
Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Final lecture:
Applications, Chomsky hierarchy, and Recap

H. Geuvers and J. Rot

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: 2016-17

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 1 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Outline

Applications of CFGs

Beyond CFGs

Recap

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 2 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Programming languages

Most programming languages are (deterministic) context-free.

There are tools to automatically build:

• a lexical analyzer (‘lexer’) from regular expressions.

“if x = 2 then P else Q′′

; if x = 2 then P else Q

• a parser from a CFG.

; ifthenelse

=

x 2

P Q

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 4 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Lindenmayer systems

“The development of an organism...may be considered as
the execution of a ‘developmental program’ present in
the fertilized egg... A central task of developmental
biology is to discover the underlying algorithm from the
course of development.”

– Lindenmayer & Rozenberg (1976)

Example:

A → AB
B → A

Start with A, expand once per
iteration:

0 A
1 AB
2 ABA
3 ABAAB
4 ABAABABA

. . .

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 5 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Lindenmayer systems

Drawing a Lindenmayer system:

• F: move forward

• +: rotate counter clockwise

• −: rotate clockwise

• [: push location/angle

• ]: pop location/angle

Example: F → F + F −−F + F

0 F

1 F+F--F+F

2 F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F

3 . . .

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 6 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Lindenmayer systems

S → F [+S ][−S ]
S → F − [[S ] + S ] + F [+FS ]− S
F → FF

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 7 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Lindenmayer systems (cont’d)

Example: Penrose Tiling (P3)
S → [N] + +[N] + +[N] + +[N] + +[N]
M → OF + +PF −−−−NF [−OF −−−−MF ] + +
N → +OF −−PF [−−−MF −−NF ]+
O → −MF + +NF [+ + +OF + +PF ]−
P → −− OF + + + +MF [+PF + + + +NF ]−−NF

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 8 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Natural language

S = 〈sentence〉 → 〈noun-phrase〉〈verb-phrase〉.
〈sentence〉 → 〈noun-phrase〉〈verb-phrase〉〈object-phrase〉.

〈noun-phrase〉 → 〈name〉〈article〉〈noun〉
〈name〉 → John | Jill
〈noun〉 → bicycle | mango
〈article〉 → a | the

〈verb-phrase〉 → 〈verb〉 | 〈adverb〉〈verb〉
〈verb〉 → eats | rides
〈adverb〉 → slowly | frequently

〈adjective-list〉 → 〈adjective〉〈adjective-list〉 | λ
〈adjective〉 → big | juicy | yellow

〈object-phrase〉 → 〈adjective-list〉〈name〉
〈object-phrase〉 → 〈article〉〈adjective-list〉〈noun〉

Jill frequently eats a juicy yellow mango. belongs to this language

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 9 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Natural language

• Many sentences can be modelled using CFGs, e.g.:

...because I Cecilia the hippopotamusessaw feed .

• But some (particularly crazy ,) natural languages have
non-context-free features like cross-serial dependencies:

...omdat ik Cecilia de nijlpaarden zag voeren .

• To capture these, one needs more power than CFGs

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 10 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Context-sensitive languages

• Whereas context-free grammars have rules like this:

X → w X ∈ V ,w ∈ (Σ ∪ V )∗

• ...a context-sensitive grammar has rules like this:

αXβ → αwβ

with X ∈ V , α, β,w ∈ (Σ ∪ V )∗, w 6= λ.

• Context-sensitive grammars generate context-sensitive
languages.

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 12 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Context-sensitive languages

Example: {anbncn | n > 0}

S → aBC | aSBC
CB → XB
XB → XC
XC → BC
aB → ab

bB → bb

bC → bc

cC → cc

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 13 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Turing machines

• An unrestricted grammar has rules like:

u → v u, v ∈ (Σ ∪ V )∗

• Recognisable by Turing machines
• The stack is replaced by an infinite tape:

· · · · · ·

• Transitions look like this:

p q
a/b,←

p q
a/b,→

which read a, write b, and move left or right on the tape
• We no longer need a separate input. Just use the tape:

· · · · · ·a b b

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 14 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Enumerable and computable languages

• Languages recognisable by Turing machine are called
enumerable languages

• A languages is computable if both L and L = Σ∗ − L are
enumerable.

• In other words, there is a Turing machine with terminates
telling us w ∈ L and a (possibly different) one that terminates
telling us w /∈ L

• Example: {an | n is not prime}.
• Church-Turing thesis:

“computable” ⇐⇒ “computable by Turing machine”

• (To be continued: Berekenbaarheid, 2nd year)

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 15 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Chomsky hierarchy

{w | w describes a terminating Turing machine }, . . .
{an | n is prime}, . . .
{anbncn | n > 0}, . . .
{anbn | n > 0}, . . .
{an | n > 0}, . . .

