
Deadlock Verif ication in
Network-on-Chips

Jul ien Schmaltz and Freek Verbeek

Julien and Freek

• Julien
– French
– Ph.D. from University of Grenoble 2006 (D. Borrione, TIMA Labs)
– 1-year postdoc in Saabrücken, Germany
– 2,5-year postdoc Radboud University Nijmegen
– Since October 2009, Assistant Professor Open Universiteit

• but I still have an office within RUN !
– Main research area in formal methods

• Freek
– Dutch
– Ph.D. student at the Radboud University Nijmegen
– Started October 2008
– Main research area in deadlock verification for NoCs
– Official promotors: Frits Vaandrager and Marko van Eekelen
– Daily supervisor: Julien

Mutlicore shift has happened (A. Agarwal - Keynote NOCS 2011)

Growing number of cores (W. Tichy - Keynote ICST 2011)

Intel 2 cores
~167 Mio. T. on 1.1cm2

Intel 4 cores
~582 Mio. T. on 2.86cm2

Intel 8 cores
~2.3 Bill. T. on 6.8cm2

AMD Opteron 12 cores
~1.8 Bill. T. on 2x3.46cm2

Sun Niagara3 16 cores
~1 Bill. T. on 3.7cm2

Intel SCC 48 cores
~1.3 Bill. T. on 5.6cm2

Tilera TILEPro64 64 coresIntel Research 80 cores
~100 Mio. T. on 2.75cm2

80 Cores Research Chip

• Teraflops, 62 Watts

• 100 millions transistors, 275 mm2

• 25% node area for router

• ASCI Red Supercomputer

• Teraflops (Dec. 1996)

• 10, 000 Pentium Pro

• 104 cabinets, 230 m2

I t is only the beginning . . .

Source. IEEE Computers 2011

A key component:
the communication fabric or Network-on-Chip (NoC)

• 80 core research chip
– 25% area for the NoC
– 30% power consumption for the NoC

• Communication fabrics key
– to performance and efficiency
– to functional correctness

Verif ication challenges

• NoCs are very large systems
– Verification methods must scale up to 100s of agents
– Large number of parameters (routing, switching, buffers, etc.)
– Regular and irregular topologies

• NoCs must be fault-tolerant
– Deep sub-micron effect
– Not all routers/processors are working
– Static and dynamic fault-models

• NoCs have intricate message dependencies
– Mix between interconnect and protocols
– e.g. cache coherency or master/slave
– Deadlocks can emerge from deadlock-free routing and protocols

Networks-on-Chips: Example 1, Hermes

NOFDATA HD

• XY minimal deterministic routing
• Wormhole switching
• Frame structure based on flits (header, control, data)

A simple master/slave protocol

• Masters send requests and wait for responses
• Slaves produce responses when receiving requests
• Deadlock-free protocol

Master Slave

XY routing in a 2D-mesh

• Deterministic simple routing algorithm
• First route to the destination column and then to the correct row
• No cyclic dependencies and thus deadlock-free

All nodes are both masters and slaves

• Is the system deadlock-free ?

All nodes are both masters and slaves

• Is the system deadlock-free ?
• No ! Two nodes are sufficient to create a deadlock.

Masters on even columns and slaves on odd columns

• Is the system deadlock-free ?

Master
Slave

Master Master
Slave Slave

Masters on even columns and slaves on odd columns

• Is the system deadlock-free ?
• No if at least four columns, yes otherwise.

Master
Slave

Master Master
Slave Slave

Green request cannot be
consumed as it is waiting
for the blue request to leave.

All masters on the right and al l slaves on the left

• Is the system deadlock-free ?

Master Slave

All masters on the right and al l slaves on the left

• Is the system deadlock-free ?
• Yes ! A deadlock would require a response to wait for a request

Master Slave
No dependencies
between responses
and requests

From deadlock-free components a deadlock emerges !

Networks-on-Chips: Example 2, Spidergon

• Design by STMicroelectronics
• Simple shortest path routing algorithm
• Regular for an even number of nodes
• Packet, circuit, or wormhole switching

RelAd = (dest - current) mod 4 * N

if RelAd = 0 then
stop

elseif 0 < RelAd <= N then
go clockwise

elseif 3*N <= RelAd <= 4*N then
go counter clockwise

else
go across

endif

Route from 0 to 7 ? 1 to 6 ?

7

6

5 34

0 1

2

The interconnect has deadlocks !

