlock configuration.

∃σ ∈ Σ ·Ψ(σ) ⇐⇒ ∃σ′ ∈ Σ ·Ω(σ′)

Proof.
(=⇒)
Assume a non-canonical deadlock configuration σ. By Definition 6.14, there exists
a sub-configuration σS that is in deadlock. Configuration σS is legal, non-empty,
and all packets are permanently blocked. Note that Lemma 6.4 ensures that this
canonical deadlock is also reachable.
(⇐=)
Assume a canonical deadlock configuration σ′. This is a non-canonical deadlock
configuration as well.

83

6 Necessary and Sufficient Conditions for Deadlock-free Routing

Buffers vs. queues

Packet switching allows two types of networks: networks with queues and networks
with buffers. One might expect two different definitions of deadlock. Our definition
(Definition 6.7) defines deadlock for networks with buffers. A deadlock in a network
with buffers requires all packets to be blocked as their next hops are full. In a
deadlock in a network with queues, only the packets at the head of the queues
are blocked because their next hops are full. These packets subsequently block the
packets in the tail of the queue. We prove Lemma 6.6 stating that these definitions
are logically equivalent.

Definition 6.15 For packet network N with queues, a configuration σ is a dead-
lock configuration, notation Ωq(σ), if and only if it is a legal, non-empty configur-
ation where all packets at the head of the queues are blocked.

Ωq(σ)
def
= legal(σ) ∧

σ 6= σǫ ∧

∀c ∈ C · σ(c)[0] 6= ǫ =⇒

∀n ∈ R(end(c), dest(σ(c)[0])) · |σ(n)− ǫ| = cap(n)

We prove that the existence of a deadlock configuration in both types of net-
works is logically equivalent.

Lemma 6.6 For any network N , there exists a deadlock in N with queues if and
only if there exists a deadlock in N with buffers.

∃σ ∈ Σ ·Ωq(σ) ⇐⇒ ∃σ′ ∈ Σ ·Ω(σ′)

Proof.
(=⇒)
Assume a configuration σ that is a deadlock in a network with queues. We con-
struct a configuration σ′ that is a deadlock in a network with buffers (see Fig-
ure 6.7). Replace in σ each packet in the tail of a queue with a copy of the packet
at the head of the queue. Configuration σ′ is legal, and all packets are blocked.

n0

n1

n0

n1

Figure 6.7: Transformation from a packet network with queues to a packet network with
buffers.

(⇐=)
Assume a configuration σ′ that is a deadlock in a network with buffers. This
configuration is a deadlock in a network with queues as well.

Lemma 6.6 states that deadlock freedom does not depend on whether channels
are implemented with queues or buffers. A necessary and sufficient condition

84

6.4 Relation to Duato

that applies to networks with buffers also applies to networks with queues. An
algorithm that decides deadlock freedom for one type of networks, is also a decision
procedure for the other. Since Definition 6.7 involves fewer concepts, we use this
as formal definition of deadlock.

6.4 Relation to Duato

There is only one previous necessary and sufficient condition for deadlock-free
adaptive routing in packet switching. It has been defined by Duato [45]. We
include his condition and a short clarification, but for an extensive explanation we
refer to Duato’s book [48].

6.4.1 Duato’s Condition

A connected and adaptive routing function R for an interconnection
network I is deadlock-free if and only if there exists a routing subfunc-
tion R1 that is connected and has no cycles in its extended dependency
graph DE .

The intuition can be summarized as follows: assume a subgraph C1 which contains
all processing nodes, but contains only a subset of the channels of the network. Let
C1 satisfy two assumptions: (1) C1 is acyclic and (2) the routing function is able to
route any packet to any destination using channels in C1 only. Then each message
will always eventually reach its destination. Even if a message is stuck in a cycle,
the channels of this cycle do not belong to C1 by Assumption (1). Assumption (2)
states that for each node, any message can be routed to its destination through
channels in C1. Thus the message can always escape the cycles it is in by using
channels in C1.

Duato formalizes this notion using the concept of routing subfunction. Such
a function only selects a subset of the possible next hops for each destination.
This routing subfunction must be connected, i.e., able to route any packet to any
destination. Furthermore, he extends the dependency graph with direct cross
dependencies. If a packet stored in some channel could not have been routed to
this channel by routing subfunction R1, then dependencies involving this channel
are direct cross dependencies. The extended dependency graph is the dependency
graph with added direct cross dependencies.

6.4.2 Relation to our Condition

Our condition is logically equivalent to Duato’s one. Both conditions are both
necessary and sufficient for deadlock-free routing and the definitions of deadlock
are equal. Furthermore, both conditions formalize the same intuition: there must
always be an escape. Both conditions isolate the network layer. The data-link
layer is abstracted by assuming a message is stuck if and only if all its next hops
are unavailable. Assuming that processing nodes can send messages destined for
all other processing nodes abstracts away from the application-layer.

85

6 Necessary and Sufficient Conditions for Deadlock-free Routing

The differences lie in the formalization of the intuition. We straightforwardly
formulate that there must always exist a packet that is able to escape instead
of stating that there must exist a routing subfunction capable to route packets
through an acyclic subgraph. Moreover, the use of the regular dependency graph
instead of the extended dependency graph reduces the complexity.

The proofs are completely different. We prove the contrapositive form, namely
that a deadlock is a subgraph without an escape. This enables a more constructive
approach, since we merely had to construct a knot from a deadlock configuration.
Duato constructs in his proof an acyclic connected routing subfunction from a
network where no deadlock configuration is possible. This is the most difficult
part of his proof.

A necessary and sufficient condition for deadlock-freedom of adaptive routing
functions in packet networks has been presented. We will now present such a
condition for wormhole networks. Some of the definitions can be reused, e.g., the
dependency graph. Some – most notably the definitions of deadlock and escape –
cannot and will be redefined for wormhole networks.

6.5 Wormhole Switching: Formal Condition

Similar to packet networks, wormhole networks pose constraints on which config-
urations are legal. Again, no channel capacities may be exceeded. In contrast to
packet networks, wormhole switching allows messages to acquire a resource only
when it is completely empty. Thus, each channel can contain flits belonging to
one message only. Also, while packets occupy one place in some channel, worms
occupy paths of channels in the network.

Definition 6.16 In a wormhole network a configuration σ is legal, notation
legalwhs(σ), if and only if for any channel the capacity is not exceeded, all flits
belong to at most one message, and all flits can be routed towards their current
channel.

legalwhs(σ)
def
= ∀c ∈ C







|σ(c)| = cap(c) (1)
|msgs(σ(c))| ≤ 1 (2)
∀m ∈ msgs(σ(c)) ·R -path(channels(m,σ)) (3)

If it is clear from the context that the definition concerns wormhole networks,
the superscript whs will be omitted.

A deadlock configuration is required to be legal. Just as for packet networks,
it must be non-empty. Additionally, all header flits are blocked. A header flit is
blocked if all its next hops contain at least one flit. As will be shown in Section 6.6,
there is no need for tail flits to be blocked as well. We assume predicates hd and
tl are available which return true if and only if the given flit is a header (tail) flit.
The following three properties make a legal configuration a deadlock:

4. It is not empty.

5. No header flit has arrived at its destination.

86

6.5 Formal Condition

6. All header flits are blocked.

Definition 6.17 For wormhole network N , a configuration σ is a deadlock con-
figuration, notation Ωwhs(σ), if and only if it is legal, non-empty and satisfies the
following properties.

Ωwhs(σ)
def
=

legal(σ) ∧ (1–3)
σ 6= σǫ ∧ (4)
∀c ∈ C · ∀f ∈ σ(c)− ǫ · hd(f) =⇒

{

dest(f) 6= end(c)
∀n ∈ R(end(c), dest(f)) · |σ(n)− ǫ| > 0

(5)
(6)

6.5.1 Our Condition

There are two major complications inherent to wormhole switching with respect
to packet networks. First, for packet switching any subgraph can be filled with
packets in such a way that a legal configuration is obtained. In wormhole net-
works, only subgraphs that can be filled with pairwise disjoint worms can yield
a legal configuration. Secondly, in packet networks any packet can be routed
autonomously towards its next hops. In wormhole networks, the header flit moves
autonomously, but the tail flits always follow the header flit.

To illustrate the first issue, Figure 6.8 shows a legal and an illegal deadlock
configuration. The legal configuration contains three messages. Message 1 is
destined for node A. It is blocked by Message 2 that holds channel c1. This channel
is the only channel leading from channel c4 to node A. Message 2, destined for
node A as well, is blocked by Message 3. Message 3, consisting of one flit only, is
blocked by Message 2.

The illegal configuration violates the property that in wormhole networks a
channel contains flits of at most one message. Channel c3 contains flits of Messages
1 and 2. In a legal configuration, the worms alwys constitute a pairwise disjoint
set of routing paths. Our condition requires a pairwise disjoint set of paths to
form a deadlock.

To illustrate the second issue, Figure 6.9 shows a legal configuration that is
not in deadlock. As in Figure 6.8a there are three messages. Messages 2 and 3
are blocked. Message 1 is not blocked, as it can now use the new channel c8 to
advance towards its destination. It can escape the congested area. Our condition
requires the absence of escapes to form a deadlock.

Channel c8 does not necessarily provide an escape. First, channel c4 must be
filled with a header flit. Only a header flit can escape, as tail flits follow the header
flit and cannot use the escape. For example, Figure 6.8a shows a deadlock config-
uration, even though there is an escape for the tail flits in channel c1. Secondly, the
escape must be supplied by the routing function for the destination of the worm.
Consider the network in Figure 6.9. If channel c8 is not supplied for destination
A, it cannot be used as an escape for Message 1. We need to redefine the notion
of escape for wormhole networks.

Definition 6.18 Given a set of routing paths Π⋆, a channel e is an escape for
Π⋆, notation esc(e,Π⋆), if and only if channel e is the head of some path and if

87

6 Necessary and Sufficient Conditions for Deadlock-free Routing

A

B

B

A A

c1c0

c2 c3 c4

c5 c6

Message 2

Message 1

Message 3

Header flit

c7

(a) Legal deadlock configuration

B

A A
Message 2

Message 1

Message 3

Header flit

A

c7
c1

c6c5

c0

c4c2

(b) Illegal deadlock configuration

Figure 6.8: Legal and illegal deadlock configurations.

either e is a sink or e has a dependency neighbor that is not contained in Π⋆.

esc(e,Π⋆)
def
= ∃πd ∈ Π⋆ · e = πd[0] ∧ (Adep(e, d) = ∅ ∨Adep(e, d) *

⊔

Π⋆)

Our condition states that the absence of escapes for some pairwise disjoint set of
routing paths is necessary and sufficient to create a deadlock, or contrapositively:

Theorem 6.2 A wormhole network is deadlock-free if and only if all pairwise
disjoint sets of routing paths have an escape.

DLF(N) ⇐⇒ ∀Π⋆ ∈ P(L(C)) ·







Π⋆ 6= ∅d
Π⋆ = ∅

R -paths(Π⋆)
=⇒ ∃e ∈ C · esc(e,Π⋆)

We provide two examples: one with a deadlock and one where the network is
deadlock-free.

Example 6.3 Consider the interconnection network in Figure 6.10a without the
dashed channel G. The network consists of five processing nodes. For sake of
clarity, only the processing nodes d0 and d1 are destination nodes. The routing
function is depicted in Figure 6.10b. There is exactly one deadlock possible. This
deadlock has two worms. One worm occupies channels A and B. Its tail is in A
and its header flit is in B. One worm occupies channel C only and is destined

88

6.5 Formal Condition

B

B

A A

c8
A

c7
c0

c5

c3 c4

c6

c1

c2

Figure 6.9: A legal configuration that is not in deadlock.

for d0. The worms wait for each other and have no alternative routes towards
their destinations. The circular wait is represented by the cycle in the dependency
graph in 6.10c. The set of paths {[B,A], [C]} has no escape. There is a deadlock.

Example 6.4 Consider again the interconnection network in Figure 6.10a, in-
cluding the dashed channel G. Routing is extended with R(n2, d0) = G. We prove
the network deadlock-free with our condition, by considering all pairwise disjoint
sets of routing paths. Set {[B,A], [C]} is such a set. Channel C is an escape, as it
is a channel at the head of one of the paths and it provides an alternative route
for both destinations. Set {[A], [B], [C]} is another set. Again, channel C is an
escape. There are similar sets of paths. In each pairwise disjoint set of routing
paths, either channel A or channel C is an escape. There is no deadlock.

6.5.2 Proof

We prove the contrapositive version of Theorem 6.2. We split up the proof into two
lemmas. Lemma 6.7 proves that our condition is sufficient for deadlock freedom.
The intuition is that from a deadlock we construct a witness, i.e., a set of routing
paths that falsifies our condition. Lemma 6.8 proves necessity of our condition.
The proof is again constructive: we build a witness, i.e., a deadlock, from a set of
routing paths.

Lemma 6.7 There is a pairwise disjoint set of routing paths without an escape
if there is a deadlock configuration.

Proof. Assume a deadlock configuration σ. We construct a witness Π⋆:

Π⋆ def
= {channels(m,σ) | ∃c ∈ C ·m ∈ msgs(σ(c))}

We show that this witness falsifies our condition. We prove that is satisfies the
three properties on the left hand side of the implication in Theorem 6.2, but that
it does not satisfy the right hand side. A deadlock configuration is by Property (4)
non-empty and therefore Π⋆ contains at least one path. Property (2) of Definition
6.17 ensures that channels contain flits of at most one message. This means that
all paths in Π⋆ are pairwise disjoint. Property (3) of Definition 6.17 ensures

89

6 Necessary and Sufficient Conditions for Deadlock-free Routing

n0

n1

n2

d0 d1

A

B C

E DF G

(a) Interconnection network

n R(n, d0) R(n, d1)

n0 E B, F
n1 C C
n2 A A, D

(b) Routing Function

d0

B

A CE D

d1

d1 d0, d1

d0, d1

d1

F

d0

G

(c) Dependency graph

Processing Node

Channel (in network)

Channel (in graph)

Dependency

(d) Legend

Figure 6.10: Example of deadlock in a wormhole network. The dashed channels are
used in Example 6.4 only.

that the worms constitute routing paths. The left hand side of the implication is
satisfied. We now prove Π⋆ has no escape. Property (5) of Definition 6.17 states
that no header has reached its destination. Hence, the head of each routing path
in Π⋆ has at least one dependency neighbor for its destination. Property (6) of
Definition 6.17 states that all next hops of all header flits are unavailable, i.e.,
they contain at least one flit. Thus, these next hops are part of some routing path.
This shows that for any routing path in Π⋆ the set of dependency neighbors of its
head for its destination is a subset of the union of Π⋆. A deadlock implies a set of
pairwise disjoint paths without an escape.

Lemma 6.8 There is a deadlock configuration if there is a pairwise disjoint set
of routing paths without an escape.

Proof. Assume a pairwise disjoint set of paths Π⋆. We build a witness deadlock
configuration σ by building a list of messages M . For each path πd in Π⋆, there is
a message with destination d. This message fills each channel in πd with one flit.
We show that σ satisfies the six properties of a deadlock configuration:

(1) As the paths are pairwise disjoint, each channel contains at most one flit. No
buffer capacity in σ is exceeded. For each channel c in each routing path πd,
destination d is in the typing information of channel c.

(2) As the paths are pairwise disjoint, each channel is filled with flits belonging
to one message only.

(3) As the worms are built from routing paths, they are valid worms.

90

6.6 Definition of Deadlock

(4) As there is at least one routing path, there is at least one worm.

(5) As the head of each path has at least one dependency neighbor, no message
arrives at its destination.

(6) As all d-neighbors are included in the union of Π⋆ and as each channel in each
path in Π⋆ is filled, no header flit has an available next hop.

Theorem 6.2 follows directly from Lemmas 6.7 and 6.8.

6.6 Definition of Deadlock

Definition 6.17 is justified by lemma’s similar to Lemma’s 6.4 and 6.5 (respect-
ively [45] and [48]), which state that any legal configuration is reachable, and that
is suffices to check for canonical deadlocks. Additionally, we prove Lemma 6.9 that
states that adding a case distinction for tail flits is superfluous. Wormhole net-
works have tail and header flits. Header flits are blocked by their next hops. Tail
flits are blocked if the channel occupied by the next flit in the worm is full. It is
possible that the header flit of a worm is blocked, but tail flits can still move. Since
both are blocked under different conditions, one might expect that Definition 6.17
includes a case distinction for both types of flits. The extra case distinction for
tail flits is formalized as follows. We assume that given a tail flit of a worm, it
is possible to compute the channel occupied by the next flit in the worm. Func-
tion next : F × Σ 7→ C returns the next channel of a tail flit given the current
configuration.

Definition 6.19 For wormhole network N , a configuration σ is a deadlock con-
figuration with blocked tail flits, notation Ω(1–7)(σ), if and only if it is legal,
non-empty and satisfies the following properties.

Ω(1–7)(σ)
def
=

Ω(σ) (1–6)
∀c ∈ C · ∀f ∈ σ(c) · tl(f) =⇒ |σ(next(f))− ǫ| = cap(next(f))) (7)

From a configuration where tail flits can still advance, it is possible to construct
a deadlock configuration with blocked tail flits that satisfies all seven properties.

Lemma 6.9 There exists a deadlock configuration with blocked tail flits if and
only if there exists a configuration which satisfies Definition 6.17.

∃σ ∈ Σ ·Ω(1–7)(σ) ⇐⇒ ∃σ′ ∈ Σ ·Ω(σ′)

Proof.
(=⇒)
Take σ′ = σ. Since Properties (1) to (7) hold for σ, Properties (1) to (6) hold
for σ′.
(⇐=)

91

6 Necessary and Sufficient Conditions for Deadlock-free Routing

Consider a configuration σ′ that satisfies Properties (1) to (6). We show there
exists a legal deadlock configuration σ. Construct σ by filling all channels with
the exact same worms as in σ′, but with all channels filled completely. Thus
some worms in σ may consist of more flits than they originally consisted of in σ′.
Since σ′ satisfies Properties (1) to (6), configuration σ does as well. Furthermore,
configuration σ′ satisfies Property (7) as all resources are filled completely.

6.7 Relation to Duato

Duato defined a necessary and sufficient condition for adaptive deadlock-free rout-
ing. This condition is presented, together with a counterexample showing that
Duato’s condition is not necessary and sufficient. We will show that our theorem
subsumes Duato’s.

6.7.1 Duato’s Condition

Duato formalized the notion of escapes using the concept of a routing subfunction.
Duato proved that if it is possible to restrict a routing function in such a way
that the corresponding dependency graph – called the extended dependency graph
– becomes acyclic, the routing function is deadlock-free. The resulting routing
subfunction must still be able to route any message to any destination, i.e., it
must still be connected.

An interconnection network with adaptive routing function R is deadlock-
free if there exists a connected routing subfunction R1 with an acyclic
extended dependency graph.

Consider the channel dependency graph in Figure 6.11a. The dependency graph
contains a cycle. This indicates the existence of a circular wait in the network.
There is an adaptive point where a message can either escape the cycle or be
routed into the dependency cycle. At this point the circular wait can be resolved,
as a message can escape the cycle. The cycle is not sufficient to create a deadlock.

It is possible to restrict the routing function in such a way that the extended
dependency graph becomes acyclic. Namely, if the routing subfunction supplies
the escape channel only and restricts the use of the channel leading into the cycle.
Figure 6.11b gives the corresponding acyclic extended dependency graph. If there
exists a connected routing subfunction with an acyclic extended dependency graph,
the original routing function is deadlock-free.

When the routing subfunction restricts the use of a channel, this does not
mean that the channel is not used by the original routing function. Consider
Figure 6.11c. Say the routing subfunction restricts the use of channel B, making
the extended dependency graph acyclic. However, as channel B is supplied by the
original routing function, a worm might occupy channels A and B simultaneously.
Then the escape for channel A cannot be used as the tail flits in channel A follow
the header flit in channel B. The cycle must have another escape.

In this case, progression of the message in channel A depends on the message in
channel C. The extended dependency graph must reflect this dependency. Duato

92

6.7 Relation to Duato

d

d

(a) Dependency graph (b) Extended dependency graph

d

d
d

A

CB

(c) Dependency graph (d) Extended dependency graph

Figure 6.11: Extended dependency graphs

introduces indirect dependencies. If there is a routing path of channels not supplied
by the routing subfunction, there is an indirect edge (see Figure 6.11d).

Duato’s theorem involves two other types of edges: cross direct and cross
indirect edges. As we do not require them in this Section, we will provide no
further details. For a more extensive introduction to Duato’s theorem we refer to
Duato’s papers [48, 44].

Duato’s theorem holds only for coherent routing functions. Let π be some
path from channel A to B that can be established by the routing function for
some destination d. A routing function is coherent if and only if any subpath of π
from channel A to an intermediate channel B′ can be established by the routing
function for destination d′ as well, where d′ is the processing node at the end of
channel B′. Duato provides an example of an incoherent deadlock-free routing
function that cannot be proven deadlock-free with his theorem [44]. We provide
this example.

See Figure 6.12 for the interconnection network. The routing function is defined
as follows: if destination j is higher than current node i, use cHi or cA1 if i = 1 or
cB2 if i = 2. For j < i, use cLi. This routing function is incoherent. There is a path
[cH2, cA1, cB2, cH1] supplied for destination 3 (note that the first channel in the
path is its head). However, the subpath [cB2, cH1] is not supplied for destination
1. The network is deadlock-free but cannot be proven deadlock-free with Duato’s
theorem.

cH0 cH1 cH2

cL0 cL1 cL2

cB2

cA1

3210

Figure 6.12: Example of incoherent routing function [44]

93

6 Necessary and Sufficient Conditions for Deadlock-free Routing

6.7.2 A Counterexample

We show our counterexample. We then point to the root cause for this counter-
example and propose a fix to keep the condition necessary.

Consider the interconnection network in Figure 6.13. It has processing nodes
ni (0 ≤ i ≤ 5), d0 and d1. Figure 6.13 only shows the channels – A to K – relevant
to our counterexample. For all pairs of processing nodes (ni, nj) (i 6= j), there is
a dedicated channel Dij from ni to nj . Also, there are dedicated channels from
d0 to all other processing nodes. The same holds for d1. Since these dedicated
channels lead directly to their destination, they are empty in any canonical dead-
lock configuration. Any such deadlock configuration consists of messages created
in some node ni and destined for some node di. Our counterexample considers
those messages only. For sake of clarity we do not mention the dedicated channels
any further.

The routing function is specified by the table in Figure 6.13 for destinations
d0 and d1. For any s = ni and d = nj (i 6= j), let R(s, d) supply – besides the
dedicated channels – all channels that start a shortest path from ni to nj . For
instance, R(s, d) supplies both the dedicated channel D05 and channel A. This
makes the routing function coherent.

A:d0 B:d1

D:d1

d0

n0
n1

n2

E:d0n4

d1

G:d0d1 C:d0d1 H:d0d1

n3 n5

F:d1I:d1 J:d0K:d0 R d0 d1
n0 A I
n1 {C, K} {C, F}
n2 J B
n3 G G
n4 E D
n5 H H

Figure 6.13: The interconnection network and the routing function

This network is deadlock-free. This can be seen as follows. Channels I, F , K
and J have to be empty. Otherwise a message can arrive at its destination. If
there is a header flit in either channel A or B, this header flit can escape to channel
F or K and arrive at its destination. If channels A and B both contain tail flits
only, at least one of the channels F or K contains a header flit, implying a message
arrives at its destination. If either channel A or B is filled with tail flits only and
the other is empty, there is always a header flit that can move. Say channel A has
tail flits only and channel B is empty. There is a header flit in either C, E or H
that can move forward. Say channel B has tail flits only and channel A is empty.
There is a header flit in either C, D or G that can move forward. No deadlock is
possible.

Duato’s condition states that a network is deadlock-free if and only if there
exists a routing subfunction that is connected and has no cycles in its extended
dependency graph. For our purpose it is enough to define this graph as being the
dependency graph extended with indirect dependencies. We now show that there
is no such routing subfunction for the network defined in Figure 6.13.

We have to consider all possible connected routing subfunctions R1 and show

94

6.7 Relation to Duato

that the corresponding extended dependency graph contains a cycle. As Figure
6.13 shows, processing node n1 is the only adaptive point. Restricting the routing
functions at other points than n1 makes the routing subfunction disconnected.
Regarding processing node n1, restricting the use of channels F and K makes no
sense, as this cannot possibly make the dependency graph acyclic. Thus, there are
three connected routing subfunctions: restrict the use of channel C completely or
restrict the use of C for one of the destinations d0 or d1.

A B

G C H

I D E J

K F

(a) Dependency graph

A B

G H

I D E J

K F

(b) Extended dependency graph

Figure 6.14: The dependency graph and the extended dependency graph corresponding
to the routing subfunction restricting channel C completely. The dotted arrows denote a
indirect edge.

Figure 6.14a shows the dependency graph of the network. We consider the case
where routing is restricted such that channel C is not used for any destination.
Edges (A,C), (B,C), (C,D) and (C,E) can be removed from the dependency
graph. The current routing subfunction creates two indirect edges: (A,E) and
(B,D). Let us consider edge (A,E). There is a path from src(A) = n0 to end(E) =
n5 for messages destined for d0 such that A and E are respectively the first and
last channels of this path and the only ones supplied by R1. Channel C, the only
intermediate channel, is not supplied by R1. Analogously for edge (B,D). The
extended dependency graph is not acyclic. It contains cycle [A,G,D,B,H,E,A]
(Figure 6.14b).

The other two routing subfunctions, created by restricting the use of channel
C for one of the destinations d0 or d1, are cyclic for the exact same reason. As all
routing subfunctions have cyclic extended dependency graphs, Duato’s condition
states that the network has a deadlock, whereas it is deadlock-free.

The network could be in deadlock, if worms could intersect. Consider the
following – illegal – configuration. Channels G and H are filled with messages
destined for d0 and d1 respectively. There are two intersecting worms, one oc-
cupying channels A, C, and E (destined for d0) and one occupying B, C and D
(destined for d1). None of these messages can move. There is a deadlock.

In wormhole networks, channels can contain flits belonging to one message
only. Duato states this in Assumption 5 of his article [44]. Duato mentions this
assumption in his informal definition of a legal configuration. However, he omits
this in his formal definition of a legal configuration. The consequence is that when
proving the condition – Theorem 4, parts b2a) and b2b2) – a configuration is
built by filling indirect edges with flits belonging to one message. By definition,
information on which channels are used in an indirect edge are lost. To build a
true configuration one has to prove that these edges do not intersect. Otherwise,
Assumption 5 may be violated and the deadlock configuration is not legal.

95

6 Necessary and Sufficient Conditions for Deadlock-free Routing

We suggest a possible fix for this issue. A legal cycle is defined as a cycle in
the extended dependency graph such that the (cross) indirect edges can constitute
paths of channels that are pairwise disjoint. The fixed condition would become:

A coherent, connected and adaptive routing function R for an inter-
connection network is deadlock-free if and only if there exists a routing
subfunction R1 that is connected and has no legal cycle in its extended
dependency graph.

The proof of this Theorem is an exact copy of Duato’s proof, with a small extension
in parts b2a) and b2b2) to deal with the new definition of a legal configuration.

The discrepancy is caused by an omission in the formalization of the definition
of deadlock. We did not find any inconsistency in Duato’s informal definitions
or in his complex proof. In Chapter 7, we will show that this minor discrepancy
makes deciding deadlock freedom on wormhole networks co-NP-complete, instead
of polynomial.

6.7.3 Relation to our Condition

We will show that if Theorem 6.2 identifies a deadlock, Duato’s condition does as
well. The other direction cannot be shown.

Assume a set S which is the union of a set of routing paths for which no head
has an escape. Figure 6.15a gives an example. We show that any connected routing
subfunction R1 has a cyclic extended dependency graph. First we show this for
the unrestricted routing function R. Let π be the routing path for destination
d starting in channel A. Channel B is a d-neighbor of the head of π. In the
dependency graph there is a path of dependencies from channel A to B. As S has
no escape, channel B is again member of some routing path for some destination
d′. Thus there is another path of dependencies from B to a channel C in another
routing path for some destination d′′, and so on. As S has no escape, the paths of
dependencies will eventually lead into one or more cycles, see Figure 6.15b.

These cycles cannot be broken by restricting the routing function. The routing
subfunction can be restricted either 1) inside some routing path, 2) at the head of
a routing path, or 3) none of these.

First, say the routing subfunction restricts routing inside a routing path. This
may break such a path into pieces. However, since a routing path consists of
dependencies created by the same destination only, any hole in the path will be
bridged by an indirect edge. Thus the cycle remains intact. Figure 6.15c shows an
indirect edge in a routing path. Secondly, say the routing subfunction is restricted
at the head of some routing path. E.g., say the routing subfunction restricts
routing in channel F to use channel E only. This breaks dependency (F,B) but
does not break all cycles. As S has no escape all dependencies at head F caused
by destination d lead back to S. This means that to break all cycles, all these
dependencies must be broken. In the example this means that both dependencies
(F,E) and (F,B) must be broken to break all cycles. This is not possible as the
routing subfunction must be connected.

Lastly, restricting the routing function outside of the routing paths will not
break any of the dependency cycles.

96

6.7 Relation to Duato

A B

C

D

E

(a) A set of routing paths in the dependency graph. The

arrows point to the dependency neighbors caused by the des-

tination of the routing path of the head of each path.

A
B

C

D

EF

(b) The related cyclic edges in the de-

pendency graph.

A
B

C

D

EF

(c) The cyclic edges in an extended de-

pendency graph. The dotted line is an

indirect edge.

Figure 6.15: A set of routing paths related to Duato’s condition.

Assuming the existence of a set of routing paths without an escape, there is no
connected routing subfunction with an acyclic extended dependency graph. The
other direction does not hold necessarily. A cycle in the extended dependency
graph can be translated to a set of routing paths, but as it is unknown what
channels are needed to fill an indirect dependency, the paths are not necessarily
pairwise disjoint.

In contrast to Duato’s theorem, our condition holds for incoherent routing
functions as well. We prove the example in Figure 6.12 deadlock-free. Figure
6.16a shows the dependency graph. The edges are labeled with the destinations
causing the dependencies. We show that there is no pairwise disjoint set of paths
where no header has an escape. Assume such a set of paths. We proceed by
contradiction.

We first show that channel cB2 must be the head of a path and that channels
cA1 and cH1 must be included in the tails of some paths. Channel cH2 must be
empty as it has no neighbors. Channels cA1 and cH1 cannot be heads as otherwise
channel cH2 is an escape. Thus there are only two possible channels which can be
at the head of a path: cH0 and cB2. Channels cA1 and cH1 must be included in
the tails of some paths since otherwise they would be escapes for both cH0 and
cB2. Channel cB2 must be the head of a path since otherwise the paths containing
cA1 and cB2 have no heads.

Thus channel cB2 is the head of a path and channels cA1 and cH1 are included in

97

6 Necessary and Sufficient Conditions for Deadlock-free Routing

cH0 cH1
cH2

cL0
cL1

cL2

cB2

cA1

3 3

3 3

3

3

23

23

0 01

(a) Dependency graph

cH0 cH1
cH2

cL0
cL1

cL2

cB2

cA1

3 3

3 3

3

3

23

23

0 01

(b) Two paths where no head has an escape.

