$\begin{array}{c} \text{Talen en Automaten} \\ \text{Test 1, Mon 7}^{\text{th}} \text{ Dec, 2015} \\ 15\text{h}45 - 17\text{h}30 \end{array}$

This test consists of **four** exercises over **7** pages. Explain your approach, and **write your** answer to each exercise on a separate page. You can score a maximum of 100 points, and each question indicates how many points it is worth. The test is closed book. You are NOT allowed to use a calculator, a computer or a mobile phone. You may answer in Dutch or in English. Please write clearly, and do not forget to put on each page: your name and your student number.

Notation Throughout the test, we denote for any alphabet $A, w \in A^*$ and $a \in A$ by $|w|_a$ the number of a's in w, as it was introduced in the lecture. Moreover, recall that v is a *subword* of w if w = xvy for some words x, y.

1 Induction

Let A and B be finite alphabets and $f: A \to B^*$ a map from A to words over B.

- a) Define by induction a map $\overline{f} : A^* \to B^*$ that replaces in a word $w \in A^*$ all (5pt) letters a by f(a).
- **b)** Let $A = \{a, b\}$ and $f : A \to A^*$ be given by f(a) = b and f(b) = abb.
 - i) Give a word $w \in A^*$ such that $\overline{f}(w) = babbbb.$ (5pt)
 - ii) Show by induction that $|\overline{f}(w)|_b = |w|_a + 2|w|_b$. (10pt)

2 Regular Languages [Write your answers on a separate page]

a) Let $A = \{a, b\}$ and

$$L_1 = \{ w \in A^* \mid |w|_a \text{ is even} \}$$

$$L_2 = \mathcal{L} \left((a+b)^* abba(a+b)^* \right)$$

$$L_3 = \{ w \in A^* \mid w \text{ does not contain the subword } abb \}.$$

Explain for each i = 1, 2, 3 whether and why $L_i^* = L_i$. (10pt)

b) Let $A = \{a, b\}$ and

 $L = \{ w \in A^* \mid aba \text{ occurs twice as subword in } w \}.$

Give a regular expression e, such that $\mathcal{L}(e) = L$. Explain your answer. (10pt)

3 Deterministic Finite Automata [Write your answers on a separate page]

a) Let $A = \{a, b, c\}$ and let

 $L = \{ w \in A^* \mid ab \text{ occurs an odd number of times as subword in } w \}.$

- i) Give a DFA M with $\mathcal{L}(M) = L$. Explain your answer. (10pt)
- ii) Show that *caba* is accepted, and that *abbab* is not accepted. (5pt)
- **b)** Let $A = \{a, b\}$ and the DFA M over A be given by

Use the procedure from the lecture to construct a regular expression e with (10pt) $\mathcal{L}(e) = \mathcal{L}(M)$.

4 Non-Deterministic Finite Automata [Write your answers on a separate page]

a) Let $A = \{0, 1, 2\}$ and let L be the language of words in which the digits occur only in increasing order, i.e.,

 $L = \{x_1 \cdots x_n \mid n \in \mathbb{N}, \forall i. x_i \in A \text{ and } \forall i \leq j. x_i \leq x_j\}.$

- i) Show that L is regular by constructing an NFA- λ that accepts L. (10pt)
- ii) Show that your automaton accepts 002 and rejects 21. (5pt)
- **b)** Let $A = \{a, b, c\}$ and the NFA- λM over A be given by

Use the procedure from the lecture to construct a DFA D with $\mathcal{L}(D) = \mathcal{L}(M)$. (10pt) Indicate clearly from which subset of states of M a state in D originates.

c) Let e be the regular expression $a + (b+1)^*$.

Use the procedure from the lecture to construct an NFA- λM with $\mathcal{L}(M) = \mathcal{L}(e)$. (10pt)