• For instance, we can have a cycle of packets

7

6

5 34

0 1

2

The only possible cycle is the ring

• Because routing is across first

7

6

5 34

0 1

2
7 to 4

6 to 3
6 to 3 route through 2 not 7

Nodes in f irst quarter are slaves only

• Is the system deadlock-free ?

7 10

6 2

5 34

Slave

Master

• Is the system deadlock-free ?
• Yes ! A cycle would require a response going from 0 to 2.

7 10

6 2

5 34

Slave

Master

Nodes in f irst quarter are slaves only

From components with deadlocks a deadlock-free system emerges !

• Is the system deadlock-free ?

Slave

Master
14

12 4

6

5

15

3

1 2

10 8

0

11

13

9 7

Nodes in f irst quarter are slaves only

• Is the system deadlock-free ?
• No !

Slave

Master
14

12 4

6

5

15

3

1 2

10 8

0

11

13

9 7

Nodes in f irst quarter are slaves only

Confusing . . .

• We need tools to (quickly) check for deadlocks
– in large systems
– with message dependencies

Outline

• Intel's micro-architectural description language
– xMAS language
– Capturing high-level structure and message dependencies

• Deadlock verification for xMAS
– Definition of deadlocks
– Labelled dependency graph
– Feasible logically closed subgraph

• Conclusion and future work

Intel 's abstraction for communication fabrics

• High-level of abstraction

• Exploit high-level structure

Automatic proofs using invariant generation and hardware model-checking

xMAS - Executable MicroArchitectural Specif ications

• Fair sinks and sometimes sources
• Diagram is formal model
• Friendly to microarchitects

Composing modules via channels

• Channels with three signals
– data, input ready, target ready

• Transfer cycle
– both input and target are "true"

A simple example

• Two sources
– both inject responsesrsp

rsp

rsp

req

Another simple example

• Two message types
– requests and responses

req,rsp

x

q0
q1

q2

rsp

req

le8,	
right

spoons

……

……

l

r
rl

An academic example - Dining Philosophers

• Philosophers model in xMAS
– Hands as 2 message types
– Spoons as queues of size 1
– "Eat" as join between hands

1

1

An example extracted from Intel 's designs

b

q0r

q1

r

r

b

b

• Two message types
– blue and red

• Sorting queues

• Reds and blues synchronized before sink

Processing node for XY routing in a 2D-mesh

h.y	 ≠	 Y

h.x	 =	 X

h.x	 ≠	 X

h.y	 =	 Y

h.x	 >	 X

h.x	 <	 X

h.y	 <	 Y

h.y	 >	 Y

L

N

S

E

W

N

S
E

W

Processing node with requests and responses

h.y	 ≠	 Y

h.x	 =	 X

h.x	 ≠	 X

h.y	 =	 Y

h.x	 >	 X

h.x	 <	 X

h.y	 <	 Y

h.y	 >	 Y

L

N

S

E

W

N

S
E

W

(dst,src,req)
	 (src,	 _	 ,rsp)

req

rsp

Processing node for Spidergon

R

relAd	 <	 3N

relAd	 =	 0

relAd	 >	 N relAd	 ≥	 3N

relAd	 ≤	 N
CW

ACR

CCW

relAd	 ≠	 0

CW

ACR

CCW

Outline

• Intel's micro-architectural description language
– xMAS language
– Capturing high-level structure and message dependencies

• Deadlock verification for xMAS
– Definition of deadlocks
– Labelled dependency graph
– Feasible logically closed subgraph

• Conclusion and future work

Formal definit ion of "deadlock" in xMAS

• Intuition is a "dead" channel

• Formal definition based on Linear Temporal Logic
– Predicate logic
– Temporal operators "eventually" (F) and "globally" (G)

• Channel u is dead iff
– F (u.irdy => G ~u.trdy)
– Eventually the input is ready and the target is globally (forever) not ready
– A packet arrives at a channel but will never be able to cross it

A simple example

• Two sources
– one for requests
– one for responses

• Is it deadlock-free ?

rsp

rsp

rsp

req

irdy

data

trdy

A simple example

• Two sources for responses

• There is a deadlock
– no cycle
– no message dependencies

A simple example

• Two sources for responses

• There is a deadlock
– no cycle
– no message dependencies

idle
channel

A simple example

• Two sources for responses

• There is a deadlock
– no cycle
– no message dependencies

idle
channel

blocking
queue

Another simple example

• Two message types
– requests and responses

• Types at source x without creating a deadlock ?

req,rsp

x

q0
q1

q2

rsp

req

Another simple example - deadlock configuration

• Two message types
– requests and responses

• Types at source x without creating a deadlock ?
– If x = rsp no deadlock
– If x = req then requests get blocked in q1

req,rsp

x

q0
q1

q2

rsp

req

requests

responses

Another simple example - deadlock configuration (1)

