

Complexity IBC028, Lecture 1

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2021

Outline

Organisation

Overview

Recursive Programs

About this course I

Lectures

- Teacher: Herman Geuvers
- Weekly, 2 hours, on Monday, 15:30-17:15 (with some exceptions)
- On line via **zoom**: [link provided in Brightspace](#)
- The lectures follow:
 - these slides, available via the web
 - extra lecture notes by Hans Zantema, available via the web
 - *Introduction to Algorithms* by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein
- Course URL:
www.cs.ru.nl/~herman/onderwijs/complexity2021/

Please check there first

About this course II

Exercises

- Weekly exercise classes, on Wednesday, 8:30-10:15 or 10:30-12:15
- On line via discord: [check your group and time in Brightspace](#)
- Answers (for old exercises) & Questions (for new ones)
- Schedule:
 - New exercises on the web: Monday
 - Next exercise meeting (Wednesday) you can ask questions
- At 2 points in the course, homework can be handed in with the assistant at the exercise class. This will be graded.
- If a is the average grade of your [homework assignments](#), $\frac{a}{10}$ is added to your exam grade as a **bonus**.

About this course III

Exercise Classes

6 Assistants:

08:30–10:15 Els Hoekstra

08:30–10:15 Jorrit de Boer

08:30–10:15 Thomas van Ouwerkerk

10:30–12:15 Ruben Holubek

10:30–12:15 Jana Wagemaker

10:30–12:15 Deivid Rodrigues do Vale

About this course IV

Examination

- The final grade is composed of
 - the grade of your final (2hrs) exam, **f**,
 - the average grade of your exercises, **a**,
- Your final grade is $\min(10, f + \frac{a}{10})$
 - The re-exam is a full 2hrs exam about the whole course. You keep the (average) grade of the exercises.
- If you fail again, you must start all over next year

Overview

Topics

- Techniques for computing the complexity of algorithms, especially recursive algorithms; the “master theorem”.
- Examples of algorithms and data structures and their complexity.
- Complexity classes: P (polynomial complexity), NP; NP-completeness and $P \stackrel{?}{=} NP$?

Important:

⇒ Precise formal definitions and precise formal proofs

Complexity of algorithms

Time complexity of algorithm A := # steps it takes to execute A .

- what is a “step”?
- algorithm ... not “program”!
- # steps should be related to size of input

Time complexity of algorithm A is f if

for an input of size n , A takes $f(n)$ steps to compute the output.

Here, f is a function from \mathbb{N} to \mathbb{N} .

- We study **worst case complexity**: we want an upperbound that applies to all possible inputs.
- We study complexity “in the limit” and ignore a finite number of “outliers”: **asymptotic complexity**
- We ignore constants and lower factors: n^2 and $5n^2 + 3n + 7$ are “the same” complexity.

Asymptotic complexity

Complexity definitions: “big \mathcal{O} ”, “big Ω ”, “big Θ ” notation.

For $f, g : \mathbb{N} \rightarrow \mathbb{N}$ a functions,

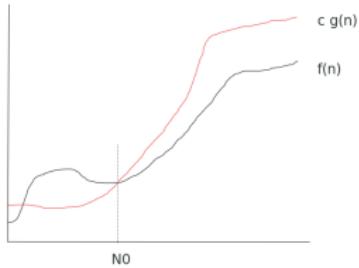
- $f \in \mathcal{O}(g)$ if $\exists c \in \mathbb{R}_{>0} \exists N_0 \forall n > N_0 (f(n) \leq c g(n))$
- $f \in \Omega(g)$ if $\exists c \in \mathbb{R}_{>0} \exists N_0 \forall n > N_0 (c g(n) \leq f(n))$
- $f \in \Theta(g)$ if $f \in \mathcal{O}(g) \cap \Omega(g)$.

