

Huygens College Reflection

Assignment 5, Tuesday, Dec. 15, 2015

Exercise 1

Remember that we can represent a natural number n as the lambda term \mathbf{c}_n , its so called *Church numeral*:

$$\mathbf{c}_n \equiv \lambda f a. f^n a,$$

where $f^n a$ denotes n -fold application of f on a . Define

$$A_\times \equiv \lambda n m f a. n(mf)a.$$

- (i) Show that $A_\times \mathbf{c}_2 \mathbf{c}_3 = \mathbf{c}_6$;
- (ii) Show that $A_\times \mathbf{c}_n \mathbf{c}_m = \mathbf{c}_{n \times m}$.

Exercise 2

Define the map f on trees as follows: $f(t)$ is obtained from t by replacing everywhere l by $jl(jll)$.

- (i) Draw the trees $t_1, t_2, f(t_1)$ and $f(t_2)$, with $t_1 := jl, t_2 := j(jll)l$.
- (ii) Give the representation as a λ -term of the trees in (i).
- (iii) Construct a λ -term F such that for all trees t

$$F^\lceil t \rceil = \lceil f(t) \rceil.$$

Exercise 3

Consider the following context-free grammar

$$S \rightarrow c \mid f(S) \mid g(S; S).$$

- (i) Which of the following words over $\Sigma := \{f, c, ;, g, (,)\}$ belong to the language?
 - (a) c
 - (b) f
 - (c) g
 - (d) $g(f; f)$
 - (e) $g(c; f(c))$
 - (f) $f(g(c; f))$
- (ii) Give the representation as a λ -term of the words in (i) that belong to the language.
- (iii) Define λ -terms F and G such that

$$\begin{aligned} F^\lceil w \rceil &= \lceil f(w) \rceil \\ G^\lceil w1 \rceil^\lceil w2 \rceil &= \lceil g(w1; w2) \rceil \end{aligned}$$

Exercise 4

Consider the function h that counts the number of nodes in a tree (where we count a leaf also as a node), so

$$\begin{aligned} h(j \, l \, l) &= 3 \\ h(j \, l \, (j \, l \, l)) &= 5 \end{aligned}$$

(i) Write down a recursive definition for h , that is fill in

$$\begin{aligned} h(l) &= \dots \\ h(j \, t_1 \, t_2) &= \dots \, h(t_1) \dots \, h(t_2) \dots \end{aligned}$$

(ii) Construct a term H that λ -defines h , that is

$$H \lceil t \rceil = \lceil h(t) \rceil$$

for all trees t .