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Abstract

The main scientific heritage of Corrado Böhm is about computing, concerning
concrete algorithms as well as models of computability. Discussed will be the
following. 1. A compiler that can compile itself. 2. Structured programming,
eliminating the ‘goto’ statement. 3. Functional programming and an early
implementation. 4. Separability in λ-calculus. 5. Compiling combinators
without parsing. 6. Self-evaluation in λ-calculus.

Introduction

As a tribute to Corrado Böhm this paper explains six important results of his and
also discusses some of their later developments. Most of the papers are written by
Böhm with co-authors. The result on elimination of the goto, Section 2, is written
by Giuseppe Jacopini alone in the joint paper with Böhm [17], but one may assume
that Böhm as supervisor had influenced the research involved, and therefore this
result is included here. This paper is written such that computer science freshmen
can read and understand it.

1. Self-compilation

In his PhD thesis [11] at the ETH Zürich, Corrado Böhm constructed one of the
first higher programming languages L together with a compiler for it. The compiler
has the particular quality that it is written in the language L itself. This sounds
like magic, but it is not: if a programming language is capable of expressing any
computational process, then it should also be able to ‘understand itself’ (i.e. perform
the computational task to translate it into machine language). Later this property
gave rise to ‘bootstrapping’: dramatically increasing efficiency and reliability of
computer programs, that seems as impossible as to pull oneself over a fence by
pulling one’s bootstraps1. This gave rise to the term ‘booting a computer’.

1In Europe the hyperbole for impossibility is the story of Baron (von) Münchhausen, who could
get himself (and the horse on which he was seated) out of a swamp by pulling up his own hair.
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1.1. Algorithms, computers, and imperative programming

An algorithm is a recipe to compute an output from a given input. Executing such
a recipe basically consists in putting down pebbles2 in a fixed array of boxes and
‘replacing’ these pebbles step by step. That is, a pebble may be moved from one box
to another one, be taken away, or new ones may be added. Such a process is called
a calculation or computation. As Turing [54] has shown, all computational tasks,
like “What is the square of 29?”, “Put the following list of words in alphabetical
order”, or “What does Wikipedia say about the concept ‘bootstrap’?”, can be put
in the format of shuffling pebbles in boxes.

This view on computing holds for computations on an abacus, but also for pro-
grammed computers. A computer M is a, usually electronic, device with memory,
that performs computations. The pebbles are represented in this memory and the
shuffling is done by making stepwise changes to them. A simple conceptual computer
is the Turing Machine (TM). It consists of an infinite3 tape of discrete cells that can
be numbered by the integers Z = {· · · ,−2,−1, 0, 1, 2, · · ·}. At every moment in the
computation on only a finite number of these cells information is written, either a 1
or nothing, denoted by 0: the original TM was a 0-bit4 machine. The machine can
be in one of a finite number of states. There is a read/write (R/W) head positioned
on one of the cells of the tape. Depending on the symbol a that is read, and the
present state s, one of the following three actions is performed: a (possibly different)
symbol a′ is written on the cell under the R/W-head, a (possibly different) state
s′ is assumed, and finally the head moves {R,L,N} (R: one position to the right,
L: one position to the left, N : no moving). Each Turing Machine is determined
by a finite table consisting of 5-tuples like ⟨a, s; a′, s′, {R,L,N}⟩ that determine the
changes.

Turing showed that there exists a particular kind of machine, called a universal
machine U , that suffices to make arbitrary computations. Such a U is conceptually
easy. The set of 5-tuples of a particular machine M is presented as a table TM ‘in
its silicon’. A universal machine U that imitates M, needs in coded form this table
TM, including the collection of all states of M (that may be more extensive than
that of U) and the present state of M, stored in a dedicated part of the memory
as the program (nowdays known as the ‘app’) for M. The instruction table TU
of U stipulates that it 1. has to look in TM in order to see what is the present
state of M, and to know what to do next; and 2. to do this. The possibility of a
universal machine provides a model of computation in which a single machine M,
using programming language M = LM, can perform any computational job. The
nature of the actions of Turing machines, described in their action tables, is rather
imperative: overwrite information, change state, move. For this reason the resulting
computational model is called imperative programming.

In this paper we will consider a fixed universal machineM. Around 1950, when
2The word ‘pebble’ in Latin is ‘calculus’.
3Actual computers have only a finite amount of memory. Turing apparently didn’t want to be

technology dependent and conceived the Turing Machine with an idealized memory of infinitely
many cells. In actual computers there is only a bounded amount of information that can be stored.

4In 0-bit machines counting happens in the 20-ary, i.e. unary, system. In modern computers
the cells are replaced by registers that contain a sequence of 64 or more bits that can be read or
overwritten in parallel; moreover, the registers do not need to be looked up linearly, like on the
tape of the TM, but there is fast access to each of them; one speaks of ‘random access memory’
(RAM).
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Corrado Böhm worked on his PhD, computers were rare. Indeed, in 1954, in a
country like the Netherlands there were only three computers (at the Mathematical
Center, the Royal Meteorological Institute, and the National Phone Company) and
no more were deemed to be necessary! Nowadays (2019) a standard car has on board
at least > 100 (universal) computers.

A program in a given language M forM consists of a sequence of statements in M
that the machine ‘understands’: it performs intended changes on data represented in
the memory ofM. Such programs are denoted by p = pM , the superscript indicating
that the program is written in the language M .

1.1. Definition. (i) There is a non-specified set D (for data) consisting of the
intended objects on which computations take place.

(ii) The process of running program pM on input x in D is denoted by {pM}(x)5.
If this process terminates with end result y (the output, again in D), then we write

{pM}(x)→→ y.

(iii) It may be the case that {pM}(x) doesn’t terminate. Then there is no output,
and we write {pM}(x)↑.

(iv) The (operational) semantics of pM is the partial map [[pM ]]:D ⇁ D defined
as follows.

[[pM ]](x) = y, if {pM}(x)→→ y;
= ↑, if {pM}(x)↑.

For { } and [[ ]], that depend on M , we often write { }M , [[ ]]M , respectively.
The difference between [[pM ]](x) = y and {pM}(x) →→ y is that the former is

a mathematical identity, like 362 = 36 × 36 that holds by definition, whereas the
latter requires a computation, like 36 × 36 →→ 1296. The sign ‘→→’ indicates that a
computation has to be performed that takes time, consisting of a sequence of a few
or more steps that transform information.

1.2. Proposition. If {pM}(x) terminates, then

{pM}(x)→→ [[pM ]](x).

Proof. By definition.

1.2. Programming languages and compilers

A human, having to write a correct and efficient program, better does this in an
understandable way, rather than in the form of recipes for shuffling pebbles. One
can use a programming language L for this, in which computational tasks can be
described more intuitively. In [11] an early example of such a language L is con-
structed.

5Compound expressions like {{c}(p)}(x) make sense and will be used. But an expressions like
{q}({p}(x)) we will avoid, as one is forced to evaluate first the {p}(x), which may be undefined;
therefore even if ∀y.{q}(y)→→ 0, one doesn’t always have {q}({p}(x))→→ 0. See [3, Exercise 9.5.13]
and [2, 7].
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1.3. Definition. (i) A programming language L consists of programs p that de-
scribe computations according to (ii).

(ii) L comes with a (denotational) semantic function [[ ]]L:L→ (D ⇁ D). That
is for each pL there is a (possibly partial) function [[pL]]:D ⇁ D.

Technically speaking M is also a programming language, the machine language,
with its denotational semantics [[−]]M , by definition equal to the operational one
{−}M . By contrast other programming languages are called higher programming
languages, that are intended to make the construction of programs more easy. When
one has a program pL described in a higher programming language L we want to
have machine help from a universal machine to obtain from input x the output
[[pL]](x). We succeed if one can translate pL in the ‘right way’ into the machine
language M . This translating is called compiling.

1.4. Definition. A function C:L1 → L2, is called a compiling function if

[[C(pL1)]]L2
= [[pL1 ]]L1

.

In this paper, we will usually consider only compilers into L2 = M .

1.5. Proposition. If C:L→M is a compiling function, then

{C(pL)}M(x)→→ [[pL]]L(x).

Proof. One has by Proposition 1.2 and Definition 1.4

{C(pL)}M(x)→→ [[C(pL)]]M(x) = [[pL]]L(x).

This shows that an intended computation using a pL ∈L, for example executing
[[pL]](x), can in principle be replaced by a computation using a pM ∈M , for which
there is the support of the machine M. We say: the computational task [[pL]](x)
becomes executable (by M). In modern compilers the translation L→M , is often
divided in literally hundreds of steps, using many intermediate languages6. For
example, the first step is the so called lexing that examines where every meaningful
unit starts and ends7. At the end of the long translation process one arrives at the
language M . No need for further translation occurs: inM the programs in machine
language are run by the laws of physics (electrical engineering).

