Final lecture: Applications, Chomsky hierarchy, and Recap

H. Geuvers and J. Rot

Institute for Computing and Information Sciences Radboud University Nijmegen

Version: 2016-17

Outline

Applications of CFGs

Beyond CFGs

Recap

Programming languages

Most programming languages are (deterministic) context-free.

There are tools to automatically build:

• a lexical analyzer ('lexer') from regular expressions.

"if x = 2 then P else Q"

$$\sim$$
 if x = 2 then P else Q

• a parser from a CFG.

Radboud University Nijmegen 🔇

Lindenmayer systems

"The development of an organism...may be considered as the execution of a 'developmental program' present in the fertilized egg... A central task of developmental biology is to discover the underlying algorithm from the course of development."

- Lindenmayer & Rozenberg (1976)

Example:

$$egin{array}{ccc} A &
ightarrow & AB \ B &
ightarrow & A \end{array}$$

Start with *A*, expand once per iteration:

- 0 A
- 1 AB
- 2 ABA
- 3 ABAAB

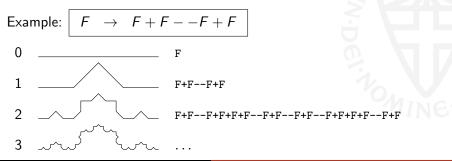
. . .

4 ABAABABA

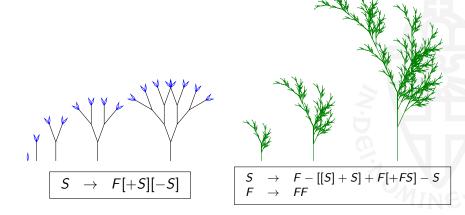
Lindenmayer systems

Drawing a Lindenmayer system:

- F: move forward
- +: rotate counter clockwise
- –: rotate clockwise
- [: push location/angle
-]: pop location/angle

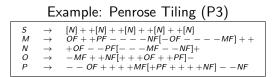


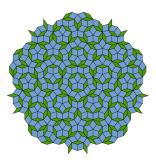
Lindenmayer systems



Radboud University Nijmegen

Lindenmayer systems (cont'd)





8 / 28

Natural language

$S = \langle \text{sentence} \rangle$	\rightarrow	$\langle noun-phrase \rangle \langle verb-phrase \rangle$.
$\langle sentence \rangle$	\rightarrow	$\langle noun-phrase \rangle \langle verb-phrase \rangle \langle object-phrase \rangle.$
$\langle noun-phrase \rangle$	\rightarrow	<pre>(name) (article) (noun)</pre>
$\langle name \rangle$	\rightarrow	John Jill
$\langle noun \rangle$	\rightarrow	bicycle mango
$\langle article \rangle$	\rightarrow	a the
$\langle verb-phrase \rangle$	\rightarrow	$\langle verb \rangle \langle adverb \rangle \langle verb \rangle$
$\langle verb \rangle$	\rightarrow	eats rides
$\langle adverb \rangle$	\rightarrow	slowly frequently
$\langle adjective-list \rangle$	\rightarrow	$\langle adjective \rangle \langle adjective-list \rangle \mid \lambda$
$\langle adjective \rangle$	\rightarrow	big juicy yellow
$\langle object-phrase angle$	\rightarrow	(adjective-list) (name)
$\langle object-phrase angle$	\rightarrow	$\langle article \rangle \langle adjective-list \rangle \langle noun \rangle$

Jill frequently eats a juicy yellow mango. belongs to this language

Natural language

• Many sentences can be modelled using CFGs, e.g.:

...because I saw Cecilia feed the hippopotamuses .

 But some (particularly crazy ③) natural languages have non-context-free features like cross-serial dependencies:

• To capture these, one needs more power than CFGs

Context-sensitive languages

• Whereas context-free grammars have rules like this:

$$X o w$$
 $X \in V, w \in (\Sigma \cup V)^*$

• ...a context-sensitive grammar has rules like this:

$$\alpha X \beta \rightarrow \alpha w \beta$$

with $X \in V$, $\alpha, \beta, w \in (\Sigma \cup V)^*$, $w \neq \lambda$.

• Context-sensitive grammars generate context-sensitive languages.

0}

Context-sensitive languages

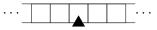
Exam	ple:	$\{ a^n b^n c^n \mid n >$
5	\rightarrow	a BC ∣ a SBC
СВ	\rightarrow	XB
XB	\rightarrow	XC
ХС	\rightarrow	BC
аB	\rightarrow	ab
ЪB	\rightarrow	bb
ЪC	\rightarrow	bc
сC	\rightarrow	сс

Turing machines

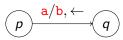
• An unrestricted grammar has rules like:

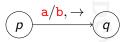
$$u
ightarrow v$$
 $u, v \in (\Sigma \cup V)^*$

- Recognisable by Turing machines
- The stack is replaced by an infinite tape:



• Transitions look like this:





which read a, write b, and move left or right on the tape

• We no longer need a separate input. Just use the tape:

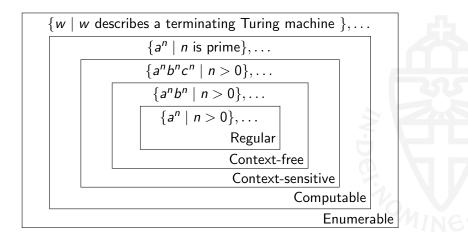
Enumerable and computable languages

- Languages recognisable by Turing machine are called enumerable languages
- In other words, there is a Turing machine with terminates telling us w ∈ L and a (possibly different) one that terminates telling us w ∉ L
- Example: $\{\mathbf{a}^n \mid n \text{ is not prime}\}.$
- Church-Turing thesis:

"computable" \iff "computable by Turing machine"

• (To be continued: Berekenbaarheid, 2nd year)

Chomsky hierarchy



16 / 28

Trade-offs

Bigger classes of languages:

- More languages can be described.
- But, you can say less about them.