Figure 6.16: Dependency graph of network in Figure 6.12

the tails of some paths. Here we have arrived at a contradiction. Channel cB2 can
be the head of at most one path. This path must contain both cA1 and cH1. This
cannot be done without the worm intersecting itself. E.g., path [cB2cH1cB2cA1]
is a path with its head in cB2 that contains channels cA1 and cH1. However, this
path intersects itself. There is no pairwise disjoint set of paths where no head has
an escape. By Theorem 6.2 the network is deadlock-free.

Note that there exists a set of routing paths where no header has an escape.
Consider the set of paths {[cB2, cA1] , [cB2, cH1]}, both drawn in Figure 6.16b.
For this set of paths no head has an escape. It is however not a pairwise disjoint
set of paths.

6.8 Relation to Schwiebert and Jayasimha

6.8.1 Schwiebert and Jayasimha’s Condition

Schwiebert and Jayasimha defined a necessary and sufficient condition for deadlock-
free routing.

A routing function R is deadlock-free if and only if R is wait-connected
for some subgraph S and S has no True Cycles in the waiting graph.

Schwiebert and Jayasimha’s condition depends on the waiting graph. The waiting
graph has as vertices the channels of the network. There is an edge between two
channels A and B if B is a waiting channel for A, i.e., if a blocked message in A
can wait for channel B to become available. Channels A and B do not necessarily
have to be topological neighbors: if a worm occupies multiple channels, among
which channel A, and waits for channel B then B is a waiting neighbor of A.

Consider the network in Figure 6.17a. Channels c0 to c3 all are waiting neigh-
bors of each other. Channel c4 is a waiting neighbor of channels c0 to c3. Figure
6.17b gives the corresponding waiting graph.

To discharge Schwiebert and Jayasimha’s condition, one needs to selectively
remove waiting edges until an acyclic subgraph is obtained. The subgraph must

98

6.9 Relation to Taktak et al.

c0 : d0

c3 : d0

c4 : d0

c2 : d0

c1 : d0

(a) Network (b) Waiting graph

Figure 6.17: Example of the waiting graph

remain wait-connected, i.e., each channel must have at least one waiting channel. If
there is an acyclic wait-connected subgraph, the routing function is deadlock-free.

An edge in the waiting graph may span multiple channels. Given a cycle of
waiting edges, there might not be a legal configuration filling all channels corres-
ponding to the waiting edges. For example, two edges may share a channel, in
which case they can only be filled by intersecting worms. Cycles which can(not) be
filled are called True Cycles (False Resource Cycles). A network is deadlock-free
if and only if there is a wait-connected subgraph S that contains no True Cycles.

6.8.2 Relation to our Condition

Schwiebert and Jayasimha’s condition is a necessary and sufficient condition for
deadlock-free routing. It is defined for a broad class of routing functions. The
routing function need not to be memoryless, i.e., routing functions of type C×P 7→
C are supported. Also, it allows routing functions to make a distinction between
blocked messages and messages that are not blocked. Such routing functions allow
more flexibility when messages are not blocked, which can prevent deadlocks.

However, Schwiebert and Jayasimha’s condition is a dynamic condition. It does
not only depend on a static graph, but also on configurations. In order to determine
whether a cycle in the waiting graph is a True Cycle, it must be determined whether
there is some reachable configuration that fills the cycle. Note that since routing
is not necessarily memoryless, a legal configuration is not necessarily reachable.
Thus analysis of injection sequences of messages is required to distinguish True
Cycles from False Resource Cycles [48]. Schwiebert and Jayasimha provide an
algorithm which performs this analysis, but this algorithm is exponential [128].

As their condition is dynamic and defined for different types of routing func-
tions, we do not further relate this condition to ours.

6.9 Relation to Taktak et al.

6.9.1 Taktak’s Condition

Taktak et al. defined a sufficient condition for deadlock-free routing [138]. Fur-
thermore, they created an algorithm checking this condition in polynomial time.
Their condition depends on a labeled dependency graph. A channel is labeled with
destination d if a message destined for d can occupy the channel. Taktak et al.

99

6 Necessary and Sufficient Conditions for Deadlock-free Routing

define a tagging condition and prove that if all labels can be tagged, the network
is deadlock-free.

Definition 6.20 A label l of a node v is tagged if and only if for all successors of
v which owns l as label, l is tagged, and there is at least one successor of v having
all its labels tagged.

An interconnection network is deadlock-free if there is at least one label
of one channel that cannot be tagged.

Consider the cycle in Figure 6.18. Say we want to determine whether label l0 can
be tagged for channel A. This recursively depends on the next channel on the cycle.
During this process visited channels are assumed to be untagged. Eventually, label
l1 must be tagged for channel B. In order to tag label l1 for channel B a neighbor
is required which has all its labels tagged. This cannot be neighbor A, as A has
already been visited and thus label l0 is considered untagged. The only way to tag
label l1 for channel B is to have an unvisited escape channel C where all labels,
including label l1, can be tagged.

A:l0l1

C:l1

B:l1

l0

l0l1

l0

Figure 6.18: Example of cyclic tagging

If C again leads into a cycle, than this cycle must again have an unvisited
escape in order to get labels tagged. In a deadlock-free network, all cycles will
eventually be escaped and all labels will be tagged.

6.9.2 Relation to our Condition

We show that any deadlock identified by Theorem 6.2 is identified as a deadlock by
the condition of Taktak et al. The reverse does not hold, as the condition of Taktak
et al. identifies false deadlocks. The counterexample presented in Section 6.7.2
also applies to their condition.

Consider again the pairwise disjoint set of routing paths in Figure 6.15a. Let
the tagging start in channel A. Tagging of A recursively depends on the next
channel in the path. Arriving at channel F , both channel B and E must be
tagged. The tagging of B eventually leads to D and thus into a cycle. This cycle
has an unvisited escape, namely channel E. This path also leads into a cycle. Since
S has no escape, eventually all paths will lead into a cycle and thus eventually
there will be no unvisited escape. The result is that for each channel in a routing
path for destination d, this destination cannot be tagged. Any deadlock identified
by Theorem 6.2 is identified as a deadlock by Taktak et al.

100

6.10 Conclusion

6.10 Conclusion

We have presented necessary and sufficient conditions for deadlock freedom of
packet and wormhole networks. Using the notion of escapes, we could define sim-
pler conditions than previous ones. They involve fewer concepts and require fewer
definitions. Most notably, the conditions have been defined using only the regular
dependency graph. As this graph can be statically computed from a specification
of the routing function and the network topology, our conditions are static. Our
condition has fewer assumptions, widening its applicability. It can be applied to
routing functions which can send messages into a cycle. Effectively, this separates
the proof of deadlock freedom from the proof of livelock freedom. Our conditions
have been shown to subsume all previous conditions.

To ensure correctness of all definitions and proofs, we have mechanically proven
our conditions correct using the GeNoC framework and the ACL2 theorem prover.
This mechanical proof has demonstrated its value, as we have found discrepancies
in previous work. In all previous work, the definition of a deadlock in wormhole
networks has been incorrect. We have supplied a counterexample showing that
Duato’s condition is only sufficient. The issue is subtle but essential: worms
necessarily do not intersect. As a result, our condition for wormhole networks is
the first static necessary and sufficient condition for deadlock freedom.

Still, discharging these conditions for an actual chip design is a non-trivial
and cumbersome task. In the next chapter, we present algorithms that given a
specification of the network automatically check whether these conditions hold.

101

Chapter 7

Deadlock Detection Algorithms

The previous chapter presented theorems for deadlock-free routing. These theor-
ems provide exact conditions under which a network is deadlock-free. This chapter
presents a quick and fully automated approach to determine that a network actu-
ally satisfies these conditions.

We present two algorithms that take as input a specification of the topology and
the routing function (see Figure 7.1). In case of a deadlock, the algorithms provide
detailed and accurate feedback on the cause of this deadlock. The correctness of
our algorithms has been mechanically verified using the ACL2 theorem prover.

For packet networks, our algorithm decides deadlock freedom in linear time
with respect to the size of the dependency graph. One might expect that a similar
result is feasible for wormhole networks. However, we prove that for wormhole
networks deciding deadlock freedom is co-NP-complete. We point to the cause of
this complexity and formulate a notion of deadlock freedom that is decidable in
polynomial time. The wormhole algorithm checks this sufficient condition, which
means that if it returns a deadlock-free result, this result is sound. However, if it
returns a deadlock, this is not necessarily a legal and reachable deadlock.

The first part of this chapter deals with packet networks. The algorithm is
explained in detail using examples from the previous chapter. Pseudo code is
presented of which correctness and algorithmic complexity is proven. The second
part deals with wormhole networks. The algorithm is very similar but has to
deal with the many subtleties of wormhole switching. In the presentation of this
algorithm we focus mainly on the differences between the two algorithms.

Topology

Routing

Algorithms
if deadlock then
 detailed feedback
else
 "OK"

Figure 7.1: Our approach for determining deadlock freedom.

103

7 Deadlock Detection Algorithms

7.1 Packet Switching: Algorithm by Example

The basic objective of the algorithm is to mark each channel as deadlock-immune
or deadlock-sensitive. The intuition behind these markings is that in a deadlock-
immune channel no packet can be permanently blocked, whereas in a deadlock-
sensitive channel some packet can possibly be permanently blocked. After termin-
ation of the algorithm, the markings are used to either output the exact reason
for deadlock or to state that the network is deadlock-free.

In order to determine the marking of a channel, the algorithm classifies all
destinations in the typing information of that channel. A classification x | y of
channel c stands respectively for destinations that may lead packets from channel
c into a circular wait and for destinations for which channel c is an escape. As
routing is adaptive, a destination may be classified as both. If any destination
that leads packets into circular waits also provides escapes out of these cycles,
the channel will be marked deadlock-immune. Otherwise, it will get the marking
deadlock-sensitive.

We first demonstrate by example the notions of deadlock-immunity and sens-
itivity. Secondly we provide an example trace of the algorithm, showing how it
detects a deadlock. Lastly, we provide an example trace that reveals the necessity
of a post-processing step.

7.1.1 Deadlock-immunity and -sensitivity

We recapitulate the deadlock in the network of Example 6.1. Figure 7.2a shows
the dependency graph. Subgraph {A,B,C} can form a deadlock. For channel A
destination d1 leads into the subgraph. As there is a destination that does not
lead out of the subgraph, channel A is not an escape. The same holds for channel
C and destination d0. Subgraph {A,B,C} is a subgraph without an escape.

Figure 7.3h shows the result of our algorithm. The channels A, B and C have
been marked deadlock-sensitive. The other channels are deadlock-immune. For
channel A destination d1 is classified as a destination that leads into a circular wait,
but that does not provide an escape. Again, the same thing holds for channel C
and destination d0. Figure 7.2b shows the deadlock that is represented by these
markings.

d0

B

A CE D

d1

d0, d1 d0, d1

d0, d1

(a) Dependency graph

n0

n1

n2

A

B

C

d1

d0

d0 ∨ d1

(b) Deadlock returned by algorithm

Figure 7.2: Example dependency graph. The black channels can form a deadlock.

The algorithm determines for each channel c a classification x | y of all des-
tinations in the typing information of c, i.e., for all reachable destinations. If x

104

7.1 Algorithm by Example

is not a subset of y, the channel is marked deadlock-sensitive. Otherwise it is
deadlock-immune.

For example, we derive the marking of channel C. Destination d1 is a type of
channel C. As it leads to a sink (channel D) it is classified as a destination for
which there is an escape. But as destination d1 can also lead packets to channel
A, it is also classified as a destination that may lead packets to a circular wait.
Destination d0 also leads to channel A and is thus classified as a destination that
may lead packets to a circular wait. The classification of channel C becomes
d0d1 | d1. As there is a destination, namely d0, that may lead packets to a circular
wait, but for which there is no escape, channel C is marked deadlock-sensitive.

Deadlock-sensitive Channel c is classified with x | y and x * y. There exists a
destination that leads to a circular wait, but for which there is no escape.

Deadlock-immune Channel c is classified with x | y and x ⊆ y. For all destina-
tions, there is an escape.

After all marks have been determined, a deadlock can be constructed from all
deadlock-sensitive channels. If all channels are deadlock-immune, the network is
deadlock-free.

7.1.2 Example Trace

The algorithm consists of two steps. The first step is basically a depth-first search
through the dependency graph. It expands a spanning tree, and after expanding
the tree forwards, information is propagated backwards. The second step performs
some post-processing. Initially, all channels are unmarked. Eventually, all chan-
nels get marked either deadlock-sensitive or -immune. We use a temporary mark
“visited” for channels that have been expanded but whose marking is currently
unknown. This ensures termination.

Consider the dependency graph in Figure 7.2a. Let the algorithm start in
channel A. The different steps of the run of the algorithm are shown in Figure 7.3.
The algorithm expands a tree spanning over the reach of A. It starts by marking
channel A as visited (Step 1). Destinations d0 and d1 lead to channel B, and
destination d0 leads to channel E. To determine the classification of channel A,
both neighbors must be expanded.

The algorithm proceeds with channels B and C and marks them as visited
(Steps 2 and 3). From channel C, destination d0 leads to E and destinations
d0 and d1 lead to channel A. To determine the classification of channel C, both
neighbors must be expanded.

First consider the expansion of channel D. As it is a sink, all destinations
provide an escape. The classification of D becomes _ | d1 (Step 4). This classific-
ation produces two results (Step 5). First channel D can be marked as deadlock-
immune, as the empty set is a subset of {d1}. Secondly, this information can be
propagated upwards in the tree towards channel C. All destinations leading from
C to D lead to a deadlock-immune channel. Thus all these destinations (C,D) can
be classified as leading from parent C to an escape. The classification of channel
C becomes _ | d1.

105

7 Deadlock Detection Algorithms

A
_ | _

(a) Step 1

B

A

C

_ | _

_ | _

_ | _

(b) Steps 2-3

B

A

C

D

_ | _

_ | _

_ | _

_ | d1
(c) Step 4

B

A

C

D

_ | _

_ | _

_ | d1

_ | d1
(d) Step 5

B

A

C

D

_ | _

d0d1 | _

d0d1 | d1

_ | d1
(e) Step 6

B

A

C

D

d0d1 | _

d0d1 | _

d0d1 | d1

_ | d1
(f) Step 7

B

A

C

E

D _ | d1

_ | d0

d0d1 | _

d0d1 | _

d0d1 | d1

(g) Step 8

B

A

C

E

D

d0d1 | d0

d0d1 | _

d0d1 | d1

_ | d1

_ | d0

(h) Step 9

Visited

Deadlock-immune

Deadlock-sensitive

(i) Legend

Figure 7.3: Example trace. For sake of presentation, the set braces { and } have been
omitted from the sets in the classifications. The underscore _ denotes the empty set to
avoid similarity between ∅ and the vertices of the tree.

106

7.1 Algorithm by Example

Now consider the expansion of channel A. It has already been visited. This
indicates a circular wait. Destinations d0 and d1, leading from channel C to channel
A, are classified as such. The classification of parent C becomes d0d1 | d1. Again,
two results are produced (Step 6). First, channel C is marked deadlock-sensitive
as {d0, d1} * {d1}. Secondly, since all destinations leading from B to C lead to
a deadlock-sensitive channel, all these destinations are classified as leading into a
circular wait. The classification of channel B becomes d0d1 | _.

As there are no other arcs going out of channel B, the mark of channel B
is determined as deadlock-sensitive. This information is propagated upwards to
channel A (Step 7). To complete the classification of channel A, channel E must
be expanded as well (Step 8). As this is a sink, it is deadlock-immune. This in-
formation is propagated upwards to channel A, yielding the complete classification
d0d1 | d0 of channel A. Channel A is marked deadlock-sensitive (Step 9).

As all channels have been marked, the algorithm terminates. It outputs a
deadlock, consisting of the three deadlock-sensitive channels (see Figure 7.2b). In
this deadlock, each deadlock-sensitive channel c with marking x | y is filled with
packets destined for a destination in x that is not in y.

7.1.3 Post-processing

Consider the dependency graph in Figure 7.4a. We do not present the correspond-
ing network and routing function, as it is just an artificial example used to show
the need for a post-processing step. The network corresponding to this depend-
ency graph is deadlock-free. To prove this, the only possible subgraph that needs
to be considered is subgraph {A,B}. This graph has an escape, namely channel
A. For all destinations, i.e., for both d0 and d1, there is a neighbor not in the
subgraph.

We provide a trace where the algorithm yields an incorrect result without post-
processing. The first step of the algorithm starts in channel A and marks it as
visited. In this specific trace, the first neighbor of A that is expanded is channel
B. Destination d1 leads from channel B to a sink. Destination d0 leads back to
visited channel A. Consequently, the classification of channel B becomes d0 | d1
(see Figure 7.4b). Channel B is marked deadlock-sensitive, as {d0} * {d1}.

The algorithm continues with the expansion of the other neighbors of A. Since
both destinations d0 and d1 lead to a sink, the classification of channel A becomes
d1 | d0d1. Channel A is marked deadlock-immune. Channel B however, is still
marked as deadlock-sensitive.

If the algorithm would stop here, it would conclude that this network is not
deadlock-free as not all channels have been marked as deadlock-immune. The
problem is that in this specific trace at the time channel B was marked deadlock-
sensitive, channel A had not been expanded completely. In other words, it was
not known at the time that channel A is deadlock-immune. A post-processing step
is added to the algorithm to overcome this issue. This step adds to all deadlock-
sensitive channels all destinations leading to deadlock-immune channels. In this
step, a deadlock-sensitive channel can become deadlock-immune (see Figure 7.4c).

We claim that a network is deadlock-free if and only if after termination of the
two steps of the algorithm all channels are marked deadlock-immune.

107

7 Deadlock Detection Algorithms

BAC D
d0

d1

d1

d0 d1

(a) Dependency graph

B

A

D

C

d1 | d0d1

d0 | d1

_ | d1

_ | d0

(b) Result before post-processing

B

A

D

C

d1 | d0d1

d0 | d1d0

_ | d1

_ | d0

(c) Result after post-processing

Figure 7.4: Example of a trace where post-processing is needed.

7.2 Pseudo Code

Let us consider the first part of the algorithm, that is, the unfolding of the span-
ning tree (Algorithm 1). It takes two parameters: CI is a set of channels that is to
be explored. Arrays cyclics and escapes are assumed to be globally available. The
algorithm keeps track of the parent of the channels in CI with parameter p. This
enables backwards propagation. The algorithm keeps expanding new neighbors
until no unmarked neighbors exist. The current channel under investigation is
c0. For each channel, the algorithm stores the classification in two arrays. Array
cyclics stores the destinations that lead into circular waits Array escapes stores
the destinations that provide escapes. The marks of the channels are stored in
array mark. There are four different marks:

0 unmarked A channel is unmarked;
1 visited A channel is visited, i.e, not all neighbors have been marked;
2 immune All neighbors have been marked, the channel is deadlock-

immune;
3 sensitive All neighbors have been marked, the channel is deadlock-

sensitive.

If channel c0 is either a sink or deadlock-immune (Line 8), all destinations
τ(p, c0) provide escapes for p. Thus these destinations are added to escapes(p).
Otherwise, channel c0 is marked either 3 or 1 (Line 5). In the first case, c0 has
already been shown to be deadlock-sensitive. In the second case, it is unknown
at this point whether c0 is deadlock-sensitive or -immune. In both cases, all
destinations τ(p, c0) are considered to lead into circular waits from channel p.
They are are added to cyclics(p). This consideration might be wrong. The post-
processing step will check this and fix it if necessary.

If c0 is neither a sink or marked, the algorithm continues its forwards expansion
by expanding the neighbors of c0 (Line 14). When this terminates, the gathered
information is propagated backwards through the graph as follows: if there exists a

108

7.3 Analysis

destination in cyclics(c0) that is not in escapes(c0), channel c0 is deadlock-sensitive.
Thus τ(p, c0) is added to cyclics(p) and c0 is marked with 3 (Lines 19–20). If the
set of destinations cyclics(c0) is a subset of escapes(c0), channel c0 is deadlock-
immune. The destinations τ(p, c0) is added to escapes(p). Channel c0 is marked
with 2 (Lines 16–17).

As for the post-processing step (Algorithm 2), this step initially considers all
3-marked channels with 2-marked neighbors. For all these channels it adds the
destinations leading to 2-marked neighbors, which have not been added already
(Line 6). If, as a result of this, a channel c gets marked 2 (Lines 7–8), all parents of
c have a new 2-marked neighbor. Thus, all parents must be reconsidered (Line 9).

Main wraps up the two steps. It executes CreateTree for all unmarked chan-
nels c, with CI = Adep(c) and p = c. After this, it executes Post-Processing.
It returns the – possibly empty – set of 3-marked channels.

Algorithm 1 CreateTree(CI , p)

Require: CI ⊆ Adep(p)
1: if CI = ∅ then
2: return
3: else
4: Pick element c0 from CI

5: if mark(c0) ∈ {visited, sensitive} then
6: cyclics(p) := cyclics(p) ∪ τ(p, c0)
7: CreateTree(CI − c0, p)
8: else if mark(c0) = immune ∨Adep(c0) = ∅ then
9: mark(c0) := immune

10: escapes(p) := escapes(p) ∪ τ(p, c0)
11: CreateTree(CI − c0, p)
12: else
13: mark(c0) := visited

14: CreateTree(Adep(c0), c0)
15: if cyclics(c0) ⊆ escapes(c0) then
16: escapes(p) := escapes(p) ∪ τ(p, c0)
17: mark(c0) := immune

18: else
19: cyclics(p) := cyclics(p) ∪ τ(p, c0)
20: mark(c0) := sensitive

21: end if
22: CreateTree(CI − c0, p)
23: end if
24: end if

7.3 Analysis

We prove that the computational complexity of our algorithm is O(|A|), where A
is the set of arcs in the dependency graph. We then prove correctness, by proving

109

7 Deadlock Detection Algorithms

Algorithm 2 Post-Processing(CI)

1: if CI = ∅ then
2: return
3: else
4: Pick element c0 from CI

5: if mark(c0) = sensitive then
6: escapes(c0) := escapes(c0) ∪ {d ∈ τ(c0, c1) | mark(c1) = immune}
7: if cyclics(c0) ⊆ escapes(c0) then
8: mark(c0) := immune

9: CI := (CI − c0) ∪ {p ∈ parents(c0) | mark(p) = sensitive}
10: end if
11: Post-Processing(CI − c0)
12: else
13: Post-Processing(CI − c0)
14: end if
15: end if

Algorithm 3 Main

1: for all ci ∈ C do
2: if mark(ci) = 0 then
3: CreateTree(Adep(ci), ci)
4: end if
5: end for
6: Post-Processing(C)
7: return {c ∈ C | mark(c) = sensitive}

that Algorithm 3 returns the empty set if and only if the condition in Theorem 6.1
holds.

7.3.1 Computational Complexity

CreateTree visits each dependency arc exactly once, since after visitation a
channel becomes permanently marked. The total running time of all calls of
this step is therefore O(|A|). It is basically a depth-first search, with backwards
propagation.

The running time of the post-processing step is O(|A|). A 32-arc is an arc
from a 3-marked channel to a 2-marked channel. The algorithm starts with 32-
arcs only. For all 32-arcs, the algorithm adds the destinations labelling the arc to
the escapes-array of the source of the arc (Line 6). The arcs considered in Line 6
are considered once: they could be permanently removed from the data-structure
storing the graph. This holds since any 2-mark is always stable. Line 9 adds new
parents to CI , thereby adding new arcs that are to be taken into consideration.
All these arcs were initially 33-arcs, but have just become 32-arcs as channel c0
has just been marked 2. As the algorithm only considers 32-arcs, none of these
new arcs have been dealt with before. Each arc is considered at most once.

110

7.3 Analysis

The running time of Main is the sum of the running times of CreateTree and
Post-Processing. After post-processing it enumerates the 3-marked channels
in O(|C|) time. Since the number of arcs is of a higher order than the number of
channels, the total running time of the algorithm is O(|A|).

Note that O(|A|) is the order of the number of recursive calls. Each recursive
call performs list operations such append and subset. However, no elements are
deleted from a list. Using an advanced data structure such as a fibonacci heap, all
the necessary list operations are O(1) [56].

7.3.2 Correctness

The proof is structured in two parts: Lemma 7.3 states that our algorithm marks
all channels immune if the network is deadlock-free. Lemma 7.4 states that any
channel that can be part of a deadlock is marked sensitive. The proofs of these
lemmas requires two auxiliary Lemmas 7.1 and 7.2.

The lemmas of the proof concern 2- and 3-marked channels. Mark 1 is only
given during the execution of the algorithm, but will always be overwritten by
either 2 or 3. This is stated by our first lemma.

Lemma 7.1 After termination of CreateTree(Adep(c0), c0) all channels in the
reach of the channels in P are either marked 2 or 3.

Proof. Any unmarked channel in the reach will eventually get marked 1. Any
1-marked channel will eventually become marked either 2 or 3. A channel is only
marked 1 on Line 13. Eventually the algorithm will reach either Line 17 or Line 20,
where the channel is marked either 2 or 3. Once a channel is marked 2 or 3, it
will never become either unmarked or marked 1.

We prove that if a channel c has escapes for all destinations in τ(c), i.e., if all
destinations lead to a deadlock-immune neighbor, the channel will not be marked
3. This lemma requires the post-processing step.

Lemma 7.2 After termination of Post-Processing, if for any channel c all
destinations in τ(c) lead to a 2-marked neighbor, channel c is not marked 3.

Proof. The post-processing step ensures that for all 3-marked channels the escapes
array contains all destinations leading to 2-marked neighbors. Since, by assump-
tion, all destinations in τ(c) lead to a 2-marked neighbor, all these destinations are
included in escapes(c). Thus τ(c) ⊆ escapes(c). The algorithm classifies destina-
tions only if they are in τ(c), i.e., it classifies a destination d only when it is actu-
ally possible for a message with destination d to reach channel c. Thus necessarily
cyclics(c) ⊆ τ(c). By transitivity of ⊆, we have established cyclics(p) ⊆ escapes(p).
As this is the criterion under which channels are not marked 3, this implies channel
c can never become marked 3.

We now prove that in a deadlock-free network, any channel gets marked 2.
Thus, the algorithm will return the empty set if the condition for deadlock freedom
holds. Lemma 7.3 is proven as follows. If the algorithm marks a channel 3 and this
marking is preserved by the post-processing step, it is possible to create a subgraph
without an escape. This proof completely formalizes the intuition in Figure 7.2: a

111

7 Deadlock Detection Algorithms

deadlock is created from all deadlock-sensitive channels. Subgraph S3 is created
by taking all 3-marked channels. Lemma 7.2 proves that for each channel c in
subgraph S3 there is a destination d ∈ cyclics(c) /∈ escapes(d) that leads only to
3-marked neighbors. Since subgraph S3 contains all 3-marked channels and since
channel c has destination d which leads to 3-marked channels only, channel c is
not an escape for this subgraph. Since this holds for all channels c in subgraph
S3, the subgraph has no escape.

Lemma 7.3 Assume all non-empty subgraphs have an escape. After termination
of Main any channel c is marked 2.

Proof. By Lemma 7.1, channel c is either marked 2 or 3. The proof is by contradic-
tion. Assume channel c is marked 3. We prove that the set of 3-marked channels
does not have an escape. Let c′ be any 3-marked channel. By Lemma 7.2 there
is at least one destination d that does not lead to any 2-marked neighbor. By
Lemma 7.1 destination d leads to 3-marked channels only. Since there is a des-
tination that does not lead outside of the subgraph consisting of all 3-marked
channels, channel c′ is not an escape for this subgraph. This holds for all c′ in the
subgraph. Thus the subgraph does not have an escape. Furthermore this subgraph
is not empty, since otherwise there would be no 3-marked channels and channel c
is marked 3. Thus the assumption that all non-empty subgraphs have an escape
has been contradicted.

Lastly, we prove that if the algorithm returns the empty set, i.e., if all channels
get marked 2, the condition for deadlock-free routing holds. In other words, if
the condition does not hold, there is some channel that will not be marked 2.
Lemma 7.4 states that any channel in a deadlock cannot be marked 2. Since all
channels eventually are marked either 2 or 3 (Lemma 7.1), any channel that can
be in a deadlock gets marked 3.

Lemma 7.4 If a channel c is in a subgraph S that has no escape, the channel
will not be marked 2.

Proof. The lemma holds initially since all channels are unmarked. We show by in-
duction on CreateTree that this lemma is preserved during this step. The exact
similar argument holds for Post-Processing. Thus the lemma is an invariant
for the algorithm.

Assume that channel c ∈ S and that S has no escape. The only reason a
channel c gets marked 2 is when cyclics(p) ⊆ escapes(p). We prove that this
implies channel c is an escape. When channel c becomes marked 2 all neighbors of
channel c have been explored. Thus all destinations in τ(c) are either in cyclics(c)
or in escapes(c). Since by assumption cyclics(c) ⊆ escapes(c), all destinations
in τ(c) are in escapes(p). If a destination is in escapes(p) then it leads to a 2-
marked neighbor. Thus for all destinations, there is a 2-marked neighbor. By the
Induction Hypothesis, none of the channels in subgraph S are marked 2. Thus for
all reachable destinations there is a neighbor not in the subgraph: c is an escape
for the subgraph. This contradicts the assumption that c is in a subgraph without
an escape. Thus channel c cannot have been marked 2.

112

7.3 Analysis

Together, Lemmas 7.3 and 7.4 state that a channel gets marked 3 if and only
if it is in some subgraph without an escape. The algorithm returns the empty set
if and only if all channels get marked 2. By Theorem 6.1, the algorithm returns
the empty set if and only if the network is deadlock-free. If a non-empty set is
returned, a deadlock can be constructed from all 3-marked channels.

Theorem 7.1 A network is deadlock-free if and only if Main returns the empty
set.

Main(N) = ∅ ⇐⇒ DLF(N)

Proof. Theorem 6.1 states that a communication network is deadlock-free if and
only if all subgraphs have an escape. Assume all subgraphs have an escape. By
Lemma 7.3 all channels will be marked 2 and thus Main returns the empty set. As-
sume Main returns the empty set. Then all channels are marked 2. By Lemma 7.4
there is not a channel in a subgraph without an escape. Thus all subgraphs have
an escape.

We have defined a linear algorithm for deciding deadlock freedom of packet
networks. We now proceed with wormhole networks.

Wormhole Switching

Detecting deadlocks in wormhole networks is much harder than detecting dead-
locks in packet networks. The main cause of this increase in complexity is the
requirement that in a legal wormhole configuration, worms do not intersect. In
Section 7.7, we will show that this requirement makes deciding deadlock freedom
in wormhole networks co-NP-complete. The search for an efficient polynomial al-
gorithm can be stopped. If we want to define a notion of deadlock that is decidable
in polynomial time, we have to drop this requirement. We call such a deadlock a
quasi-deadlock-configuration.

The fact that worms may not intersect is directly expressed in Property (2)
of Definition 6.17. It is also reflected in Property (1) which states that channel
capacities may not be exceeded. This can be seen as follows. We prove our
conditions and algorithms correct with parametric channel capacities, i.e., function
cap : C 7→ N

+ is left generic. Thus, they also hold when the capacity of each
channel is one. In a network where all channels have capacity one, requiring
Property (1) is tantamount to requiring that all worms do not intersect.