Compiling functions C:L1 → L2 are notably useful if the translated program
C(pL1) in L2 in turn is the result of an executable program. Translating is a com-
putational task and in principle determining C(pL) can be done by hand. But since
many programs, also in a higher order programming language, may consist of several

6For example one may have a long series of translations:

L→ L1 → L2 → · · · → Ln →M.

7Every student of a foreign language has to master this also: a stream of sounds

‘papafumeunepipe’

has to be separated into words as follows ‘papa fume une pipe’; only then one can translate further,
into ‘father smokes a pipe’.
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million instructions, the computational task of compiling is better performed by a
machine. A program that performs this translation is called a compiler. If such
an automated translation process is of any use, the compiler needs to be written
either in machine language M , or in another language L such that there is already
an earlier compiler from L to M .

1.6. Definition. Let CL1 :L1 → M be a compiling function. A compiler for CL1

written in language L2 is a program cL1,L2 such that

[[cL1,L2 ]]L2
= CL1 .

This is useful only if programs in L2 are also executable. This is the case if
L2 = M or if there is already a compiler from L2 into M . Two cases will be
important in this paper. 1. L2 = M and 2. L2 = L1.

1.3. Compilers written in machine language M

First we consider a compiler cL:L→M written in machine language M .

1.7. Proposition. Let cL:L→M be a compiler for a compiling function C.
(i) For all programs pL written in M one has {cL}M(pL)→→ C(pL).
(ii) A computational job [[pL]]L(x) can be fully automated as follows.

{{cL}(pL)}(x)→→ {C(pL)}(x)→→ [[pL]]L(x).

Proof. (i) By Definition 1.6 we have [[cL]]M = C. Hence by Proposition 1.2

{cL}(pL)→→ [[cL]]M(pL) = C(pL).

(ii) It follows that

{{cL}(pL)}(x) →→ {C(pL)}(x), by (i),
→→ [[pL]](x), by Proposition 1.5.

1.8. Definition. Let cL:L→M be a compiler written in M .
(i) By Proposition 1.7(ii) there are two computation phases towards [[pL]](x):

{{cL}(pL)}(x)→→1 {C(pL)}(x)→→2 [[pL]](x).

The first computation 1, that is {cL}(pL) →→ C(pL), takes place in a time inter-
val that is called compile-time; the second computation 2, that is {C(pL)}(x) →→
[[pL]](x), takes place in a time-interval that is called run-time.

(ii) If for programs pL and inputs x (that interest us) the run-time {C(pL)}(x)→→
[[pL]](x) is short (for our purposes), then the compiler cL is said to produce efficient
code. Note that this pragmatic definition depends only on the compiling function
C = [[cL]], and not on its program, the compiler itself.

(iii) If for programs pL (that interest us) the compile-time is short (for our pur-
poses), then the compiler is said to be fast. Note that this notion does depend on
the compiler cL, and not on the compiling function C = [[cL]].
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1.9. Proposition. For a programming language L, in which every program pL is a
sequence of statements consisting of a computable step, there exists a simple compiler
cL,MI :L → M written in M for a compiling function CL

I , mimicking the steps in L
as steps in M . Such a compiler is called a (simple) interpreter.

Proof (Sketch). Let pL = s1; s2; . . . ; sn. Define CL
I (p

L) = I(s1); I(s2); . . . ; I(sn),
where I(s) mimics the statement s by a (small) program in M .

For complex computational problems using a large program both the compile-time
and run-time consume considerable amounts of time. Often these are bottlenecks
for the feasibility of executing a program. Usually interpreters produce less efficient
code than compilers to be discussed next.

1.4. Compilers written in higher programming languages

Now we consider the task of writing a compiler c = cL,M :L → M . If a compiler
more complex than a simple interpreter is able to look at the input program pL in
its totality and can ‘reflect’ (act) on it, making optimizations for the run-time of the
resulting code pM . The goal is that such a compiler improves efficiency8, using the
power and flexibility of L. With the right effort a compiler can be developed that
produces efficient code, so that to use such a compiler the run-time performance of
the translated programs are optimized. This doesn’t apply to the compile-time of
compiler c is written in M , for which it is hard to achieve optimizations.

In his PhD thesis (1951) of just 50 pages Corrado Böhm designed a programming
language L and constructed a compiler cB = cL,LB , in L itself. This later made
bootstrapping possible: producing not only efficient programs, but also making the
compilation process itself efficient. We will explain how this is achieved. Suppose one
has a compiler cL,LB ∈L that produces efficient code (efficiently running programs).
Here ‘efficient’ is used in a non-technical intuitive sense. In order to run cL,LB one
needs a simple interpreter cL,MI :L → M , written in M . Now we will describe
three ways of computing the job [[pL]]L(x), that is, finding the result of an intended
computation with program pL written in L on input x.

1. Computing [[pL]]L(x) using the simple interpreter cL,MI :

{{cL,MI }(pL)}(x) →→ {CL
I (p

L)}(x), by 1 of Definition 1.8(i),
→→ [[pL]]L(x), by 2 of Definition 1.8(i).

This has both inefficient compile-time and run-time.
2. Better efficiency using cL,LB , run by the interpreter. Define cL,MB = CL

I (c
L,L
B ),

the interpreter applied to the compiler written in L. This can be precompiled

cL,MB = CL
I (c

L,L
B )←← {cL,MI }(cL,LB ),

as the code of CL
B in the sense that [[cL,MB ]]M = CL

B. One now has

{{cL,MB }(pL)}(x) = {{CL
I (c

L,L
B )}(pL)}(x), by definition,

→→ {[[cL,LB ]]L(p
L)}(x), Prop. 1.5 applied to CI(c

L,L
B ),

= {CL
B(p

L)}(x), as [[cL,LB ]]L = CL
B by definition,

→→ [[pL]]L(x), Prop. 1.5 applied to CL
B(p

L).
8Software engineering studies ways to develop new versions of programs and compilers, in order

to improve time performance and also to correct bugs (errors).
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Computing cL,MB is a one time job and, as the result can be stored, it doesn’t count in
measuring efficiency. The first computation →→ counts as the compile time of cL,MB .
But it is also the run-time of cL,MI (with compiling function CL

I ) and doesn’t need
to be efficient. The second computation →→ is the run time of cLB (with compiling
function CL

B) and was assumed to be efficient. Therefore this computation has an
efficient run-time, but not necessarily an efficient compile-time.

3. Best efficiency using cL,LB : define cL,MB′ = CL
B(c

L,L
B ), the compiler applied to

itself. This can be precompiled as follows.

cL,MB′ = CL
B(c

L,L
B )←← {cL,MB }(cL,LB )←← {{cL,MI }(cL,LB )}(cL,LB ),

just requires a one time computation. Then again [[cL,MB′ ]]M = CL
B, but now

{{cL,MB′ }(pL)}(x) = {{CL
B(c

L,L
B )}(pL)}(x), by definition,

→→ {[[cL,LB ]]L(p
L)}(x), Prop. 1.5 applied to CL

B(c
L,L
B ),

= {CL
B(p

L)}(x), as CL
B = [[cL,LB ]]L by definition,

→→ [[pL]](x), Prop. 1.5 applied to CL
B(p

L),

with both efficient compile and run-time, as both codes have been generated by CL
B.

cL,MI cL,LB cL,LB pLx

1.2
����

[[cL,MI ]]M(cL,LB )pLx

1.6

cL,MI cL,LB pLx

1.2
����

CL
B(c

L,L
B )pLx

1.5
����

[[cL,MI ]]M(cL,LB )pLx

1.6

[[cL,LB ]]L(c
L,L
B )pLx

1.6

cL,MI pLx

slow compiling 1.2
����

CL
I (c

L,L
B )pLx

slow compiling 1.5
����

CL
B(c

L,L
B )pLx

1.5 efficient compiling
kkkk

k

uuuukkkk
k

[[cL,MI ]]M(pL)x

1.6

[[cL,LB ]]L(p
L)x

1.6

CL
I (p

L)x

slow running 1.5

����

CL
B(p

L)x

1.5 efficient running
nnn

nnn

vvvvnnn
nnn

[[pL]]L(x)

Figure 1: Bootstrapping: precompiled cL,MB := CL
I (c

L,L
B ), cL,MB′ := CL

B(c
L,L
B ) provide

efficient run time alone, or both run time and compile time, respectively.
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In the language of combinatory logic, so much admired by Corrado Böhm, one
writes p · x, or simply px, for {p}M(x), and cpx for (cp)x, etcetera (association to
the left). Then the three ways of compiling and computing a job [[pL]]L(x) can be
rendered as in Figure 1. The underlined expressions denote the codes of the Böhm
compiler cL,LB that are obtained by precompilation, respectively using the interpreter
and using itself. So the steps above these do not require time. This bootstrapping
process wasn’t in Böhm’s PhD thesis, but it was made possible by his invention and
realization of self-compilation.

x

��
pM // • // y = [[pM ]]M(x)

The universal machine •
with program pM and input x.
Although M = LM is a uni-
versal language, it is difficult to
write creative programs in it.

pL

��

x

��
cI // • pM // • // y = [[pL]]L(x)

Using a simple compiler
cI :L → M one can write
better programs in L to run
on M . These have slow compile-
time and slow run-time.

cLB

��

pL

��

x

��
cI // • cMB

// • pM∗
// • // y = [[pL]]L(x)

Using cLB , with compiling
function yielding optimized
code, one can obtain efiicient
run-time, but not compile-time.

cLB

��

cLB

��

pL

��

x

��
cI // • cMB

// • cMB∗
// • pM∗

// • // y = [[pL]]L(x)

Compiling cLB by itself yields
an optimized cMB∗ from which
one can obtain efiicient
run-time and compile-time.