Regular

Context-free

Context-sensitive

Computable

Enumerable

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 16 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Trade-offs

Bigger classes of languages:

• More languages can be described.

• But, you can say less about them.

w ∈ L? time memory L1 = L2?

Regular yes |w | const. yes
Deterministic context-free yes |w | |w | no
Context-free yes |w |3 |w |2 no

Context-sensitive yes 2|w | |w |k no
Computable yes ∞ ∞ no
Enumerable if w ∈ L ∞ ∞ no

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 17 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Exam topic: regular expressions

You should know:

• the definition of regular expression

• how to compute a regular expression from an NFAλ using the
elimination-of-states method

• how to build an NFAλ from a regular expression using the
‘toolkit’

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 19 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Exam topic: finite automata

You should know:

• the definition of DFA, NFA, NFAλ

• how to construct a DFA, NFA or NFAλ for a given language

• how to construct a DFA from an NFA (the subset
construction)

• the constructions on DFAs for complement and intersection
(product construction) of languages

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 20 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Exam Topic: regular languages

You should know:

• the closure properties of regular languages (union,
intersection, complement), and how to use them to prove that
a language is regular (or is not regular)

• typical non-regular languages ({anbn | n ∈ N} and
palindromes)

• Kleene’s theorem

• how to apply the pumping lemma to show that a language is
not regular

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 21 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Exam topic: grammars

You should know:

• the definition of context-free grammar (CFG)

• how to generate strings in a CFG (with leftmost
derivations)

• how to find the language generated by a (simple) CFG

• how to construct a CFG that generates a given
(context-free) language

• the definition of regular grammar

• how to construct a regular grammar from a NFA

• how to construct an NFAλ from a regular grammar

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 22 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Exam topic: pushdown automata and CFLs

You should know:

• the definition of pushdown automata (PDAs)

• how to give a PDA for a given (simple context-free)
language

• how find the language accepted by a given PDA

• how to construct a PDA from a CFG

• how to construct a CFG from a PDA

• the closure properties of context-free languages

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 23 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Remarks on sets

Beware that ∅ 6= {∅} ∅ 6= λ ∅ 6= {λ}.
and ∅ · L = L · ∅ = ∅
and {λ} · L = L · {λ} = L.

Symbols:

• w ∈ L: “is in”.

• L1 ⊆ L2: is a subset of, i.e. everything in L1 is also in L2.

• L1 ∪ L2: union, the things in either of the two sets.

• L1 ∩ L2: intersection, only the things in both sets.

• L: complement, the words not in L, L = Σ∗ − L.

Terminology: Language described using set-notation, examples:

{w ∈ {a, b}∗ | |w |a is even}, {anbm | n < m}, ∅

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 24 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Remarks on words and languages

Languages

• contain words.

• can be infinite, but words are finite.

The language L∗

• always contains λ.

• is not the same as {wn | w ∈ L, n ≥ 0}.
• is L0 ∪ L1 ∪ L2 ∪ · · · .

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 25 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Remarks on proofs

To prove that L1 = L2, show that

• L1 ⊆ L2 (for all w , w ∈ L1 implies w ∈ L2), and

• L1 ⊇ L2 (for all w , w ∈ L2 implies w ∈ L1).

Proof by contradiction

• If regular languages have property X , and L1 does not have
property X , then L1 is not regular.

• If from L1 being context-free you can deduce that
{anbncn | n ≥ 0} is context-free, then L1 is not context-free.

Proof by induction: to prove P(w) for all w ,

• Show that P(λ)

• And that P(w) implies P(aw).

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 26 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Exam tips

• You may use results and examples we treated during the
lectures and exercises. For example, you may use that the
language {anbn | n ≥ 0} is not regular without re-proving it.

• Always give an explanation. For example, when asked to give
a CFG for a language, explain why your CFG is correct.

• Check your results. For example,
• check that a DFA that you give indeed is a DFA.
• given NFA-λ that accepts w , after λ-elimination and subset

constructon, check that resulting DFA accepts w .

• Connect your knowledge, think further. An exam question
may not directly tell you what you need to do. For example,
• Q: Is L regular? (Which techniques can you apply?)
• Q: Give a DFA for L (Is L of the form L1 or L1 ∩ L2 ?)

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 27 / 28



Applications of CFGs
Beyond CFGs

Recap
Radboud University Nijmegen

Finally

• Feedback test1: today, ground floor Mercator, 15:30

• Vragenuurtje: Tuesday Jan 17, 13:45 – 14:30 (time and place
to be confirmed)

• Last homework assignment: hand in on Monday Jan 16

• Other missing homework: hand in on Tuesday Jan 17

• Exam: Wednesday January 18, 8:30 – 11:30

• Veel succes!

J. Rot Version: 2016-17 Formal Languages, Grammars and Automata 28 / 28


	Applications of CFGs
	Beyond CFGs
	Recap