Definition 7.1 A quasi-deadlock-configuration is a configuration which satisfies
Properties (3) to (6) of Definition 6.17. A network is quasi-deadlock-free, notation
Q-DLF(N), if and only if there exists no quasi-deadlock-configuration.

The necessary and sufficient condition presented in Theorem 6.2 is easily ad-
justed for quasi-deadlocks. We only have to lift the requirement that the set of
routing paths is pairwise disjoint.

Theorem 7.2 A wormhole network is quasi-deadlock-free if and only if all sets
of routing paths have an escape.

Q-DLF(N) ⇐⇒ ∀Π⋆ ∈ P(L(C)) ·

{

Π⋆ 6= ∅
R -paths(Π⋆)

=⇒ ∃e ∈ C · esc(e,Π⋆)

113

7 Deadlock Detection Algorithms

A quasi-deadlock is not necessarily an actual deadlock, as it might not be a legal
configuration. However, if a network is quasi-deadlock-free, it is also deadlock-free.

Q-DLF(N) =⇒ DLF(N)

We present an algorithm for finding quasi-deadlock-configurations in wormhole
networks. Using Theorem 7.2, it can prove a wormhole network deadlock-free in
polynomial time.

7.4 Algorithm by Example

The wormhole algorithm is an extension of our algorithm for packet networks.
Exactly as for the packet algorithm, for each channel c a classification x | y is de-
termined for any destination in τ(c). The crucial difference between the algorithms
is that x ⊆ y no longer guarantees that a channel can be marked deadlock-immune.
If x is a subset of y, the set of destinations that lead messages into circular waits
is a subset of the set of destinations for which there is an escape out of these
cycles. Any packet can be routed towards an escape. However, in wormhole net-
works, a channel can be filled with tail flits. These flits cannot autonomously be
routed towards an escape as they always follow the header flit. Therefore, a new
mark deadlock-attainable is introduced. The intuition behind this mark is that in
a channel no header flit can be permanently blocked, but it is possible that some
tail flit is permanently blocked.

Let c be a channel with classification x | y, where x is a subset of y. No header
flit can be permanently blocked. But if channel c is filled with tail flits, these can
still be permanently blocked. Channel c is marked deadlock-attainable under the
following two conditions. First, the tail flits must be part of some worm with its
head in channel h. Secondly, the header flit in channel h must be permanently
blocked.

The basic objective of our algorithm is to mark each channel as deadlock-
immune, deadlock-sensitive, or deadlock-attainable. After termination of the al-
gorithm, either all channels are marked as deadlock-immune and the network is
deadlock-free or a deadlock can be created by filling all deadlock-sensitive channels
with header flits and all deadlock-attainable channels with tail flits.

7.4.1 Deadlock-attainability

We recapitulate Example 6.3. Figure 7.5a shows the dependency graph of the
network. Subgraph {A,B,C} can form a deadlock consisting of two worms: [B,A]
and [C]. The first worm is destined for d1, the second for d0. Figure 7.6g shows
the result of our algorithm. Channels B and C – the heads of the worms – have
been marked deadlock-sensitive. Channel A – the tail of a worm – is marked
deadlock-attainable. The other channels are deadlock-immune. Figure 7.5b shows
the deadlock represented by these marks.

The algorithm knows that a header flit in channel h can be permanently blocked
if channel h is marked deadlock-sensitive. Thus a channel is deadlock-attainable if
there exists a routing path towards a deadlock-sensitive channel (see Definition 6.4

114

7.4 Algorithm by Example

d0

B

A CE D

d1

d1 d0, d1

d0, d1

d1

F

(a) Dependency graph

n0

n1

n2

A

B
Cd1

d0

(b) Deadlock returned by algorithm

Figure 7.5: Example dependency graph. The black and crossed channels can form a
deadlock.

for a formal definition of routing path). This routing path can be established for
some destination d, which is the destination of the worm. To know whether tail
flits can be permanently blocked, there must be no escape for destination d at the
head of the routing path.

Deadlock-sensitive Channel c is classified with x | y and x * y. There exists a
destination that leads into a circular wait, but for which there is no escape.

Deadlock-attainable Channel c is classified with x | y, with x ⊆ y, and there is
a routing path for some destination d leading to a deadlock-sensitive channel
h with classification x′ | y′. Destination d must be in x′, but cannot be a
member of y′.

Deadlock-immune Channel c is classified with x | y, with x ⊆ y, and channel c
is not deadlock-attainable.

After all marks have been determined, a deadlock can be constructed from
all deadlock-sensitive and -attainable channels. In this deadlock, each deadlock-
sensitive channel c with marking x | y is filled with a header flit destined for
a destination in x that is not in y. Each deadlock-attainable channel c is filled
with tail flits belonging to a message with a header flit in some deadlock-sensitive
channel. If all channels are deadlock-immune, the network is deadlock-free.

7.4.2 Example Trace

Figure 7.6 presents an example trace of our algorithm on the dependency graph
in Figure 7.5a. The first six steps of the trace are equivalent to the example trace
of the packet algorithm and will not be detailed (see Figure 7.3).

During Step 6, channel C has been marked deadlock-sensitive. Step 7 propag-
ates this information upwards. As channel C is the only neighbor of channel B,
the mark of channel B is determined as deadlock-sensitive. Destination d1 is the
only destination leading from A to B. The classification of channel A becomes
d1 | _, indicating that destination d1 leads from channel A into a circular wait.

To complete the classification of channel A, channels E and F must be expan-
ded as well (Steps 8 and 9). As they are sinks, they are deadlock-immune. The
classification of channel A becomes d1 | d0d1.

Channel A is marked deadlock-attainable. First, because {d1} is a subset of
{d0, d1}. Secondly, because there is a routing path to deadlock-sensitive channel B.

115

7 Deadlock Detection Algorithms

A
_ | _

(a) Step 1

B

A

C

_ | _

_ | _

_ | _

(b) Steps 2–3

B

A

C

D

_ | _

_ | _

_ | _

_ | d1
(c) Step 4

B

A

C

D

_ | _

_ | _

_ | d1

_ | d1
(d) Step 5

B

A

C

D

_ | _

d0d1 | _

d0d1 | d1

_ | d1
(e) Step 6

B

A

C

D

d1 | _

d0d1 | _

d0d1 | d1

_ | d1
(f) Step 7

B

A

C

E

D

d1 | d0d1

d0d1 | _

d0d1 | d1

_ | d1

_ | d0 F _ | d1

(g) Steps 8–9

Visited

Deadlock-immune

Deadlock-sensitive

Deadlock-attainable

(h) Legend

Figure 7.6: Example trace. For sake of presentation, the set braces { and } have been
omitted from the sets in the classifications. The underscore _ denotes the empty set to
avoid similarity between ∅ and the vertices of the tree.

116

7.5 Pseudo Code

This path can be established for destination d1. Thirdly, because the classification
of channel B is d0d1 | _ and destination d1 is in {d0, d1}, and it is not in the
empty set.

7.5 Pseudo Code

Algorithm 4 shows the first part of the algorithm. The algorithm uses the same
data structures as the packet algorithm. A fourth marking is added.

4 attainable All neighbors have been marked, the channel is deadlock-
attainable.

Algorithm 4 CreateTree(CI , pf)

Require: CI ⊆ Adep(p)
1: if CI = ∅ then
2: return
3: else
4: Pick element c0 from CI

5: if mark(c0) ∈ {visited, sensitive,attainable} then
6: cyclics(p) := cyclics(p) ∪ τ(p, c0)
7: CreateTree(CI − c0, p)
8: else if mark(c0) = 2 ∨Adep(c0) = ∅ then
9: mark(c0) = immune

10: escapes(p) := escapes(p) ∪ τ(p, c0)
11: CreateTree(CI − c0, p)
12: else
13: mark(c0) = visited

14: CreateTree(Adep(c0), c0)
15: if cyclics(c0) * escapes(c0) then
16: cyclics(p) := cyclics(p) ∪ τ(p, c0)
17: mark(c0) = sensitive

18: else if cyclics(c0) 6= ∅ then
19: cyclics(p) := cyclics(p) ∪ τ(p, c0)
20: mark(c0) = attainable

21: else
22: escapes(p) := escapes(p) ∪ τ(p, c0)
23: mark(c0) = immune

24: end if
25: CreateTree(CI − c0, p)
26: end if
27: end if

The difference between this algorithm and Algorithm 1 is in Lines 18 to 20.
Line 14 continues the forward expansion by expanding the neighbor of channel c0.
When this terminates, the gathered information is propagated upwards in the tree
as follows: if there exists a destination in cyclics(c0) that is not in escapes(c0),

117

7 Deadlock Detection Algorithms

channel c0 is marked deadlock-sensitive. The set of destinations τ(p, c0) is added
to cyclics(p) and channel c0 is marked 3 (Lines 16–17). This is still the same as
for the packet algorithm.

The difference is that now, if there is at least one destination in cyclics(c0) we
give channel c0 mark 4 (Lines 19–20). As there is one such destination, there is
at least one neighbor that is not deadlock-immune. There is a path to a neighbor
that is deadlock-sensitive. If the channel cannot be marked deadlock-attainable,
it is marked 2 (Lines 22–23).

As for the post-processing step (Algorithm 5), this step initially considers all
3- and 4-marked channels with 2-marked neighbors. For all 3-marked channels it
adds the destinations leading to 2-marked neighbors to the escapes array (Line 6).
If, as a result of this, the deadlock-sensitive destinations become a subset of the
deadlock-immune destinations, the channel no longer must be marked 3. The
channel is marked 4, if there exists a routing path from the current channel leading
to a 3-marked channel (Line 8). This path must adhere to the requirements for
marking a channel deadlock-attainable: first, destination d for which the path is
supplied must be a member of the cyclics array for the head of the path, but must
not be an escape. Second, the path must at least be of length two. As the current
channel is marked 3, trivially there is a path of length one. However, the algorithm
has just concluded that the 3-mark is to be changed, thus this path is not valid.
If there no such path, the channel is marked 2 (Line 12).

If the marking of a channel changes from 3 to 4, all 4-marked parents must be
reconsidered (Line 10). Similarly, if the marking of a channel changes from 3 to 2,
all 4- and 3-marked parents must be reconsidered (Line 13). If the post-processing
considers a 4-marked channel, it checks whether there still exists a valid routing
path to some 3-marked channel (Line 17). If not, it is marked 2 and reconsiders
all 3-marked parents (Lines 18–19).

Main wraps up the two steps. It executes CreateTree for all unmarked chan-
nels c, with CI = Adep(c) and p = c. After this, it executes Post-Processing.
It returns the – possibly empty – set of 3- and 4-marked channels.

7.6 Analysis

7.6.1 Computational Complexity

The algorithm consists of two steps. Algorithm 4, is basically a depth-first search
with backwards propagation with O(|A|) recursions.

The running time of the post-processing step is O(|A||C|). The algorithm
loops over a bag of arcs. It starts with 32- and 42-arcs only. For all 32-arcs,
the algorithm adds the destinations labelling the arc to the escapes-array of the
source of the arc (Line 6). This can make the arc either a 42-arc or a 22-arc
(Lines 9–12). For all 42-arcs, the algorithm checks whether the parent of the arc
is correctly labelled 4. This can make the arc a 22-arc. Arcs of type 22 have no
need to be considered, as at all times a mark 2 is definite. Thus each 32-arc is
considered at most twice and each 42-arc is considered at most once. This yields
O(|A|) recursions. The computational complexity of one recursive call is O(|C|)
in the worst-case, as in order to determine whether a channel must be marked

118

7.6 Analysis

Algorithm 5 Post-Processing(CI)

1: if CI = ∅ then
2: return
3: else
4: Pick element c0 from CI

5: if mark(c0) = sensitive then
6: escapes(c0) := escapes(c0) ∪ {d ∈ τ(c0, c1) | mark(c1) = immune}
7: if cyclics(c0) ⊆ escapes(c0) then

8: if ∃πd ·























last(πd) = c0 ∧
mark(πd[0]) = sensitive ∧
d ∈ cyclics(πd[0]) ∧
d /∈ escapes(πd[0]) ∧
|πd| > 1

then

9: mark(c0) = attainable

10: CI := CI ∪ {c ∈ parents(c0) | mark(c) = attainable}
11: else
12: mark(c0) = immune

13: CI := CI ∪ {c ∈ parents(c0) | mark(c) ∈ {sensitive,attainable}}
14: end if
15: end if
16: else if mark(c0) = attainable then

17: if ¬∃πd ·























last(πd) = c0 ∧
mark(πd[0]) = sensitive ∧
d ∈ cyclics(πd[0]) ∧
d /∈ escapes(πd[0]) ∧
|πd| > 1

then

18: mark(c0) = immune

19: CI := CI ∪ {c ∈ parents(c0) | mark(c) = sensitive}
20: end if
21: end if
22: Post-Processing(CI − c0)
23: end if

Algorithm 6 Main

1: for all ci ∈ C do
2: if mark(ci) = 0 then
3: CreateTree(Adep(ci), ci)
4: end if
5: end for
6: Post-Processing(C)
7: return {c ∈ C | mark(c) ∈ {sensitive,attainable}}

119

7 Deadlock Detection Algorithms

deadlock-attainable the algorithm has to traverse the dependency graph once in
search for a deadlock-sensitive channel.

The running time of Main is the sum of the running times of CreateTree

and Post-Processing. After post-processing it enumerates all 3- and 4-marked
channel in O(|C|) time. The total running time of the algorithm is O(|A||C|).

7.6.2 Correctness

Our algorithm is correct if it returns the empty set if the condition of Theorem 7.2
holds, and if a quasi-deadlock can be constructed from any non-empty result. First,
we prove sufficiency, i.e., if the algorithm returns the empty set then the network
is deadlock-free. This proof completely follows the intuition of Figure 7.5: after
termination of the algorithm, a deadlock can be created from all deadlock-sensitive
and deadlock-attainable channels. In this proof, we create a set of paths without
an escape. We do not – and cannot – show that this set of paths is pairwise disjoint.
Our algorithm returns true if and only if the network is quasi -deadlock-free.

Lemma 7.5 Assume all non-empty sets of routing paths Π⋆ have an escape.
After termination of Main any channel c is marked 2.

Proof. After termination of the Main, channel c is either marked 2, 3 or 4. The
proof is by contradiction. Assume channel c is marked 3 or 4. We prove that the
set of 3- and 4-marked channels is a set of paths without an escape, contradicting
the assumption. Take the set of paths Π34 obtained by taking for each 3-marked
channel c the singleton path [c] and for each 4-marked channel a routing path lead-
ing to a 3-marked channel. The paths are chosen such that for each routing path
π ∈ Π34 the destination for which the path can be established is in cyclics(π[0])
but not in escapes(π[0]).

Each 3-marked channel c in the set of paths Π34 has a destination d that
is a member of cyclics(c) and not a member of escapes(c), since channels are
marked 3 only if cyclics(c) * escapes(c). Since, if some destination leads to 2-
marked neighbors it is added to escapes(c), destination d does not lead to 2-marked
neighbors. Since destination d does not lead to 2-marked neighbors, it leads to
channels marked 3 or 4 only. Since 1.) the set of paths Π34 contains all 3- and
4-marked channels, since 2.) channel c is the head of a path, and since 3.) there
exists a destination d such that all neighbors are included in Π34, we can conclude
that channel c is not an escape for Π34.

For each 4-marked channel c in the set of paths Π34, there exists a routing
path π towards a 3 marked channel. This routing path can be established for
some destination d. As destination d is a member of cyclics(π[0]) but not in
escapes(π[0]), the head of this path has no escape.

Set of paths Π34 has no escape. It is non-empty, as by assumption channel c
is marked 3 or 4. This assumption is contradicted. Channel c is marked 2.

Secondly, we prove necessity, i.e., if our algorithm returns a non-empty set
there exists a quasi-deadlock-configuration. We prove an invariant: if a channel is
marked deadlock-immune, it cannot be a member of any set of paths without an
escape. This invariant implies that if after termination of the algorithm all channels

120

7.6 Analysis

are deadlock-immune, there cannot exist a non-empty set of paths without an
escape. This implies deadlock freedom.

Lemma 7.6 If a channel c is in a set of paths Π⋆ that has no escape, the channel
will not be marked 2.

Proof. The lemma holds initially since all channels are unmarked. We show by in-
duction on CreateTree that this lemma is preserved during this step. The exact
similar argument holds for Post-Processing. Thus the lemma is an invariant
for the algorithm.

Assume some set of routing paths Π, some channel c ∈
⊔

Π, and assume
that Π has no escape. The only reason channel c gets marked 2 is when 1.)
cyclics(c) ⊆ escapes(c) and 2.) there is no routing path towards a 3-marked
channel. We prove that these conditions imply there exists an escape for Π. As
this contradicts our assumption, channel c cannot be marked 2.

First, assume channel c is the head of one of the paths in Π. We show channel
c is an escape. When channel c becomes marked 2 all neighbors of channel c
have been explored. Thus all destinations in τ(c) are either in cyclics(c) or in
escapes(c). Since by 1.) cyclics(c) ⊆ escapes(c), all destinations in τ(c) are in
escapes(c). If a destination is in escapes(c), it leads to a 2-marked neighbor. Thus
for all destinations, there is a 2-marked neighbor. By the Induction Hypothesis,
none of the channels in subgraph

⊔

Π are marked 2. Thus for all destinations
there is a neighbor not in the subgraph. Channel c is an escape for Π.

Now assume channel c is not the head of one of the paths in Π. As channel c is
in the tail of some path π, there exists a routing path from c to the head h = π[0]
of this path. By 2.) there exists no routing path towards a 3-marked channel.
Channel h cannot be marked 3. We have already proven that channel h cannot
be marked 2, as channels at the head of one of the paths in Π cannot be marked
2. We prove that it cannot be marked 4 either. For each 4-marked channel, there
exists a routing path towards a 3-marked channel. Thus there exists a path from
channel c to a 3-marked channel x as well, by appending the path from c to h and
the path from h to x. This contradicts 2.), which states there exists no routing
path towards a 3-marked channel. As channel h cannot be marked 2, 3 or 4, we
have a contradiction. Channel c cannot be not at the head of one of the paths in
Π

If channel c is in
⊔

Π, channel c is not marked 2.

These lemmas suffice to prove that the algorithm decides the necessary and
sufficient condition of Theorem 7.2.

Theorem 7.3 A network is quasi-deadlock-free if and only if Main returns the
empty set.

Main(N) = ∅ ⇐⇒ Q-DLF(N)

Proof. Theorem 7.2 states that a communication network is quasi-deadlock-free if
and only if all sets of routing paths have an escape. Assume all such sets have an
escape. By Lemma 7.5 all channels will be marked 2 and thus Main returns true.

121

7 Deadlock Detection Algorithms

Assume Main returns true. Then all channels are marked 2. By Lemma 7.6 there
is no a channel in the union of a set of routing paths without an escape. Thus all
sets of routing paths have an escape.

As a direct consequence of Theorem 7.3, a network is deadlock-free if Main

returns the empty set.

7.7 Proof of co-NP-completeness

To prove co-NP-completeness, we first define the complement of the decision prob-
lem, i.e., the problem of deciding whether there exists a deadlock in a wormhole
network with adaptive routing. This problem will be referred to as WHS-DL. The
proof is a standard problem reduction (see Figure 7.7). We reduce the set packing
problem [83] to WHS-DL. That is, we assume there exists a machine MWHS-DL
that can solve WHS-DL in polynomial time. We show that under this assumption
the set packing problem can be solved in polynomial time as well, by building a
machine MSP. The set packing problem has been shown to be NP-complete [83].
The polynomial transformation from an instance of SP to an instance of WHS-DL is
done by machine τ .

MWHS-DLτ
N

MSP

¬DLF(N)

DLF(N)

k disjoint sets

no k disjoint sets

〈U, S, k〉

Figure 7.7: A reduction of SP to WHS-DL.

Definition 7.2 The Wormhole Switching Deadlock Decision Problem (WHS-DL)
is defined as follows:

Given a communication network N = (P,C) with routing function
R : P × P 7→ P(C), does there exist a deadlock configuration?

Definition 7.3 The Set Packing Problem (SP) is defined as follows:

Given a universal set U = {0, . . . n}, a list of subsets S = s0s1 . . . si where
sj ⊆ U (∀0≤j≤i), and an integer 0 < k ≤ i, does S contain k pairwise disjoint

sets?

The idea behind the transformation is to create a network such that it contains
deadlocks, but these deadlocks can only occur in one specific area in the network.
This area contains a channel for each integer in U . We will refer to these channels
as U -channels. The network is created in such a way that any deadlock requires
exactly k worms. Furthermore, these worms have to cross the area containing the
U -channels. The routing function creates a route through these channels for each

122

7.7 Proof of co-NP-completeness

set in S. That is, for each set si the network contains a corresponding node si.
This node is used as destination to route through the U -channels corresponding to
set si. If there is a deadlock, there are k pairwise disjoint worms holding channels
of paths created by the routing function for k destinations si, corresponding to k
pairwise disjoint sets in S.

Transformation τ is first presented with an example. We give an instance of SP,
i.e., a universal set U , a set of sets S, and a value for k, and transform this instance
to an instance of WHS-DL, i.e., a network N with some routing function R.

7.7.1 Transformation Example

Consider the following instance of SP: U = {0, 1, 2, 3, 4, 5}, S = {s0, s1, s2} =
{{0, 1, 2}, {4, 5}, {2, 4}} and k = 2. There is a set of k pairwise disjoint sets,
namely s0 and s1. We transform this instance to a network and routing function
such that there is a deadlock configuration if and only if there are k pairwise
disjoint sets in S.

Consider the network in Figure 7.8. Two nodes n0 and n1 are located at
respectively the start and the end of an area consisting of five layers. The middle
layer consists of a set of six U -channels corresponding to the six integers in U .
Each set si has a corresponding node, also called si. As each set si has its own
node – which is a destination for some messages – each set si can be associated
with its own routing. More specifically, each set si has its own route to get from
n0 to n1, through the U -channels of its set. For example, set s0 = {0, 1, 2} routes
from n0 to n1 through U -channels 0, 1 and 2. At the second and fourth layer,
messages destined for si are routed respectively towards the smallest element in
set si, and from the greatest element in set si. The first and fifth layer ensure that
there can be at most k worms traversing the area.

Furthermore, there is a node n2, two channels A and B and a node x. These
elements are needed to create a cycle in the network, thereby making deadlocks
possible. Node x serves only as a destination for a worm holding channels A and
B.

For sake of clarity, nodes x and si are not drawn in Figure 7.8. These nodes
are used only as destinations and not part of any deadlock that might occur.

A worm is drawn in Figure 7.8 in thick lines. It is destined for node s0. The
corresponding set is {0, 1, 2}. At node n0 it could have taken any of the two (k)
channels going to layer 1. From the nodes at layer 1, only one channel can be
taken by a message destined for s0. This channel leads to layer 2, and then to the
U -channel corresponding to integer 0, as 0 is the least element in s0. Then a path
from U -channel 0 to U -channel 1 to U -channel 2 is taken. After all U -channels
corresponding to the set {0, 1, 2} have been taken – in increasing order – the worm
proceeds to any of the nodes at layer 4. Finally, its head is in the channel leading
from layer 4 to node n1.

Each worm that spans channels from n0 to n1 holds the U -channels corres-
ponding to a set si ∈ S. The drawn worm holds U -channels 0, 1 and 2. A worm
from n0 to n1 destined for s2 holds U -channels 2 and 4. A legal configuration
cannot have these two worms simultaneously, as both worms hold U -channel 2.
Analogously, sets s0 and s2 are not pairwise disjoint.

123

7 Deadlock Detection Algorithms

s0 s0 s1s2

s0 s1s2

s0 s2 s1

U -channels

k channels

k channels

si routes

si routes

B : x

x, {si}

{si}A : x, {si}

n1

n0

n2
0 n2

1 n2
2 n2

3 n2
4 n2

5

n1
0 n1

1

n3
1 n3

2 n3
3 n3

4 n3
5n3

0

n2

n4
0 n4

1

Figure 7.8: Example of transformation τ

Not all channels of the network are drawn. For all pairs of processing nodes
(p0, p1) such that p0 6= p1 and p0 6∈ {n0, n1}, there is a dedicated channel leading
from p0 to p1. This dedicated channel is used only for messages destined for
p1. Thus, for all processing nodes other than n0 and n1 any message with any
destination can be routed directly to its destination.

Dedicated channels cannot be involved in a deadlock. In a deadlock config-
uration all dedicated channels are empty, as otherwise a message arrives at its
destination. A header of a message can only be permanently blocked in channels
leading to either n0 or n1.

Consider the configuration where the two left channels A and B are filled with
a worm destined for x. As n0 has no outgoing dedicated channels, this worm needs
to acquire one of the k channels going out of processing node n0. If all these k
channels are permanently blocked, a deadlock configuration is reached. However,
if one of these channels contain a header, this header will be able to use a dedicated
channel to arrive at its destination. Thus all these k channels must contain tail
flits only. This holds for all channels leading from n0 to the k channels going into
n1. In a deadlock configuration, all of these channels must contain tail flits only.

Besides channel B, the only channels that can contain a header flit that can
be permanently blocked are the k channels going into n1. As processing node n1

has no outgoing dedicated channels, the headers in these channels must acquire
channel A, which is held by a worm. Thus, any deadlock configuration in this
network contains exactly k + 1 worms: one worm holding channels A and B and
k worms holding channels from n0 to n1.

In this example, there were k = 2 pairwise disjoint sets in S, namely s0 =
{0, 1, 2} and s1 = {4, 5}. Thus the translated network must contain a deadlock

124

7.7 Proof of co-NP-completeness

configuration. The channels of the worm concerning s0 have been drawn in thick
lines. There is also a worm for s1 going through channels 4 and 5. These two
worms, together with a worm holding channels A and B constitute a deadlock.
The reason there is a deadlock is that the area of U -channels can be crossed by 2
worms that do not intersect.

In general, if there is a deadlock configuration, apparently there is a way to
construct k worms crossing the area of the U -channels. These worms are pairwise
disjoint. Each worm holds the channels belonging to one of the sets si. Thus k
pairwise disjoint sets in S have been found. Assuming there is an algorithm that
decides WHS-DL in polynomial time, it is possible to create an algorithm deciding
SP in polynomial time. Problem WHS-DL is NP-complete. The complement of this
problem, i.e., deciding deadlock freedom of adaptive routing functions in wormhole
networks, is co-NP-complete.

7.7.2 Formal Proof

Theorem 7.4 WHS-DL is NP-complete. That is:

LSP ∝ LWHS−DL

Proof. We define a polynomial transformation τ and prove that:

x ∈ LSP ⇐⇒ τ(x) ∈ LWHS−DL

This proof follows the exact intuition in Figure 7.8. First, we formally define the
transformation τ . Secondly we show that, given k pairwise disjoint sets, we can
create a deadlock configuration in the communication network. All six properties
of Definition 6.17 hold for this configuration. Lastly, we show that any deadlock
configuration necessarily has k + 1 worms, where k worms cross the area of U -
channels. Since these worms are – by Definition 6.17 – pairwise disjoint, k pairwise
disjoint paths through the U -channels exist. Each path corresponds to a set in S.
Thus there are k pairwise disjoint subsets in S.

Definition of τ

Given a universal set U = {0, . . . , u′}, a set of subsets S = {s0, . . . si′} and an
integer k′, a communication network Nτ is constructed: Nτ = (Pτ , Cτ).

We explain set of processing nodes Pτ by Figure 7.8. Nodes n0 and n1 are given.
Node n2 is the node between channels A and B. Nodes n1

k and n4
k (0 ≤ k < k′)

are the k′ nodes at respectively the first and the fourth layer. Nodes n2
u and n3

u

(0 ≤ u ≤ u′) are the u′+1 nodes at respectively the second and third layer. There
is a node x, which serves as separate destination for the worm in channels A and
B. Lastly, each node si (0 ≤ i ≤ i′) serves as destination for the worms crossing
the area of U -channels.

Pτ = {n0, n1, n2} ∪

{n1
0, . . . n

1
k′−1, n

2
0, . . . , n

2
u′ , n3

0, . . . , n
3
u′ , n4

0, . . . , n
4
k′−1, x, s0, . . . , si′}

The set of channels Cτ is defined as follows. There is a channel from n0 to each
node n1

k. There is a channel from each node n1
k to each node n2

u. There is channel

125

7 Deadlock Detection Algorithms

for each pair (n2
u, n

3
u). For all u < v ≤ u′, there is a channel from node n3

u to n2
v.

There is a channel from each node n3
u to each node n4

k. There is a channel from
each node n4

k to n1. Lastly, there are two channels A and B, respectively from n1

to n2 and from n2 to n0. All channels specified are identified by their processing
nodes. E.g. channel A is identified as (n2, n0).

There is also a set of dedicated channels. For each set of processing nodes
(p0, p1), where p0 /∈ {n0, n1}, there is a dedicated channel identified as Dp0p1

.
Nodes n0 and n1 have outgoing dedicated channels as well, but not leading to any
of the nodes si or x. This concludes the definition of the communication network.

Routing function Rτ is defined as follows: given a current node s and a destin-
ation d, always supply the dedicated channel Dsd. Furthermore, adaptively supply
the extra channels for the pairs (s, d) specified in Table 7.1.

(s, d) Channels
< n0, si > {(n0, n

1
k)}

< n0, x > {(n0, n
1
k)}

< n1
k, si > (n1

k, n
2
u) if and only if u is the least element of set si

< n2
u, si > (n2

u, n
3
u) if and only if u ∈ si

< n3
u, si > (n3

u, n
2
v) if and only if v is the next element in si after u

< n3
u, si > {(n3

u, n
4
k)} if and only if u is greatest element of si

< n4
k, si > (n4

k, n1)
< n1, si > A
< n1, x > A
< n2, x > B

Table 7.1

This routing function only requires the current node and the destination node
to compute the set of next hops. Its type is therefore P×P 7→ P(C) and it satisfies
our assumption that routing is memoryless. A worm spanning channels from n0

to n1 crosses the U -channels in increasing order.

Proof

(=⇒)
Assume a universal set U = {0, . . . , u′}, a set of subsets S = {s0, . . . si′} and an
integer k′. Also, assume that there exists k′ pairwise disjoint sets in S. Let L be
a list of k′ indices such that for all indices i and j in L (i 6= j), sets si and sj have
an empty intersection.

