
Mutliprocessor and Real-Time Scheduling

Julien Schmaltz

Institute for Computing and Information Sciences
Radboud University Nijmegen

The Netherlands
julien@cs.ru.nl

June 15, 2008

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Part I

Mutliprocessor Scheduling

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Multiprocessor Systems

Loosely coupled multiprocessor, or cluster: autonomous
systems, each processor has its own main memory and I/O
channels

Functionally specialized processors: e.g. I/O processor. Slaves
used by a master (e.g. general-purpose CPU).

Tightly couple multiprocessing: processors share a common
main memory, they are under the control of an operating
system

Chapter 10.1 deals with the last category of systems

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Synchronization Granularity

Fine: Parallelism inherent in a single instruction stream (sync.
interval <20 instructions)

Medium: Parallel processing or multitasking within a single
application (sync. interval 20–200 inst.)

Coarse: Mutliprocessing of concurrent processes in a
multiprogramming environment (sync. inter. 200–2000)

Very Coarse: Distributed processing across network nodes to
form a single computing environment (sync. inter. 2000–1M)

Independent: Multiple unrelated processes (see previous
lecture)

Granulatity = important parameter when designing selection
functions

Mainly consider (Coarse) Medium

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Basic Problem

Given a number of threads (or processes), and a number of
CPUs, assign threads to CPUs

Same issues as for uniprocessor scheduling:

Response time, fairness, starvation, overhead, ...

New issues:

Ready queue implementation
Load balancing
Processor affinity

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Ready Queue Implementation
Load Balancing
Processor Affinity

Single Shared Ready Queue

...
CPU1

CPU2

CPU3

CPU0

Global queue

CPU picks one process
when ready

Pros

Queue can be reorganized (e.g. priorities, ... see previous
lecture)
Load evently distributed

Cons

Synchronization (mutual exclusion of queue accesses)
Overhead (caching, context switch, ...)

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Ready Queue Implementation
Load Balancing
Processor Affinity

Per-CPU Ready Queue

... CPU0

CPU3

CPU2

CPU1

...

...

...

One queue per CPU

Pros

Simple/ no synchronization needed
Strong affinity

Cons

Where put new threads ?
Load balancing

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Ready Queue Implementation
Load Balancing
Processor Affinity

Load Balancing

Try to keep processors as busy as possible

Global approaches

Push model – Kernel daemon checks queue lengths
periodically, moves threads to balance
Pull model – CPU notices its queue is empty and steals
threads from other queues
Do both !

Load sharing

Gang-scheduling

Dedicated processor assignment

Dynamic scheduling

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Ready Queue Implementation
Load Balancing
Processor Affinity

Processor Affinity

States of executed threads in the cache of the CPU

Repeated execution on the same CPU may reuse the cache

Execution on a different CPU:

Requires to load state in the cache

Try to keep thread–CPU pairs constant

... CPU0

CPU1...
1 thread bound to 1
processor

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Ready Queue Implementation
Load Balancing
Processor Affinity

Processor Affinity

States of executed threads in the cache of the CPU

Repeated execution on the same CPU may reuse the cache

Execution on a different CPU:

Requires to load state in the cache

Try to keep thread–CPU pairs constant

... CPU0

CPU1...
1 thread bound to 1
processor

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Ready Queue Implementation
Load Balancing
Processor Affinity

Processor Affinity

States of executed threads in the cache of the CPU

Repeated execution on the same CPU may reuse the cache

Execution on a different CPU:

Requires to load state in the cache

Try to keep thread–CPU pairs constant

... CPU0

CPU1...
Previous state stored in
cache

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Ready Queue Implementation
Load Balancing
Processor Affinity

Processor Affinity

States of executed threads in the cache of the CPU

Repeated execution on the same CPU may reuse the cache

Execution on a different CPU:

Requires to load state in the cache

Try to keep thread–CPU pairs constant

... CPU0

CPU1... No (less) cache misses

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Ready Queue Implementation
Load Balancing
Processor Affinity

Processor Affinity

States of executed threads in the cache of the CPU

Repeated execution on the same CPU may reuse the cache

Execution on a different CPU:

Requires to load state in the cache

Try to keep thread–CPU pairs constant

...
CPU0

CPU1
Need to load cache !

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Job Scheduling

Job = a set of processes (or threads) that work together (to
solve some problem or provide some service)

Performance depends on scheduling of job components

Two major strategies

Space sharing
Time sharing

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Why it matters ?

!!! Threads in a job are not independent !!!

