

# Extra exercises Complexiteit IBC028

February, 2018

## Exercise 1.

Let  $f = \text{fib}$  be defined by  $f(i) = i$  for  $i = 0, 1$  and  $f(i) = f(i-1) + f(i-2)$  for  $i > 1$ . Prove by induction on  $n$  that

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n = \begin{pmatrix} f(n-1) & f(n) \\ f(n) & f(n+1) \end{pmatrix}$$

for all  $n \geq 1$ .

## Exercise 2.

Let  $f = \text{fib}$  be defined by  $f(i) = i$  for  $i = 0, 1$  and  $f(i) = f(i-1) + f(i-2)$  for  $i > 1$ . Prove by induction on  $n$  that

$$f(n-1)f(n+1) = f(n)^2 + 1$$

if  $n$  is even, and

$$f(n-1)f(n+1) = f(n)^2 - 1$$

if  $n$  is odd, for all  $n \geq 1$ .

## Exercise 3.

For each function on the left,  $p(n)$ , write the letter of a function on the right,  $q(n)$ , such that  $p(n) \in \Theta(q(n))$ . If no such function  $q(n)$  is listed, then choose (l).

|                                                |       |                   |                |
|------------------------------------------------|-------|-------------------|----------------|
| $f(n) = \sum_{i=1}^n (4i - 4)$                 | _____ | (a) 1             | (g) $\log n$   |
|                                                |       | (b) $n$           | (h) $n \log n$ |
| $g(n) = \sum_{i=1}^n \sum_{j=1}^i i$           | _____ | (c) $n(\log n)^2$ | (i) $n^2$      |
|                                                |       | (d) $n^2 \log n$  | (j) $n^3$      |
| $h(n) = \sum_{i=1}^{\lfloor \log n \rfloor} n$ | _____ | (e) $2^n$         | (k) $2^{2n}$   |
|                                                |       | (f) $n^n$         | (l) no match   |
| $k(n) = \sum_{i=0}^n \frac{4}{2^i}$            | _____ |                   |                |

**Exercise 4.**

Rank the following functions in  $n$  by order of growth from low to high; some may be of the same order.

$$n\sqrt{n} \quad \sum_{i=0}^n \log n \quad n^n \quad \log \sqrt{n} \quad \log(n^2) \quad (\log n)^2 \quad 2^n \quad 3^n$$

$$\sum_{i=0}^{\lfloor \log n \rfloor} i \quad \sum_{i=0}^n i^2 \quad n^{0.001} \quad 17n^3 \quad 17^{\log 89} \quad n^2 \quad 100n \quad 1$$

**Exercise 5.**

Let  $g$  be defined by  $g(i) = 1$  for  $i = 0, 1, 2$  and  $g(i) = g(i-2) + g(i-3)$  for  $i > 2$ . Prove by induction on  $n$  that  $g(n) > 0.5 * (1.2)^n$  for all  $n \geq 0$ .

**Exercise 6.**

Let  $T(n) = n + T(n/2) + 2T(n/5)$ . Prove that  $T(n) = \Theta(n)$ .

**Exercise 7.**

Let  $T(n) = n^2 + T(n-1)$ . Prove that  $T(n) = \Theta(n^3)$ .