We show that the transformation has a deadlock. This deadlock is obtained by
creating k′+1 worms. One worm, destined for destination x, holds channels A and
B. Each worm wk (0 ≤ k < k′) is destined for sL[k]. The tail holds the following
channels: (n0, n

1
k) and the intermediate path of (non-dedicated) channels supplied

by the routing function from n1
k to n4

k for destination sL[k]. The head of the worm
holds channel (n4

k, n1). Each channel c of a worm is filled with exactly cap(c) flits.
To show that this is a deadlock, the six properties of a deadlock configuration

have to be discharged. Properties (1) and (5) clearly hold. These respectively
state that buffer capacities are not exceeded and that no header flit has arrived

126

7.7 Proof of co-NP-completeness

at its destination. Property (2) states that each channel has flits belonging to
one message only. Channels (n0, n

1
k) and (n4

k, n1) are filled with flits belonging
to worm wk only. The channels of the intermediate paths are filled with flits be-
longing to one worm, as all sets sL[k] are pairwise disjoint. Property (3) holds,
as for each worm wk both the starting channel (n0, n

1
k), the last channel (n4

k, n1)
and the channels of the intermediate path are supplied for destination sL[k]. The
configuration is non-empty, as k > 0, and thus Property (4) holds. As for Property
(6), the worm holding channels A and B has no available next hops as node n0

has no dedicated channel for destination x and all channels (n0, n
1
k) are filled with

tails of the worms wk. As for the worms wk, as node n1 has no dedicated channels
for any of the destinations si, all these worms require channel A. This channel is
unavailable. The created deadlock is a legal configuration which satisfies all six
properties.
(⇐=)
Assume a communication network Nτ and a routing function Rτ , result of the
transformation τ(x), where x = 〈U, S, k′〉. Also, assume a deadlock configura-
tion σ. We show that there exists k′ pairwise disjoint subsets in S.

In Nτ , any deadlock configuration satisfies the following constraints. First, any
deadlock configuration has k′ worms, whose tails start in the channels (n0, n

1
k),

and whose heads are in the channels (n4
k, n1). Lastly, any deadlock configuration

has a worm holding channels A and B.
This is shown by analysis of the possible locations of the headers of the worms

in the deadlock. In a deadlock, a header cannot be in a dedicated channel, as
this contradicts Property (5) of the deadlock definition. If the dedicated channel
contains tail flits only, a header has arrived at is destination and all these flits
will eventually evacuate the network. In a deadlock configuration all dedicated
channels are empty.

This implies that any channel leading to a dedicated channel for all destinations
cannot contain a header flit. Otherwise Property (6) is contradicted. Since all
channels lead to dedicated channels for all destinations, except for channel B and
the channels (n4

k, n1), the header flits of a deadlock must be in these channels.
There are no dependency cycles in the area of U -channels, as the routing func-

tion supplies all channels (n2
u, n

3
u) in increasing order. Thus between nodes n0 and

n1 there are no dependency cycles. The only other channels are A and B and the
only other dependency is from A to B. Thus any cycle in the dependency graph
of Nτ contains the dependency from A to B. As any deadlock necessarily contains
a dependency cycle [36], channels A and B must be filled. Channel A cannot
contain a header, implying that channels A and B contain a worm. This worm is
destined for destination x, as channel B contains the header of this worm and can
only contain messages destined for x. The worm cannot hold any other channels
than A and B: all channels (n4

k, n1) are not supplied by Rτ for destination x.
This worm has k′ possible next hops: the channels (n0, n

1
k). Thus all these

channels must be filled with tail flits. This requires k′ different worms, as it is
impossible to route - for one destination - from channel (n0, n

1
k) to another channel

(n0, n
1
l). This holds because channel B is only supplied for messages destined for

x and channels (n4
k, n1) are only supplied for destinations si.

Thus σ has k′ + 1 worms. Each worm wk starts in node n0 and ends at node

127

7 Deadlock Detection Algorithms

n1. Each worm wk has as destination si for some i, as its header is in some
channel (n4

k, n1) and this channel can only be used by messages destined for some
si. Furthermore, there are no two worms with the same destination si, as this
implies they would intersect at the channels (n2

u, n
3
u) with u ∈ si. Thus each worm

wk corresponds – one to one – to a destination si.
Each channel (n2

u, n
3
u) corresponds to an element u ∈ U . Each destination si

routes a worm through channel (n2
u, n

3
u) if and only if u ∈ si. Since 1.) the k′

worms are destined for different si, 2.) each worm holds a path from n0 to n1,
3.) each path from n0 to n1 for destination si holds channels corresponding to the
set of si, and 4.) all worms are pairwise disjoint, there are k′ sets in S that are
pairwise disjoint.

7.7.3 Deadlock Freedom versus Deadlock Prediction

The only other paper devoted to the computational complexity of deadlock related
problems in wormhole networks is that of Di Ianni [78]. Di Ianni proves that pre-
dicting deadlock in wormhole networks is co-NP-complete. Arbib et al. prove a
similar result for store-and-forward networks [2]. The deadlock prediction problem
(DP) consists in deciding if a given configuration will necessarily result in a dead-
lock. Deadlock prediction could be of benefit to deadlock avoidance mechanisms,
whereas deciding deadlock freedom of a routing function could be of benefit to
deadlock prevention.

The result of this section – co-NP-completeness of deciding deadlock freedom
– is not implied by co-NP-completeness of DP. For store-and-forward networks,
DP is co-NP-complete whereas our problem can be solved in linear time by the
algorithm presented in this chapter. The problems concern two related but in-
herently different questions. Problem DP concerns the question whether, given
some configuration, all traces will eventually result in a deadlock configuration,
i.e., whether some configuration is bound to deadlock. Our problem concerns the
question whether there is deadlock configuration reachable from the empty con-
figuration, i.e., whether the empty configuration might result in a deadlock.

n0n1

n2

n3
m0

m2

m1A

Figure 7.9: Example configuration.

We provide an example to stress the difference. Consider the network in Fig-
ure 7.9. The network contains three messages m0, m1 and m2 destined for n0, n1

and n2. Messages m0 and m2 arrive at intermediate node n1. Both messages need
to be forwarded to channel A. As this channel is empty, the configuration is not
in deadlock yet. Depending on which message is chosen, the configuration results
in a deadlock. If m2 is chosen, it will arrive at its destination and eventually all

128

7.8 Related Work

messages will evacuate the network. If m0 is chosen, the cycle will be filled and
all messages will be permanently blocked.

The deadlock prediction problem concerns the question whether this configur-
ation is bound to end in a deadlock. In our example this is not the case, as there
is a trace such that all messages evacuate the network. The deadlock prevention
problem addressed in this section concerns the question whether there exists a
reachable deadlock configuration. In our example this is the case. The two prob-
lems are inherently different from each other. A decision procedure for one of these
problems cannot be applied to the other. The proofs are completely different as
well.

7.8 Related Work

To the best of our knowledge, no deadlock detection algorithms exist for packet
networks. For wormhole networks, the work of Taktak et al. is the only research
related to automatic detection of deadlocks in a network model similar to our
network model.

Taktak et al. first presented an algorithm for proving wormhole networks
deadlock-free [137]. They extended Duato’s condition (see Section 6.7) with de-
pendencies between different types of messages. They assume that there exists
an ordering between these message types [68]. Their condition is sufficient for
deadlock freedom, but not necessary. An algorithm is presented that checks this
condition automatically.

Taktak et al. continued with a polynomial algorithm checking a necessary and
sufficient condition [138]. This condition – presented in Section 6.9 – does not
include message dependencies. Their algorithm first breaks down the dependency
graph into strongly connected components. A theorem is proven that it suffices
to check for deadlocks in these strongly connected components instead of checking
the dependency graph monolithically. They then search for a strongly connected
component where there exists a channel that cannot be tagged according to their
tagging condition.

As argued in Section 6.9, their condition is only sufficient, and not neces-
sary. Their algorithm outputs false deadlocks. Indeed, their algorithm searches
for quasi-deadlocks, just as the algorithm presented in this chapter.

The observable differences between the algorithms lie in the assumptions and
the computational complexity. In contrast to our algorithm, Taktak et al. require
the network to be livelock- and starvation-free. The computational complexity of
their algorithm is O(|P |4), where P is the set of processing nodes in the network.
Our wormhole algorithm is one degree lower in complexity. Taktak et al. imple-
mented their algorithm in the tool ODI and provide experimental results. In the
next chapter, we present industrial and real-life applications of our algorithms.
Experimental results will be given, and we will compare the performance of our
algorithms with that of Taktak et al.

129

7 Deadlock Detection Algorithms

7.9 Conclusion

We have presented algorithms to search for deadlocks in communication networks.
For packet networks, we defined an algorithm with a computational complexity
linear in the number of channels in the network. For wormhole networks, we have
shown that a polynomial algorithm does not exist, assuming co-NP does not equal
P. This is due to the fact that worms cannot intersect. We have defined the notion
of quasi-deadlocks, where this fact is disregarded. A polynomial algorithm has
been defined to search for quasi-deadlocks in wormhole networks.

Given a specification of the topology and the routing function, our algorithms
are push-button solutions for finding deadlocks. In case of deadlock, our algorithms
provide detailed feedback. These properties, and their low computational complex-
ity, makes them usable as debugging tools for designers.

At this point, two versions of both algorithms exist: an efficient implementation
in C and a non-executable specification in ACL2. Our utmost objective is to make
the ACL2-specification efficiently runnable. If the ACL2-implementations decide
deadlock freedom, this result can be regarded as a mechanized proof. This way, we
can have formal verification play a useful role in the design process of Networks-
on-Chip.

The next chapter will present some applications of these algorithms. An inter-
esting application of our fast algorithms is the verification of fault-tolerant network
designs or designs with irregular routing.

In Part II, productivity is broken down into several smaller proof obligations.
The largest and most difficult proof obligation to discharge is deadlock freedom.
The algorithms in this chapter solve this issue. In the next chapter, we present
the tool DCI2, which uses the algorithms presented in this chapter to discharge
all proof obligations required for proving productivity. This yields a push-button
solution for proving productivity of communication networks.

130

Chapter 8

Applications

The previous chapter presented deadlock detection algorithms. The purpose of
these algorithms is to be of use to a designer of communication networks. In
this chapter, we incorporate the algorithms in the tool DCI2. DCI2 adds various
features to the algorithms that are necessary to make them valuable in practice.

We provide experimental results on some basic benchmarks on six different
routing functions in four different topologies. We then present two more complex
examples in detail. Both examples are based on the Network-based Processor
Array (NePA) [4, 3, 89]. The first example extends the traditional NePA architec-
ture with a routing function that dynamically routes around faults. Even though
this introduces circular dependencies in some faulty configurations, the network
remains deadlock-free. This routing logic is the result of a collaboration with the
University of California, Irvine (UCI). The second example – taken from Wang et
al. [144] – extends NePA with on-chip wireless communication. Because not all
processing nodes have wireless routers, routing becomes irregular and difficult to
verify manually. DCI2 efficiently finds deadlocks.

8.1 DCI2

A major extension of our deadlock detection algorithms deals with the possibility
to verify fault-tolerant routing functions. The design of a deadlock-free fault-
tolerant routing function is often difficult, as absence of deadlocks must be assessed
for many different faulty configurations. The design might be deadlock-free in
many cases, but a specific combination of faults may cause a deadlock. DCI2 can
aid in both the design and the verification of such routing functions.

DCI2 takes as input a description of the topology and a C++ implementation
of the routing function. Our tool has the following features:

• The tool checks whether the model of the routing function is correct with
respect to the topology. In the hardware it is impossible for a packet to be
routed through channels that do not exist. The model written in C++ code
however can route, e.g., a packet west at the left-most column, or route
diagonally even when a diagonal channel does not exist. The tool detects
such errors and outputs them.

131

8 Applications

• The tool takes as input a basic fault model. Common fault models are “as-
sume at most two channels can be faulty” or “assume at most one router is
faulty”. The tool checks the number of available cores in the current machine,
splits up the set of faulty configurations to check under the fault model, and
executes the algorithm on these configurations in parallel. It provides 100%
coverage in the cases considered.

• The tool checks whether the routing function is connected. In a fault-tolerant
design, it is possible that in some combination of faults, a packet arriving at
a processing node has no path to its destination. If this is the case, the tool
outputs exactly which packet in which channel with which destination has
no next hops.

• The tool detects livelocks. In fault-tolerant designs, livelock can be hard to
find manually. When encountering faults, packets may need to be sent back
to where they came from. During the computation of the dependencies, the
tool checks whether scenarios exist in which one packet gets into a cycle. For
the isolated network model, this is a necessary and sufficient condition for
livelock. If a livelock has been found, we report the exact trace leading to
this cycle and the cycle itself.

• The tool provides quantitative output. In fault-tolerant designs, one may be
interested to know how many of the faulty configurations yield a deadlock or
livelock. We have added a command-line option to let the algorithm assemble
quantitative information on how many of the configurations are correct, how
many contain deadlocks, livelocks, etc. In the next section we will provide
more details on this.

Because DCI2 requires only little user input and it returns results quickly, it
can be used as a debugging tool during the design of interconnects and routing
functions. Our fault-tolerant routing function has been obtained this way: start
with a simple routing function, and then recursively detect erroneous scenarios
and adapt the routing logic until a correct result has been obtained.

8.2 Benchmarks

Figure 8.1 shows results on some standard routing functions. All experiments have
been performed on a 2.93 GHz Intel Core 2 Duo computer, with 2 GB memory.
We present the results on the wormhole algorithm. For the packet algorithm, all
running times are less or equal.
2D Mesh – XY [103]
XY routing is a deterministic routing function for two-dimensional meshes used
in, e.g., the HERMES chip [99]. Messages are routed first along the X-axis and
then along the Y-axis. It is deadlock-free, as there are no cyclic dependencies. We
have verified this for a mesh with 4225 nodes and 16900 channels in 0.31 seconds.
2D Mesh – West-First [61]
West-first routing is an adaptive routing function for two-dimensional meshes. Our
algorithm needed 1.49 seconds for a 65 by 65 mesh with 16900 channels.

132

8.2 Benchmarks

2D Mesh – Shortest Path [138]
Shortest path routing is an adaptive routing function, which routes messages along
the shortest path. It is not deadlock-free. Our algorithm finds a deadlock in 0.87
seconds for a 65 by 65 mesh with 16900 channels.
Double 2D Mesh – Shortest path with XY [138]
There are two virtual channels in each direction between the processing nodes.
One of the channels is used for the adaptive shortest path routing function. The
other channel is used for the deterministic XY routing function. The network is
deadlock-free, even though there are cyclic dependencies. Our algorithm returns
true in 110,07 seconds for a 45 by 45 mesh with 16200 channels.
Spidergon – Shortest path [31, 32]
Spidergon STNoC is an architecture developed by STMicroelectronics. The Spider-
gon topology is a ring where each node has a channel going clockwise, counter-
clockwise, and across. Its shortest path routing function is deterministic. We have
formalized an implementation of the Spidergon without virtual channels. This
implementation has deadlocks, and we checked this for the Spidergon chip with
eight processing nodes, i.e., the Octagon chip [82].
Double ring – AAD
We have designed a new adaptive routing function for Spidergon. There are two
virtual channels in the counter- and clockwise-direction between the processing
nodes on the ring. AAD routing – for Adaptive-Across-Deterministic – routes a
message first adaptively in any direction. Once it has taken an across-channel, it
is deterministically routed towards its destination. Our algorithm proves that it is
deadlock-free in 65,12 seconds for a network with 2048 nodes and 12288 channels.

0.01

0.1

1

10

100

0 5000 10000 15000 20000

Time (s)

Number of channels

2D-XY

++

+

+
+

+
2D-WF

×
×

×

×

×

×

×
2D-SP

∗

∗

∗

∗

∗
∗

∗
2D-XY+SP

�

�

�

�
�

�

�
RING-AAD

�

�

�

�

�

�

Figure 8.1: Experimental results

As Figure 8.1 shows, our algorithm performs significantly better on XY and

133

8 Applications

Figure 8.2: NePA Mesh Network, where the bold arrows denote physical links between
the subnetworks used for fault-tolerant routing.

West-First routing than on "Shortest Path with XY" and AAD routing. This is
due to the fact that the first two routing functions are deadlock-free because there
are no cyclic dependencies. In such cases, our algorithm performs exactly like a
regular cycle detection algorithm and terminates in linear time.

8.3 NePA with Fault-tolerant Routing

We shortly introduce the NePA architecture. Both this architecture and the ex-
tensions presented in this chapter are realistic and feasible examples of Networks-
on-Chip, as they have been implemented in synthesizable HDL. For a discussion
on feasibility, performance and scalability, we refer to the original paper of Bahn
et al. [4].

In the NePA NoC system, processing nodes are mapped to a two dimensional
mesh network of routers. The routers are connected through physical links, i.e., the
channels. Horizontally, there is one eastern and one western channel between two
adjacent routers. Vertically, there are two northern and two southern channels.

The NePA NoC design can be viewed as two subnetworks where Subnetwork 1
transports eastbound traffic and Subnetwork 2 transports westbound traffic. Fig-
ure 8.2 illustrates connections between routers. As the two subnetworks separate
east- and westbound traffic, no dependency cycles occur. Consequently there are
no deadlocks. The fault-tolerant extension presented in this section introduces
physical links to add the capability to switch between subnetworks. These new
links introduce dependency cycles.

Figure 8.3 shows the design of a router. Each router has ports for each in-
coming channel. For example, the western in-port contains traffic that is going
in the eastern direction. The router is divided into two subrouters, one for each
subnetwork. For example, as the western in-port contains traffic heading in the

134

8.3 NePA with Fault-tolerant Routing

W Input

N
1

 I
n

p
u

t

S
1
 I

n
p

u
t

IntR Input

S
1

 O
u

tp
u

t

E Output

N1 Output

W Input

S
2
 I

n
p

u
t

N
2
 I

n
p

u
t

In
tL

 I
n

p
u

t

N2 Output

W output

S2 Output

N

W

S

E

N

S

N1 N2

W

INT

E

S1 S2

Int R

Int L

IN
T

Internal Router

Right Router

Left Router

1
to
2

2
to
1

Figure 8.3: NePA Router, where the bold arrows denote physical links between the
subnetworks used for fault-tolerant routing [4].

eastern direction, it is connected to the subrouter belonging to Subnetwork 1.
In a subrouter, each in-port is connected to a Header Processing Unit (HPU)

which can receive a header flit, process the destination address and send out a
request to the proper output ports. There is one HPU per incoming channel. The
arbiters of the output ports grant one of the requests from the HPUs and reserve
the output port until a packet transfer is completed. After that, the output port
is released for other packets.

Figure 8.4 shows a detailed block diagram of a subrouter. Highlighted is the
HPU that is connected to the the western in-port. The east-bound traffic in this
port is directed to the north, east, or south arbiters of Subnetwork 1. These re-
quests are denoted by W_to_N1_req, W_to_E_req, and W_to_S1_req. Traffic
can also be directed to the local arbiter connected to the processing node.

To support fault-tolerant routing, some modifications of the original design are
needed. Information on faulty links is passed between routers through wires. We
assume that the NoC architecture is equipped with Design For Test technology
[142, 66]. These Built-In-Self-Test (BIST) mechanisms detect faults in links and
switches and update the links’ status information accordingly. Between two sub-
routers, physical links are added to move a packet between the two subnetworks
(see Figure 8.3). A fifth outgoing link W_to_SUB2_req is added to the HPU
depicted in Figure 8.4 to request a switch from Subnetwork 1 to Subnetwork 2.

8.3.1 Routing Logic

The routing logic is contained in the HPU structures. Figure 8.4 shows the HPU
that is connected to the western in-port. We show the details of the routing logic
for this HPU, other HPUs are similar.

The intuition behind our routing logic is the following:

1. If there are no faulty channels, always supply all minimal routes.

135

8 Applications

HPU(West)
Arbiter

(East)

M
U

X

W_to_E_req

W_to_S1_req

W_to_Int_req

W_to_N1_req

Int_to_E_req

S1_to_E_req

N1_to_E_req

Data_in_West

Data_in_North

Data_in_South

Data_in_Int

East Output

West Input Port

South1 Input Port

North1 Input Port

Int1 Input Port

East Output Port

South1 Output Port

North1 Output Port

Internal Port

W_to_SUB2_req

To SubNetwork2

SUB2_to_E_req

Data_SUB2
S1 N1 Int1

Data_SUB1

From SUB2

Figure 8.4: Header Processing Unit, where the bold links are used to switch to the other
subnetwork for fault-tolerant routing.

2. If there are faulty channels, take all shortest routes around these faulty
channels that do not cause deadlock or livelock.

Routes are restricted only when they are the cause of deadlock or livelock. Since
many different faulty configurations exist, yielding many exotic corner cases, the
routing logic becomes very intricate and extensive. It has been obtained by con-
tinuously debugging the current routing logic, adding case distinctions where ne-
cessary, and rerunning DCI2.

If there are no faults, the routing logic equals a minimal adaptive shortest
path routing logic. This routing logic can already handle some faults, as there
may be alternative paths to reach a destination. In some cases, the minimal
shortest path routing does not provide more than one path. For example, when
the source and destination are in the same row or column, one fault may cause the
routing function to become disconnected. Two approaches can make the routing
logic fault-tolerant: either more paths must be supplied or the routing logic must
prevent routing towards an area where the destination is no longer reachable.

Starting with the minimal routing logic, we have incremented the logic step-by-
step with case distinctions to handle faults. Each adaptation is designed in such a
way that it takes minimal routes around the set of faults. Figure 8.5 shows routes
supplied by the routing logic in different faulty configurations. With no faults,
all minimal routes are supplied (see Figure 8.5a). In Figure 8.5b there is a faulty
channel between the current position and the destination. When multiple routes
around a fault are possible, all routes that do not cause deadlocks or livelocks will

136

8.3 NePA with Fault-tolerant Routing

be supplied. Figure 8.5c provides an example where there are two faults between
the current position and the destination. In this particular case, the length of the
minimal route increases due to the faults. Figure 8.5d provides an example where
switching between subnetworks is inevitable. Consequently, dependency cycles are
inevitable as well.

c

d

(a) No faults

c d

(b) One horizontal

fault

c

d

(c) Two horizontal

faults

c

d

(d) Two vertical

faults

Figure 8.5: Routes supplied by the routing logic. Processing nodes c and d are the
current node and the destination node respectively. The crossed channels are faulty.

The eastbound routing logic is split up into three parts: the destination is
either south-east of the current processing node, north-east, or east at the current
row. We start with describing the south-east logic (see Algorithm 7).

Signal OK(d) returns 1 if and only if the channel indicated by direction d exists
and is non-faulty. If a second direction is supplied, OK(d1, d2) returns 1 if and
only if the channel reached by first performing a step in direction d1 and then in
direction d2 exists and is non-faulty. For example, at router (0, 1) signal OK(N1)
will return 1 if and only if the north channel of Subnetwork 1 from (0, 1) to (0, 0)
is non-faulty. Signal OK(N1, N1) will return 0, as (0, 0) has no northern channels.
A request to an arbiter is performed by setting the corresponding request bit
to 1, i.e., the statement “W_to_S1_req = 1” requests the southern channel of
Subnetwork 1 of the current router.

Without any faults, we can simply supply the eastern and the southern chan-
nels. Line 2 supplies the eastern channel as next hop. The conjunction in Line 1
contains the conditions under which we route east. First of all, the eastern chan-
nel must exist and be non-faulty, i.e., OK(E) must return 1. The second conjunct
prevents routing eastwards in one particular case. Consider Figure 8.6a. The des-
tination is in the column at the end of the eastern channel and the two channels
leading south are both faulty. If we route east, then subsequently we have to route
around the two faulty channels. This rerouting means that either we go east or
west. Going east results in three extra hops and one extra switch from Subnetwork
2 to Subnetwork 1. It also yields a livelock. Going west results in three extra hops
and two switches between subnetworks. We therefore prevent going east, if the
destination is in the next column and the two southern channels are faulty.

A similar restriction is needed for turning south (Line 4). This restriction is
more severe: We never route south, if the channel in eastern direction at the end
of the southern channel is faulty. This is to exclude some livelocks. An example

137

8 Applications

Algorithm 7 South-East Routing Logic of West In-Port
1: if OK(E)∧

(dx > cx+ 1 ∨ (dx = cx+ 1 ∧ (OK(E,S1) ∨OK(E,S2)))) then
2: W_to_E_req = 1;
3: end if
4: if OK(S) ∧OK(S,E) ∧ (! OK(E) ∨OK(S2)) then
5: W_to_S1_req = 1;
6: end if
7: if W_to_E_req = 0 ∧W_to_S1_req = 0 then
8: if OK(N1) then
9: W_to_N1_req = 1;

10: else
11: Set intermediate destination to south
12: W_to_SUB2_req = 1;
13: end if
14: end if

(a) (b)

Figure 8.6: Routes prevented by the routing logic. Processing nodes c and d are the
current node and the destination node respectively. The crossed channels are faulty.

occurs if – at the bottom of the mesh – both the eastern channels of the bottom
two rows are faulty (see Figure 8.6b). If we would route south from node c even
though channel E1 is faulty, we end up in a situation where the only possible next
route is a 180 turn back north leading back to node c. As we do not remember the
path taken by the packet, the routing logic will supply the south channel again,
yielding a livelock.

Line 4 enforces a second restriction for going south. A packet is not routed
towards the southern direction if one of the southern channels is faulty, when
the eastern route is available. This restriction prevents some peculiar deadlocks
which occur with some specific combinations of two faulty channels. Consider
Figure 8.7a, where channels (0, 0, S2) and (1, 1, N1) are faulty. Let pE denote an
eastbound packet occupying channel (0, 0, S1). Without the restriction, packet
pE can be routed towards both the eastern and the southern directions. In this
particular deadlock configuration, it has chosen to go south and occupies (0, 0, S1).
As there is only one available southern channel from (0, 0), all western going traffic
uses this channel as well. So an eastbound packet in (0, 0, S1) blocks westbound

138

8.3 NePA with Fault-tolerant Routing

traffic. Similarly, all eastbound traffic now uses channel (1, 1, N2) since channel
(1, 1, N1) is faulty. So a westbound packet in (1, 1, N1) can block eastbound
traffic. We will refer to this packet with pW . This completes a circular wait.
However, for adaptive routing, a circular wait is not sufficient for a deadlock. The
minimum deadlock in this particular configuration consists of three intertwined
circular waits.

(0,1)

(1,2)
(1,1)

(1,0) (1,0)

(1,0)

p
E

p
W

(a) Deadlock with two faulty

channels

(0,1)

(1,2)

(1,2)

(1,0)

(0,0)

(b) Channel dependency graph

Figure 8.7: Deadlock occurring with two faults and the dependency graph depicting the
three circular waits that constitute the deadlock.

Due to these restrictions, in some cases no next hops have been supplied at
this point (Line 7). For example, this is the case when both the eastern channel
and the southern channel in Subnetwork 1 are faulty. To minimize the number of
subnetwork switches, we first try to route north in the current subnetwork (Line 9).
If this channel is faulty or if we are at the top of the mesh, we switch subnetwork
and route south (Lines 11 and 12).

Algorithm 8 provides the routing logic in case the destination is eastbound on
the current row.

If the eastern channel is not faulty, we simply go east (Line 2 of Algorithm 8).
If this is not possible, then it must be determined whether the packet is routed
north or south around the faulty channel. To prevent livelocks, the next hop is
chosen such that is has at least one non-faulty channel in the current subnetwork
(Lines 4 and 7). As shown in Figure 8.8, if a packet destined for (1, 1) is injected
in (0, 0) it is first routed south as the destination is south. At (0, 1), the packet
must be prevented from going back north, as otherwise a livelock occurs. As in
this case both OK(N,E) and OK(N,N1) will yield false, the packet will not be
routed north.

This will always route around a faulty eastern channel, except when the packet
is at either the bottom or the top of the mesh (Lines 11 and 14). Consider the
case at the top of the mesh. Channel S1 is faulty as otherwise Line 7 would have
applied. So a switch between subnetworks is necessary. The routing logic requests
channel S2. Similarly, at the bottom of the mesh, channel N2 is requested.

At this point, the south-east and the east routing logic have been described.
The north-east logic is similar to the south-east logic. Two cases are left: the
destination is north or south in the current column. We describe the southern
case (Algorithm 9).

139

8 Applications

Algorithm 8 East Routing Logic of West In-Port
1: if OK(E) then
2: W_to_E_req = 1;
3: else
4: if OK(N1) ∧ (OK(N,E) ∨OK(N,N1)) then
5: W_to_N1_req = 1;
6: end if
7: if OK(S1) ∧ (OK(S,E) ∨OK(S,N1)) then
8: W_to_S1_req = 1;
9: end if

10: if W_to_N1_req = 0 ∧W_to_S1_req = 0 then
11: if cy = DIMY− 1 then
12: Set intermediate destination to north
13: W_to_SUB2_req = 1;
14: else if cy = 0 then
15: Set intermediate destination to south
16: W_to_SUB2_req = 1;
17: end if
18: end if
19: end if

Figure 8.8: Livelock scenario prevented by the routing logic. Processing nodes c and
d are the current node and the destination node respectively. The crossed channels are
faulty.

When the packet has arrived in the correct column, it is routed south towards
its destination without leaving the column. It can use both subnetworks. If it
uses the current subnetwork only, deadlocks will occur. The packet leaves the
column only if both the vertical channels leading towards the destination are faulty
(Lines 7–14 of Algorithm 9).

8.3.2 Results

We have run the tool on meshes of different sizes (see Table 8.1). These results
have been obtained on a Sun Fire X4440 machine, with four 2.3GHz Quad-Core
AMD Opteron 8356 processors (16 cores in total) and 128 GB of memory. For
each mesh, the routing function is proven deadlock-free, livelock-free, connected
and correct in all faulty configurations.

140

8.3 NePA with Fault-tolerant Routing

Algorithm 9 South Routing Logic of West In-Port
1: if OK(S1) then
2: W_to_S1_req = 1;
3: end if
4: if OK(S2) then
5: W_to_SUB2_req = 1;
6: end if
7: if W_to_S1_req = 0 ∧W_to_SUB2_req = 0 then
8: if OK(E) then
9: req_east = 1;

10: else
11: Set intermediate destination to west
12: W_to_SUB2_req = 1;
13: end if
14: end if

Mesh Number of configs Time (hh:mm:ss)

8x8 73,536 00:01:07
10x10 179,700 00:05:35
12x12 372,816 00:22:07
14x14 690,900 00:58:58
16x16 1,178,880 04:30:24
18x18 1,888,596 09:59:16
20x20 2,878,800 22:51:21

Table 8.1: Results with 2 faults

We have also run the algorithm on a 4x3 mesh with more than two faults.
We let the algorithm assemble quantitative information (see Table 8.2). As the
number of faults increases, the number of deadlocks and livelocks increase. Note
that these results hold for a relatively small mesh. In larger meshes, we expect
the percentages to be lower, as there will be more separate faults which do not
interact with each other.

Faults 3 4 5
Configs 59640 1,028,790 13,991,544

Topology violation 0% 0% 0%
Disconnected routing 0.07% 0.26% 0.64%
Deadlock 0.24% 0.89% 2.04%
Livelock 0.09% 0.31% 0.69%

Table 8.2: Results with more than 2 faults in a 4x3 mesh.

141

8 Applications

Figure 8.9: Topology of Wireless NoC [144]

8.4 NePA with Wireless Routers

Wang et al. design and analyze a hybrid NoC system where the standard wired on-
chip communication coexists with on-chip wireless communication technology [144].
This hybrid structure is called Wireless NoC (WNoC).

Wireless communication can improve performance of the chip in terms of
latency, throughput and power consumption. However, a sophisticated routing
logic is required to determine which messages are sent wirelessly and which are
not. We introduce the topology and the routing logic. For a more extensive ex-
planation, and for a detailed analysis of performance and feasibility of wireless
on-chip communication, we refer to the paper of Wang et al. [144].