• Inject two requests in q0

req,rsp

x

q0
q1

q2

rsp

req

requests

responses

Another simple example - deadlock configuration (2)

• Inject two requests in q0
• Fork creates two copies

req,rsp

x

q0
q1

q2

rsp

req

requests

responses

Another simple example - deadlock configuration (3)

• Inject two requests in q0
• Fork creates two copies
• One pair is sunk

req,rsp

x

q0
q1

q2

rsp

req

requests

responses

Another simple example - deadlock configuration (3)

• Inject two requests in q0
• Fork creates two copies
• One pair is sunk

req,rsp

x

q0
q1

q2

rsp

req

requests

responses

Another simple example - deadlock configuration (3)

• Inject two requests in q0
• Fork creates two copies
• One pair is sunk

req,rsp

x

q0
q1

q2

rsp

req

requests

responses

Another simple example - deadlock configuration (3)

• Inject two requests in q0
• Fork creates two copies
• One pair is sunk

req,rsp

x

q0
q1

q2

rsp

req

requests

responses

Another simple example - deadlock configuration (3)

• Inject two requests in q0
• Fork creates two copies
• One pair is sunk

req,rsp

x

q0
q1

q2

rsp

req

requests

responses

Another simple example - deadlock configuration (4)

• Inject two requests in q0
• Fork creates two copies
• One pair is sunk
• Inject two responses in q0

req,rsp

x

q0
q1

q2

rsp

req

requests

responses

Another simple example - deadlock configuration (5)

• Inject two requests in q0
• Fork creates two copies
• One pair is sunk
• Inject two responses in q0
• If x never injects responses, q1 is blocking

req,rsp

x

q0
q1

q2

rsp

req

requests

responses

Another simple example - deadlock configuration (5)

• Inject two requests in q0
• Fork creates two copies
• One pair is sunk
• Inject two responses in q0
• If x never injects responses, q1 is blocking

req,rsp

x

q0
q1

q2

rsp

req

requests

responses

We have a deadlock without a circular wait !

General approach for deadlock detection in xMAS networks

• Define deadlock equations for all components
– Equations capture the reason why a component is idle or

blocking

• Build a labelled waiting graph for each queue
– Labels correspond to the equations
– Graph captures the topology, i.e., the dependencies between

the xMAS components

• Search for a feasible logically closed subgraph
– Corresponds to a deadlock situation
– Feasibility checked using Linear Programming

• This approach may output unreachable deadlocks
– A first step generates invariants to rule out false deadlocks
– Invariants are rather weak and simple - false deadlocks are in

theory still possible

General approach for deadlock detection in xMAS networks

• Define deadlock equations for all components
– Equations capture the reason why a component is idle or

blocking

• Build a labelled waiting graph for each queue
– Labels correspond to the equations
– Graph captures the topology, i.e., the dependencies between

the xMAS components

• Search for a feasible logically closed subgraph
– Corresponds to a deadlock situation
– Feasibility checked using Linear Programming

• This approach may output unreachable deadlocks
– A first step generates invariants to rule out false deadlocks
– Invariants are rather weak and simple - false deadlocks are in

theory still possible

Idle and blocked channels - searching for deadlocks

• Definition of a deadlock
– F (u.irdy => G~u.trdy)

• Two reasons for a deadlock
– a blocked channel (G~u.trdy)
– an "idle" channel (G~u.irdy)

u

w

v is blocked

w is idle

irdy

data

trdy

Deadlock equations for a channel

• Depends on the target component connected to the channel

• We look at the input port of the target component

irdy

data

u

trdy

Initiator target

Deadlock equations for queues

• Queue blocking when full and blocked message at its head
• We look at the input channel of the queue

• Block(u) = Full(q) . Block(v)

v

irdy

data

trdy

u

Deadlock equations for a join

• 2 cases
– output is blocked
– the other input is idle

• Block(u) = Idle(v) + Block(w)

irdy

data

trdy

u

v
w

Deadlock equations for a join

• 2 cases
– output is blocked
– the other input is idle

• Block(u) = Idle(v) + Block(w)

irdy

data

trdy

u

v
w

We need to know when a channel is idle !