Figure 2: A different perspective on the same bootstrap process.

1.5. Compiler configurations

In this section we treat compilers in full generality translating a language L1 into L2.
Only one machine M is used for the translation, but this easily can be generalized.

1.10. Definition. (i) We define the languageC of compiler configurations by the
following context free grammar.

C ::= L | (L, C1, c, C2), where c is a program in L and C1, C2 ∈C.

Actually L is a symbol for a language and c belongs to that language.
(ii) Let C ∈C. The language of C, in notation |C|, is defined as follows.

|L| = L;

|(L, C1, c, C2)| = L.

(iii) Correctness of C ∈C is defined as follows.
L is correct;

(L, C1, c, C2) is correct if c is a program in programming language |C2| ,
C1, C2 are correct and
[[c]]|C2|:L→|C1| is a compiling function.
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1.11. Example. The three situations in Subsection 1.4 can be described as compiler
configurations. We use c0 and cB instead of cL,MI and cL,LB , respectively.

C1 = (L,M, c0,M).

C2 = (L,M, cB, C1) = (L,M, cB, (L,M, c0,M)).

C3 = (L,M, cB, C2) = (L,M, cB, (L,M, cB, (L,M, c0,M))).

1.12. Definition. A compiler configuration C can be drawn as a labeled tree TC.

TL = L;

T(L,C1,c,C2) = L
c

~~}}
}}
}}
}}

 `
 `

 `
 `

 `

TC1 TC2

Compiler configurations and their trees are more convenient to use than the
more rigid T-diagrams introduced in [43], since there is more flexibility to draw lan-
guages that still need to be translated. For example, C3 is the compiler configuration
employed by Böhm and its tree explains well the magic trick.

1.13. Definition. A compiler configuration C is inductively defined to be executable
as follows.

L is executable iff L = M ;
(L, C1, c, C2) is executable iff C1 and C2 are executable.

1.14. Example. (i) The three compiler configurations C1, C2, C3 considered before
are executable.

TC1 = L
c0

~~}}
}}
}}
}

 `
 `

 `
 `

M M

.

TC2 = L
cB

}}||
||
||
||

 `
 `

 `
 `

 `

M L
c0

~~}}
}}
}}
}

 `
 `

 `
 `

M M

.

TC3 = L
cB

}}||
||
||
||

!a
!a

!a
!a

!a

M L
cB

}}||
||
||
||

 `
 `

 `
 `

 `

M L
c0

~~}}
}}
}}
}

 `
 `

 `
 `

M M

.
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(ii) The following compiler configurations, drawn as trees, are not executable:

TC = L
c

��~~
~~
~~
~~

�_
�_

�_
�_

L1 M

, TC′ = L
c

��~~
~~
~~
~~

 `
 `

 `
 `

M L2

,

because no evaluation function for L1 nor L2 is given.

1.15. Definition. To each C ∈C we assign a function that maps a program p and
value x to a value ΦC(p)(x), also written ΦCpx.

ΦLpx = [[p]]L(x);

ΦL,C1,c,C2px = ΦC1(ΦC2cp)x.

1.16. Exercise. For all correct and executable C ∈C, p∈ |C|, x∈D one has

ΦCpx = [[p]]|C|(x).

1.17. Example. In the following evaluations we leave out parenthesis, like in lambda
calculus and combinatory logic.

ΦMpMx = [[pM ]]Mx ←← {pM}x = pMx.
ΦC1p

Lx = [[[[cI ]]MpL]]Mx ←← {{cI}pL}x = cIp
Lx.

ΦC2p
Lx = [[[[[[cI ]]McB]]MpL]]

M
x ←← {{{cI}cB}pL}x = cIcBp

Lx.
ΦC3p

Lx = [[[[[[[[cI ]]McB]]McB]]MpL]]
M
x ←← {{{{cI}cB}cB}pL}x = cIcBcBp

Lx.

Do we absolutely need self-compilation in order to obtain efficient compilation?
The answer is negative. Suppose one has the following:

1. a compiler cL,L1

1 : L→M , producing fast code, written in L1;

2. a compiler cL1,L2

2 : L1 →M , producing fast code written in L2;

3. a simple interpreter cL2,M
I : L2 →M , written in M .

Then one can form the following correct and executable compiler configuration:

C4 = (L,M, cL,L1

1 , (L1, L2, c
L1,L2

2 , (L2,M, cL2,M
I ,M))),

with tree
TC4 = L

c
L,L1
1

~~||
||
||
||

 `
 `

 `
 `

M L1
c
L1,L2
2

~~}}
}}
}}
}}

 `
 `

 `
 `

M L2
c
L2,M
I

~~||
||
||
|

 `
 `

 `
 `

M M

.

Again one obtains a compiler with fast compile-time that produces efficient code

c = C2(c
L,L1

1 )←← {{cL2,M
I }(cL1,L2

2 )}(cL,L1

1 ).
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In the magic trick of Böhm, compiler (3) in Subsection 1.4 above, he took L = L1 =
L2 and cL,L1

1 = cL1,L2

2 = cL,LB . This saves work: only one language and one compiler
need to be developed.

After having obtained his PhD in Zürich, Böhm did obtain a patent on compilers.
But, unexpectedly, a few years later (1955) IBM came with its FORTRAN compiler.
It turned out that Böhm’s patent was valid only in Switzerland!

2. Structured programming

In a Turing machine transition a state can be followed by any other state. Therefore
many programming languages naturally contain the ‘goto’ statement. When these
are used in a mindless way, the meaning and hence correctness of programs is much
more difficult to warrant. The first half of the paper of Böhm and Jacopini [17] is
dedicated to eliminate goto statements, as a first step towards structured programs.
That part of the paper is stated to be written by Jacopini, but I think we may
suppose that Böhm, the supervisor of Jacopini, has contributed to it.

2.1. Imperative programming

The Universal Turing Machine, or an improved version, immediately gives rise to a
language with goto statements: the machine, being in state s1 changes (under the
right conditions) into state s2. This is expressed by a statement very much like a
5-tuple of a Turing Machine ⟨1, s1, 0, s2, N⟩, that in the presence of named registers
looks like

s1: if x = 1 then x := 0; goto s2;

Here the meaning is as follows: the machine checks whether the content of register
x equals 1 and then it overwrites the 1 by a 0 as the content of register x, after
which it jumps to state s2. In the presence of addressable registers like x, there is
no longer a need to use the small step local movements indicated by {L, R, N}. A
more extended example is the following.

s1: if x = 1 then (y := 0; goto s2) else (y := y+ 1; goto s3);

Apart from branching, leading naturally to a flow-chart as a representation of such a
program, we also see the for imperative programming typical statement y := y+ 1,
meaning that the content of register y is overwritten by the old content augmented by
one. Many such components can form nice-looking but hard to understand diagrams.
One can imagine that the idea arose to create more understandable diagrams and
as a first step to eliminate the goto statements.

2.2. Eliminating the ‘goto’

In this subsection it is shown that the result of eliminating the go to statement
can be seen in the light of Kleene’s analysis of computability, as was pointed out by
Harel [32], but also by Cooper [24].

2.1. Theorem (Kleene Normal Form Theorem). There are functions U, T that are
primitive computable such that every computable function f has a code number e
such that for all x⃗∈N one has

f(x⃗) = U(µz.T (e, x⃗, z) = 0). (NFT)
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If P is a predicate on N, then µz.P (z) denotes the least number z ∈N such that
P (z), if this z exists, otherwise the expression is undefined. In (NFT) it is assumed
that for all x there exists a z such that T (e, x, z) holds9.

Proof (Sketch). The value of the function f(x⃗) = y can be computed by the
Universal Turing Machine U using, say, e as program. Then there is a computation

(input, s0, p0)→U (t1, s1, p1)→U · · · →U (tk, sk, pk)→U (output, sh, ph), (comp)

where input = (e, x⃗), ‘input, s0, p0’ is the first configuration, ‘output, s0, p0’ is the
last one that is terminating, and output = y. Furthermore, T is the characteristic
function (= 0 when true, = 1 when false) of the primitive computable predicate
P (e, x⃗, z), that holds if z is (the code of) the computation (comp). After a search
(by µ) for this (coded sequence) z, the y = output is easily obtainable from it,
which is done by the primitive computable function U .