Wang et al. constructed the WNoC by replacing some of the routers in the
NePA architecture with wireless routers (WRs). The topology is split up into
quadrants (see Figure 8.9). Each quadrant contains one wireless router connected
to the processing node in the middle of the quadrant. Each wireless router can
communicate with all three other wireless routers.

The WNoC contains deadlocks, if no additional measures are taken such as
virtual channels or restrictions on the routing logic to prevent messages from us-
ing WRs under specific conditions. We have specified the WNoC without such
additional constructs, and therefore found deadlocks.

8.4.1 Routing Logic

Algorithm 10 contains the routing logic of WNoC as formalized for our tool. Func-
tion NePA_routing formalizes the standard minimal adaptive routing in NePA.
This function takes as parameters a current processing node and the destination
and returns a set of next hops.

142

8.4 NePA with Wireless Routers

Algorithm 10 Routing Logic of WNoC
Require: Current node c;
Require: Destination d;
1: HW = distance to destination using WRs;
2: HB = distance to destination using wires only;
3: if HW < HB − δ ∧ quadrant(c) 6= quadrant(d) then
4: dWR = WR in current quadrant;
5: if c 6= dWR then
6: return NePA_routing(c, dWR)
7: else
8: Transmit wirelessly;
9: end if

10: else
11: return NePA_routing(c, d)
12: end if

Line 3 decides whether the message will use a WR. In the WNoC, the decision
to transmit messages wirelessly is based on the distance from the current location
to the destination. A WR is used if it takes significantly more steps to arrive at the
destination using wires only than using WRs. Significance is expressed using some
predefined but constant value δ: the higher δ, the more the WRs will be used.
If the difference between the number of steps taken wirelessly and the number
of steps taken using wires only is greater than δ, the routing logic will send the
packet towards a WR.

If the message makes use of the WR, it is first routed towards it (Line 6). If
it has arrived at the WR, it will be transmitted wirelessly to the quadrant of its
destination (Line 8). From this point on, it will be routed towards its destination
in the regular way (Line 11).

8.4.2 Results

Figure 8.10 gives an example of a deadlock configuration found by DCI2. We have
set δ to 2. Each worm W is destined for processing node dW . Worm A is injected
at (9, 3). The wired distance to its destination is 10 hops. The distance using WRs
(in this case WR (7, 2)) is 8. The wireless distance is less than the wired distance,
but for δ = 2 the difference is not considered significant and the message is routed
without making use of WRs. Worm A is blocked by worm B, which for similar
reasons uses wires only. Worm B, on its turn, is blocked by worm C. Worm D
blocks worm C. It is injected at (4, 0) and destined for (6, 9). The wired distance
is 11, whereas the distance using WR (2, 2) is 8. As 11− 8 = 3, the yield of using
a WR is deemed significant. Worm D is first routed west to WR (2, 2), routed
wirelessly, and subsequently is routed towards its destination. Finally, worm A
blocks worm D, completing the circular wait.

The circulair wait is not necessarily a deadlock, as routing is adaptive. In this
configuration, all four worms have no escapes. The configuration is therefor a
deadlock.

143

8 Applications

A

[0, 0]

[9, 9]

B

C

D

dA

dB

dC

dD

Figure 8.10: Deadlock in WNoC. The squares are the WRs.

We have defined the wireless routing logic for a 10x10 mesh. Deadlocks are
found instantaneously. We have experimented with different values for δ. Any
δ ≤ 8 yields a deadlock. For δ > 8, the wireless routers are not used at all,
meaning that the routing logic equals a deadlock-free minimal adaptive routing.

8.5 Comparison to Taktak et al.

Taktak et al. present the deadlock checking tool ODI [138] (see Section 7.8 at
Page 129). The algorithmic complexity of their algorithm is O(N4), whereas our
tool checks for deadlock-freedom of wormhole networks in O(N3). Figure 8.11
shows a comparison with our solution for the “Shortest Path with XY” routing
function. This graph shows that the the theoretical improvement in algorithmic
complexity is reflected in experimental results as well.

Zhang et al. present the application of ODI to a fault-tolerant routing func-
tion [149]. ODI is used to establish deadlock freedom of their design in all con-
figurations with one fault in a 10x10 mesh. The total number of configurations
that needed to be checked is about 800. We analyze our fault tolerant routing
logic in all the configurations with two faults in a 20x20 mesh. This amounts to

144

8.6 Conclusion

0

500

1000

1500

2000

0 5000 10000 15000

Number of channels

Time (s)

Taktak et al.
+

+

+
+++

+
Verbeek and Schmaltz

×××××××

×

Figure 8.11: Comparison to Taktak et al.

checking 2,878,800 configurations. Additionally, DCI2 establishes livelock freedom
and connectedness as well.

8.6 Conclusion

The tool DCI2 has been presented that checks for deadlocks, livelocks, topology
violations and connectedness of the routing logic. Different faulty configurations
are verified in parallel, so that deadlocks are found quickly. DCI2 can produce
quantitative results on how many configurations are correct.

Basically, we have applied DCI2 as a debugging tool for programming routing
logic. Initially, we ran the tool on the NePA topology with simple minimal adaptive
routing logic. With two faults, the tool quickly found a configuration in which
the routing function becomes disconnected. For example, when the source and
destination are in the same row and an intermediary horizontal channel is faulty.
After adding a case distinction to the routing logic to handle this situation, we
reran the tool on the new routing logic. The change may cause a deadlock or
livelock. It may route packets away from faults, but towards a situation where
the destination is no longer reachable, effectively causing a disconnected routing
function. Iteratively, we first add or remove case distinctions, then rerun the tool
and analyze its output. We have repeated this process, until the routing logic was
completely correct. As an example, the deadlock in Figure 8.7a was found by the
tool. At this point in the design process, the second case distinction in Line 4 of
Algorithm 7 had not been added.

The irregular routing logic of the WNoC is hard to verify manually. DCI2 finds
deadlocks instantaneously in a 10x10 mesh. Because a result is quickly produced,
we could experiment with different values of δ, i.e., with more or less usage of the
wireless routers. Deadlocks have been found for all non-trivial values of δ.

The properties verified by DCI2 correspond to proof obligations required to

145

8 Applications

prove productivity of communication networks (see Chapter 3). Checking for to-
pology violations effectively checks that the routing function is correctly typed,
i.e., it has type P × P 7→ P(C). Proof Obligation 1 states the routing logic must
be connected, which is checked by DCI2. Deadlock freedom (Proof Obligation 7) is
discharged using the formally verified algorithms presented in the previous chapter.
Checking for absence of livelocks discharges Proof Obligations 11 and 12. DCI2 dis-
charges all proof obligations that concern the routing logic.

In Chapter 4 we presented a full proof of correctness of a communication net-
work with west-first routing in a two-dimensional mesh. This proof is done once
and for all, as the size of the mesh is left parametric. The proof effort took approx-
imately one week of ACL2 interaction. In contrast, DCI2 requires 1.49 seconds to
establish deadlock freedom of the same network for a 65 by 65 mesh. DCI2 is a
push-button alternative for discharging Proof Obligation 7, but works for bounded
instances only.

DCI2 provides the possibility to use formal methods during the design process
of a communication network. Assuming starvation freedom and correctness of in-
jection, any packet or wormhole network that passes a check by DCI2 is productive.

146

Part IV

Integrated Network Layer

Deadlock Verification

147

Chapter 9

Microarchitectural

Deadlock Verification

The previous part dealt with verification of the network layer in isolation. In this
part, we focus on the monolithical verification of deadlock freedom. The integrated
network model takes details into account of both the applications running on top
of the network and the transfer protocol. We address two issues. First, we require
a formal language that is sufficiently expressive to model the behavior of all three
layers. The difficulty lies in the fact that the possible behavior is unrestricted,
e.g., cache coherency protocols, master/slave protocols, credit-based flow controls,
broadcasts, etc. A language is required that is on one hand sufficiently expressive,
but on the other hand restricted and formal enough to allow efficient deadlock
detection. Our solution is to not define one language, but a family of languages.
This allows defining custom microarchitectural components, resulting in a custom
Microarchitectural Description Language (MaDL). The second problem is how to
detect deadlocks efficiently. We define a deadlock detection algorithm paramet-
erized with the language in which the communication network is defined. An
efficient, optimized and tailored deadlock detection algorithm is obtained for each
language in the family. Using SMT solvers, linear programming solvers, and invari-
ant generation the algorithm can handle message dependencies, counters, virtual
channels, parametric buffer sizes, and many other aspects of microarchitectural
models.

Figure 9.1: Work flow enabled in this chapter.

The results in this chapter are part of work in progress. We have not yet
formally proven correctness of the theorems in the ACL2 theorem prover. The
examples are mostly artificial and academic. We will clearly point to restrictions
and limitations of our approach.

149

9 Microarchitectural Deadlock Verification

Figure 9.2: Eight primitives of the xMAS language. Italicized letters indicate paramet-
ers. Gray letters indicate ports.

9.1 MaDLS

This section describes a family of languages. For each language in the family,
we can detect deadlocks efficiently. This family is based on the language xMAS
(eXecutable MicroArchitectural Specification), developed by Intel [24]. The xMAS
language is a graphical language consisting of eight primitives. It can be used to
model a communication network at the microarchitectural level. We first present
xMAS. Then, we provide a formal way of defining custom primitives. This yields
the family of languages. We provide several examples to show the expressivity of
this family.

9.1.1 xMAS: a MaDL for communication fabrics

An xMAS model is a network of primitives connected via channels. A channel
is connected to an initiator and a target. Each channel consists of three signals.
Channel signal x .irdy indicates whether the initiator is ready to write to channel
x. Channel signal x .trdy indicates whether the target is ready to read channel x.
Channel signal x .data contains data that is transferred from the initiator output
to the target input if and only if both signals x .irdy and x .trdy are set to true.

Figure 9.2 shows the eight primitives of the xMAS language. A queue stores
data and is the state holding element. A function primitive manipulates data. Its
parameter is a function that produces an outgoing packet from an incoming packet.
Typically, functions are used to convert message types and represent message
dependencies inside the fabric or in the model of the environment. Messages are
non-deterministically produced and consumed at sources and sinks. A source may
process multiple message types. A fork duplicates an incoming packet to its two
outputs. Such a transfer takes place if and only if the input is ready to send and
the two outputs are both ready to read. A join is the dual of a fork. The function
parameter determines how the two incoming packets are combined. A transfer
takes place if and only if the two inputs are ready to send and the output is ready
to read. A switch uses its function parameter to determine to which output an
incoming packet must be routed. A merge is an arbiter. It grants its output to
one of its inputs.

The execution semantics of an xMAS network consists of a combinatorial and a
sequential part (Figure 9.3). The combinatorial part updates the values of channel
signals. The sequential part is the synchronous update of all queues according to
the values of the channel signals. A simulation cycle consists of a combinatorial
and a sequential update. A sequential update only concerns queues, sinks, and
sources. We denote these primitives as sequential primitives. Other primitives are

150

9.1 MaDLS

Figure 9.3: Sequential updates regulated by combinatorial primitives

Figure 9.4: Microarchitectural model

denoted as combinatorial.
A configuration represents the current occupation of queues, i.e., the current

state. Configurations are updated when messages are produced, consumed, or
moved to one or more next queues. Similar to the previous part, we assume that
typing information is known. For each queue q, we assume that τ(q) returns the
set of packets that can be in queue q.

Example 9.1 Consider the xMAS model in Figure 9.4. Assume two request
packets are injected in queue q0 and the other source remains silent. At the fork,
the combinatorial semantics propagates to queues q1 and q2 a positive irdy signal.
As queues q1 and q2 are ready to receive, a positive trdy is propagated back to
q0. In the next sequential update, one request packet is moved to queues q1 and
q2. The remaining packet will be moved in the next simulation cycle. Requests
in q2 are routed to the sink and are eventually consumed. The requests in q1 are
blocked as no response arrives at the join. Indeed, responses injected in q0 are
blocked by the requests in q1 if q1 is full.

Figure 9.4 is a formal description of a communication fabric. For each primit-
ive, the exact semantics are defined by equations on the signals. These equations
assign a value to the irdy signals of the channels going out of the primitive. This
value represents whether the primitive is ready to transmit a value over that outgo-
ing channel. The equations also assign a value to the trdy signal of each incoming
channel. This value represents whether the primitive is ready to receive the data
at the in-channel. Lastly, the primitive semantics assign a value to the data signals
of all outgoing channels.

Running Example 9.1 The semantics of the switch are defined as follows:

o1.irdy ::= i.irdy and s(i.data)

o2.irdy ::= i.irdy and not s(i.data)

i.trdy ::= (o1.irdy and o1.trdy) or (o2.irdy and o2.trdy)

o1.data ::= i.data

o2.data ::= i.data

Output channel om (m ∈ {1, 2}) is ready to transmit if and only if the initiator of

151

9 Microarchitectural Deadlock Verification

the input channel is ready to transmit towards om and if the packet at the input
channel is routed towards channel om. Input channel i is ready to receive if and
only if one of the output channels is ready to transmit. Data at the outputs is
copied from the input.

9.1.2 A Family of MaDLs

Intel published the eight primitives in Figure 9.2. Many other useful primitives
can be imagined, such as virtual channels, scoreboards, out-of-order queues, and
adaptive switches. Some of these can be constructed in terms of the eight basic
primitives, but some, e.g., the adaptive switch, cannot. We define a core language
called xMAS0 that contains only sources, queues and sinks. To obtain a custom
language, xMAS0 is extended with user-defined custom primitives.

To create a custom primitive, the semantics of this primitive are needed. These
semantics can be described in the syntax presented in Figure 9.5. The syntax
allows the use of functions and the Boolean connectives and , or and not . Function
names are left uninterpreted. Quantifiers may be used to express semantics of
primitives with a parametric number of inputs and outputs. Input channel signals
i .irdy and i .data and output channel signal o.trdy may be used. Signal i .select
may be used to determine which in-channel gets its turn in case of multiple in-
channels. We use this signal to abstract away from the arbitration policy applied
by the primitives. The semantics is such that at most one channel is selected, i.e.,
if i .select is true for some input channel i, it implies that i ′.select is false for all
other input channels i′. The channel name isel is reserved to refer to the currently
selected channel.

prim_semantics := | prim_semantics signal ::= sign_semantics

sign_semantics := (sign_semantics and sign_semantics)

| (sign_semantics or sign_semantics) |

| forall name sign_semantics | exists name sign_semantics

| not sign_semantics | name(signal) | signal

signal := name.irdy | name.trdy | name.data | name.select

Figure 9.5: Syntax in which primitive semantics can be defined

Primitive semantics will be written in italic font. We let s ∈ S denote that
string s is a line in some semantics S. For example, if S refers to the semantics of
the switch then o2 .data ::= i.data ∈ S.

The core language xMAS0 is defined as the language that contains the source,
sink and queue:

xMAS0
def
= {queue, source, sink}

The original xMAS language can be obtained using our core language and syn-
tax, i.e., one can define xMAS = xMAS0∪{switch,merge, join, fork , f } using the
semantics given by Chatterjee et al [24].

152

9.1 MaDLS

9.1.3 Examples

2D Mesh with message dependencies

Section 1.3.1 (see Page 10) presents an example of a communication network with
message dependencies. A set of masters send out requests to slaves. Upon receiving
a request, a slave sends a response back to the master. The masters and slaves
are laid out in a 2D mesh with XY routing. Some layout dictates which nodes are
masters and which are slaves.

Figure 9.6 shows the xMAS model of this network. Channels are modelled with
queues. The processing nodes containing the routing logic are modelled in area N .
Packets arriving at a processing node are routed either into the network according
to the XY routing logic or sent to a local buffer storing the arrived packets.

The master/slave protocol is modelled in area P . Each master injects messages
into the local-in queue (see Figure 9.6a). Packets of a master with coordinates
(x, y) are restricted to the form (s, d, t) where s = (x, y), d = (x′, y′) such that
(x′, y′) denotes a slave, (x, y) 6= (x′, y′) and t = req. The source is thus typed
accordingly. If a response arrives at the local-out queue, we assume it can even-
tually be consumed. It is therefore switched to a sink. The slaves do not inject or
consume messages (see Figure 9.6b). If a request arrives, it is not consumed but
altered into a response with as destination the source of the request. It is then
switched into the interconnect according to the routing logic.

(a) Master (b) Slave

Figure 9.6: Processing nodes with XY routing (area N) and master/slave protocol
(area P).

Spidergon with write-invalidate cache coherency

We define the routing logic of a Spidergon processing node with shortest path
routing (see Figure 9.7). Additionally, a cache coherency protocol is inserted
between process P and processing node N . The protocol is a write-invalidate
protocol with snooping [136]. Processes are either processors or memory modules.
Packets are of type read or write indicating that the process performs a request
to read from or write to a memory module. Broadcasting occurs on a separate
network, which connects all caches in a broadcast ring.

153

9 Microarchitectural Deadlock Verification

Figure 9.7: Processing node of Spidergon with shortest path routing

The protocol is defined as follows. Each cache can either be valid or invalid.
If a read arrives at a valid cache, the corresponding cache line is checked. If the
cache did not contain the requested data, the read is forwarded to the intercon-
nection network to be directed to the memory module. If a read arrives at an
invalid cache it is blocked until the cache is valid. If a write arrives at a
valid cache, it changes the state of the cache to invalid and broadcasts the
write to all other caches, invalidating them as well. When all caches are invalid,
the write is performed synchronously after which all caches are set to state valid.

Figure 9.8 shows the xMAS specification of the cache model C for some process
P connected to processing node N . A read-packet is routed towards a queue
buffering the reads. If the lock is available, a read can proceed. Otherwise it
is blocked until the lock is available. A function primitive models the reading
of the corresponding cache line. In case of a cache hit, the packet is returned
to the process immediately. Otherwise it is routed through the network to the
corresponding memory module.

Figure 9.8: xMAS model of cache coherency protocol

A write packet is routed towards a queue buffering the writes. The fork du-
plicates the write: one is sent to the lock of the current cache. The second packet

154

9.2 Deadlock Detection Algorithm

is sent to the next cache in the broadcast ring through the acq_lock_out line.
It enters the next cache through the acq_lock_in line. Here it is again duplic-
ated, so that it can again lock the current cache and be forwarded to the next
cache. This duplication proceeds until a write arrives back at the acq_lock_in
line. In this case, the entire ring has received the write and thus all the forks have
duplicated exactly one write for each lock. All caches are locked. The write is
routed from the lock to a second fork. One write is sent to the join, one is sent to
the join of the next cache. The joins ensure that all locks on the broadcast ring
are released synchronously. The actual writing that occurs when a write packet is
sent is represented by a sink.

West-first routing in a 2D mesh

So far, we have used traditional primitives only. In this example we define a
custom primitive, namely the adaptive switch. This switch has one input and m
outputs (see Figure 9.9a). Figure 9.9b shows its semantics. The adaptive switch
can receive a packet from its input channel i if there exists an outgoing channel om
at which a transfer can occur. Each outgoing channel om is ready to transmit if the
packet at channel i can be routed towards channel om. Data is simply transferred
from the input towards the output.

(a) Primitive

i.trdy ::= exists m · (om.irdy and om.trdy);
om.irdy ::= (i.irdy and sm(om.data));
om.data ::= i.data;

(b) Semantics

Figure 9.9: Adaptive Switch

Using the adaptive switch, we have defined a 2D mesh topology with west-
first routing [61]. Figure 9.10 shows a processing node with coordinates (X,Y).
An incoming packet p is analyzed. We assume its destination coordinates are
(p.X, p.Y). Packets are only routed westwards, if the packet has just been injected
or if the packet was already heading for the western direction. Packets can always
go east if the destination is east of the current processing node. Similarly, packets
can always go north if the destination is north. However, turns from south to
north are prohibited. Section 4.2 contains more details on west-first routing.

We have introduced a family of languages. Each language consists of the three
core primitives source, sink and queue with some additional custom primitives.
For each custom primitive, semantics have to be specified that determine when
and how the primitive transfers a packet from its inputs to its outputs.

9.2 Deadlock Detection Algorithm

In this section, we define a deadlock detection algorithm that takes as parameter
not only the communication network in which deadlocks are to be found, but also

155

9 Microarchitectural Deadlock Verification

Figure 9.10: Processing node with west first routing

the language in which the network is defined. A deadlock is a situation in which
some channel permanently wants to send a packet, but cannot transmit it. Such a
channel is called a dead channel. The algorithm presented in this chapter searches
for such dead channels. More specifically, it searches for a reachable configuration
in which a channel is permanently blocked but not permanently idle. The major
purpose of the algorithm is to reduce the search for a reachable configuration
to the search for a solution of a linear integer arithmetic problem (LIAP). This
problem has been well-studied and many different efficient tools exist to deal with
them [49, 40, 6]. The reduction makes use of blocking and idle formulas for each
core primitive and each custom primitive. These formulas express necessary and
sufficient conditions under which channels are permanently blocked or idle. We
automatically generate these formulas from the semantics of the custom primitives
and use them in our deadlock detection algorithm.

First, we recapitulate the formal definition of deadlock provided by Gotmanov
et al. [65]. Then we explain by example how the search for a reachable deadlock is
reduced to the search for a solution of a LIAP. Finally, we show how blocking and
idle formulas of custom primitives are used in our deadlock detection algorithm.

9.2.1 Definition of Deadlock

A dead channel c has – ins ome reachable configuration – its c.irdy signal set to
true and its c.trdy signal stuck-at false. Formally, the LTL definition of a dead
channel is as follows:

Dead(c) = ♦(c.irdy ·�¬c.trdy)

Example 9.2 In Example 9.1 above, output channel o of queue q1 is dead.
Consider the execution in which k requests are injected by the first source, with
k the size of queue q1 (see Figure 9.11). In this execution, signal o.irdy is set to
true as there is a packet at the head of the queue. Signal o.trdy is stuck-at false
as the join will never receive a response on its second input.

Gotmanov et al. simplify this definition of deadlock using persistency [65]. A
channel is persistent if its signals – once they are set – are stable until a transfer

156

9.2 Deadlock Detection Algorithm

Figure 9.11: Microarchitectural model

occurs. Gotmanov et al. prove that xMAS networks are persistent. This allows
them to express deadlocks in terms of blocked and idle channels.

Definition 9.1
A channel is permanently blocked, notation Block(c), if and only if eventually its
trdy signal is permanently low.

Block(c)
def
= ♦�(¬c.trdy)

A channel is permanently idle, notation Idle(c), if and only if eventually its irdy
signal is permanently low.

Idle(c)
def
= ♦�(¬c.irdy)

A channel c is dead, notation Dead(c), if and only if it is blocked and not idle.

Dead(c)
def
= Block(c) ∧ ¬ Idle(c)

9.2.2 Deadlock LIAPs

We formulate LIAPs in which there exists a variable for each queue q and each
packet p that can be in queue q. The LIAPs are constructed in such a way that a
solution assigns to each queue a number of packets in such a way that the resulting
configuration is a deadlock. If no solution exists, there is no deadlock. The value
of variable #q.p represents the number of packets of type p in queue q. The value
of variable #q stores the total number of packets in the queue. We assume that
for each queue q, the size of q can be accessed with the variable q.size.

Example 9.3 Consider again the deadlock in Figure 9.11. In this deadlock
configuration, requests are assigned to queue q1. The number of requests in queue
q1 is represented by variable #q1.req which is equal to q1.size in any deadlock.
Queue q2 does not contain responses. Therefore, #q2.rsp = 0.

For each queue q and for each packet p ∈ τ(q), a LIAP is created. We provide
the LIAP for queue q1 and packet req for the network in Figure 9.11.

If a request is permanently blocked in queue q1, then there must be at least
one request in this queue. The following constraint is added to the LIAP:

#q1.req ≥ 1 (Request in q1)

The join blocks this packet only if no response arrives at its second input. In order
for this to happen, queue q2 may not contain responses.

157

9 Microarchitectural Deadlock Verification

#q2.rsp = 0 (No responses in q2)

In order for q2 to permanently be idle for responses, queue q1 must be full. A third
constraint is induced:

#q1 = q1.size (q1 is full)

The LIAP assembled so far has many solutions. The deadlock described above is
one of them, but additional constraints are required to rule out bogus solutions.
For example, a bogus solution might assign three packets to queue q2 even when
the size of the queue is only two. For each queue q, constraints are added to the
LIAP to rule out illegal configurations.

#q ≤ q.size (Legality constraints)

Queue q0 can contain requests and responses. To enforce that it cannot contain
other packets and to enforce a link between the variables #q.p and #q, constraints
of the following form are added:

#q =
∑

p∈τ(q)

#q.p (Typing constraints)

A solution to the LIAP assembled so far yields a legal deadlock configuration.
However, this configuration is not necessarily reachable from the initial configura-
tion. For example, a solution might fill queue q1 with responses and leave queue q2
empty, even though the corresponding configuration is not reachable. Invariants
are added to the LIAP to rule out unreachable configurations. In our example,
the number of responses in q1 is always equal to the number of responses in q2.

#q1.rsp = #q2.rsp (Invariant)

The LIAP obtained this way has multiple solutions. All of these solutions are
legal and reachable deadlocks. The configuration described in Example 9.3 is one
of them.

9.2.3 Algorithm Paraphernalia

The algorithm consists of two parts: function BlockDetect determines whether
a channel c can be permanently blocked, and function IdleDetect determines
whether some channel can be permanently idle. To detect a dead channel, we
execute:

DeadDetect ≡ ¬IdleDetect ∧BlockDetect

Both functions take as parameters a channel c that is to be explored, the current
packet p, the communication network N , and the language L in which network N
is defined. They return a LIAP that is given to an SMT solver.

As shown in the previous example, formulating the LIAP requires the following:

• For a queue q and a packet p, constraints must be computed that reflect the
permanent blocking of p in q;

• Legality and typing constraints must be computed to rule out illegal config-
urations;

158

9.2 Deadlock Detection Algorithm

• Invariants must be computed to rule out unreachable configurations.

The legality and typing constraints can easily be computed. A technique gen-
erating the invariants has been presented by Chatterjee et al. [22, 23]. The issue
to be tackled is to determine efficiently which constraints have to be added to
represent that a packet is permanently blocked. Different combinatorial primit-
ives induce different conditions under which channels are permanently blocked or
idle. Since we allow custom combinatorial primitives, we have to be able to derive
the desired behavior of the algorithm from the user-defined semantics of these
primitives.

For the three basic primitives in xMAS0, the behavior of the algorithm is fixed.
For custom primitives, the behavior of the algorithm is not fixed. We use blocking
and idle formulas as an intermediary between primitive semantics and the behavior
of the algorithm [65]. Blocking and idle formulas represent the exact conditions
that have to be satisfied for a channel to be permanently blocked or idle.

Running Example 9.2 For packet p, the blocking formula for the switch is
defined as follows:

Block(i) ≡ if s(p) then Block(o1) else Block(o2)

A packet p is permanently blocked by a switch if and only if the channel to which
the packet is routed is permanently blocked. The idle formulas for the switch are
defined as follows:

Idle(o1, p) ≡ Idle(i, p) or not s(p)

Idle(o2, p) ≡ Idle(i, p) or s(p)

An outgoing channel of a switch is permanently idle for packet p if and only if
either packet p never arrives at the switch or packet p is not routed towards the
channel.

The idle formula of the switch directs the algorithm to recursively compute
whether the input channel can be permanently idle, to compute whether the packet
is routed towards the current channel, and to compute the disjunction of both
results. As another example the blocking formula of a join tells the algorithm
that in order to establish whether a join can be permanently blocked it must
perform both a forward search to establish that the output of the join can be
permanently blocked and a backward search to determine that the other input
can be permanently idle. The essence of blocking and idle formulas is that they
completely determine the desired behavior of our algorithm.

For each custom primitive, the semantics determine the conditions under which
the primitive is permanently blocked or idle. Thus the semantics determine the
blocking and idle formulas and consequently, the semantics determine the behavior
of the algorithm for custom primitives. Figure 9.12 presents an overview.

Figure 9.12: From semantics of primitives to behavior of the algorithm

159

9 Microarchitectural Deadlock Verification

We have created an automatic translation from primitive semantics to blocking
and idle formulas. We postpone details on this translation to Section 9.3. The
translation from primitive semantics to blocking formulas is denoted JKp

B
. The

translation to idle formulas is denoted JKp
I
. Our translations satisfy the following

theorems:
notJc.trdyKp

B
⇐⇒ Block(c)

notJc.irdyKp
I
⇐⇒ Idle(c, p)

If one looks up the semantics of the trdy (irdy) signal of some channel and trans-
lates the semantics to a blocking (idle) formula, this formula returns false if and
only if the channel is permanently blocked (idle).

Running Example 9.3 The primitive semantics of the switch are translated to
the following blocking formula:
not(Ji.trdyKp

B
) ≡ (not s(p) orBlock(o1)) and (s(p) orBlock(o2))

The code for the three basic primitives is fixed. The code for custom primitives
is automatically generated from blocking and idle formulas. Given a formula F , the
generated code is denoted by “F ”. Boolean connectives are translated to special C
functions disjunct, conjunct and negate. As we quantify over finite domains,
quantifiers are translated to for-loops of con(dis)junctions. Occurrences of Block

and Idle are translated to recursive calls to BlockDetect and IdleDetect.

Running Example 9.4 Based on the blocking formula yielded by the transla-
tion in Running Example 9.3, the following code is executed by the algorithm to
determine whether a switch x can be permanently blocking.
That is, “notJc.trdyK

B
” denotes the following code:

1: ret0 = disjunct(negate(s(p)),BlockDetect(x.o1, p,N, L)
2: if ret0 then
3: ret1 = disjunct(s(p),BlockDetect(x.o2, p,N, L)
4: else
5: ret1 = false

6: end if
7: return conjunct(ret0, ret1)

The generated code is compiled so that it can be executed by the algorithm.
For sake of presentation, we assume an eval function that takes a piece of C code,
compiles it, and executes it.

9.2.4 Deadlock Detection Algorithm

Algorithm 11 shows the pseudo code of our algorithm for determing whether a
channel can be permanently blocked. Let the target of the current channel be a
queue q. In order to be blocking, queue q must be full. Formula #q = q.size
is the default return value (Line 2). If the current queue has not been visited
yet, it is marked as visited (Line 4). For each packet p′ ∈ τ(q), the algorithm
recursively determines the formulas representing whether the next primitive can
be permanently blocking (Lines 5–7). Queue q is permanently blocking if for one
of the packets p′ the corresponding formula is feasible. The algorithm disjunctively
adds to the return value the conjunct of formula #q.p′ ≥ 1 and the return value of

160

9.2 Deadlock Detection Algorithm

Algorithm 11 BlockDetect(c, p,N, L)

1: if c.trgt is a queue named q then
2: ret := #q = q.size
3: if ¬visitedB[q] then
4: visitedB[q] = true
5: for all p′ ∈ τ(q) do
6: ret ∨= #q.p′ ≥ 1 ∧BlockDetect(q.out, p′, N, L)
7: end for
8: visitedB[q] = false
9: end if

10: return ret
11: else if c.trgt is a sink then
12: return false
13: else if c.trgt is a source then
14: * Will never occur *\
15: else if c.trgt is a custom primitive in L named x then
16: return eval(“notJc.trdyKp

B
”)

17: end if

the recursive call. Subsequently, it marks the current queue as unvisited (Line 8).
A sink is never permanently blocked, as we assume fair sinks (Line 12). If the target
of the channel is some custom primitive x, then the behavior of the algorithm
is determined by the corresponding blocking formula (Line 16). The semantics
of primitive x are translated into a blocking formula. C code that unfolds this
formula is automatically generated and executed.