Idle equations for a channel

• Depends on the initiator component connected to the channel

• We are looking at the input port of the initiator

irdy

data

u

trdy

Initiator target

Idle equations for a join

• A join is idle if one of the input channels is idle

• Idle(w) = Idle(u) + Idle(v)
irdy

data

trdy

u

v
w

Idle equations for a fork

• A fork output is idle if the input is idle or the other output is blocked

• Idle(w) = Idle(u) + Block(v)
irdy

data

trdy

u
v

w

Idle equations for a queue

• A queue is idle if it is empty and its input channel is idle
• This is for one message type which might be blocked by another type

• Idle(w) = Empty(q) . Idle(u) + Block(w')
– where w' is a message with a type different from w

irdy

data

trdy

u w

Our quest for "dead" queues

• Definition of a deadlock
– F (u.irdy => G~u.trdy)

• We look for a "dead" queue
– with a message in it (u.irdy)
– output blocked (G~u.trdy)

• Over approximation
– configuration not always reachable
– we may output false deadlocks

General approach for deadlock detection in xMAS networks

• Define deadlock equations for all components
– Equations capture the reason why a component is idle or

blocking

• Build a labelled waiting graph for each queue
– Labels correspond to the equations
– Graph captures the topology, i.e., the dependencies between

the xMAS components

• Search for a feasible logically closed subgraph
– Corresponds to a deadlock situation
– Feasibility checked using Linear Programming

• This approach may output unreachable deadlocks
– A first step generates invariants to rule out false deadlocks
– Invariants are rather weak and simple - false deadlocks are in

theory still possible

Step 1 / simulation - req

inject req

queues with req

Step 1 / simulation - req

inject req

queues with req

Step 1 / simulation - req

inject req

queues with req

Step 1 / simulation - rsp

inject rsp

queues with req and rsp

Step 1 / simulation - rsp

inject rsp

queues with req and rsp

Step 1 / simulation - rsp

inject rsp

queues with req and rsp

General approach for deadlock detection in xMAS networks

• Define deadlock equations for all components
– Equations capture the reason why a component is idle or

blocking

• Build a labelled waiting graph for each queue
– Labels correspond to the equations
– Graph captures the topology, i.e., the dependencies between

the xMAS components

• Search for a feasible logically closed subgraph
– Corresponds to a deadlock situation
– Feasibility checked using Linear Programming

• This approach may output unreachable deadlocks
– A first step generates invariants to rule out false deadlocks
– Invariants are rather weak and simple - false deadlocks are in

theory still possible

Step 2 / labelled dependency graph (1)

q1
q1.req ≥ 1

join

start

join

start with a message in q1 and visit the join

Step 2 / labelled dependency graph (2)

q1
q1.req ≥ 1

join

start

join
u

v
w

analyse the join according to its deadlock equation

Block(u) = Idle(v) + Block(w)
mrg2

sw

+

mrg2

sw

we go forward to the merge and backward to the switch

Step 2 / labelled dependency graph (2)

q1
q1.req ≥ 1

join

start

join

u

v
w

forwards to the switch - then the sink can never be blocked

Block(u) = Block(w)
mrg2

sw

+

mrg2

sw

we assume fair sinks

sink

false

Step 2 / labelled dependency graph (2)

q1
q1.req ≥ 1

join

start

join

u
v

w

backwards to the switch

Idle(u) = Idle(w)
mrg2

sw

+

mrg2

sw

sink

false

Step 2 / labelled dependency graph (2)

q1
q1.req ≥ 1

join

start

join

uw

backwards to the queue

Idle(u) = Idle(w) . Empty(q2)
mrg2

sw

+

mrg2

sw

sink

false

q2.rsp = 0
q2

note that we forgot the Block(w') case

Step 2 / labelled dependency graph (2)

q1
q1.req ≥ 1

join

start

join

uw

backwards to the merge and branch

Idle(w) = Idle(u) + Idle(v)
mrg2

sw

+

mrg2

sw

sink

false

q2.rsp = 0
q2mrg1

u
v

note branching is bad for us

Step 2 / labelled dependency graph (2)

q1
q1.req ≥ 1

join

start

join

u

w

Idle(u) = Block(v) + Idle(w)

mrg2

sw

+

mrg2

sw

sink

false

q2.rsp = 0
q2mrg1

u
v

rsp �∈ x

frk

src2 .

backwards to the merge and branch

to the source - idle if no type produced

to the fork

Step 2 / labelled dependency graph (2)

q1
q1.req ≥ 1

join

start

join

u

w

Idle(u) = Idle(w) . Empty(q0)

mrg2

sw

+

mrg2

sw

sink

false

q2.rsp = 0
q2mrg1

u

rsp �∈ x

frk

src2 .