2.2. Theorem (Böhm-Jacopini [17]). A program built up from statements of the
form

x:=x+1
x:=x-1
if B, then S1 else S2

goto q

L1

can be replaced by an equivalent one built up from statements of the form
x:=x+1
x:=x-1
if B, then S1 else S2

for k:=0 to n do A(k)
while x>0 do A(x)

L2

Proof (Sketch). A function f with program from L1 will be computable by the
universal Turing Machine by program, say, e. Therefore by Theorem 2.1 one has
f(x⃗) = U(µz.T (e, x⃗, z) = 0). The functions U, T are primitive computable, hence
expressible by the ‘for’ statements. Only for the µ the while statements are needed.
(Actually this happens only a single time.)

2.3. Corollary (Folk Theorem). Programs in L1 can be replaced by an equivalent
one in L2 using the while construct only a single time.

Proof. By the parenthetical remark in the proof of 2.2.

2.3. Evaluation

After the goto was shown to be eliminable, in Dijkstra’s note [30] a polemics was
started ‘goto statement considered harmful’. In the book [29] structured program-
ming was turned into an art. Knuth [38] argued that eliminating the goto as in the
above proof of Theorem 2.2 may produce unstructured programs, unrelated to the
original program. The original proof in [17] preserves the structure of the program.

9The formula (NFT) also holds for partial functions f , in which case f(x⃗)↑ iff ∀z.T (e, x⃗, z) ̸= 0.
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See [44] for a detailed exposition of this paper. An even better way to eliminate
the goto statements, while preserving the structure of a program, is Ashcroft and
Manna [1]. Knuth [38] also gives an example of a program in which a goto statement
improves its structure.

In Harel [32] the paper of Böhm and Jacopini [17] was taken as an example
of how a ‘Folk Theorem’ appears. The result attributed to these authors often is
Corollary 2.3, rather than Theorem 2.2 itself.

As remarked in [17] it seems necessary to use an extra variable to obtain a
program without a goto, but the authors couldn’t find a proof of this conjecture. It
was proved by Ashcroft and Manna [1], but also in Knuth and Floyd [39] and Kozen
and Tseng [40].

Although the Böhm-Jacopini result started a discussion towards structured pro-
gramming, a new idea was needed to obtain even better structured programs. As
we will see in the next section, actually it was an old idea: functional programming
based on lambda calculus.

3. Functional programming and the CUCH machine

It was Wolf Gross, colleague of Corrado Böhm, who introduced the latter to func-
tional programming based on type-free lambda calculus, in which unbounded self-
application is possible. As can be imagined, knowing the construction of a self-
applicative compiler, it had a deep impact on the sequel of Böhm’s professional life.
As there is a paper Intrigila-Mazzucchelli in this memorial volume on Böhm’s con-
tribution to functional programming, we restrict ourselves to give some historic and
conceptual background.

3.1. Functional programming

Alonzo Church introduced lambda calculus as a way to mathematically character-
ize the intuitive notion of computability. I seem to remember that he told me the
following story. Church’s thesis supervisor, Oswald Veblen, gave him the problem
to compute the Betti numbers of an algebraic surface given by a polynomial equa-
tion. Church did not succeed in this task and was stuck developing his PhD thesis.
He then did what other mathematicians do in similar circumstances: solve a differ-
ent but related problem. Church wondered what the notion ‘computable’ actually
means. Perhaps determining the Betti number of a surface from its description is
not computable.

Church then introduced a formal system for mathematical deduction and com-
putation [18, 19]. In [36] his students Kleene and Rosser found an inconsistency10

in Church’s original system. After that Church [20] stripped the system from the
deductive part and obtained the (pure) lambda calculus, which turned out to be
provably consistent [22]. See [3] for an extensive exposition of the lambda calculus.

To formally define the notion of computability, Church introduced numerals cn
representing natural numbers n as lambda terms. Rosser found ways to add, mul-
tiply and exponentiate: that is, he found terms A+, A×, Aexp such that A+cncm →→
cn+m, and similarly for multiplication and exponentiation. This way these three
functions were seen to be lambda definable. Here →→ denotes many-step rewriting,

10The proof of a contradiction in Church’s system was essentially simplified by Curry [28].
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the transitive reflexive closure of →. At first Church nor his students could find a
way to show that the predecessor function was lambda definable. At the dentist’s
office Kleene did see how to simulate recursion by iteration and could in that way
construct a term lambda defining the predecessor function, [26]. (I believe Kleene
told me it was under the influence of laughing gas, NO, used as anesthetic.) When
Church saw that result he stated “Then all intuitively computable functions must be
lambda definable.” That was the first formulation of Church’s thesis and the func-
tional model of computation was born. At the same time Church gave an example
of a function that was non-computable in this model.

Turing [53] proved that the imperative and functional models of computation
have the same power: they can compute exactly the same partial functions, on say
the natural numbers. The way these computations are performed, however, differs
considerably. In both cases computations traverse a sequence of configurations,
starting essentially from the input leading to the output. But here the common
ground ends.

3.2. Comparing imperative and functional programming

In functional programming the argument(s) A (or A⃗ ) for a computation in the
form of a function F that has to be applied to them form one single expression
FA (respectively FA⃗ ). Such expressions are subject to rewriting. If the expression
cannot be rewritten any further, then the so called normal form has been reached
and this is the intended output. The intermediate results all have the same meaning
as the original expression and as the output. A basic example of this is

(λx.x2 + 1)(3)→ 32 + 1→ 9 + 1→ 10, (1)

where (λx.x2+2) is the function x 7→ x2+1 that assigns to x the value x2+1. In more
complex expressions there is a choice of how to rewrite, that is, which subexpression
to choose as focus of attention for elementary steps as above. For example not all
choices will lead to a normal form. There are reduction strategies that always will
find a normal form if it exists. Normal forms, if they are reached, are unique, the
result is independent of choices how to rewrite. However performance, both time
and space, is sensitive to the steps employed.

In the imperative model a computation the configurations at each moment of a
computation sequence of a Turing Machine M consist of the momentaneous mem-
ory content on the tape, the state of M , and position of its head: (t, s, p). Each
terminating computation runs as follows:

(input, s0, p0)→M (t1, s1, p1)→M · · · →M (tk, sk, pk)→M (output, sh, ph), (IP)

where sh is a halting state (and ph is irrelevant). The transitions →M depend on
the set of instructions of the Turing Machine M . In the case of non-termination
the configurations never reach one with a terminal state. This description already
shows that, wanting to combine Turing Machines to form one that is performing a
more complex task, requires some choices of e.g. making the final state of the first
machine fit with the initial one of the second machine.

In the functional model of computation the sequence of configurations is as
follows:

F input→β E1 →β · · · →β Ek →β output. (FP)
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All of these configurations are λ-terms and the transitions →β are according to the
single β-rule of reduction, which is quite different. In order to make a more fair
comparison between the imperative and functional computation, one could change
(IP) and denote it as
(input, c, s0, p0)→U (t1, c, s1, p1)→U · · · →U (tk, c, sk, pk)→U (output, c, sh, ph)

(IP′),
where c is the code (program) that makes the universal machine U imitate the
machine M . This makes (IP′) superficially similar to (FP).

Advantages of functional programming

But there are essential differences between the two models of computation. First
of all, in the sequence (FP) the expressions are words in a language more complex
than the simple strings in (IP) or (IP′).

(i) The λ-terms expressing functional programs have the possibility of making
abstraction upon abstraction arbitrarily often. This means that ‘components’
of functions can be also functions (of functions), enabling flexible procedures.

(ii) In FP there is no mention of state and position, hence there is no need to deal
with the bureaucracy of these when combining programs. Hence FP has easy
compositionality.

(iii) In the sequence (FP) the meaning of each configuration remains the same,
from the first to the last expression. This can be seen clearly in the sequence
(1) above.

Features (i) and (ii) of functional programs makes them transparent and compact.
Feature (iii) makes it easier to prove them correct: reasoning with mathematical
induction, substitution and abstraction often suffice; no need to learn new logical
formalisms to analyze imperative programs. It can be expected that FP will become
more and more important. The lack of side-effects makes it more easy to make
parallel versions of programs.

Implementations of functional programming

Functional Programming has been developed much more slowly than Imperative
Programming. The reason is that imperative programs can be implemented rather
directly on a Turing Machine or modern computer. This is not the case for functional
programs. Attempts to develop specialized hardware for Functional Programming
have not been successful. But over the years compilers from functional languages
into ordinary CPU’s for imperative programs have been developed.