Algorithm 12 shows the pseudo code of our algorithm for determining whether
a channel can be permanently idle. Let the initiator of the current channel be a
queue q. A queue can be permanently idle for packet p for two reasons: either it
does not contain packet p and its input is permanently idle for packet p (Line 4),
or another packet p′ is permanently blocked at the head of the queue (Line 7). A
source is permanently idle for packet p if and only if packet p is not injected at
the source, as we assume fair sources (Line 15).

Algorithms 11 and 12 provide the main structure of the algorithms. Many
optimizations and features are added:

• Before running the algorithm, the typing information needs to be computed,
i.e., we need to compute τ(q) for all queues q. To obtain this information we
perform exhaustive simulations. For each source and for each possible packet
p injected at the source, we simulate the injection in an empty network until
it is consumed. During this simulation packet p is added to τ(q) for each
visited queue.

Consider the network in Figure 9.13. The network is deadlock-free. To
establish this, it must be established that always eventually a packet “5”
arrives at queue q0. During the simulation of packet “0” in source src0,
queue q0 is visited 6 times. This establishes that τ(q0) = {0, 1, . . . , 5}. Using
this information, our algorithm needs to visit queue q0 just once to establish

161

9 Microarchitectural Deadlock Verification

Algorithm 12 IdleDetect(c, p,N, L)

1: if c.init is a queue named q then
2: if ¬visitedI[q][p] then
3: visitedI[q][p] = true
4: ret := #q.p = 0 ∧ IdleDetect(q.in, p,N, L))
5: visitedB[q] = true
6: for all p′ ∈ τ(q) such that p′ 6= p do
7: ret ∨= #q.p′ ≥ 1 ∧BlockDetect(q.out, p′, N, L)
8: end for
9: visitedB[q] = false

10: visitedI[q][p] = false
11: end if
12: return ret
13: else if c.init is a sink then
14: * Will never occur *\
15: else if c.init is a source named s then
16: return p ∈ τ(s)
17: else if c.init is a custom primitive in L named x then
18: return eval(“notJc.irdyKp

I
”)

19: end if

deadlock freedom of the network.

Figure 9.13: xMAS model

• The forwards exploration in BlockDetect (Line 5) creates a disjunction for
each packet p′ ∈ τ(q). The number of different types of packets can be large.
For example, in a 16x16 2D mesh with masters and slaves, packets consist of
17 bits. This would require 217 recursive calls. Many of the packets cause the
exact same routing behavior. The algorithm automatically classifies packets
that cause equal routing behavior into equivalence classes and performs at
most one recursive call per equivalence class. For example, in the 2D mesh,
a packet in a channel can be routed to at most five different other channels
(North, South, West, East and Local). Instead of performing 217 recursive
calls, only 5 are necessary.

• At all times, the algorithm keeps track of the path leading from the initial
queue to the current primitive. This path is always a conjunction of linear
constraints, i.e., a linear program. Each modification of the path is checked

162

9.2 Deadlock Detection Algorithm

for consistency using the linear programming solver lp_solve. This way,
unnecessary unfolding of primitives is kept to a minimum.

• At each combinatorial primitive, either disjunctions, conjunctions or combin-
ations of both are unfolded. At all times, the algorithm keeps track of the
total number of unfolded conjunctions. If the algorithm encounters a visited
queue, it checks whether this number is equal to zero. If this is the case,
all conjunctions necessary to create a deadlock are unfolded. The current
formula is sent to an SMT solver (we have used Yices [49]). If a solution is
found, a deadlock is returned.

• We support standard optimizations for Boolean connectives, e.g, for a con-
junction the second argument is not evaluated if the first argument evaluates
to false. Expensive recursive calls are always the last arguments of disjunc-
tions and conjunctions.

• The algorithm keeps track of which formulas are sent to Yices. If at any time
a formula is subsumed by an earlier call to Yices, then this result is reused
instead of performing a new Yices call.

• The algorithm can deal with the symbolic packet ANY, indicating that the
primitive must be permanently idle for any packet.

9.2.5 Restrictions

Many custom primitives can be described using the syntax in Figure 9.5. However,
some limitations on the syntax are necessary.

1. The network may not contain combinatorial cycles. This ensures termina-
tion.

2. If a primitive has multiple in-channels, we assume that it fairly selects which
of these gets its turn, i.e., we assume that all primitives ensure starvation
freedom. Without this restriction packets that are starving can permanently
block other packets, resulting in new deadlocks.

3. A primitive selects an in-channel only if its initiator is ready.

4. We assume the semantics have been De Morganized as much as possible.

5. The negation cannot be applied to irdy , trdy and select signals. Our blocking
and idle equations can only be expressed in terms of Block and Idle. To
translate, e.g., ¬i.irdy , we need to establish �♦¬i.irdy , for which we must
establish ♦� i.irdy . Thus, we must establish that channel i is at some point
always able to transmit, i.e., it is eager. Checking efficiently for eagerness is
still an open question.

6. Functions can take one data signal as input only. To obtain typing inform-
ation, we simulate the injection of packets in isolation, i.e, we simulate the
injection of each packet at each source in an empty network. If functions can
take multiple packets, this way of obtaining typing information is no longer
accurate.

163

9 Microarchitectural Deadlock Verification

A consequence of these restrictions is that we cannot express, e.g., a priority merge
in our syntax. Such a merge gives priority to input iH over the other input iL. The
semantics of iL.trdy require the negation of iH .irdy . Another desired primitive that
we cannot handle is the unrestricted join, which takes its two inputs and computes
an output based on both inputs.

The current algorithm heavily relies on invariants to rule out unreachable dead-
locks. The stronger the invariants, the less false deadlocks. We present some
examples of false deadlocks found by our tool.

Asynchronous deadlocks Neither our tool nor the invariant generation takes
into account that packets are moved synchronously throughout the network.
The detected deadlocks are deadlocks under asynchronous semantics, but
not necessarily under synchronous semantics. Consider the network in Fig-
ure 9.14. One packet is duplicated into two cycles. Both tokens move around
in their cycles until at some clock cycle simultaneously the upper token
reaches queue q1 and the lower token reaches q2. If this happens, both tokens
are removed from the cycles and send into a deadlock. Under synchronous
semantics, this never occurs as the tokens move in lock step fashion: they
are either simultaneously in queues q0 and q2 or in queues q1 and q3. Under
asynchronous semantics, the deadlock may occur. Our algorithm returns
this deadlock. To exclude this deadlock, invariants are required dealing with
the synchronizity between queues.

Figure 9.14: False deadlock found by our tool. The sink is dead and the source injects
just one token.

Deadlocks with false ordering of packets Our approach finds false deadlocks
in networks where deadlock is prevented by a specific ordering of messages.
Consider the network in Figure 9.15. Blue and red tokens are injected sim-
ultaneously into queues q0 and q1. The contents of these queues are always
equal, including the order in which the tokens are queued. Our algorithm
returns a false deadlock, where queue q0 contains – in this order – a blue
token and a red token, and q1 a red token followed by a blue one. Invariants
dealing with the order of different packets in different queues are needed to
exclude this false deadlock.

Deadlocks due to rational variables Consider the network in Figure 9.16. One
packet is injected at the source. This packet is randomly send to either
queue q0 or queue q1. As only one packet can reach the join, the join is

164

9.3 Correctness Proof

Figure 9.15: False deadlock found by our tool.

dead. Consequently, queues q2, q3, q4 and q5 will always be empty. Our
tool returns this deadlock. However, a false deadlock is returned as well.
During generation of invariants the variables are not considered integers but
rationals, because of efficiency reasons. The invariant generator first assesses
that #q0 +#q1 ≤ 1. Subsequently, it states that queue q2 can have at most
1/2 packets. As variable #q2 is considered an integer by our algorithm, the
algorithm correctly derives that queue q2 is always empty. However, the
invariant generation duplicates the half packet to queues q3 and q4. Thus
the invariant #q3 + #q4 ≤ 1 is found. The invariant generation proceeds
with adding the invariant that #q5 ≤ 1, as queue q5 is the sum of queues q3
and q4. Based on this invariant, our algorithm finds a false deadlock where
queue q5 contains a packet. The issue is, intuitively, that (1/2) · 2 is equal
to 1 for rational numbers, but is equal to 0 for integers.

Figure 9.16: False deadlock found by our tool. The crossed sink is dead and the source
injects just one token.

9.3 Correctness Proof

The algorithm presented in the previous section heavily relies on a translation
from semantics to blocking and idle formulas. We present these translations and
prove theorems stating their correctness. Using these theorems, we prove correct-
ness of the algorithm for any language L in the family of languages presented in
Section 9.1.

9.3.1 Automatic Generation of Blocking and Idle Formulas

The blocking and idle formulas of a primitive is expressed using the syntax specified
in Figure 9.17. Formulas may consist of linear equations, predicates Block and
Idle, auxiliary functions, and the Boolean operators and, or and not. Signal

165

9 Microarchitectural Deadlock Verification

i.select can be used to assume that channel i is selected. Formulas will be
written in typewriter font.

form := (form and form) | (form or form) | not form

| forall name · form | exists name · form

| true | false | lin. eq. | Block(name,name) | Idle(name,name)

| i.select =⇒ form

Figure 9.17: Syntax in which blocking and idle formulas can be defined

Given the behaviour of some primitive x specified in the syntax presented in
Figure 9.5, we automatically generate blocking formulas according to the rules
given in Figure 9.18.

Let S be some primitive semantics. The translation of S is parameterized
with the current packet p. The translation of the primitive semantics S into
blocking formulas for packet p is denoted by JSKp

B
. Intuitively, the translation of

the semantics of a signal yields the conditions under which the signal can always
eventually be set to true. We translate signal in.trdy , which yields the conditions
under which this signal can always eventually be set to true. The negation of these
conditions represent the conditions under which in.trdy can never be set, i.e., the
conditions under which channel in is eventually permanently blocked.

JsignalKp
B

:= JsemanticsKp
B

iff signal ::= semantics ∈ S

Jom.trdyKp
B

:= notBlock(om)

Jin.irdyKp
B

:= true

Jin′ .irdyKp
B

:= not Idle(in′ , ANY(in′))

Jin.dataKp
B

:= p

Jin′ .dataKp
B

:= ANY(in′)

Jf(S)Kp
B

:= f(JSKp
B
)

J(S0 and S1)KpB := (JS0KpB and JS1KpB)
J(S0 or S1)KpB := (JS0KpB or JS1KpB)

Jnot SKp
B

:= notJSKp
B

Jforall SKp
B

:= forallJSKp
B

Jexists SKp
B

:= existsJSKp
B

Ji.selectKp
B

:= forall i′ 6= i · i′.select =⇒ Ji′.trdyKANY(i
′)

B

Figure 9.18: Translation rules from primitive semantics to blocking formulas.

Signal om.trdy is eventually set if and only if channel om can never be per-
manently blocked. Signal om.trdy is translated to the negation of the blocking

166

9.3 Correctness Proof

formulas of the output channel. For signal in′ .trdy there are two cases. If n′ = n,
trivially the signal is eventually set, as we assume channel in contains a packet
and thus the initiator of this channel is set. Otherwise, the channel is eventually
set if it is not permanently idle for some packet p′. Constant ANY(c) indicates that
the current packet can be any packet that can be in channel c. The translation
of data signal in′ .data of an input channel requires the same case distinction. If
n′ = n, the packet in channel i is simply p, which is a parameter to the trans-
lation. Otherwise, the channel contains any type of data. Finally, signal i.select
is eventually true if and only if any other in-channel i′ can never be permanently
selected. When translating i.select , the translation will remember that channel
i is selected. This is used to translate the reserved channel name isel with the
translation of i. Also, this is required to ensure termination of the translation.

Running Example 9.5 The primitive semantics of the switch are translated as
follows:
Block(i) ≡ not(Ji.trdyKp

B
)

≡ not((Ji.irdyKp
B
and Js(p)Kp

B
and Jo1.trdyKp

B
) or

(Ji.irdyKp
B
and notJs(p)Kp

B
and Jo2.trdyKp

B
))

≡ not((true and s(p) and notBlock(o1)) or
(true and not s(p) and notBlock(o2)))

≡ (not s(p) orBlock(o1)) and (s(p) orBlock(o2))

We define the translation of primitive semantics to idle equations (see Fig-
ure 9.19). This translation is dual to the translation to blocking equations. A
notable difference is the translation of data signals at input channels. Say we want
to establish idle equations for packet p for output channel om. We translate the
data at some input channel in with the set of all packets p′ for which, if signal
o.data is translated under assumption i.data = p′, this translation yields packet p.

9.3.2 Correctness Proofs of Translations

The proofs in this section uses equalities of LTL formulas as they are defined by
Baier and Katoen [5]. In addition, we use the following tautologies:
Name Abbr. Law
Distributivity of � D� �(a ∧ b) ≡ � a ∧� b
Distributivity of ♦ D♦ ♦(a ∨ b) ≡ ♦ a ∨ ♦ b
Partial distributivity of � PD� � a ∨� b =⇒ �(a ∨ b)
Partial distributivity of ♦ PD♦ ♦(a ∧ b) =⇒ ♦ a ∧ ♦ b
Lemma 9.1 L9.1 �(♦(a) ∨ ♦(b)) =⇒ �♦(a) ∨�♦(b)
Lemma 9.2 L9.2 ♦(a) ∧ ♦(b) =⇒ ♦(a ∧ b)

We introduce the following adhoc notation: F@t returns true if and only if
LTL-formula F is true at time slot t. E.g., �F can be expressed as ∀t · F@t
(similarly for ♦). Lemma 9.1 is a general LTL tautology. Lemma 9.2 does not
hold for LTL formulas in general, but is specific to xMAS networks. It uses the
fact that xMAS networks are persistent. We first prove these lemma’s.

167

9 Microarchitectural Deadlock Verification

JsignalKp
I

:= JsemanticsKp
I

iff signal := semantics ∈ S

Jin.irdyKp
I

:= not Idle(in, Jin.dataKp
I
)

Jom.trdyKp
I

:= true

Jom′ .trdyKp
I

:= notBlock(im′)

Jin.dataKp
I

:= {p′ | Jo.dataKp
′

B
= p}

Jf(S)Kp
I

:= f(JSKp
I
)

J(S0 and S1)KpI := (JS0KpI and JS1KpI)
J(S0 or S1)KpI := (JS0KpI or JS1KpI)

Jnot SKp
I

:= notJSKp
I

Jforall SKp
I

:= forallJSKp
I

Jexists SKp
I

:= existsJSKp
I

Ji.selectKp
I

:= forall i′ 6= i · i′.select =⇒ Ji′.trdyKi′.dataI

Figure 9.19: Translation rules from primitive semantics to idle formulas.

Lemma 9.1

�(♦(S0) ∨ ♦(S1)) =⇒ �♦(S0) ∨�♦(S1)

Proof.

✘
✘
✘
✘¬�♦S0

♦�¬S0
∃w

(�¬S0)@w

�(♦(S0) ∨ ♦(S1))
∀t

(♦S0 ∨ ♦S1)@t
∀t

(♦S0)@t ∨ (♦S1)@t
∀t ≥ w

(♦S1)@t

�♦S1

¬�♦S0 =⇒ �♦S1

�♦S0 ∨�♦S1

Lemma 9.2 Assuming that both semantics S0 and S1 must hold for a transfer
to occur, if both semantics hold eventually, then eventually both semantics hold.

♦(S0) ∧ ♦(S1) =⇒ ♦(S0 ∧ S1)

Proof. By assumption we know that there exists n0 and n1 such that S0@n0 and
S1@n1. In [65] the execution semantics of xMAS have been proven persistent over
irdy and trdy signals. This means that these signals do not change from true to
false until a transfer occurs. Assume n0 < n1. By persistency, semantics S0 will
hold at all time slots n such that n0 ≤ n ≤ n1 because until time slot n1 no transfer
occurs. In particular, we know that S0@n1. Similarly we know that S1@n0 for the

168

9.3 Correctness Proof

case where n1 < n0. Thus (S0 ∧S1)@max(n0, n1). As we have a witness at which
both S0 and S1 hold, we have established ♦(S0 ∧ S1).

Note that, e.g., ¬i.irdy is not persistent, i.e., even if no transfer occurs, i.irdy
may change from false to true. Restriction 5 ensures that S0 and S1 do not contain
such signals.

We now prove the major lemma’s required for proving correctness of our trans-
lations. Lemma 9.3 states the translation of semantics S to blocking formulas
yields a formula that is true if and only if the semantics always eventually hold.
Lemma 9.4 states the same for the translation to idle formulas. Our final theorems
are directly implied by these lemma’s.

Lemma 9.3 The translation of semantics S to blocking formulas yields a formula
which is true if and only if the semantics are always eventually true.

JSKp
B
⇐⇒ �♦S

Proof. The proof is by induction on the structure of S. We present some of the
interesting cases:
Jom.trdyKp

B
= ¬Block(om.trdy)
= ¬♦�¬om.trdy
⇐⇒ �♦ om.trdy By duality

Ji.selectKp
B

= ∀ i′ 6= i · i′.select =⇒ Ji′.trdyKi′.data
B

⇐⇒ ∀ i′ 6= i · i′.select =⇒ �♦ i.trdy By IH
The target of any channel i′ will become true if it is selected. The initiator is true,
by Restriction 3. So any channel i′ 6= i will eventually be ready to transfer once it
is selected. By Restriction 2 there will be a finite number of transfers until it gets
its turn. Thus we have established �♦ i.select .
JS0andS1KpB = JS0KpB ∧ JS1KpB

⇐⇒ �♦(S0) ∧�♦(S1) By IH
⇐⇒ �(♦(S0) ∧ ♦(S1)) By D�

=⇒ �♦(S0 ∧ S1) By L9.2
Lemma 2 applies here, since by Restriction 4 both S0 and S1 are needed for a
transfer to occur. Since also:
�♦(S0∧S1) =⇒ �(♦(S0) ∧ ♦(S1)) By PD♦

We have established that:
JS0andS1KpB ⇐⇒ �♦(S0 ∧ S1)

JS0 or S1KpB = JS0KpB ∨ JS1KpB
⇐⇒ �♦(S0) ∨�♦(S1) By IH
=⇒ �(♦(S0) ∨ ♦(S1)) By PD�

=⇒ �♦(S0 ∨ S1) By D♦

Since also:
�♦(S0∨S1) =⇒ �(♦(S0) ∨ ♦(S1)) By D♦

=⇒ �♦(S0) ∨�♦(S1) By L9.1
We have established that:
JS0 or S1KpB ⇐⇒ �♦(S0) ∨�♦(S1)

169

9 Microarchitectural Deadlock Verification

Lemma 9.4 The translation of semantics S to idle formulas yields the conditions
under which the semantics will always eventually be true.

JSKp
B
⇐⇒ �♦(S ∧ om.data = p)

Proof. The proof is by induction on the structure of S. We show here the proof
for the interesting case, the translation of signal in.irdy:
Jin.irdyKpI = ¬ Idle(in, Jin.dataKpI)

= ¬ Idle(in, {p
′ | Jom.dataKp

′

B
= p})

By Lemma 9.3 we know that Jom.dataKp
′

B
translates correctly to om.data under as-

sumption that channel in is filled with packet p′.
⇐⇒ ¬ Idle(in, {p

′ | in.data = p′ =⇒ om.data = p})
= ∃p′ · (in.data = p′ =⇒ om.data = p) ∧ ¬ Idle(in, p′)
= ∃p′ · (in.data = p′ =⇒ om.data = p) ∧

∃p′·�♦(in.irdy ∧ in.data = p′)
⇐⇒ �♦(in.irdy ∧ om.data = p)

The correctness of our translation from primitive semantics to blocking formu-
las is expressed by the following theorem. It states that a channel is blocked if
and only if its translation is false.

Theorem 9.1 For any input channel in of a primitive with semantics S, assum-
ing in.data = p, the channel is permanently blocked if and only if the translation
to blocking formulas yields false.

Block(in) ⇐⇒ ¬(Jin.trdyKi.data
B

)

Proof.
Block(in) = ♦�¬in.trdy

⇐⇒ ¬�♦ in.trdy By duality
⇐⇒ ¬(Jin.trdyKp

B
) By L9.3

A similar theorem is proven for the translation from primitive semantics to idle
formulas.

Theorem 9.2 For any output channel om of a primitive with semantics S the
channel is permanently idle for packet p if and only if the translation to idle for-
mulas yields false.

Idle(om, p) ⇐⇒ ¬(Jom.irdyKp
I
)

Proof.
Idle(om, p) = ♦�(¬om.irdy ∨ om.data 6= p)

⇐⇒ ¬�♦(om.irdy ∧ om.data = p) By duality
⇐⇒ ¬(Jom.irdyKp

I
) By L9.4

We have presented and proven correct the automatic generation of blocking and
idle formulas. We now use these translations to prove correctness of our algorithm
for any language L.

170

9.3 Correctness Proof

9.3.3 Correctness Proof of the Algorithm

The proof of correctness is by induction on the language L. The base case is when
L = xMAS0, i.e., when only queues, sinks and sources can be used to model the
network N . We then prove that adding a custom primitive preserves correctness.

First, we formalize correctness. Let L be a set of xMAS primitives. Let N (L)
denote the set of valid networks that can be expressed using primitives in language
L only. Let Q(N) denote the set of queues in network N .

Definition 9.2 Let L be a set of primitives. A deadlock detection algorithm
BlockDetect is correct for L, notation correct(BlockDetect, L), if and only
if for any network N defined in the language L it returns true if and only if there
exists a deadlock.

correct(BlockDetect, L) ⇐⇒

(∀N ∈ N (L) · ∀q ∈ Q(N) ·

((∃p ∈ τ(q) ·BlockDetect(q.out, p,N, L)) ⇐⇒ Block(q.out))))

A similar definition of correctness is used for IdleDetect.

Theorem 9.3 The algorithm is correct for xMAS0.

correct(BlockDetect, xMAS0) ∧ correct(IdleDetect, xMAS0)

Proof. We prove that for any channel c and any packet p:

BlockDetect(c, p,N, xMAS0)) ⇐⇒ Block(c)

The proof is by induction over BlockDetect. The base case is when the target
of the channel is a sink. As we assume fair sinks, Block(c) is false. The inductive
case is when the target is a queue q. Two cases arise: either the queue has already
been visited, or not. Consider the first case. An invariant of the algorithm is that
for any visited queue, the following constraints have been added to the LIAP that
is returned by BlockDetect:

∨

p′∈τ(q)

#q.p′ ≥ 1 ∧BlockDetect(q.out, p′, N, L)

We will refer to this constraint with ret0. The induction hypothesis states that
ret0 is necessary and sufficient for a permanently blocked packet p′ at the head of
queue q. Since channel c can only be permanently blocked if queue q is full and
if there is a permanently blocked packet at the head of the queue, the only extra
condition that is to be met is that queue q is full. Line 2 of Algorithm 11 adds
this constraint to the returned LIAP. The second case, when the queue has not
been visited yet, holds for similar reasons.

We prove that for any channel c:

IdleDetect(c, c.data,N, xMAS0)) ⇐⇒ Idle(c, p)

The proof is by induction over IdleDetect. The base case is when the target of
the channel is a source. As we assume fair sources, Idle(c, p) is true if and only if

171

9 Microarchitectural Deadlock Verification

packet p is not injected at the source. The inductive case is when the target is a
queue q. A queue is permanently idle for packet p if and only if it does not contain
p and its incoming channel is idle for p, or if there can be a permanently blocked
packet p′ at the head of the queue. Two cases arise: either the queue has already
been visited, or not. Consider the first case. An invariant of the algorithm is that
for any visited queue, the following constraint has been added to the LIAP that
is returned by IdleDetect:

(#q.p = 0 ∧ IdleDetect(q.in, p,N, L))

∨
∨

p′∈τ(q)

p′ 6= p =⇒ #q.p′ ≥ 1 ∧BlockDetect(q.out, p′, N, L)

No new constraints have to be added to the LIAP as this constraint is necessary
and sufficient for permanent idleness of queue q for packet p. The second case,
when the queue has not been visited yet, holds for similar reasons.

Theorem 9.4 Let X be a primitive whose semantics are specified in semantics
S. Let L be a set of primitives. If an algorithm is correct for L, the algorithm is
correct for L ∪{X}.

correct(BlockDetect, L) =⇒ correct(BlockDetect, L ∪ {X})

correct(IdleDetect, L) =⇒ correct(IdleDetect, L ∪ {X})

Proof. First, we prove that BlockDetect terminates. The algorithm keeps track
of visited queues, to ensure termination in case of cycles of queues. Combinatorial
primitives are not marked visited, but as there are no combinatorial cycles between
queues, the algorithm will always eventually reach a queue when unfolding blocking
and idle formulas of combinatorial primitives. The algorithm terminates for all
networks without combinatorial cycles.

Secondly, we prove correctness of BlockDetect by induction. For the induct-
ive case, let i be the in-channel of some primitive x currently under exploration.
By induction hypothesis, we know that the algorithm correctly computes block-
ing equations of the out-channels of primitive x and idle equations for the other
in-channels. If x is a primitive of type X, by Theorem 9.1 the algorithm unfolds
a necessary and sufficient condition for blocking of in-channel i of primitive x. If
x is not a primitive of type X, then it is a primitive in xMAS. The algorithm is
correct by assumption correct(BlockDetect, xMAS).

The exact similar reasoning holds for IdleDetect.

Finally, we can formulate our main theorem stating correctness of algorithm
for any language L.

Corollary 9.1 The algorithm is correct for any set of primitives L.

∀L · correct(BlockDetect, xMAS0 ∪ L)

∀L · correct(IdleDetect, xMAS0 ∪ L)

172

9.4 Experimental Results

9.4 Experimental Results

Section 9.1.3 presented several examples of communication fabrics. In this section,
we present experimental results of running our algorithm on these examples and
variations on them.

2D Mesh

We experimented with different layouts of masters and slaves. Curve 2D-MS shows
the results where all nodes are both master and slave, i.e., they both inject requests
and send out responses upon receiving a request. Curve 2D-MS-LR has been
obtained with masters on the left part of the mesh and slaves on the right part.
We can prove absence of deadlocks in approximately 1.5 seconds for a 16x16 mesh
consisting of 4864 primitives. Masters on even columns and slaves on odd columns
yields curve 2D-MS-EO. Deadlocks are found within 2 seconds in a 16x16 mesh.
As reference, we have also included results on a 2D mesh without masters and
slaves, i.e., a standard mesh with XY routing (curve 2D-XY).

Finally, we have also run our tool on a 2D mesh with adaptive west-first routing.
Curve 2D-WF shows that proving meshes deadlock-free with adaptive routing can
still be done efficiently. We have proven a 16x16 mesh deadlock-free within 1
second.

0.001

0.01

0.1

1

10

0 50 100 150 200 250

Number of cores

Time(s)

2D-MS

+

+

+
+

+
2D-MS-EO

×

×

×
×

×
2D-MS-LR

∗

∗

∗

∗ ∗
2D-WF

�

�

�

�
�

2D-XY

�

�

�

�
�

Figure 9.20: Experimental results

Spidergon

We have experimented with several variations of the Spidergon chip. First, we
have the basic Spidergon with shortest path routing. Our algorithm finds dead-
locks instantaneously (curve SP). We have added virtual channels to the ring and
modified the routing logic in such a way that deadlocks are prevented. Our al-
gorithm assesses deadlock freedom of a ring with 100 cores (consisting of 1444
xMAS components) in 0,12 seconds.

173

9 Microarchitectural Deadlock Verification

We have added the write-invalidate cache coherency protocol to the basic
Spidergon design, i.e., without virtual channels. This does not increase the run-
ning time significantly (curve SP-CCP). Deadlocks are found quickly. We have
experimented with limiting the cores that can inject messages. If only the upper
right quarter of the ring injects read and write messages, the network becomes
deadlock-free. Curve SP-CCP-Q shows the corresponding results: a ring with 32
cores is proven deadlock-free within 30 seconds.

Finally, we have modelled a Spidergon with credit-based flow control (curve
SP-CC). We have added a credit control unit to the basic Spidergon, limiting the
total number of packets in the ring to some constant C. With each injection of
a packet into a local queue, a token is sent to the credit control unit. With each
consumption of a packet, a token is removed from the credit control unit. If C is
too large, deadlocks are found quickly. With C = N · k − 1, where N is the total
number of nodes and k the size of the queues, the network becomes deadlock-free.
We have established deadlock freedom of a credit-based Spidergon with 32 cores
in 193 seconds.

0.001

0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30

Number of cores

Time(s)

SP-CC

+

+

+

+
+

+
SP-CCP-Q

×

×

×
×

×

×
SP-CCP

∗
∗

∗ ∗
∗

∗
SP

� �
� � �

�

Figure 9.21: Experimental results

9.5 Conclusion

This chapter presented an overview of our work on verifying the interconnect
integrally. A family of langauges has been presented, together with a deadlock
detection algorithm for each language in this family. We have implemented an
initial prototype of this algorithm to show the feasibility of our approach.

There is a trade-off between the expressivity of the languages and the tract-
ability of deadlock detection. For example, we restrict the use of the logical neg-
ation operator in expressing semantics of new components, to exclude networks
where deadlock is dependent on eagerness of channels. Checking efficiently for
eagerness is still an open problem. As another example, functions associated to
primitives must be unary to ensure that efficient simulation of packet injections

174

9.5 Conclusion

is possible. These restrictions limit the use of some primitives that are commonly
used in communication fabrics. Examples are the unrestricted join and the priority
merge. However, we were able to model complex examples with, e.g., credit-based
flow control, message dependencies, or cache chorency protocols. In all examples,
deadlock detection was scalable up to non-trivial sized networks.

The examples presented in this chapter were mostly academic. Applying our
algorithm to realistic and industrial examples is very interesting future work. The
algorithm heavily relies on invariants to rule out unreachable deadlocks. Currently
we have implemented Intels technique for invariant generation. Extending this
technique with more accurate and significant invariants would increase the real-
world applicability of our algorithm. We also expect it to increase the scalability
of our algorithm, as more restrictive invariants generally result in a lesser search
space.

In contrast to DCI2, our algorithm requires copious input. It requires a com-
plete microarchitectural model of the application, network and link layer. We
are currently working on a graphical tool linked to both the invariant generator
and our deadlock detection algorithm to facilitate the design of microarchitectural
models. This tool also allows custom primitives, and objects composed of other
primitives or other composite objects. The result would enable an incremental
and compositional approach to deadlock detection in communication fabrics in
the style of D-finder [9, 102].

175

Epilogue

Summary

This thesis deals with formal and mechanical verification methods for proving
correctness of the interconnects on microchips. Future microchips are expected to
be built from many cores, which perform computations in parallel. Network-on-
Chip (NoC) is a new paradigm in which a sophisticated infrastructure takes care
of the communication between the cores.

The ubiquity of microchips mandates precise and thorough methods for estab-
lishing their correctness. The contribution of this thesis consists of formal methods
focused on the NoC paradigm which are on one hand easy to use and on the other
hand scalable. Where there previously was no scalable way to establish of some
network that it is always able to successfully complete every pending communica-
tion, this thesis presents algorithms which automatically establish this for a large
family of networks.

