The power and limitations of Self-interpretation

H. Geuvers

Institute for Computing and Information Sciences Radboud University Nijmegen

Version: fall 2015

H. Geuvers Version: fall 2015 Huygens College 1 / 13

Lambda-terms themselves are "black boxes"

• There is no λ -term F such that

$$F(MN) = M$$
 for all M, N

• There is no λ -term F such that

$$F(MN) = N$$
 for all M, N

On the other hand, we can compute with the codes of λ -terms

- There is a λ -term F such that $F^{\Gamma}MN^{\Gamma} = {\Gamma}M^{\Gamma}$ for all M, N.
- There is a λ -term F such that $F^{\lceil}MN^{\rceil} = \lceil N^{\rceil}$ for all M, N.
- We also have an evaluator E:

$$E^{\Gamma}M^{\Gamma}=M$$

H. Geuvers Version: fall 2015 Huygens College 2 / 13

Analogy with programming

In

program text p $\stackrel{\textbf{Compiler}}{\longrightarrow}$ executable \hat{p} Text Black box
• inspect,
• edit,
• pass around
• ...

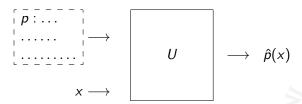
H. Geuvers Version: fall 2015 Huygens College 3 /

Out

ĝ

Universal programmable machine

Specification of a universal (programmable) machine U:



Reflection over the programs / programming language: What functions (programs) can we write on program text?

H. Geuvers Version: fall 2015 Huygens College 4 / 13

Programs about programs

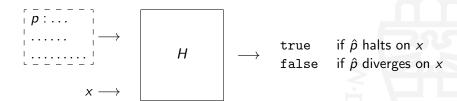
EXAMPLES of programs one can write

What about this??

H. Geuvers Version: fall 2015 Huygens College 5 / 13

The **Halting problem** is undecidable

THEOREM It is impossible to write a program H with the following specification



The undecidability of the Halting Problem was first proven by Turing, for his Turing machines.

We will prove it for the λ -calculus.

H. Geuvers Version: fall 2015 Huygens College 6 / 13

Data type for coding lambda terms

We define the constructors Var, App, Abs:

$$\begin{array}{lll} \operatorname{Var} &:= & \lambda x \, e.e \, \mathbf{U}_1^3 \, x \, e \\ \operatorname{App} &:= & \lambda x \, y \, e.e \, \mathbf{U}_2^3 \, x \, y \, e \\ \operatorname{Abs} &:= & \lambda x \, e.e \, \mathbf{U}_3^3 \, x \, e \end{array}$$

Recursion for the λ -terms data type

THEOREM I. Given $A_1, A_2, A_3 \in \Lambda$ there is an $H \in \Lambda$ such that

$$H(Var x) = A_1 x H$$

 $H(App x y) = A_2 x y H$
 $H(Abs x) = A_3 x H$

PROOF. Take
$$H = \langle \langle B_1, B_2, B_3 \rangle \rangle$$
 with

$$B_1 := \lambda x z. A_1 x \langle z \rangle$$

$$B_2 := \lambda x y z. A_2 x y \langle z \rangle$$

$$B_3 := \lambda x z. A_3 x \langle z \rangle.$$

Then the equations hold indeed.

H. Geuvers Version: fall 2015 Huygens College

Coding of lambda terms

Coding lambda terms $M \rightsquigarrow \lceil M \rceil$

DEFINITION (Mogensen) The coding of λ -terms inside the λ -calculus is defined as follows.

$$\begin{array}{rcl} \lceil x \rceil & := & \operatorname{Var} x \\ \lceil M N \rceil & := & \operatorname{App} \lceil M \rceil \lceil N \rceil \\ \lceil \lambda x . M \rceil & := & \operatorname{Abs} (\lambda x . \lceil M \rceil) \end{array}$$

- coding is not λ -definable: There is no term C such that $CM = \lceil M \rceil$ for all M.
- The reverse operation, evaluation, is λ -definable: There exists a λ -term **E** (evaluator) such that for all $M \in \Lambda$

$$\mathbf{E}^{\Gamma}M^{\Gamma}=M$$

E can be found by recursion.

H. Geuvers Version: fall 2015 Huygens College 8 / 13

Recursion for lambda terms using the encoding

We can state the recursion theorem for the encoded lambda terms slightly differently, as follows.