One of the first examples is the SECD machine of Landin [41], soon followed by
the work of Böhm and Gross on the CUCH machine, [16], [12]. After fifty years
of research on the use and implementation of functional programming the field has
come of age. There exist fast compilers producing efficient code. One can focus on
the mathematical definition of the functions involved and the correctness of these can
be proved with relatively simple tools, like substitution, abstraction and induction.
A functional program is automatically structured. There are for example no ‘goto’
statements. See [9] for a short description, [34] for an extensive motivation, and [48]
for implementing functional programming languages.
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Challenges for functional programming

There are two challenges for functional programming languages. 1. The lack of state
makes writing code for input/output more complex. The best known functional
languages are LISP, [42] (with many modern versions starting with SCHEME [51],
and ML [45] (with modern version OCaml [47]). ML is loosely characterized as
‘LISP with types’ coming of the simply types lambda calculus, see [21, 27], and
in modern form [8], Part I. LISP and ML are not pure functional programming
languages, in that they have assignment statements that can be used for input and
output. But this makes it also possible to write unstructured programs. In the pure
functional languages, Haskell [33] and Clean [23], at present the most developed
ones, the I/O problem is solved by respectively monads and uniqueness typing. But
using these features, in both cases it is still possible to write incomprehensible code
when dealing with I/O. 2. The evaluation result, the output, doesn’t depend on the
way reduction takes place, but it is not always easy to reason about space and time
efficiency. These issues are beyond the scope of this paper.

4. Separability in λ-calculus

A mathematician is interested in numbers, not because these may represent the
amount of money in one’s bank accounts, but for their properties definable using the
basic arithmetical operations, such as primality. Although such a love for numbers
is obvious for a number theorist, and almost offensive to mention, this is not the case
for most people. In the same way Corrado Böhm became interested in λ-terms, not
because they represent programs that one can sell, but for their properties definable
from the basic operations in lambda calculus, usually only application. This is
somewhat different from the love of say Donald Knuth for imperative programs,
obvious from his volumes [37], that is driven by the challenge to write clear, elegant,
and efficient algorithms that perform relevant computational tasks.

We assume elementary knowledge of lambda calculus and recall the following
notations.

Notation. (i) The set of all lambda terms is denoted by Λ. The set of free variables
of M ∈Λ is denoted by FV(M). The set of closed lambda terms is defined by
Λø = {M ∈Λ | FV(M) = ∅}.

(ii) ‘≡’ denotes equality up to renaming bound variables, e.g. λx.x ≡ λy.y.
(iii) ‘=’ denotes β-convertibility on λ-terms, also denoted by ‘=β’ to be explicit.
(iv) =β is generated by β-reduction →β, as in (λx.M)N →β M [x := N ].
(v) =η is generated by η-reduction →η, as in λx.Mx→η M .
(vi) M ∈Λ is in β(η) normal form (β(η)-nf) if no →β (nor →η) step is possible.
(vii) For M1, . . . ,Mn ∈Λ write ⟨M1, . . . ,Mn⟩ = λz.zM1 · · ·Mn, with z a fresh vari-

able, i.e. z /∈ FV(M1 · · ·Mn).
(viii) Write Un

k = λx1 · · · xn.xk. Note that ⟨M1, . . . ,Mn⟩Un
k = Mk for 1 ≤ k ≤ n.

(ix) Write
I = λx.x;

K = λxy.x, serving as ‘true’;
K∗ = KI =β λxy.y, serving as ‘false’;
S = λxyz.xz(yz);
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C = λxyz.xzy;

Y = λf.(λx.f(xx))(λx.f(xx)); Curry’s fixed point combinator;
Θ = (λab.b(aab))(λab.b(aab)), Turing’s fixed point combinator;
ω = λx.xx;

Ω = ωω, standard term without a nf;
ck = λfx.fkx, where f 0x = x and fn+1x = f(fnx)

(Church’s numerals).

Separability of two normal forms

4.1. Definition. Terms M0,M1 ∈Λø are called separable if for all P0, P1 ∈Λø there
exists an F ∈Λø such that

FM0 =β P0 & FM1 =β P1.

This is equivalent to requiring that there is a lambda definable bijection

F : {M0,M1} → {c0, c1}

with lambda definable inverse, in which case we write {M0,M1} =1 c0, c1.

In result 4.3 the principal step was proved by Böhm [13] with the following result.

4.2. Theorem (Böhm [13]). Let M0,M1 ∈Λø be two different λ-terms in βη-nf.
Then for all P0, P1 ∈Λø there exist N⃗ ∈Λø such that

M0N⃗ = P0,

M1N⃗ = P1.

Proof (Sketch). A full proof can be found in [3, Theorem 10.4.2] and in [31] an
intuitive one with applications. Idea: give the M,N arguments separating the two;
as we do not know in advance which arguments will work, we may use variables and
specify them later. We present some examples.
Example 1. I,K.

xy x:=KK zvw z:=I

I Ixy = xy KKy = K Kzvw = zw w
K Kxy = x KK KKzvw = Kvw = v v

Hence I(KK)Ivw = w;
K(KK)Ivw = v.

Example 2. I, ω.
x x:=K∗ xyz x:=K∗, y := Kx

I Ix = x K∗ K∗xyz = yz x
ω ωx = xx K∗K∗ = KIK∗ = I Ixyz = xyz z

Hence IK∗K∗(Kx) = x;
ωK∗K∗(Kx) = z.

Example 3. M ≜ λxy.xyI, N ≜ λxy.xyω. Consider these as trees:

λxy.x

y

wwwwwwwwww
I

JJJJJJJJJ

λxy.x

y

vvvvvvvvvv
ω

JJJJJJJJJJ
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In order to separate these, we zoom in on the difference I and ω, via MK∗y,NK∗y,
giving I, ω respectively, and we know how to separate these by Example 2.
Example 4. M ≜ λxy.xy(xIy), N ≜ λxy.xy(xωy). Consider their trees:

λxy.x

y

vvvvvvvvvv
x

HHHHHHHHHH

I

vvvvvvvvvv
y

========

λxy.x

y

vvvvvvvvvv
x

HHHHHHHHHH

ω

uuuuuuuuuuu
y

>>>>>>>>

Again we like to zoom in on the difference I and ω. Dilemma: one cannot make
the x choose both left and right. Solution: applying the ‘Böhm transformation’ xy,
x:=λabz.zab gives trees

λz.z

y

vvvvvvv
λz.z

LLLLLL

I

sssssss
y

BBBBBB

λz.z

y

uuuuuuu
λz.z

MMMMMMM

ω

qqqqqqqq
y

DDDDDD

and one can zoom in by application to z, z:=K∗, z, z:= K, obtaining I and ω and we
are back to Example 2. Note that the dilemma was solved by first ‘getting rid of
x, y’ and then ‘substituting λz.z for x’ enabling to make postponed choices: first K
(going right), then K∗ (going left).

It is clear that one needs to require that the terms have different βη-nfs, not just
β-nfs. The terms λx.x and λxy.xy are different β-nfs, but cannot be separated:
F (λx.x) = λxy.x, F (λxy.xy) = λxy.y would imply

λxy.x=β F (λx.x) =η F (λxy.xy) =β λxy.y,

from which any equation can be derived, contradicting that the λβη-calculus is
consistent.

4.3. Corollary ([52]). For all M0,M1 ∈Λø having a β-nf the following are equiv-
alent.

(i) For all P0, P1 ∈Λø there exist N⃗ ∈Λø such that

M0N⃗ =β P0 & M1N⃗ =β P1.

(ii) M0,M1 are separable, i.e. for all P0, P1 ∈Λø there exists an F ∈Λø such that

FM0 =β P0 & FM1 =β P1.

(iii) There exists an F ∈Λø such that

FM0 =β λxy.x & FM1 =β λxy.y.

(iv) The equation M0 = M1 is inconsistent with λβ.
(v) The equation M0 = M1 is inconsistent with λβη.
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(vi) The terms M0,M1 have distinct βη-nfs.

Proof. (i)⇒(ii) By (i) there are N⃗ such that MiN⃗ =β Pi. Take F := λm.mN⃗ .
(ii)⇒(iii) Take Pi := λx0x1.xi, for 0 ≤ i ≤ 1.
(iii)⇒(iv) From the equation M0 = M1 one can by (iii) derive λxy.x = λxy.y,

from which one can derive any equation; all derivations using just λβ.
(iv)⇒(v) Trivial.
(v)⇒(vi) By the assumption that M0,M1 have β-nfs and [3], Corollary 15.1.5,

it follows that M0,M1 have βη-nfs. If these were equal, then M0 =βη M1 and hence
M0 = M1 would be consistent, contradicting (v).

(vi)⇒(i) By Theorem 4.2.

Separability of finite sets of normal forms

Together with his students Böhm generalized this in [15] from two to k terms.

4.4. Definition. A finite set A ⊆ Λø is called separable if for some k ∈N

A =1 {c0, . . . , ck−1}.

4.5. Theorem ([15]). Let M0, . . . ,Mk−1 ∈Λø be terms having different βη-nfs. Then
{M0, . . . ,Mk−1} is separable. One even has for all terms P0, . . . , Pk−1 ∈Λø there ex-
ist terms N⃗ ∈Λø such that

M0N⃗ =β P0,

. . .