	$w \in L?$	time	memory	$L_1 = L_2?$
Regular	yes	w	const.	yes
Deterministic context-free	yes	w	w	no
Context-free	yes	$ w ^{3}$	$ w ^{2}$	no
Context-sensitive	yes	$2^{ w }$	$ w ^k$	no
Computable	yes	∞	∞	no
Enumerable	if $w \in L$	∞	∞	no

Exam topic: regular expressions

- the definition of regular expression
- how to compute a regular expression from an NFA_λ using the elimination-of-states method
- how to build an NFA_λ from a regular expression using the 'toolkit'

Exam topic: finite automata

- the definition of DFA, NFA, NFA $_\lambda$
- how to construct a DFA, NFA or NFA $_{\lambda}$ for a given language
- how to construct a DFA from an NFA (the subset construction)
- the constructions on DFAs for complement and intersection (product construction) of languages

Exam Topic: regular languages

- the closure properties of regular languages (union, intersection, complement), and how to use them to prove that a language is regular (or is not regular)
- typical non-regular languages ({aⁿbⁿ | n ∈ ℕ} and palindromes)
- Kleene's theorem
- how to apply the pumping lemma to show that a language is not regular

Exam topic: grammars

- the definition of context-free grammar (CFG)
- how to generate strings in a CFG (with leftmost derivations)
- how to find the language generated by a (simple) CFG
- how to construct a CFG that generates a given (context-free) language
- the definition of regular grammar
- how to construct a regular grammar from a NFA
- how to construct an NFA $_{\lambda}$ from a regular grammar

Exam topic: pushdown automata and CFLs

- the definition of pushdown automata (PDAs)
- how to give a PDA for a given (simple context-free) language
- how find the language accepted by a given PDA
- how to construct a PDA from a CFG
- how to construct a CFG from a PDA
- the closure properties of context-free languages

Remarks on sets

Beware that
$$\emptyset \neq \{\emptyset\}$$
 $\emptyset \neq \lambda$ $\emptyset \neq \{\lambda\}$.
and $\emptyset \cdot L = L \cdot \emptyset = \emptyset$
and $\{\lambda\} \cdot L = L \cdot \{\lambda\} = L$.

Symbols:

- w ∈ L: "is in".
- $L_1 \subseteq L_2$: is a subset of, i.e. everything in L_1 is also in L_2 .
- $L_1 \cup L_2$: union, the things in either of the two sets.
- $L_1 \cap L_2$: intersection, only the things in both sets.
- \overline{L} : complement, the words not in L, $\overline{L} = \Sigma^* L$.

Terminology: Language described using set-notation, examples:

$$\{w \in \{a,b\}^* \mid |w|_a \text{ is even}\}, \quad \{a^n b^m \mid n < m\}, \quad \emptyset$$

Remarks on words and languages

Languages

- contain words.
- can be infinite, but words are finite.

The language L^*

- always contains λ.
- is not the same as $\{w^n \mid w \in L, n \ge 0\}$.
- is $L^0 \cup L^1 \cup L^2 \cup \cdots$.

25 / 28

Remarks on proofs

To prove that $L_1 = L_2$, show that

- $L_1 \subseteq L_2$ (for all $w, w \in L_1$ implies $w \in L_2$), and
- $L_1 \supseteq L_2$ (for all $w, w \in L_2$ implies $w \in L_1$).

Proof by contradiction

- If regular languages have property X, and L₁ does not have property X, then L₁ is not regular.
- If from L_1 being context-free you can deduce that $\{a^n b^n c^n \mid n \ge 0\}$ is context-free, then L_1 is not context-free.

Proof by induction: to prove P(w) for all w,

- Show that P(λ)
- And that P(w) implies P(aw).

Exam tips

- You may use results and examples we treated during the lectures and exercises. For example, you may use that the language {aⁿbⁿ | n ≥ 0} is not regular without re-proving it.
- Always give an explanation. For example, when asked to give a CFG for a language, explain why your CFG is correct.
- Check your results. For example,
 - check that a DFA that you give indeed is a DFA.
 - given NFA- λ that accepts w, after λ -elimination and subset constructon, check that resulting DFA accepts w.
- Connect your knowledge, think further. An exam question may not directly tell you what you need to do. For example,
 - Q: Is *L* regular? (Which techniques can you apply?)
 - Q: Give a DFA for L (Is L of the form $\overline{L_1}$ or $L_1 \cap L_2$?)

Finally

- Feedback test1: today, ground floor Mercator, 15:30
- Vragenuurtje: Tuesday Jan 17, 13:45 14:30 (time and place to be confirmed)
- Last homework assignment: hand in on Monday Jan 16
- Other missing homework: hand in on Tuesday Jan 17
- Exam: Wednesday January 18, 8:30 11:30
- Veel succes!

28 / 28