Synchronize on shared variables
Cause/effect relationship

e.g. Consumer/Producer problem
Consumer is waiting for data but Producer which is not
running

Synchronizing phases of execution (barriers)

Entire job proceeds at pace of slowest thread

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Space Sharing

Define groups of processors

Fixed, variable, or adaptive

Assign one job to one group of processors

Ideal: one CPU/thread in job

Pros

Low context switch
Strong affinity
All runnable threads execute at same time

Cons

One partition may have pending threads/jobs while another is
idle
Hard to deal with dynamically-changing job sizes

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Time Sharing

Divide one processor time between several jobs

Each CPU may execute threads from different jobs

Key: keep awareness of jobs

Pros

Allow gang-scheduling
Easier to deal with dynamically-changing

Cons

Filling available CPU slots with runnable jobs equiv. to the bin
packing problem
Heuristic based – (bad worst case)

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Gang-Scheduling (1)

CPUs perform context switch together

CPUs execute threads from different jobs (time sharing)

Thread of one job bound to one processor (space sharing)

Strong affinity

... CPU0

CPU3

CPU2

CPU1

...

...

...

First execute blue for tb

seconds, which is enough
to complete the job

Green bound to CPU2 and CPU3, Pink to CPU0 and CPU2

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Gang-Scheduling (1)

CPUs perform context switch together

CPUs execute threads from different jobs (time sharing)

Thread of one job bound to one processor (space sharing)

Strong affinity

... CPU0

CPU3

CPU2

CPU1

...

...

...

First execute blue for tb

seconds, which is enough
to complete the job

Green bound to CPU2 and CPU3, Pink to CPU0 and CPU2

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Gang-Scheduling (1)

CPUs perform context switch together

CPUs execute threads from different jobs (time sharing)

Thread of one job bound to one processor (space sharing)

Strong affinity

... CPU0

CPU3

CPU2

CPU1

...

...

...
Then, execute magenta
for tm seconds, and put
magenta back in the
queue

Green bound to CPU2 and CPU3, Pink to CPU0 and CPU2

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Gang-Scheduling (1)

CPUs perform context switch together

CPUs execute threads from different jobs (time sharing)

Thread of one job bound to one processor (space sharing)

Strong affinity

... CPU0

CPU3

CPU2

CPU1

...

...

...

Execute red job

Green bound to CPU2 and CPU3, Pink to CPU0 and CPU2

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Gang-Scheduling (1)

CPUs perform context switch together

CPUs execute threads from different jobs (time sharing)

Thread of one job bound to one processor (space sharing)

Strong affinity

... CPU0

CPU3

CPU2

CPU1

...

...

...

Execute green job, pink
job blocked by green

Green bound to CPU2 and CPU3, Pink to CPU0 and CPU2

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Gang-Scheduling (1)

CPUs perform context switch together

CPUs execute threads from different jobs (time sharing)

Thread of one job bound to one processor (space sharing)

Strong affinity

... CPU0

CPU3

CPU2

CPU1

...

...

...

Execute pink job

Green bound to CPU2 and CPU3, Pink to CPU0 and CPU2

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Gang-scheduling (2)

CPUs perform context switch together

Execute only all threads of one job

Weak affinity but strong usage

CPU0

CPU3

CPU2

CPU1

Execute blue.

No fixed thread/processor assignment

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Gang-scheduling (2)

CPUs perform context switch together

Execute only all threads of one job

Weak affinity but strong usage

CPU0

CPU3

CPU2

CPU1

Execute blue.

No fixed thread/processor assignment

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Gang-scheduling (2)

CPUs perform context switch together

Execute only all threads of one job

Weak affinity but strong usage

CPU0

CPU3

CPU2

CPU1

Execute Magenta

No fixed thread/processor assignment

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Gang-scheduling (2)

CPUs perform context switch together

Execute only all threads of one job

Weak affinity but strong usage

CPU0

CPU3

CPU2

CPU1

Not enough CPUs for
green.

No fixed thread/processor assignment

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Gang-scheduling (2)

CPUs perform context switch together

Execute only all threads of one job

Weak affinity but strong usage

CPU0

CPU3

CPU2

CPU1

Enough CPUs for green
AND pink

No fixed thread/processor assignment

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Introduction
Some Issues

Parallel Job Scheduling

Introduction
Space Sharing
Time Sharing
Dynamic Scheduling

Dynamic Scheduling

Number of threads can be altered dynamically by applications

O/S adjust the load to improve utilization

Assign idle processors
New arrivals may be assigned to a processor that is used by a
job currently using more than one processor
Hold request until processor is available
Assign processor a job in the list that currently has no
processor (i.e., to all waiting new arrivals)

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Part II

Real-Time Scheduling

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Background
Characteristics
Features
Scheduling

Real-Time Systems (1)

Correct executions depend not only on computation results
but also on the time when the results are available

“Events occur in real-time”

Tasks reaction/control w.r.t. events that take place in the
outside world
Dynamic process, talks must keep up with these events

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Background
Characteristics
Features
Scheduling

Real-Time Systems (2)

Control of laboratory experiments

Process control in industrial plants

Robotics

Air traffic control

Telecommunications

Military command and control systems

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Background
Characteristics
Features
Scheduling

Real-Time Tasks

Tasks have deadlines (to start or finish)

Hard vs. soft deadlines

hard real-time tasks must meet them deadlines
Space shuttle rendez-vous, Nuclear powerplants, ...
soft real-time tasks may not meet their deadline, this has no
“dramatic” consequences
Execution of the tasks even after its deadline !