Mk−1N⃗ =β Pk−1.

Proof. For a proof see [15] or [3, proof of Corollary 10.4.14.].

4.6. Corollary. Let A ⊆ Λø be a finite set of terms all having a β-nf. Then

A is separable ⇔ the βη-nfs of the elements of A are mutually different.

Separability of finite sets of general terms

A characterization of separability for finite A ⊆ Λø, possibly containing terms with-
out normal form, is due to Coppo, Dezani, and Ronchi [25], see also [3], Theorem
10.4.13. To taste a flavor of that theorem we give some of its consequences coming
from [52].

1. The set
{

λx.xc0Ω,
λx.xc1Ω

}
is separable; so is

{
λxy.xxΩ,
λxy.xyΩ

}
.

2.
{

λx.x(λy.yΩ),
λx.x(λy.yc0)

}
is not separable; neither is

{
λx.x,
λxy.xy

}
.

3.


λx.x(λy.yc0Ω(λz.zΩ)),
λx.x(λy.yc1Ω(λz.zc1)),
λx.x(λy.yc1Ω(λz.zc2))

 is separable.

4.


λx.xc0c0Ω,
λx.xc1Ωc1,
λx.xΩc2c2

 is not separable, although each proper subset is.
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Separability of infinite sets of general terms

In [52] for infinite sets separability is defined and characterized. Here we give a
slightly alternative formulation.

4.7. Notation. Let A ⊆ Λø. Write for F ∈Λø

FA≜ {FM |M ∈A};
CN ≜ {cn | n∈N}.

4.8. Definition. Let A ⊆ Λø be an infinite set. Then
(i) A is called special if there are combinators F,G∈Λø such that modulo =β

one has

F :A → CN is an injection,
G: CN → A is a surjection.

(ii) A is called separable if A =1 CN, that is, there is a lambda definable bijection
F :A → CN with lambda definable inverse.

4.9. Remark. If A only has a λ-definable F :A → CN injection, then A doesn’t need
to be special. Indeed, let K ⊆ N be re but not recursive, so that its complement
K ⊆ N is not re. Define A = {cn | n∈K}. Then I:A → CN is an injection. For this
A there is no λ-definable surjection G: CN → A, for otherwise

n∈K ⇔ cn ∈A
⇔ ∃m.cn =β Gcm, which is re,

contradicting that K is not re.

4.10. Definition. A is called an adequate numeral system if there are terms 0, S, P , Z?

(zero, successor, predecessor, test for zero) such that, writing n≜Sn0 for n∈N, one
has

A = {n | n∈N};
P (n+ 1) = n;

Z?0 = λxy.x;

Z?n+ 1 = λxy.y.

4.11. Proposition. Let A ⊆ Λø be infinite. If A is special, then there is a lambda
definable bijection H:A → CN.

Proof. Let combinators F, G be given as required in Definition 4.8. Define by
primitive recursion

Hc0 = Gc0;

Hcn+1 = Gcµm.(Gcm /∈β{Hc0,...,Hcn}), (*)

In (*) ‘µm’ stands for ‘the least number such that’, which in this case always exists
since A is infinite and G surjective. That H is λ-definable follows from the existence
of F : indeed, for M,N ∈A one has

M ̸=β N ⇔ FM ̸=β FN ⇔ ¬Q=(FM)(FN),
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where Q= is the decidable equality predicate on Church numerals, so that also

Gcm /∈β {Hc0, . . . , Hcn} ⇔ ∀k ≤ n.¬Q=(F ◦Gcm)(F ◦Hck)

is decidable.
Claim. For all n∈N one has

{Gc0, . . . , Gcn} ⊆ {Hc0, . . . , Hcn}.

The claim follows by induction on n. Case n = 0. By definition Hc0 = Gc0.
Case n + 1. Assume {Gc0, . . . , Gcn} ⊆ {Hc0, . . . , Hcn} (induction hypothe-

sis), towards {Gc0, . . . , Gcn+1} ⊆ {Hc0, . . . , Hcn+1}. If Gcn+1 ∈{Hc0, . . . , Hcn},
then we are done. Otherwise Gcn+1 /∈{Hc0, . . . , Hcn}. For m<(n+1) one has
Gcm ∈{Gc0, . . . , Gcn} which is a subset of {Hc0, . . . , Hcn} by the induction hy-
pothesis. Therefore by definition Hcn+1 = Gcn+1, and the conclusion holds again.
This proves the claim.

By clause (*) in the definition above H is injective. That it is also surjective
follows from the claim and the surjectivity of G.

4.12. Corollary ([52]). Let A ⊆ Λø be infinite. Then the following are equivalent.
(i) A is special.
(ii) A is separable.
(iii) A is an adequate numeral system.

Proof. (i) ⇒ (ii). If A is separable, via F :A → CN and G: CN → A, then by
Proposition 4.11 there exists a λ-definable H: CN → A that is a bijection. We need
to show that H has a λ-definable inverse. This H−1:A → CN can be defined by

H−1 = λa.(µm.Hm =β a)

= λa.(µm.F (Hm) =β Fa)

= λa.(µm.Q=(F◦Hm)(Fa)), as in the proof of the proposition.

(ii) ⇒ (iii). By H,H−1 the set A inherits the structure of an adequate numeral
system from CN.

(iii) ⇒ (i). Let 0, S, P , Z? give A the structure of an adequate numeral system.
Then the computable functions can be λ-defined w.r.t. the n. By primitive recursion
on the n and cn numerals, respectively, one can define λ-definable F :A → CN and
G: CN → A satisfying Fn = cn and Gcn = n, making A separable.

5. Translating without parsing

Combinatory terms are built-up from K,S with just application. We write all
parenthesis. For example ((S(KK))S) is such a term. It was noticed by Corrado
Böhm and Mariangiola Dezani, [14], that the meaning of such a term can be found
by interpreting it symbol by symbol, including the two kinds of parentheses. One
doesn’t need to parse the combinator to display its tree-like structure. The method
also applies to combinatory terms build from different combinators, including for
example B corresponding to the λ-term B = λfgx.f(gx) = λfg.f ◦ g.
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5.1. Definition. Define for λ-terms M,N

M ◦N = λx.M(Nx);

M ∗N = N ◦M ;

⟨M⟩ = λx.xM.

It is easy to see that ◦ and ∗ are associative modulo β-equality of the λ-calculus;
moreover, for k ≥ 2 one has

Mk ◦ . . . ◦M1 ◦M1 = λx.Mk(. . . (M1(M1x))..).

5.2. Definition. Combinatory terms C are built up over alphabet Σ = {K,S, (, )}
by the following context-free grammar

C ::= K | S | (C C)

5.3. Definition. Given P ∈C its translation into closed terms of the λ-calculus is
Pλ defined recursively as follows:

Kλ = K = λxy.x;

Sλ = S = λxyz.xz(yz);

(QR)λ = QλRλ.

For this translation the P ∈C needs to be parsed. For example if P = (QR), we
need to know where the string Q ends and similarly where R starts. Böhm and
Dezani found a translation that avoids this need for parsing

5.4. Definition. (i) The symbols of Σ are translated into Λø as follows.

#( = B
#K = ⟨K⟩
#S = ⟨S⟩
# ) = I

(ii) A word in w = a1 · · · an ∈Σ∗ is translated into φ(w)∈Λø as follows.

φ(w) = #a1 ∗ · · · ∗#an.

5.5. Proposition. (i) For all P ∈C one has φ(P ) =β ⟨Pλ⟩.
(ii) For all P ∈C one has φ(P )I =β Pλ.

Proof. (i) Since P ∈C, we may use induction over terms in C. If P = K or P = S,
the result holds by definition of φ. If P = (QR), then

φ(P ) =β #(∗φ(Q) ∗ φ(R) ∗#), by the associativity of ∗,
=β B ∗ φ(Q) ∗ φ(R) ∗ I,
=β I ◦ ⟨Qλ⟩ ◦ ⟨Rλ⟩ ◦ B, by definition of ∗ and the ind. hyp.,
=β λx.I(⟨Qλ⟩(⟨Rλ⟩(Bx))),
=β λx.(⟨Qλ⟩(BxRλ)),

=β λx.BxRλQλ,

=β λx.x(RλQλ) = ⟨(RQ)λ⟩ = ⟨Pλ⟩.

(ii) By (i).

Proposition 5.5(ii) shows that the meaning of P can be obtained without parsing.
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6. A simple self-evaluator

To M ∈Λ one assigns computably a Gödel-number #M .

6.1. Definition. For M ∈Λ its code M is defined as the Church numeral corre-
sponding to #M

M ≜ c#M .

Note that the code of M satisfies 1. M is in normal form; 2. syntactic operations
on M are lambda definable on M , by the computability of #. An evaluator E is
constructed by Stephen Cole Kleene [35] such that for all M ∈Λø one has

E M =β M.

