

Extra exercise Lecture 5

May 10, 2021

Exercise 1. We study the satisfiability of *implicational boolean formulas*, **IMP**. The formulas of **IMP** are:

- Atoms, the atoms, a, b, c, \dots ,
- Implications, $\varphi \Rightarrow \psi$, for φ, ψ formulas,
- \perp .

A valuation $v : \text{Atoms} \rightarrow \{0, 1\}$ extends in the obvious way to a valuation on all formulas and we say that φ is *satisfiable* in case there is a valuation v for which $v(\varphi) = 1$.

For **IMP** we also define a type of “normal form”, which we call **INF** (Implicational Normal Form):

- φ is in **INF** in case it is of the form

$$(c_1 \Rightarrow \dots \Rightarrow c_n \Rightarrow \perp) \Rightarrow \perp$$

$(n \geq 0)$ where

- c_i are of the form

$$l_1 \Rightarrow l_2 \Rightarrow l_3$$

where

- each l_i is either an atom a or a negated atom $a \Rightarrow \perp$.

In this notation we have omitted brackets by letting them *associate to the right*, that is: $l_1 \Rightarrow l_2 \Rightarrow l_3$ denotes $l_1 \Rightarrow (l_2 \Rightarrow l_3)$ and similarly $c_1 \Rightarrow \dots \Rightarrow c_n \Rightarrow \perp$ denotes $(c_1 \Rightarrow \dots \Rightarrow (c_n \Rightarrow \perp) \dots)$.

- (a) Prove that **IMP-SAT**, satisfiability of formulas from **IMP**, is NP-complete.
- (b) Prove that **INF-IMP-SAT**, satisfiability of formulas from **IMP** that are in **INF**-form, is NP-complete.