Periodic vs. aperiodic

Aperiodic: fixed deadline that must (or may) be met.
Periodic: “once per period T” or “exactly T units appart”

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Background
Characteristics
Features
Scheduling

Characteristics of Real-Time Operating Systems (1)

Determinism

Operations are performed at fixed, predetermined times, or
within predetermined time intervals
Concerned with maximum delay before interrupt
acknowledgment and the capacity to handle all the requests
within the required time

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Background
Characteristics
Features
Scheduling

Characteristics of Real-Time Operating Systems (2)

Responsiveness

Delay after acknowledgment to service the interrupt
Includes time to begin the execution of the interrupt
Includes time to perform the interrupt
Effect of interrupt nesting

Response time to external events = determinism +
responsiveness

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Background
Characteristics
Features
Scheduling

Characteristics of Real-Time Operating Systems (3)

User control

User specified priorities
User specified paging
What processes must always reside in main memory
User specified disk algorithms
User specified processes rights

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Background
Characteristics
Features
Scheduling

Characteristics of Real-Time Operating Systems (4)

Reliability

Degradation of performance may have catastophic
consequences (e.g. nuclear meltdowns)

Fail-soft operation

Fail in such a way as to preserve capability and data
Stability: deadlines of most critical tasks always met

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Background
Characteristics
Features
Scheduling

Features of RTOS (1)

Fast process or thread switch

Small size (minimal functionality)

Quick response to interrupts

Multitasking with interprocess communication tools such as
semaphores, signals, and events

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Background
Characteristics
Features
Scheduling

Features of RTOS (2)

Use of specifal sequential files that can accumulate data at
fast rate

Preemptive scheduling based on priority

Minimization of intervals during which interrupts are disabled

Delay tasks for fixed amount of time

Special alarms and timeouts

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Background
Characteristics
Features
Scheduling

Scheduling (1)

Round-robin preemptive scheduling

P2 Pn

scheduling time

Request from
RT process

RTP

RT process added to run queue

P1

RT to run queue to await
next time slice

Scheduling time
unacceptable for RT apps

Priority-driven non-preemptive scheduler

scheduling time

P2
P1 blocked or completed

RT process to head of run queue

Request from
RT process

RTPP1

RT process to head of run
queue

Issue if P1 low prior. and
slow

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Background
Characteristics
Features
Scheduling

Scheduling (2)

Priority-driven, preemptive at preemption points

scheduling time

P2

Request from
RT process

RTP
wait for next preemption point

P1

RT preempts current process

Wait until next preemption
point

Which may come before end
of P1

Immediate preemptive

RT process RTP preempts P1

scheduling time

Request from

RTP executes immediately

P1 RTP

RTP preempts current
process

RTP is executed
immediately

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Overview
Deadline Scheduling
Rate-Monotonic Scheduling

Real-Time Scheduling

Static table-driven

Static analysis if feasible schedules
Determines at run time when a task starts

Static priority-driven preemptive

Analysis used to assign priority to tasks
Traditional priority-driven preemptive scheduler

Dynamic planning-based

Feasibility determined at run time

Dynamic best effort

No feasibility analysis is done

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Overview
Deadline Scheduling
Rate-Monotonic Scheduling

Deadline Scheduling

Important metrics: meet deadlines (not too early, not too
late) rather than speed

Information used:

Ready time
Starting time
Completion deadline
Processing time
Resource requirements
Priority
Subtask structure

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Overview
Deadline Scheduling
Rate-Monotonic Scheduling

Example

Collecting data from sensors A and B

Scheduling decision every 10ms and based on completion
deadlines

Fixed priority: A has priority

deadline A

deadline B

AA A A A

B B
Sensor A: 10ms, every 20ms

Sensor B: 25ms, every 50ms

deadline A

deadline B A B A runs for 10ms

B interrupted by A

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Overview
Deadline Scheduling
Rate-Monotonic Scheduling

Example

Collecting data from sensors A and B

Scheduling decision every 10ms and based on completion
deadlines

Fixed priority: A has priority

deadline A

deadline B

AA A A A

B B
Sensor A: 10ms, every 20ms

Sensor B: 25ms, every 50ms

deadline A

deadline B A B A B A runs for 10ms

B interrupted by A

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Overview
Deadline Scheduling
Rate-Monotonic Scheduling

Example

Collecting data from sensors A and B

Scheduling decision every 10ms and based on completion
deadlines

Fixed priority: A has priority

deadline A

deadline B

AA A A A

B B
Sensor A: 10ms, every 20ms

Sensor B: 25ms, every 50ms

deadline A

deadline B A B A B A
A runs for 10ms

B interrupted by A

Deadline of B missed !