A technical problem to define E and show this is caused by the fact that the lambda
terms are inductively defined via open terms containing free variables. But the
decoding only holds for closed terms. The way Kleene dealt with this (basically
the problem of representing the binding effect of λx), was to translate closed λ-
terms first to combinators and then representing these as numerals. The term E was
reconstructed by McCarthy for the programming language LISP under the name
‘eval’, and babtized by Reynolds [50] as the ‘meta-circular’ self-interpreter.

During lectures at Radboud University on Kleene’s self-evaluator E and con-
structing this term via the combinators, the student Peter de Bruin came with an
improvement. He suggested to use the intuition of denotational semantics of λ-
calculus. First the meaning of an open term M (containing possibly free variables)
is given with the use of a valuation v assigning values to free variables, E0 M v.

6.2. Theorem (Kleene [35]). There is a term E such that

∀M ∈Λø.E M = M.

Proof (P. de Bruin). By the effectiveness of the Gödel-numbering there exists a
term E0 satisfying

E0 x v = v( x );

E0 (PQ) v = (E0 P v)(E0 Q v);

E0 (λx.P ) v = λy.E0 P (v[ x 7→ y]),

where v[ x 7→ y] = v′ with

v′ z = v x , if z ̸= x ,
v′ z = y, if z = x .

Then one can prove that for M ∈Λ with FV(M) ⊆ {x1, . . . ,xn} one has

E0 M v = M [x1, . . . ,xn := v( x1 ), . . . , v( xn )].

Therefore
∀M ∈Λø.E0 M v = M

and one can take E = λm.E0mI.
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6.3. Corollary. The term E enumerates the closed λ-terms

∀M ∈Λø∃n∈N.Ecn = M.

6.4. Remark. In [4] ([6]) it is proved (constructively) that any enumerator of the
closed terms is reducing in the following sense.

∀M ∈Λø∃n∈N.E′cn = M ⇒ ∀M ∈Λø∃n∈N.E′cn →→M.

Torben Mogensen [46] was inspired by the construction of Peter de Bruin and
came up with what is called a higher order encoding of λ-terms, see [49], in which
a λ is interpreted by itself.

6.5. Definition (Mogensen [46]). An open lambda term M can be interpreted as
an open lambda term with the same free variables as follows.

x
m

= λabc.ax;

PQ
m

= λabc.b P
m

Q
m
;

λx.P
m

= λabc.c(λx. P
m
).

This can be seen as first using three unspecified constructors var, app, abs∈Λø as
follows

x
m

= var x;
PQ

m
= app P

m
Q

m
;

λx.P
m

= abs (λx. P
m
),

and then taking

var = λxλabc.ax;

app = λpqλabc.bpq;

abs = λzλabc.cz.

6.6. Theorem (Mogensen [46]). There is an evaluator Em such that for all M ∈Λ

Em M
m
= M.

Proof. Using Turing’s fixed point combinator Θ one can construct a term Em such
that

EmM →→M I(BEm)(CEm),

where B = λepq.ep(eq), and C = λezx.e(zx): take Em = Θ(λem.mI(Be)(Ce)).
Then by induction on the structure of M ∈Λ it follows that Em M

m →→M .

Em x
m →→ x

m
I(BEm)(CEm)

→→ Ix→ x;

Em PQ
m →→ PQ

m
I(BEm)(CEm)

→→ BEm P
m

Q
m

→→ Em P
m
(Em Q

m
)

→→ PQ, by the induction hypothesis;
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Em λx.P
m →→ λx.P

m
I(BEm)(CEm)

→→ CEm(λx. P
m
)

→→ λx.Em((λx. P
m
)x)

→ λx.Em P
m

→→ λx.P, by the induction hypothesis.

6.7. Remark. (i) Using Mogensen’s translation, decoding is possible for all terms
M ∈Λ possibly containing free variables. On the other hand not all syntactic op-
erations are possible on the coded terms. Equality test for variables is possible for
x , but not for x

m.
(ii) In spite of this, in [5] it is proved that for closed terms equality discrimination

on coded terms M
m
, N

m is lambda definable.
(iii) In Mogensen [46] it is also proved that there is a normalizer acting on coded

terms.
There is a term Rm such that for all M ∈Λ

if M has a normal form N , then Rm M
m →→ N

m;
if M has a no normal form, then Rm M

m has no nf.

In Berarducci-Böhm [10] a very simple self-evaluator is constructed, based on
Mogensen’s construction above, but using different choices for var, app, abs. These
are based on unpublished work of Böhm and Piperno who represented algebraic
data structures in such a way that primitive recursive (computable) functions are
representable by terms in normal form, avoiding the fixed point operator that was
used in the proof of Theorem 6.6.

6.8. Theorem (Berarducci-Böhm [10]). There is a coding of λ-terms M 7→ M
bb

with a short closed normal form Ebb = ⟨⟨K, S,C⟩⟩ as evaluator.

Proof. Define

x
bb

= varbb x;

PQ
bb

= appbb P
bb

Q
bb
;

λx.P
bb

= absbb (λx. P
bb
),

where

varbb = λxλe.eU3
1xe;

appbb = λpqλe.eU3
2pqe

absbb = λzλe.eU3
3ze.

By induction on the structure of M we show that M
bb⟨K, S,C⟩ →→M .

Case M = x. Then

x
bb⟨K, S,C⟩ →→ ((λxλe.eU3

1xe)x)⟨K, S,C⟩
→→ (λe.eU3

1xe)⟨K, S,C⟩
→→ ⟨K, S,C⟩U3

1x⟨K, S,C⟩
→→ Kx⟨K, S,C⟩
→→ x.
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Case M ≡ PQ. Then

PQ
bb⟨K, S,C⟩ ≡ (λpqe.eU3

2pqe) P
bb

Q
bb⟨K, S,C⟩

→→ ⟨K, S,C⟩U3
2 P

bb
Q

bb⟨K, S,C⟩
→→ S P

bb
Q

bb⟨K, S,C⟩
→→ P

bb⟨K, S,C⟩( Q
bb⟨K, S,C⟩)

→→ PQ, by the induction hypothesis.

Case M ≡ λx.P . Then

λx.P
bb⟨K, S,C⟩ ≡ (λze.eU3

3ze)(λx. P
bb
)⟨K, S,C⟩

→→ ⟨K, S,C⟩U3
3(λx. P

bb
)⟨K, S,C⟩

→→ C(λx. P
bb
)⟨K, S,C⟩

≡ (λxyz.xzy)(λx. P
bb
)⟨K, S,C⟩

→→ λz.(λx. P
bb
)z⟨K, S,C⟩

≡ λx.(λx. P
bb
)x⟨K, S,C⟩

→ λx. P
bb⟨K, S,C⟩

→→ λx.P, by the induction hypothesis.

Therefore for all M ∈Λ one has M
bb⟨K, S,C⟩ →→M . It follows that

Ebb M
bb → M

bb⟨K, S,C⟩ →→M.

It is a remarkable coincidence that the term Ebb ≡ ⟨⟨K, S,C⟩⟩ represents the name
“Kleene, Stephen Cole” the full name of the inventor of self-evaluation in λ-calculus.
Corrado Böhm was fond of such tricks and had the nickname ‘il miracolo’.

Coda

At a symposium in honor of Corrado Böhm’s ninety’s birthday, January 2013, at
Sapienza University, Rome, the jubilee treated the audience with an open problem.
Actually it is more a ‘Koan’ (not precisely stated) than a Problem (with a precisely
stated space of answers). But Koans are often the more interesting problems in
mathematics and computer science.

Problem/Koan. (C. Böhm, 2013.) Given β-normal forms F ≡ λx1 · · ·xn.P , and
G ≡ λx1 · · ·xn.Q∈Λø. By writing F d = λx.F (xc1) . . . (xcn) and similarly for Gd,
these terms can be made unary. Trying to find closed terms M such that FM = GM ,
what can be learned from solutions N of the equation F dN = GdN? (A deed is a
closed nf of the form λx.xP1 · · ·Pk. The F d, Gd are deeds up to =β.)

Acknowledgments

The author thanks Marko van Eekelen for explaining him many years ago the method
of bootstrapping (Section 1), Mariangiola Dezani for comments on the paper, and

26



Rinus Plasmeijer for discussions about Section 3. The referees provided very useful
remarks, improving the paper.

To the family of Corrado Böhm I am grateful for letting me spend wonderful
times with them, besides for fully enabling us to enjoy the combinators.

References

[1] E. Ashcroft and Z. Manna. The translation of goto programs into while pro-
grams. In C.V. Freiman, J.E. Griffith, and J.L. Rosenfeld, editors, Proceed-
ings of IFIP Congress 71, volume 1, pages 250–255, Amsterdam, 1972. North-
Holland.

