

Huygens College Reflection

Assignment 4, Tuesday, Dec. 8, 2015

In the exercises, $=$ should be read as $=_\beta$ and \equiv should be read as \equiv_α .

1. Write down for each item a term $F \in \Lambda$, with a minimal number of variables, satisfying:

- (i) $Fx = x(x\ x)$
- (ii) $Fx = x\mathbf{I}$
- (iii) $Fxy = yx$
- (iv) $Fx = yx$
- (v) $Fx = xF\mathbf{I}.$

2. Let $W \equiv \lambda xy. x y y$. Draw $\mathcal{G}(W W W)$.
 [Hint. This graph consists of exactly four terms.]

$L = \lambda abcdefghijklmnopqrstuvwxyz.r$ (this is a fixed point combinator).

Show that for all $F \in \Lambda$ one has $YF = F(YF)$. (So Y is a fixed point combinator.)

4. (a) Write down precisely a lambda term M such that

$$M x = x M x.$$

Can you make it satisfy $Mx \rightarrow\!\!\! \rightarrow xMx$?

(b) (Turing) Consider the term $\Theta := (\lambda xy.y(x x y))(\lambda xy.y(x x y))$. Show that Θ is a *reducing fixed point combinator*, that is:

$\Theta F \twoheadrightarrow F(\Theta F)$ for all F .