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Overview
Deadline Scheduling
Rate-Monotonic Scheduling

Example

Collecting data from sensors A and B

Scheduling decision every 10ms and based on completion
deadlines

Fixed priority: B has priority

deadline A

deadline B

AA A A A

B B
Sensor A: 10ms, every 20ms

Sensor B: 25ms, every 50ms

deadline A

deadline B B B has priority

Deadline of A missed !

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Overview
Deadline Scheduling
Rate-Monotonic Scheduling

Example

Collecting data from sensors A and B

Scheduling decision every 10ms and based on completion
deadlines

Earlier Deadline First (EDF)

deadline A

deadline B

AA A A A

B B
Sensor A: 10ms, every 20ms

Sensor B: 25ms, every 50ms

A B

deadline A

deadline B

A deadline before B deadline

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Overview
Deadline Scheduling
Rate-Monotonic Scheduling

Example

Collecting data from sensors A and B

Scheduling decision every 10ms and based on completion
deadlines

Earlier Deadline First (EDF)

deadline A

deadline B

AA A A A

B B
Sensor A: 10ms, every 20ms

Sensor B: 25ms, every 50ms

A B

deadline A

deadline B BA
B interr. because of A deadline

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Overview
Deadline Scheduling
Rate-Monotonic Scheduling

Example

Collecting data from sensors A and B

Scheduling decision every 10ms and based on completion
deadlines

Earlier Deadline First (EDF)

deadline A

deadline B

AA A A A

B B
Sensor A: 10ms, every 20ms

Sensor B: 25ms, every 50ms

A B

deadline A

deadline B BA BA B completes because earliest
deadline

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Overview
Deadline Scheduling
Rate-Monotonic Scheduling

Example

Collecting data from sensors A and B

Scheduling decision every 10ms and based on completion
deadlines

Earlier Deadline First (EDF)

deadline A

deadline B

AA A A A

B B
Sensor A: 10ms, every 20ms

Sensor B: 25ms, every 50ms

A B

deadline A

deadline B BA BA A AB Last B and A complete

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Overview
Deadline Scheduling
Rate-Monotonic Scheduling

Rate-Monotonic Scheduling (RMS)

Proposed by Liu and Layland 1973

Use frequency to assign priority

Highest priority to shortest period

Priority is a monotonic function of the period

Static priority

Example

Previously we had TA = 20ms,CA = 10ms and
TB = 50ms,CB = 25ms, so RMS would choose A. Issue:
CA

TA
+ CB

TB
= 1 !

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Overview
Deadline Scheduling
Rate-Monotonic Scheduling

Liu and Layland Result

One cannot use more than the full processor time

C1

T1
+

C2

T2
+ · · · +

Cn

Tn

≤ 1

For RMS, the following condition is sufficient for schedulability

C1

T1
+

C2

T2
+ · · · +

Cn

Tn

≤ n · (2
1
n − 1)

Example

name C T U

P1 20 100 0.02
P2 40 150 0.267
P3 100 350 0.286

Bound = 3 · (2
1
3 − 1) = 0.779

Sum of Ui = 0.753

Julien Schmaltz Multiprocessor and Real-Time Scheduling

Real-Time Systems
Real-Time Scheduling

Overview
Deadline Scheduling
Rate-Monotonic Scheduling

Summary

Interrupt based system design is challenging

Priority assignment: a Black Art. Great body of litterature;
many negative results.

We presented 2 positive results for important special cases:

RATE MONOTONIC (RMS) Liu&Layland, 1973
Case: Periodic, static priority
Rule: priority based on frequency
Not always applicable (auto impact sensor gets LOWEST
priority)
EARLIER DEADLINES (EDF) Knuth, Mok et al. ’70
Case: deadline specified at each request
Rule: schedule earliest deadline first
Optimal for 1 processor; no extension to optimal N-processor
scheme

Julien Schmaltz Multiprocessor and Real-Time Scheduling

	Introduction
	Some Issues
	Ready Queue Implementation
	Load Balancing
	Processor Affinity

	Parallel Job Scheduling
	Introduction
	Space Sharing
	Time Sharing
	Dynamic Scheduling

	Real-Time Systems
	Background
	Characteristics
	Features
	Scheduling

	Real-Time Scheduling
	Overview
	Deadline Scheduling
	Rate-Monotonic Scheduling