backwards to q0 and the source

q0.rsp = 0false

src1 q0

Step 2 / labelled dependency graph (2)

q1
q1.req ≥ 1

join

start

join

Block(u) = Block(w) . Full(q1)

mrg2

sw

+

mrg2

sw

sink

false

q2.rsp = 0
q2mrg1

u

rsp �∈ x

frk

src2 .

forwards back to q1 and stop expansion

q0.rsp = 0false

src1 q0 q1 = q1.size
+

w

General approach for deadlock detection in xMAS networks

• Define deadlock equations for all components
– Equations capture the reason why a component is idle or

blocking

• Build a labelled waiting graph for each queue
– Labels correspond to the equations
– Graph captures the topology, i.e., the dependencies between

the xMAS components

• Search for a feasible logically closed subgraph
– Corresponds to a deadlock situation
– Feasibility checked using Linear Programming

• This approach may output unreachable deadlocks
– A first step generates invariants to rule out false deadlocks
– Invariants are rather weak and simple - false deadlocks are in

theory still possible

q1.req ≥ 1

q2.rsp = 0
rsp �∈ x

q0.rsp = 0

q1 = q1.size

false

Step 2 / logically closed subgraph 1

q1

join

mrg2 sink

sw

q2mrg1

frk

src1

src2 .

+
q0

false+

q1.req ≥ 1

q2.rsp = 0
rsp �∈ x

q0.rsp = 0

q1 = q1.size

false

Step 2 / logically closed subgraph 1

q1

join

mrg2 sink

sw

q2mrg1

frk

src1

src2 .

+
q0

false+

q1.req ≥ 1

q2.rsp = 0
rsp �∈ x

q0.rsp = 0

q1 = q1.size

false

Step 2 / logically closed subgraph 1

q1

join

mrg2 sink

sw

q2mrg1

frk

src1

src2 .

+
q0

false

not feasible

+

q1.req ≥ 1

q2.rsp = 0
rsp �∈ x

q0.rsp = 0

q1 = q1.size

false

Step 2 / logically closed subgraph 2

q1

join

mrg2 sink

sw

q2mrg1

frk

src1

src2 .

+
q0

false+

q1.req ≥ 1

q2.rsp = 0
rsp �∈ x

q0.rsp = 0

q1 = q1.size

false

Step 2 / logically closed subgraph 2

q1

join

mrg2 sink

sw

q2mrg1

frk

src1

src2 .

+
q0

false+

q1.req ≥ 1

q2.rsp = 0
rsp �∈ x

q0.rsp = 0

q1 = q1.size

false

Step 2 / logically closed subgraph 2

q1

join

mrg2 sink

sw

q2mrg1

frk

src1

src2 .

+
q0

false

feasible if x is req

req

+

Implementation and case studies

• Implementation of algorithm in C

• 2 topologies
– Spidergon from STMicroelectronics
– HERMES from Univ. Rio Grande (Brazil)

Experimental results

An academic example - Dining Philosophers

• Philosophers model in xMAS
– Hands as 2 message types
– Spoons as queues of size 1
– "Eat" as join between hands

• A ring of philosophers
– Easy problem for our algorithm
– 3 000 philos in 0.06s

le8,	
right

spoons

……

……

l

r
rl

An example too hard for Intel but not for us !

• Two message types
– blue and red

• Sorting queues

• Reds and blues synchronized before sink

• Is this network deadlock-free ?

An example too hard for Intel but not for us !

• Two message types
– blue and red

• Sorting queues

• Reds and blues synchronized before sink

• Is this network deadlock-free ?

deadlock-free

An example too hard for Intel but not for us !

• Two message types
– blue and red

• Sorting queues

• Reds and blues synchronized before sink

• Is this network deadlock-free ?

deadlock-free

ordering
for blues and

reds

Outline

• Intel's micro-architectural description language
– xMAS definition
– examples

• Deadlock verification for xMAS
– definition of deadlocks
– labelled dependency graph
– feasible logically closed subgraph

• Conclusion and future work

Conclusion and future work

• Tool to detect message dependent deadlocks
– Very efficient
– Intel's our only concurrent
– We can already handle more cases than Intel's techniques

• Still need to be formally proven
– Connection with our previous work on GeNoC

• Composition/Hierarchy
– Check sub-networks first and then compose

• Memory consistency proofs
– e.g. Producer Consumer relations
– Open PhD position sponsored by Intel/Open Universiteit/Radboud

Thanks !

Deadlock example 3

• Channels with three signals
– data, input ready, target ready

• Transfer cycle
– both input and target are "true"