In Part II, we start our effort by formalizing the notion of correctness we are
interested in. We coin this notion productivity. A network is productive if and only
if at all times any message can eventually be injected, and any injected message
will always eventually arrive at its destination. Basically, a productive network
behaves like a point-to-point out-of-order network with non-deterministic delay.

Productivity is an emergent property depending on interactions between all
the constituents of the network. We show that in order to prove productivity of
the network as a whole, it suffices to prove several smaller isolated properties on
the network constituents. Productivity has been broken down into five network
properties: functional correctness, deadlock freedom, livelock freedom, starvation
freedom and liveness of injection. Most of these properties have further been
broken down into elementary proof obligations. Many of these proof obligations
are easily discharged. Deadlock freedom, however, is both hard to prove and hard
to split into smaller and more elementary proof obligations. Therefore, the remain-
ing parts of this thesis are devoted to automatically proving absence of deadlocks
for communication interconnects.

It is common practice to reason over networks in different layers of abstraction
using the OSI model. This approach has been applied for deadlock freedom as well.
Typically, both the network- and the application layer are proven deadlock-free.

177

9 Microarchitectural Deadlock Verification

The drawback of this approach is that even when both layers have been proven
deadlock-free in isolation, cross-layer deadlocks may still occur due to interactions
between layers.

This thesis considers two models of on on-chip communication fabrics. The
isolated network model abstracts away from both the application layer and the
link layer. Effectively, this isolates the network (that is, the routing, injection,
type of switching). Conversely, the integrated network model takes into account
all details of the communication fabric, the applications running on top of it and
the underlying link layer.

Part III presents both the theory and practice of proving deadlock freedom
of communication networks under the isolated network model. We present neces-
sary and sufficient conditions for deadlock freedom in both packet and wormhole
networks. For packet networks, we present an algorithm that decides deadlock free-
dom in O(|A|), with A the number of routing dependencies in the network. We
show that a similar polynomial algorithm for wormhole networks is not feasible:
deciding deadlock freedom of wormhole networks is shown to be co-NP-complete.
We therefore present an algorithm that is incomplete, but polynomial. If it claims
that the network is deadlock-free, then this result is sound. However, if a deadlock
is found, this deadlock may not actually be legal or reachable from the empty ini-
tial configuration. The algorithm decides deadlock freedom in O(|A||C|), with A
the number of routing dependencies in the network and C the number of channels.

Subsequently, we incorporate efficient C implementations of our algorithms in
the tool DCI2. Besides deadlocks, DCI2 detects livelocks, misrouting and other
routing related issues. We have applied DCI2 to various non-trivial examples.
We prove correctness of a complicated adaptive fault-tolerant routing function in
20x20 mesh up to two faulty channels. This amounts to proving 2,878,800 con-
figurations deadlock-free. Also, DCI2 confirmed the existence of a deadlock in an
initial design of an NoC with irregular routing due to wireless transmissions in the
WNoC designed at the University of California, Irvine.

Part IV presents both a language and a deadlock detection algorithm for the in-
tegrated network model. The language is based on the xMAS language designed by
Intel. The xMAS language is restricted to a set of eight standard primitives, which
allows relatively efficient formal verification. We have generalized this language
to support user-defined primitives. This generalization ensures that the language
is sufficiently expressive, while preserving the possibility of efficient formal verific-
ation. Using xMAS with additional user-defined primitives allows the modelling
of application layer behavior such as cache coherency protocols and master/slave
behavior, the modelling of network layer behavior such as adaptive routing and
irregular topologies and the modelling of link layer behavior such as in-network
synchronization and counters.

The deadlock detection algorithm presented in Part IV is able to analyze any
network that consists of the eight standard xMAS primitives and user-defined
primitives. It is therefore able to find cross-layer deadlocks caused by, e.g., message
dependencies or wrongly sized counters. The algorithm is not complete. If it
establishes deadlock freedom this result is sound, but if it finds a deadlock then
this deadlock might not actually be reachable. We have used Intel’s invariant

178

9.5 Conclusion

generation technique to rule out unreachable deadlocks as much as possible.

Our algorithm has established deadlock freedom of, e.g., a 2D mesh topology
with west-first routing, different types of messages and master/slave application-
behavior, or the Spidergon ring topology with a cache coherency protocol and on-
chip packet counting.

There is a trade-off between detecting deadlocks of the network in isolation,
or applying the integrated approach. The advantages of considering the network
layer separately, is that complete – necessary and sufficient – conditions can be
defined. For packet networks, such a condition is decidable in polynomial time. For
wormhole networks, a polynomial algorithm can still prove absence of deadlocks
of many networks. In contrast, our deadlock detection algorithm for xMAS is
exponential and uses solvers of NP-complete problems such as satisfiability and
integer linear programming. We have not been able to formulate a static necessary
and sufficient condition for the absence of deadlocks. As a result, any deadlock
found still has to be scrutinized in order to assess that it is actually reachable.

Conversely, the advantages of considering the network monolithically is the
reliability of a positive result. Once a network has been proven deadlock-free –
taken into consideration the applications running on top of it and the link layer
underneath it – this result is sound. If one proves the network layer deadlock-free
in isolation, one is still not assured of the absence of cross-layer deadlocks.

Overall, both approaches have their value. Since our tool DCI2 requires relat-
ively little input and provides copious output, it can be used during the design
phase to debug a network. In contrast, once a stable design has been achieved,
one can take the effort of formalizing this design in its entirety to prove absence
of deadlock once and for all.

The ACL2 theorem prover has been of crucial importance while creating this
thesis. We have extensively made use of typical ACL2 features such as its high
degree of automation and the executability of the ACL2 code. Also, various non-
typical features like the ability to simulate second-order logic or using single-
threaded objects to create efficiently executable LISP code have been of great
value. Most importantly, there was a large and apposite library available in GeNoC
to build upon and to extend. A major disadvantage is the fact that there is a gap
between the ACL2 code and its presentation on paper. Due to the fact that the
logic of ACL2 is mostly quantifier-free and first-order, the formulation of various
theorems and definitions differ from their clean mathematical representations in
this thesis.

An example of the added value of proving theorems in ACL2 can be found in
the proofs of correctness of our algorithms in Chapter 7. Both algorithms have
a post-processing step. This step corrects some undesired behavior of the initial
steps. This correction is only required for some specific networks and for some
specific traces of the algorithms. We would not have found the necessity of these
post-processing steps without mechanically proving their correctness.

179

9 Microarchitectural Deadlock Verification

Future Work

To fully justify the relevance of the contents of this thesis, some additional claims
require further research. In Section 1.1, we argue that analytical methods are
necessary to prove correctness of NoCs, since simulation does not scale to future
communication-centric SoCs. It would be interesting to compare the algorithms
presented in this thesis with state-of-the-art simulation tools. Similarly, we claim
that current model checkers do not scale to future NoCs. We have not yet com-
pared our algorithms with state-of-the-art model checkers. Also, our isolated net-
work model can benefit from more justification. To justify assumptions that, e.g.,
all sources fairly send messages to all others sources, we could prove that without
these assumptions, deciding deadlock freedom becomes NP-complete (even for
packet networks).

Even though we have proven co-NP-completeness of deciding deadlock freedom
of wormhole networks, we are still planning to make a complete decision proced-
ure. Such a procedure could be obtained by linking the output of our polynomial
algorithm to an SMT solver to see whether the found deadlock can actually be
filled by pairwise disjoint worms. Linking the output to an integer programming
solver could have the benefit of finding minimal deadlocks, which can significantly
increase the readability of the output.

DCI2 has been used to prove absence of deadlocks of fault-tolerant routing
functions. It is run in a brute-force – but parallel – fashion on millions of different
configurations where two channels are faulty. For non-trivial networks, we have
not been able to scale to three faulty channels. It is an interesting challenge to deal
with faulty channels in a more symbolical fashion and to prevent this combinatorial
blow-up.

As for our xMAS deadlock detection algorithm, a very interesting direction of
future work is dealing with hierarchies of xMAS networks. To facilitate the creation
of composite objects, to prove them deadlock-free in separation, and subsequently
to reuse this proof in larger xMAS models may significantly increase the scalability
of our algorithm. Combined with a graphical xMAS designer tool, this work may
lead to a scalable and user-friendly tool for proving deadlock freedom of a large
class of communication fabrics.

180

Appendix A

Datastructures and Notation

A.1 Sets

A set is a – possibly infinite – collection of objects. A set does not contain du-
plicates and the order in which the objects are stored is irrelevant. That is, one
cannot access the first object in a set. A set S from objects o0, o1, . . . is denoted
with S = {o0, o1 . . .}. Membership of object x in set S is denoted with x ∈ S. The
empty set is denoted with ∅. The cardinality of set S is denoted with |S|.

Two sets S1 and S2 are equal, notation S1 = S2, if and only if all their objects are
equal.

S1 = S2
def
= (∀x ∈ S1 · x ∈ S2) ∧ (∀x ∈ S2 · x ∈ S1)

Set S1 is a subset of set S2, notation S1 ⊆ S2, if and only if all objects in S1 are
members of S2:

S1 ⊆ S2
def
= ∀x ∈ S1 · x ∈ S2

The powerset of set S, notation P(S), is the set of all subsets of S.

P(S)
def
= P such that S′ ∈ P ⇐⇒ S′ ⊆ S

Given set S and predicate P : S 7→ B, the set comprehension from P , notation
{x ∈ S | P (x)}, is defined as the set with all objects in S that satisfy P :

{x ∈ S | P (x)}
def
= S′ such that ∀x ∈ S′ · x ∈ S ∧ P (x)

The removal of object x from S, notation S − x, is defined as the set S without
object x.

S − x
def
= S′ such that x′ ∈ S′ ⇐⇒ x′ ∈ S ∧ x′ 6= x

Given two sets S1 and S2 the union of S1 and S2, notation S1 ∪S2, is defined as
the set containing exactly all objects of S1 and S2.

S1 ∪S2
def
= U such that x ∈ U ⇐⇒ (x ∈ S1 ∨ x ∈ S2)

181

A Datastructures and Notation

Set {o0, o1, . . .}
Membership x ∈ S
Empty set ∅
Cardinality |S|
Equality S1 = S2

Subset S1 ⊆ S2

Powerset P(S)
Set comprehension S′ = {x ∈ S | P (x)}
Removal S − x
Union S1 ∪S2

Mutual union
⋃

S
Intersection S1 ∩S2

Mutual intersection
⋂

S

Table A.1: Overview of set-related notation.

Given a set of sets S, the mutual union of S, notation
⋃

S is defined as the union
of all objects in S.

⋃

S
def
= U such that x ∈ U ⇐⇒ (∃S′ ∈ S · x ∈ S′)

Given two sets S1 and S2 the intersection of S1 and S2, notation S1 ∩S2, is defined
as the set containing exactly all shared objects of S1 and S2.

S1 ∩S2
def
= I such that x ∈ I ⇐⇒ (x ∈ S1 ∧ x ∈ S2)

Given a set of sets S, the mutual intersection of S, notation
⋂

S is defined as the
intersection of all objects in S.

⋂

S
def
= I such that x ∈ I ⇐⇒ (∀S′ ∈ S · x ∈ S′)

Table A.1 provides an overview.

A.2 Lists

A list is a – finite – collection of objects. A list may contain duplicates. The order
in which the objects are stored is relevant. A list L from objects o0, o1, . . . , ok
is denoted with L = [o0, o1 . . . , ok]. Membership of object x in list L is denoted
with x ∈ L. The empty list is denoted with []. The number of objects in list L is
denoted with |L|. Given a natural number n < |L|, the nth object of list L can be
accessed by L[n]. The head of the list is defined as the first object, i.e., L[0]. The
tail of list L, notation tail(L), is defined as the remainder.

Two lists L1 and L2 are equal, notation L1 = L2, if and only if they have the
same object at each index.

L1 = L2
def
= |L1| = |L2| ∧ ∀0 ≤ n < |L1| · L1[n] = L2[n]

182

A.2 Lists

The removal of object x from list L, notation L − x, is defined as list L without
object x.

L− x
def
=

if |L| = 0 []
if L[0] = x tail(L)− x
otherwise [L[0], tail(L)− x]

The last object in list L, notation last(L), is the object at the end of the list.

last(L)
def
= L[|L| − 1]

The count of object x in list L, notation count(x, L), is the number of occurrences
of x in L.

count(x, L)
def
= count(x, tail(L)) +

if L[0] = x 1
otherwise 0

List L1 is a sublist of list L2, notation L1 ⊑ L2, if and only if each object in L1

has at least as many occurrences in L2.

L1 ⊑ L2
def
= ∀x ∈ L1 · count(x, L1) ≤ count(x, L2)

List L is a subset of set S, notation L ⊆ S, if and only if each object in L is a
member of S.

L ⊆ S
def
= ∀x ∈ L · x ∈ S

The list powerset of set S, notation L(S), is defined as the set containing any list
L that is a subset of set S.

L(S)
def
= S′ such that L ∈ S′ ⇐⇒ L ⊆ S

Given list L and predicate P : L 7→ B, the list comprehension from P , notation
[x ∈ L | P (x)], is defined as the list with all objects in L that satisfy P . In the
list, the order of the elements is preserved:

[x ∈ L | P (x)]
def
=

if |L| = 0 []
if P (L[0]) [L[0]([x ∈ tail(L) | P (x)])]
otherwise [x ∈ tail(L) | P (x)]

List L1 is a permutation of list L2, notation L1 ⋍ L2, if and only if they have the
same objects:

L1 ⋍ L2
def
= L1 ⊑ L2 ∧ L2 ⊑ L1

The union of two lists L1 = [o10, o
1
1, . . . , o

1
k] and L2 = [o20, o

2
1, . . . , o

2
m], notation

L1 ⊔ L2, is the appending of L2 after L1.

L1 ⊔ L2
def
= [o10, o

1
1, . . . , o

1
k, o

2
0, o

2
1, . . . , o

2
m]

183

A Datastructures and Notation

The mutual union of a set of lists S, notation
⊔

S, is the set containing all objects
in all lists in S.

⊔

S
def
= U such that x ∈ U ⇐⇒ (∃L ∈ S · x ∈ L)

The intersection of two lists L1 and L2, notation L1 ⊓L2, is a list with all objects
in lists L1 and L2.

L1 ⊓ L2
def
=

if |L1| = 0 []
if L1[0] ∈ L2 ∧ L1[0] /∈ tail(L1) [L1[0](tail(L1) ⊓ L2)]
otherwise tail(L1) ⊓ L2

The mutual intersection of a set of lists S, notation
d
S, is the set containing all

objects shared by all lists in S.

l
S

def
= U such that x ∈ U ⇐⇒ (∀L ∈ S · x ∈ L)

Set of lists S is pairwise disjoint, notation
d
S = [], if and only if each list in S

shares no objects with the other lists in S:

l
S = ∅

def
= ∀L1, L2 ∈ S · L1 6= L2 =⇒ L1 ⊓ L2 = []

Set of lists P is a partition for list L, notation P ⊕ L, if and only if P is a set of
pairwise disjoint lists that cover L.

P ⊕ L
def
=

l
P = ∅ ∧

⊔

P ⋍ L

Table A.2 provides an overview.

A.3 Tuples

A tuple is a – finite – collection of objects. Each object can be accessed through a
key. Given a set of keys {k0, k1, . . . , kn}, a tuple type is denoted with 〈k0, k1, . . . , kn〉.
Given a tuple t, the object stored under key k can be accessed through t.k.

A.4 Graphs

A graph G is defined by a set of vertices V and a function A : V 7→ P(V). All
graphs in this thesis are directed multigraphs. Function A represents the arcs in
the graph and assigns a set of neighbors to each vertex. There is an arc (v0, v1) in
the graph if and only if v1 ∈ A(v0). In all definitions in this section, we assume a
graph G defined by vertex set V and arc function A : V 7→ P(V).

The set of parents of vertex v, notation parents(v,G), is the set of vertices of
which v is a neighbor.

parents(v,G)
def
= {p ∈ V | v ∈ A(p)}

184

A.4 Graphs

List [o0, o1, . . . , ok]
Membership x ∈ L
Empty list []
Size |L|
nth object L[n]
Head L[0]
Tail tail(L)
Equality L1 = L2

Remove L− x
Last element last(L)
Count count(x, L)
Sublist L1 ⊑ L2

Subset L ⊆ S
List powerset L(L)
List comprehension [x ∈ L | P (x)]
Permution L1 ⋍ L2

Union L1 ⊔ L2

Mutual union
⊔

S
Intersection L1 ⊓ L2

Mutual intersection
d
S

Pairwise disjoint
d
S = ∅

Partition P ⊕ L

Table A.2: Overview of list-related notation.

185

A Datastructures and Notation

A list of vertices π is a path, notation path(π,G), if and only if each vertex in π
is a neighbor of its successor. The head of the path is its first object.

path(π,G)
def
= π ∈ L(V) ∧ |π| > 0 ∧ ∀0 < i < |π| − 1 · π[i] ∈ A(π[i+ 1])

A list of vertices π is a cycle, notation cycle(π,G), if and only if it is a path where
the last object is a neighbor of the head of the path.

cycle(π,G)
def
= path(π,G) ∧ last(π) ∈ A(π[0])

A set of vertices S is a knot, notation knot(S,G), if and only if it is a set of vertices
where each vertex has at least one neighbor and all neighbors are included in S.

knot(S,G)
def
= S 6= ∅ ∧ ∀v ∈ S · v ∈ V ∧ |A(v)| > 0 ∧A(v) ⊆ S

Table A.3 provides an overview.

Graph G = (V,A)
Vertices V
Arc function A : V 7→ P(V)
Parents parents(v,G)
Path path(π,G)
Head of path π[0]
Cycle cycle(π,G)
Knot knot(S,G)

Table A.3: Overview of graph-related notation.

186

Appendix B

List of Terms

Abbreviation Meaning

PS Packet Switching
WHS Wormhole Switching
Iso Isolated Network Layer
Int Integrated Network Layer

ACL2 . 24
Block . 157
Channel . 8
Configuration (GeNoC). 36
Configuration (Int) 151
Configuration (Iso) 73
DCI2 . 14, 131
Deadlock (Int) 157
Deadlock (PS, Iso) 76
Deadlock (WHS, Iso) 87
Deadlock avoidance 20
Deadlock freedom 32
Deadlock prevention 20
Deadlock-attainable (WHS) 115
Deadlock-immune (PS) 104
Deadlock-immune (WHS) 115
Deadlock-sensitive (PS) 104
Deadlock-sensitive (WHS) 115
Dependency graph 20, 74
Escape (PS, Iso) 77
Escape (WHS, Iso) 87
Evacuation . 32, 43
Flit. 8
Functional correctness 32, 40
Functional instantiation 25
GeNoC. 24
HERMES . 53
Idle . 157
Injection (GeNoC) 36

Legal (PS, Iso) . 76
Legal (WHS, Iso). 86
Livelock freedom. 32, 45
Liveness of injection 32, 44
Local liveness 32, 46
MaDL . 150
Message dependency 8, 153
Network (Iso) . 72
Next hop . 8
NoC. 3
Packet switching 18
Persistency. 156
Productivity 33, 49
Proof Obligation 25
Quasi deadlock (WHS) 113
Routing function 8
Routing function (GeNoC) 36
Routing function (Iso) 72
SoC . 3
Spidergon . 11, 173
Starvation freedom 32, 48
Starvation prevention (GeNoC) 36
Switching (GeNoC). 37
Travel (GeNoC) 35
Typing information. 74
West-first routing 53, 155
Wormhole switching 19
XMAS . 150

187

Bibliography

[1] H. Amjad. Model Checking the AMBA Protocol in HOL. Technical report,
University of Cambridge, Computer Laboratory, September 2004. Cited on
page 23.

[2] C. Arbib, G. F. Italiano, and A. Panconesi. Predicting deadlock in store-and-
forward networks. In Foundations of Software Technology and Theoretical
Computer Science, volume 338, pages 123–142, 1988. Cited on page 128.

[3] J. H. Bahn, S. E. Lee, and N. Bagherzadeh. Design of a router for Network-
on-Chip. International Journal of High Performance Systems Architecture,
1:98–105, 2007. Cited on page 131.

[4] J. H. Bahn, S. E. Lee, and N. Bagherzadeh. On design and analysis of a feas-
ible Network-on-Chip (NoC) architecture. In Fourth International Confer-
ence on Information Technology (ITNG ’07), pages 1033–1038, April 2007.
Cited on pages 131, 134, and 135.

[5] C. Baier and J.-P. Katoen. Principles of model checking. The MIT Press,
2008. Cited on pages 6, 10, 63, and 167.

[6] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Handbook of Satisfiability,
volume 185, chapter Satisfiability Modulo Theories (26), pages 825–885. IOS
Press, 2009. Cited on pages 6 and 156.

[7] K. Baukus, Y. Lakhnech, and K. Stahl. Parameterized verification of a
cache coherence protocol: Safety and liveness. In Revised Papers from the
Third International Workshop on Verification, Model Checking, and Abstract
Interpretation (VMCAI ’02), pages 317–330, London, UK, 2002. Springer-
Verlag. Cited on page 66.

[8] L. Benini and G. De Micheli. Networks on Chips: a new SoC paradigm.
IEEE Computer, 35(1):70–78, January 2002. Cited on pages 3 and 17.

[9] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis. D-finder: A tool for
compositional deadlock detection and verification. In Proceedings of the 21st
International Conference on Computer Aided Verification (CAV’09), pages
614–619, 2009. Cited on page 175.

[10] C. Berg and C. Jacobi. Formal Verification of the VAMP Floating Point
Unit. In Proceedings of the Advanced Research Working Conference on Cor-
rect Hardware Design and Verification Methods (CHARME’01), volume 2144
of LNCS, pages 325–339, 2001. Cited on page 24.

[11] P. E. Berman, L. Gravano, G. D. Pifarré, and J. L. C. Sanz. Adaptive
deadlock- and livelock-free routing with all minimal paths in torus networks.
In SPAA ’92: Proceedings of the fourth annual ACM symposium on Parallel
algorithms and architectures, pages 3–12, New York, NY, USA, 1992. ACM.
Cited on page 20.

[12] Y. Bertot. A short presentation of Coq. In International Conference on
Theorem Proving in Higher Order Logics (TPHOLS’08), pages 12–16, 2008.
Cited on page 24.

[13] W. Bevier, W. Hunt Jr, J S. Moore, and W. Young. An approach to systems
verification. Journal of Automated Reasoning, 5(4):411–428, 1989. Cited on
page 24.

[14] S. Beyer, C. Jacobi, D. Kröning, D. Leinenbach, and W. J. Paul. Putting it
all together - formal verification of the VAMP. STTT, 8(4-5):411–430, 2006.
Cited on page 24.

[15] T. Bjerregaard and S. Mahadevan. A survey of research and practices of
Network-on-Chip. ACM Computing Surveys (CSUR), 38(1), June 2006.
Cited on pages 6 and 65.

[16] E. Bolotin, Z. Guz, I. Cidon, R. Ginosar, and A. Kolodny. The power of
priority: NoC based distributed cache coherency. In First International
Symposium on Networks-on-Chip (NOCS), pages 117–126, May 2007. Cited
on page 65.

[17] L. Bononi and N. Concer. Simulation and analysis of Network on Chip
architectures: ring, Spidergon and 2D mesh. In Proceedings of the conference
on Design, automation and test in Europe (DATE’06), pages 154–159, 2006.
Cited on page 6.

[18] R. V. Boppana and S. Chalasani. A comparison of adaptive wormhole routing
algorithms. SIGARCH Computer Architecture News, 21(2):351–360, 1993.
Cited on page 20.

[19] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz. A generic model for form-
ally verifying NoC communication architectures: A case study. In First In-
ternational Symposium on Networks-on-Chip (NOCS), pages 127–136, May
2007. Cited on page 27.

[20] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz. Executable formal spe-
cification and validation of NoC communication infrastructures. In Proceed-
ings of the 21st annual symposium on Integrated circuits and system design
(SBCCI’08), pages 176–181, 2008. Cited on page 27.

[21] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz. A formal approach to the
verification of Networks on Chip. EURASIP Journal on Embedded Systems,
2009. Cited on pages 24, 27, and 55.

[22] S. Chatterjee and M. Kishinevsky. Automatic generation of inductive invari-
ants from high-level microarchitectural models of communication fabrics. In
T. Touili, B. Cook, and P. Jackson, editors, Proceedings of the 22nd In-
ternational Conference on Computer Aided Verification (CAV’10), volume
6174 of Lecture Notes in Computer Science. Springer, July 2010. Cited on
pages 24 and 159.

[23] S. Chatterjee and M. Kishinevsky. Automatic generation of inductive in-
variants from high-level microarchitectural models of communication fabrics.
Formal Methods in System Design, 40(2):147–169, 2012. Cited on pages 24
and 159.

[24] S. Chatterjee, M. Kishinevsky, and Ü. Y. Ogras. Quick formal modeling of
communication fabrics to enable verification. In Proceedings of the IEEE In-
ternational High Level Design Validation and Test Workshop (HLDVT’10),
pages 42–49, 2010. Cited on pages 24, 150, and 152.

[25] R. C. Chen. Deadlock prevention in message switched networks. In Proceed-
ings of the 1974 annual conference - Volume 1, ACM ’74, pages 306–310,
New York, NY, USA, 1974. ACM. Cited on pages 17 and 20.

[26] X. Chen, Y. Yang, G. Gopalakrishnan, and C.-T. Chou. Efficient methods for
formally verifying safety properties of hierarchical cache coherence protocols.
Formal Methods in System Design, 36:37–64, 2010. Cited on page 66.

[27] Y.-R. Chen, W.-T. Su, P.-A. Hsiung, Y.-C. Lan, Y.-H. Hu, and S.-J. Chen.
Formal modeling and verification for Network-on-Chip. In International
Conference on Green Circuits and Systems (ICGCS,10), pages 299–304,
June 2010. Cited on page 23.

[28] A. A. Chien and J. H. Kim. Planar-adaptive routing: low-cost adaptive
networks for multiprocessors. Journal of the ACM (JACM), 42(1):91–123,
1995. Cited on page 20.

[29] G.-M. Chiu. The odd-even turn model for adaptive routing. IEEE Transac-
tions on Parallel and Distributed Systems, 11(7):729–738, July 2000. Cited
on page 22.

[30] C. Chou, P. K. Mannava, and S. Park. A simple method for parameter-
ized verification of cache coherence protocols. In Formal Methods in Com-
puter Aided Design (FMCAD ’04), pages 382–398. Springer, 2004. Cited on
page 66.

[31] M. Coppola, S. Curaba, M. Grammatikakis, G. Maruccia, and F. Papariello.
OCCN: A network-on-chip modeling and simulation framework. In Proceed-
ings of the Design, Automation and Test in Europe Conference (DATE’04),
pages 174–179, 2004. Cited on page 133.

[32] M. Coppola, M. Grammatikakis, R. Locatelli, G. Mariuccia, and L. Pieralisi.
Design of interconnect processing units Spidergon STNoC. CRC Press, 2009.
Cited on pages 11, 27, and 133.

[33] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001. Cited on
page 22.

[34] R. Cypher and L. Gravano. Requirements for deadlock-free, adaptive packet
routing. In Proceedings of the eleventh annual ACM symposium on Principles
of distributed computing (PODC ’92), pages 25–33, New York, NY, USA,
1992. ACM. Cited on page 20.

[35] W. J. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer
networks using virtual channels. IEEE Transactions on Parallel and Dis-
tributed Systems, 4:466–475, 1993. Cited on page 20.

[36] W. J. Dally and C. Seitz. Deadlock-free message routing in multiprocessor
interconnection networks. IEEE Transactions on Computers, (36), 1987.
Cited on pages 8, 10, 18, 20, 23, 62, 71, and 127.

[37] W. J. Dally and B. Towles. Route packets, not wires: on-chip interconnection
networks. In Proceedings of Design Automation Conference (DAC), pages
684–689, 2001. Cited on pages 17 and 65.

[38] W. J. Dally and B. Towles. Principles and practices of interconnection net-
works. Morgan Kaufmann Publishers, 2004. Cited on pages 19 and 20.

[39] P. de Massas and F. Pétrot. Comparison of memory write policies for NoC
based multicore cache coherent systems. In Proceedings of the Design, Auto-
mation and Test in Europe Conference (DATE’08), pages 997–1002, March
2008. Cited on page 65.

[40] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In C. Ramakrish-
nan and J. Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer Berlin / Heidelberg, 2008. Cited on page 156.

[41] G. Delzanno. Automatic verification of parameterized cache coherence proto-
cols. In Proceedings of Computer Aided Verification (CAV’00), pages 53–68,
2000. Cited on page 66.

[42] G. Delzanno. Constraint-based verification of parameterized cache coherence
protocols. Formal Methods in System Design, 23:257–301, 2003. Cited on
page 66.

[43] J. Duato. A new theory of deadlock-free adaptive routing in wormhole net-
works. IEEE Transactions on Parallel and Distributed Systems, 4:1320–1331,
1993. Cited on pages 20 and 21.

[44] J. Duato. A necessary and sufficient condition for deadlock-free adaptive
routing in wormhole networks. IEEE Transactions on Parallel and Distrib-
uted Systems, 6(10):1055–1067, October 1995. Cited on pages 8, 18, 20, 21,
22, 71, 93, and 95.

[45] J. Duato. A necessary and sufficient condition for deadlock-free adaptive
routing in cut-through and store-and-forward networks. IEEE Transactions
on Parallel and Distributed Systems, 7(8):841–1067, August 1996. Cited on
pages 21, 22, 82, 85, and 91.

[46] J. Duato. Personal website. http://www.gap.upv.es/~jduato/, Ac-
cessed on 2012-09-14. Cited on page 21.

[47] J. Duato, O. Lysne, R. Pang, and T. Pinkston. Part I: A theory for deadlock-
free dynamic network reconfiguration. IEEE Transactions on Parallel and
Distributed Systems, 16(5):412–427, May 2005. Cited on page 23.

[48] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks, An Engin-
eering Approach. Morgan Kaufmann Publishers, 2003. Cited on pages 7, 19,
20, 21, 31, 36, 61, 63, 71, 85, 91, 93, and 99.

[49] B. Dutertre and L. de Moura. The Yices SMT solver. Available at
http://yices.csl.sri.com/tool-paper.pdf, 2006. Cited on pages 156 and 163.

[50] E. Emerson and V. Kahlon. Exact and efficient verification of parameterized
cache coherence protocols. In Correct Hardware Design and Verification
Methods, volume 2860 of Lecture Notes in Computer Science, pages 247–
262. Springer Berlin / Heidelberg, 2003. Cited on page 66.

[51] E. Emerson and V. Kahlon. Rapid parameterized model checking of snoopy
cache coherence protocols. In H. Garavel and J. Hatcliff, editors, Tools
and Algorithms for the Construction and Analysis of Systems, volume 2619
of Lecture Notes in Computer Science, pages 144–159. Springer Berlin /
Heidelberg, 2003. Cited on page 66.

[52] J. Endrullis, C. Grabmayer, and D. Hendriks. Data-oblivious stream pro-
ductivity. In Logic for Programming, Artificial Intelligence, and Reasoning,
volume 5330 of Lecture Notes in Computer Science, pages 79–96. Springer
Berlin / Heidelberg, 2008. Cited on page 64.