[2] H. P. Barendregt. Normed uniformly reflexive structures. In Proceedings of the
Symposium on Lambda-Calculus and Computer Science Theory, pages 272–286,
Berlin, Heidelberg, 1975. Springer-Verlag.

[3] H. P. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-
Holland, revised edition, 1984.

[4] H. P. Barendregt. Theoretoical Pearl: Enumerators of lambda terms are reduc-
ing. J. of Funct. Programming, 2(2):233–236, 1992.

[5] H. P. Barendregt. Discriminating coded lambda terms. In K.R. Apt, A.A.
Schrijver, and N.M. Temme, editors, From Universal Morphisms to Megabytes:
A Baayen Space-Odyssey, pages 141–151. CWI, 1994.

[6] H. P. Barendregt. Enumerators of lambda terms are reducing constructively.
Annals of Pure and Applied Logic, 73:3–9, 1995.

[7] H. P. Barendregt. Kreisel, lambda calculus, a windmill and a castle, pages 3–14.
Peters, Wellesley, Mass., 1996.

[8] H. P. Barendregt, W. J. M. Dekkers, and R. Statman. Lambda Calculus with
Types. Perspectives in Mathematical Logic. Cambridge University Press, 2013.

[9] H. P. Barendregt, G. Manzonetto, and M. J. Plasmeijer. The imperative and
functional programming paradigm. In B. Cooper and J. van Leeuwen, editors,
Alan Turing - His Work and Impact, pages 121–126. Elsevier, 2013.

[10] A. Berarducci and C. Böhm. A self-interpreter of lambda calculus having
a normal form. In E. Börger, G. Jäger, H. Kleine Büning, S. Martini, and
M. M. Richter, editors, Computer Science Logic, pages 85–99, Berlin, Heidel-
berg, 1993. Springer Berlin Heidelberg.

[11] C. Böhm. Calculatrices digitales du déchiffrage de formules logico-mathéma-
tiques par la machine même dans la conception du programme. PhD thesis,
ETH, Zürich, 1954. Thesis written under supervision of E. Stiefel and P.
Bernays and defended in 1951. Published in Ann. Math. PuraAppl. 37 (1954),
5-47. DOI: doi.org/10.3929/ethz-a-000090226.

27



[12] C. Böhm. The CUCH as a Formal and Description Language. In T.B. Steele Jr.,
editor, Formal Language Description Languages for Computer Programming,
pages 179–197. North Holland, 1966.

[13] C. Böhm. Alcune proprietà delle forme normali nel λK-calcolo. Technical
Report 696, INAC, 1968.

[14] C. Böhm and M. Dezani. Can syntax be ignored during translation? In Nivat,
editor, Automata, Languages and Programming, pages 197–207, 1973.

[15] C. Böhm, M. Dezani-Ciancaglini, P. Peretti, and S.Ronchi Della Rocca. A
discrimination algorithm inside λβ-calculus. Theoretical Computer Science,
8(3):271 – 291, 1979.

[16] C. Böhm and W. Gross. Introduction to the CUCH. In E. R. Caianiello, editor,
Automata Theory, pages 35–65. Academic Press, New York, 1966.

[17] C. Böhm and G. Jacopini. Flow diagrams, turing machines and languages with
only two formation rules. Communications of the ACM, 9(5):366–371, 1966.

[18] A. Church. A set of postulates for the foundation of logic (1). Annals of
Mathematics, 33:346–366, 1932.

[19] A. Church. A set of postulates for the foundation of logic (2). Annals of
Mathematics, 34:839–864, 1933.

[20] A. Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58:354–363, 1936.

[21] A. Church. A formulation of the simple theory of types. The Journal of Symbolic
Logic, 5:56–68, 1940.

[22] A. Church and J. B. Rosser. Some properties of conversion. Transactions of
the American Mathematical Society, 39:472–482, 1936.

[23] Clean. Pure functional language, with I/O through uniqueness types. URL:
<https://clean.cs.ru.nl/>.

[24] D. C. Cooper. Böhm and Jacopini’s reduction of flow-charts. Comm. ACM,
10(8):463–473, 1967.

[25] M. Coppo, M. Dezani-Ciancaglini, and S. Ronchi della Rocca. (Semi)-
separability of finite sets of terms in Scott’s D∞-models of the λ-calculus. In
G. Ausiello and C. Böhm, editors, Automata, Languages and Programming,
volume 62 of Lecture Notes in Computer Science, pages 142–164, Berlin, 1978.
Springer.

[26] J. N. Crossley. Reminiscences of logicians. In J. N. Crossley, editor, Algebra
and Logic, volume 450 of Lecture Notes in Mathematics, pages 1–62. Springer,
1975.

[27] H. B. Curry. Functionality in combinatory logic. Proceedings of the National
Academy of Science of the USA, 20:584–590, 1934.

28



[28] H. B. Curry. The inconsistency of certain formal logics. The Journal of Symbolic
Logic, 7(3):115–117, 1942.

[29] O. Dahl, E. Dijkstra, and C. Hoare, editors. Structured Programming. Academic
Press Ltd., London, UK, 1972.

[30] E. Dijkstra. Go to statement considered harmful. Comm. of the ACM,
11(3):147–148, 1968.

[31] S. Guerrini, A. Piperno, and M. Dezani-Ciancaglini. Böhm’s Theorem, chap-
ter 1, pages 1–16. Imperial College Press, 2009. Eds. E. Gelenbe and J.-P.
Kahane.

[32] D. Harel. On Folk Theorems. Comm. of the ACM, 23(7):379–389, 1980.

[33] Haskell. Pure functional language, with I/O through monads. URL:
<https://www.haskell.org/>.

[34] J. Hughes. Why functional programming matters. Comput. J., 32(2):98–107,
April 1989.

[35] S. C. Kleene. A theory of positive integers in formal logic. American Journal
of Mathematics, 57:153–173, 219–244, 1935.

[36] S. C. Kleene and J. B. Rosser. The inconsistency of certain formal logics. Annals
of Mathematics, 36:630–636, 1935.

[37] D. E. Knuth. The Art of Computer Programming, volume 1-7. Addison Wes-
ley Longman Publishing Co., Redwood City, CA, USA, 1968-2018. (As yet
unfinished.).

[38] D. E. Knuth. Structured Programming with go to Statements. Computing
Surveys, 6(4):261–301, 1974.

[39] D. E. Knuth and R.W. Floyd. Notes on avoiding goto statements. Information
processing letters, 1(1):23–31, 1971.

[40] D. Kozen and Wei-Lung Dustin Tseng. The Böhm–Jacopini Theorem Is False,
Propositionally. In Ph. Audebaud and C. Paulin-Mohring, editors, Mathematics
of Program Construction, pages 177–192, Berlin, 2008. Springer.

[41] P. J. Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308–320, 1964.

[42] J. McCarthy, P.W. Abrahams, D. J. Edwards, T. P. Hart, and M. I. Levin.
LISP 1.5 Programmer’s Manual. MIT Press, 1962.

[43] W. M. McKeeman, J. J. Horning, and D. B. Wortman. A compiler generator.
Automatic computation. Prentice-Hall, Englewood Cliffs, NJ, 1970.

[44] H. Mills. Mathematical foundations for structured programming. Report FSC
72-6012, IBM Federal Systems Division, Gaithersburgh, Md., 1972. 62 pp.

29



[45] R. Milner, M. Tofte, R. Harper, and D. McQueen. The Definition of Standard
ML. The MIT Press, 1990.

[46] T. Æ. Mogensen. Theoretical pearls: Efficient self-interpretation in lambda
calculus. Journal of Functional Programming, 2(3):345–364, 1994.

[47] OCaml. derived from ML and object orientation. URL: <ocaml.org/>.

[48] S. Peyton Jones. The Implementation of Functional Programming
Languages. Prentice Hall, 1987. Out of print. Available from
URL: <https://www.microsoft.com/en-us/research/publication/
the-implementation-of-functional-programming-languages/>.

[49] F. Pfenning and C. Elliot. Higher-Order Abstract Syntax. In Proceedings of
the ACM-SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 199–208. ACM Press, 1988.

[50] J. Reynolds. Definitional interpreters for higher-order programming languages.
In Proceedings of the ACM National Conference, volume 2, pages 717–740.
ACM, 1972.

[51] Scheme. Improved version of LISP. URL: <groups.csail.mit.edu/mac/
projects/scheme/>.

[52] R. Statman and H. P. Barendregt. Böhm’s Theorem, Church’s Delta, Numeral
Systems, and Ershov Morphisms. In A. Middeldorp, V. van Oostrom, F. van
Raamsdonk, and R. de Vrijer, editors, Processes, terms and cycles: steps on
the road to infinity: essays dedicated to Jan Willem Klop on the occasion of his
60th birthday, pages 40–54. Springer, Berlin, 2005.

[53] A. M. Turing. Computability and lambda definability. The Journal of Symbolic
Logic, 2:153–163, 1937.

[54] A. M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230–
265, 1937.

30