THEOREM II. Given $A_1, A_2, A_3 \in \Lambda$ there is an $H \in \Lambda$ such that

$$H^{\lceil X \rceil} = A_1 \times H$$

$$H^{\lceil M N \rceil} = A_2^{\lceil M \rceil \lceil N \rceil} H$$

$$H^{\lceil \lambda X. M \rceil} = A_3 (\lambda X.^{\lceil M \rceil}) H$$

Example

There is a λ -term C satisfying

$$C \lceil x \rceil = c_0$$

$$C \lceil M N \rceil = c_1$$

$$C \lceil \lambda x. M \rceil = c_2$$

PROOF Just take $A_1 := \lambda xy.c_0$, $A_2 := \lambda xyz.c_1$ and $A_3 := \lambda xy.c_2$.

Exercise: Write a function R that checks whether a code of a term is a redex. (So: $R^{\lceil}M^{\rceil} = \mathbf{T}$ if M is a redex and $R^{\lceil}M^{\rceil} = \mathbf{F}$ if M is not a redex.)

H. Geuvers Version: fall 2015 Huygens College 9 / 13

We need to compute with codes

Recall that $\mathbf{T} = \lambda x y.x$ and $\mathbf{F} = \lambda x y.y.$

The following are impossible to define with λ -terms themselves.

There is no term G satisfying

 $GM = \mathbf{T}$ if M has a normal form

 $GM = \mathbf{F}$ if M has no normal form

There is no term H (compare the Halting problem) satisfying

HMN = T if MN has a normal form

 $HMN = \mathbf{F}$ if MN has no normal form

That these are impossible is not surprising: we can't "look inside a black box".

What if we recast these question with coded λ -terms?

H. Geuvers Version: fall 2015 Huygens College 10 / 13

The Halting problem for λ -calculus

The Halting problem is undecidable (λ -calculus version): THEOREM There is no term H satisfying

$$H^{\Gamma}M^{\Gamma}N = \mathbf{T}$$
 if MN has a normal form $H^{\Gamma}M^{\Gamma}N = \mathbf{F}$ if MN has no normal form

PROOF Suppose H exists, Consider

$$Q := \lambda x. H x x \Omega T$$

Then

$$Q \lceil Q \rceil = H \lceil Q \rceil \lceil Q \rceil \Omega T$$

= $T\Omega T = \Omega$ if $Q \lceil Q \rceil$ has a normal form
= $F\Omega T = T$ if $Q \lceil Q \rceil$ has no normal form

Contradiction. So *H* doesn't exist.

11 / 13

H. Geuvers Version: fall 2015 Huygens College

The "Blank tape" problem for λ -calculus

THEOREM There is no term B satisfying

$$B^{\lceil}M^{\rceil} = \mathbf{T}$$
 if M has a normal form

$$B^{\lceil}M^{\rceil} = \mathbf{F}$$
 if M has no normal form

PROOF Suppose *B* exists, Consider

$$Q := \lambda x.B \times \Omega T$$

By the second fixed point theorem, there is a R such that $Q^{\lceil}R^{\rceil}=R$, that is

$$B^{\lceil}R^{\rceil}\Omega \mathbf{T} = R.$$

Now we have

$$R = B^{\lceil} R^{\rceil} \Omega T$$

= $T \Omega T = \Omega$ if R has a normal form
= $F \Omega T = T$ if R has no normal form

Contradiction. So B doesn't exist.

(There may be a proof by reducing H to B; I didn't see it.)

H. Geuvers Version: fall 2015 Huygens College 12 / 13

Some other terms one can(not) write

EXAMPLE There is a term L satisfying

$$L^{\lceil}M^{\rceil} = c_n$$
 if n is the number of λ 's inside M

EXAMPLE There is a term V satisfying

$$V \lceil M \rceil = \mathbf{T}$$
 if M is of the shape $x P_1 \dots P_n$ for some $n, \vec{P}, V \lceil M \rceil = \mathbf{F}$ if M is not of the shape $x P_1 \dots P_n$.

EXAMPLE There is no term H' satisfying

$$H' \lceil M \rceil \lceil N \rceil = \mathbf{T}$$
 if $M N$ has a normal form $H' \lceil M \rceil \lceil N \rceil = \mathbf{F}$ if $M N$ has no normal form

PROOF Reduce B to H'. (Show that, if H' exists, then we can also define B.)

H. Geuvers Version: fall 2015 Huygens College 13 / 13