[53] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J. W. Klop. Pro-
ductivity of stream definitions. In Proceedings of FCT, pages 274–287.
Springer, 2007. Cited on page 64.

[54] E. Fleury and P. Fraigniaud. A General Theory for Deadlock Avoidance in
Wormhole-Routed Networks. IEEE Transactions on Parallel & Distributed
Systems, 9(7):626–638, July 1998. Cited on pages 20 and 21.

[55] A. Fox. Formal Specification and Verification of ARM6. In D. Basin and
B. Wolff, editors, International Conference on Theorem Proving in Higher
Order Logics (TPHOLS’03), volume 2758 of LNCS, pages 24–40, 2003. Cited
on page 24.

http://www.gap.upv.es/~jduato/

[56] M. Fredman and R. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.
Cited on page 111.

[57] M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow,
L. C. L. Hollenberg, G. Klimeck, and M. Y. Simmons. A single-atom tran-
sistor. Nature Nanotechnology, 7:242–246, 2012. Cited on page 3.

[58] S. H. Fuller and L. I. Millett. Computing performance: Game over or next
level? IEEE Computer, 44(1):31–38, 2011. Cited on page 17.

[59] R. A. Gamboa and M. Kaufmann. Nonstandard analysis in ACL2. Journal
of Automated Reasoning, 27:323–351, 2001. Cited on page 24.

[60] B. Gebremichael, F. Vaandrager, M. Zhang, K. Goossens, E. Rijpkema, and
A. Rădulescu. Deadlock prevention in the Æthereal protocol. Correct Hard-
ware Design and Verification Methods, 3725/2005:345–348, 2005. Cited on
page 23.

[61] C. J. Glass and L. M. Ni. The turn model for adaptive routing. Journal of
the ACM, 41(5):874–902, 1994. Cited on pages 20, 22, 53, 132, and 155.

[62] E. Goldberg and Y. Novikov. Berkmin: A fast and robust Sat-solver. Discrete
Applied Mathematics, 155(12):1549–1561, 2007. Cited on page 6.

[63] K. Goossens. Formal methods for Networks on Chips. In Proceedings of
the Fifth International Conference on Application of Concurrency to System
Design (ACSD’05), pages 188–189, June 2005. Cited on page 24.

[64] M. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In
VLSI Specification, Verification and Synthesis, pages 73–128, 1987. Cited
on page 24.

[65] A. Gotmanov, S. Chatterjee, and M. Kishinevsky. Verifying deadlock-
freedom of communication fabrics. In Verification, Model Checking, and
Abstract Interpretation (VMCAI ’11), volume 6538, pages 214–231. 2011.
Cited on pages 32, 156, 159, and 168.

[66] C. Grecu, P. Pande, A. Ivanov, and R. Saleh. BIST for Network-on-Chip
interconnect infrastructures. In Proceedings of the 24th IEEE VLSI Test
Symposium, 2006. Cited on page 135.

[67] P. Guerrier and A. Greiner. A generic architecture for on-chip packet-
switched interconnections. In Proceedings of the Design, Automation and
Test in Europe Conference (DATE’00), pages 250–256. ACM, 2000. Cited
on page 17.

[68] A. Hansson, K. Goossens, and A. Rǎdulescu. Avoiding message-dependent
deadlock in network-based systems on chip. VLSI Design, 2007. Cited on
pages 8, 10, 67, and 129.

[69] J. Harrison. Floating-point verification. Journal of Universal Computer
Science, 13(5):629–638, 2007. Cited on page 24.

[70] J. Harrison. Hol light: An overview. In International Conference on Theorem
Proving in Higher Order Logics (TPHOLS’09), pages 60–66, 2009. Cited on
page 24.

[71] A. Helmy, L. Pierre, and A. Jantsch. Theorem proving techniques for the
formal verification of NoC communications with non-minimal adaptive rout-
ing. In IEEE 13th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS), pages 221–224, April 2010. Cited
on page 27.

[72] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Öberg, M. Millberg, and
D. Lindquist. Network on a chip: An architecture for billion transistor era.
In NORCHIP 2000, November 2000. Cited on page 17.

[73] M. Hendriks, B. van den Nieuwelaar, and F. Vaandrager. Model checker
aided design of a controller for a wafer scanner. International Journal
on Software Tools for Technology Transfer (STTT), 8(6):633–647, October
2006. Cited on page 32.

[74] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,
M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl,
S. Borkar, V. De, and R. Van Der Wijngaart. A 48-core IA-32 processor in
45 nm CMOS using on-die message-passing and DVFS for performance and
power scaling. IEEE Journal of Solid-State Circuits, 46(1):173–183, January
2011. Cited on page 17.

[75] W. Hunt Jr. Mechanical mathematical methods for microprocessor veri-
fication. In Proceedings of Computer Aided Verification (CAV’04), pages
523–533, 2004. Cited on page 24.

[76] W. Hunt Jr and S. Swords. Centaur technology media unit verification.
In Proceedings of Computer Aided Verification (CAV’09), volume 5643 of
Lecture Notes in Computer Science, pages 353–367. 2009. Cited on page 24.

[77] W. Hunt Jr, S. Swords, J. Davis, and A. Slobodova. Use of Formal Verifica-
tion at Centaur Technology, pages 65–88. Springer, 2010. Cited on page 24.

[78] M. D. Ianni. Wormhole deadlock prediction. In Euro-Par’97 Parallel Pro-
cessing, volume 1300, pages 188–195, 1997. Cited on page 128.

[79] J S. Moore. An ACL2 proof of write invalidate cache coherence. In Pro-
ceedings of the 10th International Conference on Computer Aided Verifica-
tion (CAV’98), pages 29–38, London, UK, 1998. Springer-Verlag. Cited on
page 66.

[80] J S. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of
the AMD5K86TM floating-point division program. IEEE Transactions on
Computers, 47(9):913–926, September 1998. Cited on page 24.

[81] E. M. C. Jr., O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 1999. Cited on page 6.

[82] F. Karim, A. Nguyen, and S. Dey. An interconnect architecture for network-
ing systems on chips. IEEE Micro, 22(5):36–45, 2002. Cited on page 133.

[83] R. M. Karp. Reducibility among combinatorial problems. Complexity of
Computer Computations, pages 83–105, 1972. Cited on page 122.

[84] M. Kaufmann and J S. Moore. Structured theory development for a mechan-
ized logic. Journal of Automated Reasoning, 26(2):161–203, February 2001.
Cited on page 24.

[85] M. Kaufmann, P. Manolios, and J S. Moore. ACL2 Computer-Aided Reas-
oning: An Approach, 2000. Cited on page 24.

[86] M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Reas-
oning: ACL2 Case Studies. Kluwer Academic Publishers, June 2000. Cited
on page 24.

[87] G. Klein, R. Huuck, and B. Schlich. Operating system verification. Journal
of Automated Reasoning, 42(2-4):123–124, 2009. Cited on page 24.

[88] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg,
K. Tiensyrja, and A. Hemani. A Network on Chip architecture and design
methodology. In Proceedings of the IEEE Computer Society Annual Sym-
posium on VLSI, pages 105–112, 2002. Cited on page 7.

[89] S. E. Lee, J. H. Bahn, Y. S. Yang, and N. Bagherzadeh. A generic network
interface architecture for a networked processor array (nepa). In Proceedings
of the 21st international conference on Architecture of computing systems
(ARCS’08), pages 247–260, Berlin, Heidelberg, 2008. Springer-Verlag. Cited
on page 131.

[90] O. Lysne, T. M. Pinkston, and J. Duato. Part II: A methodology for develop-
ing deadlock-free dynamic network reconfiguration processes. IEEE Trans-
actions on Parallel and Distributed Systems, 16(5):428–443, 2005. Cited on
page 23.

[91] K. Macdonald, C. Nitta, M. Farrens, and V. Akella. Nocs special section:
PDG_GEN: A methodology for fast and accurate simulation of on-chip net-
works. IEEE Transactions on Computers, 99(PrePrints), 2012. Cited on
page 6.

[92] T. Marescaux, E. Brockmeyer, and H. Corporaal. The impact of higher
communication layers on NoC supported MP-SoCs. In First International
Symposium on Networks-on-Chip (NOCS), pages 107–116, May 2007. Cited
on page 65.

[93] J. Martinez-Rubio, P. Lopez, and J. Duato. A cost-effective approach to
deadlock handling in wormhole networks. IEEE Transactions on Parallel
and Distributed Systems, 12(7):716–729, July 2001. Cited on page 20.

[94] T. Mattson. Many-core applications research using the Intel Single-Chip
Cloud computer (SCC). Tutorial at The International Symposium on
Networks-on-Chip (NOCS’11), May 2011. Cited on page 17.

[95] K. McMillan. Parameterized verification of the flash cache coherence protocol
by compositional model checking. In T. Margaria and T. Melham, editors,
Correct Hardware Design and Verification Methods, volume 2144 of Lecture
Notes in Computer Science, pages 179–195. Springer Berlin / Heidelberg,
2001. Cited on page 66.

[96] M. Miédard and S. S. Lumetta. Network Reliability and Fault Tolerance.
John Wiley & Sons, Inc., 2003. Cited on pages 32 and 65.

[97] J. Misra and K. Chandy. A distributed graph algorithm: knot detection.
ACM Transactions on Programming Languages and Systems, 4(4):678–686,
October 1982. Cited on page 78.

[98] G. E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), April 1965. Cited on page 17.

[99] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost. Hermes: an infra-
structure for low area overhead packet-switching Networks on Chip. Integra-
tion, the VLSI Journal - Special issue: Networks on chip and reconfigurable
fabrics, 38:69–93, October 2004. Cited on pages 27, 53, and 132.

[100] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
engineering an efficient SAT solver. In Proceedings of the 38th annual Design
Automation Conference (DAC’01), pages 530–535. ACM, 2001. Cited on
page 6.

[101] V. Nelson. Fault-tolerant computing: fundamental concepts. Computer,
23(7):19–25, July 1990. Cited on page 32.

[102] T.-H. Nguyen. Constructive Verification for Component-based Systems. PhD
thesis, Université de Grenoble, 2010. Cited on page 175.

[103] L. Ni and P. McKinley. A survey of wormhole routing techniques in direct
networks. IEEE Computer, 26:62–76, 1993. Cited on pages 10 and 132.

[104] T. Nipkow, G. Bauer, and P. Schultz. Flyspeck I: Tame graphs. In U. Furbach
and N. Shankar, editors, Journal of Automated Reasoning, volume 4130 of
Lecture Notes in Computer Science, pages 21–35. Springer Berlin / Heidel-
berg, 2006. Cited on page 24.

[105] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. 2002. Cited on page 24.

[106] S. Obua and T. Nipkow. Flyspeck II: the basic linear programs. Annals of
Mathematics and Artificial Intelligence, 56:245–272, 2009. Cited on page 24.

[107] U. Y. Ogras, J. Hu, and R. Marculescu. Key research problems in NoC
design: a holistic perspective. In Proceedings of the 3rd IEEE/ACM/IFIP in-
ternational conference on Hardware/software codesign and system synthesis
(CODES+ISSS’05), pages 69–74. ACM, 2005. Cited on page 18.

[108] J. W. O’Leary, M. Talupur, and M. R. Tuttle. Protocol verification using
flows: An industrial experience. In Formal Methods in Computer Aided
Design (FMCAD ’09), pages 172–179, 2009. Cited on page 66.

[109] S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification Sys-
tem. In Proceedings of the Eleventh International Conference on Automated
Deduction (CADE’92), volume 607, pages 748–752, June 1992. Cited on
page 24.

[110] M. Palesi, R. Holsmark, S. Kumar, and V. Catania. A methodology
for design of application specific deadlock-free routing algorithms for NoC
systems. In Proceedings of the 4th international conference on Hard-
ware/software codesign and system synthesis (CODES+ISSS ’06), pages
142–147, 2006. Cited on page 22.

[111] S. Pandav, K. Slind, and G. Gopalakrishnan. Counterexample guided invari-
ant discovery for parameterized cache coherence verification. In D. Borrione
and W. Paul, editors, Correct Hardware Design and Verification Methods,
volume 3725 of Lecture Notes in Computer Science, pages 317–331. Springer
Berlin / Heidelberg, 2005. Cited on page 66.

[112] P. Pande, C. Grecu, A. Ivanov, R. Saleh, and G. De Micheli. Design, syn-
thesis, and test of Networks on Chips. IEEE Design Test of Computers,
22(5):404–413, September–October 2005. Cited on page 18.

[113] S. Park and D. L. Dill. Verification of cache coherence protocols by aggrega-
tion of distributed transactions. In Proceedings of the SIGCHI conference on
Human Factors in computing systems (CHI’06), pages 677–680, 2006. Cited
on page 66.

[114] F. Pétrot, A. Greiner, and P. Gomez. On cache coherency and memory con-
sistency issues in NoC based shared memory multiprocessor SoC architec-
tures. In 9th EuroMicro Conference on Digital System Design: Architectures,
Methods and Tools (DSD), pages 53–60, 2006. Cited on page 65.

[115] L. Pike, M. Shields, and J. Matthews. A verifying core for a cryptographic
language compiler. In Proceedings of the sixth international workshop on
the ACL2 theorem prover and its applications (ACL2’06), pages 1–10, 2006.
Cited on page 24.

[116] T. Pinkston. Flexible and efficient routing based on progressive deadlock
recovery. IEEE Transactions on Computers, 48(7):649–669, July 1999. Cited
on page 20.

[117] M. Plakal, D. J. Sorin, A. E. Condon, and M. D. Hill. Lamport clocks:
verifying a directory cache-coherence protocol. In Proceedings of the tenth

annual ACM symposium on Parallel algorithms and architectures (SPAA
’98), pages 67–76, New York, NY, USA, 1998. ACM. Cited on page 66.

[118] F. Pong and M. Dubois. Formal automatic verification of cache coherence
in multiprocessors with relaxed memory models. IEEE Transactions on
Parallel and Distributed Systems, 11:989–1006, September 2000. Cited on
page 66.

[119] A. Pullini, F. Angiolini, D. Bertozzi, and L. Benini. Fault tolerance overhead
in network-on-chip flow control schemes. In Proceedings of the 18th sym-
posium on Integrated Circuits and Systems Design, pages 224–229, Septem-
ber 2005. Cited on page 32.

[120] S. Ray and R. Sumners. Combining theorem proving with model checking
through predicate abstraction. IEEE Design Test of Computers, 24:132–139,
March 2007. Cited on page 66.

[121] K. Richter, M. Jersak, and R. Ernst. A formal approach to MpSoC perform-
ance verification. Computer, 36(4):60–67, April 2003. Cited on page 6.

[122] A. Roychoudhury, T. Mitra, and S. Karri. Using formal techniques to debug
the AMBA System-on-Chip bus protocol. In Proceedings of the Design, Auto-
mation and Test in Europe Conference (DATE’03), pages 828–833, 2003.
Cited on page 23.

[123] D. Russinoff. A Mechanically Checked Proof of IEEE Compliance of a Re-
gister Transfer Level Specification of the AMD-K7 Floating-Point Multiplic-
ation, Division and Square Root Instructions. London Mathematical Society
Journal of Computation and Mathematics, 1:148–200, December 1998. Cited
on page 24.

[124] G. Salaün, W. Serwe, Y. Thonnart, and P. Vivet. Formal verification of chp
specifications with CADP illustration on an asynchronous Network-on-Chip.
In Proceedings of the 13th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC’07), pages 73–82, March 2007. Cited on
page 23.

[125] J. Schmaltz. Formal specification and validation of minimal routing al-
gorithms for the 2D mesh. In Proceedings of the 7th International Workshop
on the ACL2 Theorem Prover and its Applications (ACL2’07), pages 40–49,
2007. Cited on page 27.

[126] J. Schmaltz and D. Borrione. A functional approach to the formal specific-
ation of networks on chip. In Formal Methods in Computer Aided Design
(FMCAD ’04), pages 52–66. 2004. Cited on page 27.

[127] J. Schmaltz and D. Borrione. A functional formalization of on chip commu-
nications. Formal Aspects of Computing, 20:241–258, May 2008. Cited on
pages 24 and 27.

[128] L. Schwiebert and D. Jayasimha. A necessary and sufficient condition for
deadock-free wormhole routing. Journal of Parallel and Distributed Com-
puting, 32:103–117, 1996. Cited on pages 20, 21, and 99.

[129] C. Seiculescu, S. Murali, L. Benini, and G. De Micheli. A Method to Remove
Deadlocks in Networks-on-Chips with Wormhole Flow Control. In Proceed-
ings of the Design, Automation and Test in Europe Conference (DATE’10),
2010. Cited on page 23.

[130] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vencentelli. Addressing the System-on-a-Chip interconnect
woes through communication-based design. In Proceedings of the 38th an-
nual Design Automation Conference (DAC’01), pages 667–672. ACM, 2001.
Cited on page 7.

[131] B. A. Sijtsma. On the productivity of recursive list definitions. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 11:633–649,
October 1989. Cited on page 64.

[132] F. Silla, M. P. Malumbres, A. Robles, P. López, and J. Duato. Efficient
adaptive routing in networks of workstations with irregular topology. In
Proceedings of the First International Workshop on Communication and Ar-
chitectural Support for Network-Based Parallel Computing (CANPC ’97),
pages 46–60, London, UK, 1997. Springer-Verlag. Cited on pages 20, 22,
and 67.

[133] A. K. Somani and N. H. Vaidya. Understanding fault tolerance and reliab-
ility. IEEE Computer, 30:45–50, April 1997. Cited on page 32.

[134] W. Stalling. Operating Systems, Internals and Design Principles. Pearson
Education International, 2009. Cited on page 20.

[135] D. Starobinski, M. Karpovsky, and L. A. Zakrevski. Application of network
calculus to general topologies using turn-prohibition. IEEE/ACM Transac-
tions on Networking, 11(3):411–421, June 2003. Cited on page 22.

[136] P. Stenstrom. A survey of cache coherence schemes for multiprocessors.
IEEE Computer, 23(6):12–24, June 1990. Cited on page 153.

[137] S. Taktak, J.-L. Desbarbieux, and E. Encrenaz. A tool for automatic de-
tection of deadlock in wormhole networks on chip. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 13(1), January 2008.
Cited on pages 23 and 129.

[138] S. Taktak, E. Encrenaz, and J.-L. Desbarbieux. A polynomial algorithm
to prove deadlock-freeness of wormhole networks. In 18th Euromicro Inter-
national Conference on Parallel, Distributed and Network-Based Computing
(PDP’10), February 2010. Cited on pages 20, 22, 23, 99, 129, 133, and 144.

[139] A. Tanenbaum. Computer Networks. Prentice Hall Professional Technical
Reference, 4th edition, 2002. Cited on page 7.

[140] S. Tota, M. R. Casu, and L. Macchiarulo. Implementation analysis of NoC: a
MPSoC trace-driven approach. In Proceedings of the 16th ACM Great Lakes
symposium on VLSI (GLSVLSI’06), pages 204–209. ACM, 2006. Cited on
page 18.

[141] G. Tsiligiannis and L. Pierre. A mixed verification strategy tailored for
Networks on Chip. In IEEE/ACM International Symposium on Networks
on Chip (NOCS’12), pages 161–168, May 2012. Cited on page 27.

[142] R. Ubar and J. Raik. Testing strategies for Networks on Chip. In A. Jantsch
and H. Tenhunen, editors, Networks on Chip, pages 131–152. 2004. Cited
on page 135.

[143] B. Vermeulen, J. Dielissen, K. Goossens, and C. Ciordas. Bringing com-
munication Networks on Chip: Test and verification implications. IEEE
Communications Magazine, 41:74–81, 2003. Cited on page 18.

[144] C. Wang, W.-H. Hu, and N. Bagherzadeh. A Wireless Network-on-Chip
design for multicore platforms. In 19th Euromicro International Confer-
ence on Parallel, Distributed and Network-Based Processing (PDP’11), pages
409–416, Februari 2011. Cited on pages 131 and 142.

[145] W. Wolf. The future of multiprocessor systems-on-chips. In Proceedings of
the 41st annual Design Automation Conference (DAC’04), pages 681–685.
ACM, 2004. Cited on page 18.

[146] P. Wolper. Verification: Dreams and reality. Inaugural lecture of the
course “The algorithmic verification of reactive systems”, online available at
http://www.montefiore.ulg.ac.be/~pw/cours/francqui.html,
1998. Cited on page 5.

[147] H. Zantema and M. Raffelsieper. Proving productivity in infinite data struc-
tures. In Proceedings of the International Conference on Rewriting Tech-
niques and Applications, pages 401–416, 2010. Cited on page 64.

[148] M. Zhang, A. R. Lebeck, and D. J. Sorin. Fractal coherence: Scalably veri-
fiable cache coherence. In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’43), pages 471–
482, Washington, DC, USA, 2010. IEEE Computer Society. Cited on page 66.

[149] Z. Zhang, A. Greiner, and S. Taktak. A reconfigurable routing algorithm
for a fault-tolerant 2D-mesh Network-on-Chip. In Proceedings of the 45th
ACM/IEEE Design Automation Conference (DAC’08), pages 441–446, June
2008. Cited on pages 32 and 144.

http://www.montefiore.ulg.ac.be/~pw/cours/francqui.html

Samenvatting

Dit proefschrift gaat over formele verificatie van communicatie infrastructuren
aanwezig op microchips. Naar verwachting zullen toekomstige microchips vele
verschillende processors bevatten, die parallel berekeningen uitvoeren. Netwerk-
op-Chip (NoC) is een nieuw paradigma waarbij de communicatie tussen de pro-
cessors verzorgd wordt door een geavanceerde infrastructuur.

Het feit dat microchips in ons dagelijks leven overal aanwezig zijn maakt het
noodzakelijk dat we precieze en grondige methodes hebben om hun correctheid
vast te stellen. De bijdrage van dit proefschrift bestaat uit formele methodes toe-
gespitst op het NoC paradigma die enerzijds makkelijk bruikbaar zijn en anderzijds
schaalbaar. Waar er eerder geen schaalbare methode bestond om van een netwerk
op een microchip vast te stellen dat het altijd in staat is om iedere gewenste com-
municatie succesvol uit te voeren, presenteert dit proefschrift algoritmes die dit
automatisch kunnen bepalen voor een uitgebreide familie van communicatie net-
werken.

In Deel II wordt de notie van correctheid geformaliseerd. We noemen deze
eigenschap productiviteit. Een netwerk is productief dan en slechts dan als te
allen tijde iedere processor uiteindelijk in staat is een boodschap te versturen en
als te allen tijde iedere verstuurde boodschap uiteindelijk aankomt bij de correcte
bestemming. In een productief netwerk is iedere boodschap vrij van dodelijke
omarming (deadlock), rusteloosheid (livelock) en uithongering (starvation). Een
verzameling van aannames wordt geformaliseerd die volstaat om een netwerk pro-
ductief te bewijzen. De aanname die het lastigst is om van een gegeven netwerk
te bewijzen, is de afwezigheid van deadlocks.

Delen III en IV presenteren automatische formele methodes om afwezigheid
van deadlocks vast te stellen. Deel III gebruikt een communicatie netwerk mo-
del waarin alleen het netwerk relevant wordt beschouwd en de toepassingen die
ervan gebruik maken weg worden geabstraheerd (het geïsoleerde netwerk model).
Eerst worden twee theorieën gepresenteerd – één voor pakket netwerken en één
voor wormgat netwerken – die noodzakelijke en afdoende condities bevatten voor
afwezigheid van deadlocks. Voor pakket netwerken presenteren we een polynomi-
ale beslissingsprocedure voor de desbetreffende noodzakelijke en afdoende conditie.

Voor wormgat netwerken bewijzen we eerst dat een dergelijke beslissingsprocedure
niet bestaat door het probleem co-NP-compleet te bewijzen. Vervolgens wordt een
polynomiale procedure gepresenteerd die een conditie afdoende voor afwezigheid
van deadlocks beslist.

De bruikbaarheid van de algoritmes wordt aangetoond met behulp van uitge-
breide experimentele resultaten. Om deze resultaten te verkrijgen is de applicatie
DCI2 geïmplementeerd (Deadlock Checker In Designs of Communication Intercon-
nects). DCI2 verifieert naast afwezigheid van deadlocks ook andere eigenschappen
geformuleerd in de verzameling van aannames uit Deel II. Het is daarmee een ap-
plicatie die automatisch productiviteit vast kan stellen van netwerken geformuleerd
binnen het geïsoleerde network model. DCI2 wordt gebruikt om productiviteit van
een complexe adaptieve route functie vast te stellen in een 20 bij 20 vlak, waarin
twee willekeurige communicatie kanalen defect kunnen zijn. Dit komt neer op het
vaststellen van afwezigheid van deadlocks in 2,878,800 verschillende configuraties.
Ook heeft DCI2 de aanwezigheid van een deadlock bevestigd in een concept ont-
werp van een netwerk met onregelmatige routes en draadloze transmissies van de
Universiteit van California, Irvine.

Deel IV beschouwt deadlock detectie in het geïntegreerde netwerk model. In
dit model wordt niet alleen het netwerk zelf in acht genomen, maar ook de applica-
ties die er gebruik van maken en de onderliggende implementatie van het netwerk.
De uitdaging ligt hier in een taal die enerzijds voldoende expressief is om al deze
facetten te modelleren en die anderzijds voldoende toegespitst is om efficiënt for-
meel verifieerbaar te zijn. De taal xMAS, geïntroduceerd door Intel, bevat een
verzameling van acht primitieven waarmee een communicatie netwerk kan worden
ontworpen. Deel IV breidt deze taal uit met de mogelijkheid om eigen primitieven
toe te voegen. Dit maakt de taal expressief genoeg om allerlei geavanceerde facet-
ten van communicatie netwerken te modelleren zoals protocollen voor het coherent
behouden van het tijdelijke geheugen, adaptieve routes, synchronisaties op de chip
en boodschap tellers. Vervolgens wordt er een algoritme gepresenteerd dat van een
netwerk beschreven in de door de gebruiker gedefinieerde primitieven zoekt naar
deadlocks. Het resultaat van deze aanpak is een algoritme dat in staat is complexe
boodschap afhankelijke deadlocks te vinden. Het algoritme heeft bijvoorbeeld een
twee dimensionale topologie met west-eerst routes, verschillende boodschap types
en meester/slaaf applicaties vrij van deadlocks bewezen. Tevens heeft het de Spi-
dergon topologie met krediet boekhouding correct bewezen.

De ACL2 bewijs assistent is cruciaal geweest bij de totstandkoming van dit
proefschrift. De verzameling van aannames in Deel II is met behulp van de ACL2
bewijsassistent geformaliseerd. Het bewijs dat deze verzameling afdoende is voor
productiviteit is mechanisch tot stand gekomen met behulp van ACL2. Ook cor-
rectheid van zowel de theoriën als de algoritmes in Deel III is geverifieerd met
behulp van de ACL2 bewijs assistent. Er is uitgebreid gebruik gemaakt van ACL2
specifieke mogelijkheden zoals uitvoerbaarheid van de logica, de hoge mate van
automatisering wat betreft het vinden van bewijzen en een uitgebreide bibliotheek
waarop gebouwd kon worden.

Curriculum Vitae

Freek Verbeek

17 september 1983:
born in Nijmegen

1995 – 2001:
VWO (secondary school), Stedelijk Gymnasium, Nijmegen

2001 – 2008:
M.Sc., Computer Science, Radboud University, Nijmegen

2008 – 2012:
Ph.D. student, MBSD/ICIS, Radboud University, Nijmegen

2012:
Postdoctoral researcher, Open University of The Netherlands, Heerlen

	I Preamble
	Introduction
	Formal Verification
	Communication Networks
	Network Layer Isolation versus Integration
	Example 1
	Example 2
	Isolated versus Integrated

	Contribution of this Thesis
	The Role of ACL2 in this Thesis

	Advances to the State-of-the-art
	Communication Networks
	Deadlocks in Communication Networks
	Necessary and Sufficient Conditions
	Determining Deadlock Freedom

	Mechanical Verification of Interconnects
	ACL2
	GeNoC

	II Proving Productivity of Communication Networks
	GeNoC for Productivity Proofs
	Correctness of Communication Networks
	Generic Communication Network
	Informal Overview
	Formal Network Model
	Generic Constituents
	Deadlock Configuration
	The Behavior of the Generic Network

	Functional Correctness
	Definition of Functional Correctness
	Proof Obligations for Functional Correctness
	Functional Correctness Theorem

	Evacuation
	Proof Obligations for Evacuation
	Evacuation Theorem

	Local Liveness
	Proof Obligations for Local Liveness
	Local Liveness Theorem

	Productivity

	Application to HERMES
	HERMES
	User Input, Part I: Executable Specification
	User Input, Part II: Proofs
	Discharging Proof Obligations
	Deadlock Verification

	Conclusion
	Definition of Productivity
	Productivity in Literature
	The GeNoC Framework

	III Isolated Network Layer Deadlock Verification
	Necessary and Sufficient Conditions for Deadlock-free Routing
	Notation and Definitions
	Packet Switching
	Formal Condition
	Our Condition
	Proof

	Definition of Deadlock
	Relation to Duato
	Duato's Condition
	Relation to our Condition

	Wormhole Switching
	Formal Condition
	Our Condition
	Proof

	Definition of Deadlock
	Relation to Duato
	Duato's Condition
	A Counterexample
	Relation to our Condition

	Relation to Schwiebert and Jayasimha
	Schwiebert and Jayasimha's Condition
	Relation to our Condition

	Relation to Taktak et al.
	Taktak's Condition
	Relation to our Condition

	Conclusion

	Deadlock Detection Algorithms
	Packet Switching
	Algorithm by Example
	Deadlock-immunity and -sensitivity
	Example Trace
	Post-processing

	Pseudo Code
	Analysis
	Computational Complexity
	Correctness

	Wormhole Switching
	Algorithm by Example
	Deadlock-attainability
	Example Trace

	Pseudo Code
	Analysis
	Computational Complexity
	Correctness

	Proof of co-NP-completeness
	Transformation Example
	Formal Proof
	Deadlock Freedom versus Deadlock Prediction

	Related Work
	Conclusion

	Applications
	DCI2
	Benchmarks
	NePA with Fault-tolerant Routing
	Routing Logic
	Results

	NePA with Wireless Routers
	Routing Logic
	Results

	Comparison to Taktak et al.
	Conclusion

	IV Integrated Network Layer Deadlock Verification
	Microarchitectural Deadlock Verification
	MaDLS
	xMAS: a MaDL for communication fabrics
	A Family of MaDLs
	Examples

	Deadlock Detection Algorithm
	Definition of Deadlock
	Deadlock LIAPs
	Algorithm Paraphernalia
	Deadlock Detection Algorithm
	Restrictions

	Correctness Proof
	Automatic Generation of Blocking and Idle Formulas
	Correctness Proofs of Translations
	Correctness Proof of the Algorithm

	Experimental Results
	Conclusion

	Epilogue
	Summary
	Future Work

	Datastructures and Notation
	Sets
	Lists
	Tuples
	Graphs

	List of Terms
	Bibliography
	Samenvatting
	Curriculum Vitae