- $\mathcal{O}(g)$ is a **set** of functions (and similarly for $\Omega(g)$ and $\Theta(g)$):
$$\mathcal{O}(g) = \{f \mid \exists c \in \mathbb{R}_{>0} \exists N_0 \forall n > N_0 (f(n) \leq c g(n))\}$$
- Nevertheless, one always writes $f = \mathcal{O}(g)$, and we will follow that (abuse of) notation.
- Also: we follow the habit of writing $f(n)$ for the function $n \mapsto f(n)$, so we write $f(n) = \mathcal{O}(g(n))$ etc.

$$f(n) = \mathcal{O}(g(n))$$

$$f(n) = \mathcal{O}(g(n)) \text{ if}$$

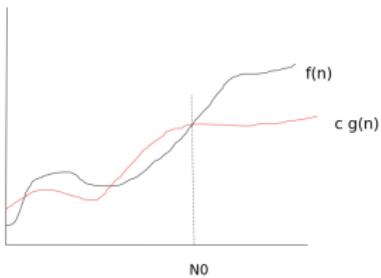
$$\exists c \in \mathbb{R}_{>0} \exists N_0 \forall n > N_0 (f(n) \leq c g(n))$$



$$f(n) = \Omega(g(n))$$

$$f(n) = \Omega(g(n)) \text{ if}$$

$$\exists c \in \mathbb{R}_{>0} \exists N_0 \forall n > N_0 (c g(n) \leq f(n))$$

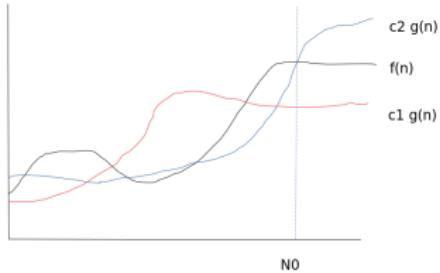


$$f(n) = \Theta(g(n))$$

$f(n) = \Theta(g(n))$ if $f(n) = \mathcal{O}(g(n)) \wedge f(n) = \Omega(g(n))$.

This is equivalent to saying:

$$\exists c_1, c_2 \in \mathbb{R}_{>0} \exists N_0 \forall n > N_0 (c_1 g(n) \leq f(n) \leq c_2 g(n))$$



Why can we ignore constants and lower factors

For $f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_0$ with $a_k \neq 0$, we have

$$f(n) = \Theta(n^k)$$

We show this by an example: $7n^2 + 5n + 8 = \Theta(n^2)$

Space complexity

Apart from **running time** as a measure of complexity, one could also look at **memory consumption**. This is called **space**

complexity': memory it takes to execute an algorithm. In the final lectures we will say something about space complexity, but for now we restrict to time complexity. Just one observation:

space complexity \leq time complexity, because it takes at least n time steps to use n memory cells.

Example of a recursive program and its complexity (I)

A naive (inefficient) recursive algorithm to compute 2^n

```
 $A(n) := \begin{cases} \text{if } n = 0 \text{ then } 1 \\ \text{else } A(n - 1) + A(n - 1) \end{cases}$ 
```

What is the complexity of A ?

Define $T(n) := \#$ steps it takes to execute $A(n)$.

Assuming 1 step for addition and 1 step for the case-distinction, we have

$$\begin{aligned} T(0) &= 1 \\ T(n + 1) &= 1 + 2T(n) \end{aligned}$$

We want to find a closed expression for $T(n)$ so we can try some values.

Example of a recursive program and its complexity (I)

Educated guess: $T(n) = 2^{n+1} - 1$. We now prove that this is actually the case.

THEOREM. For all $n \in \mathbb{N}$, $T(n) = 2^{n+1} - 1$

Proof by induction on n

- base case, $n = 0$: $T(0) = 1 = 2^1 - 1$ ✓
- step case: suppose (IH) $T(n) = 2^{n+1} - 1$, we need to prove (TP) $T(n + 1) = 2^{n+2} - 1$.

$$\begin{aligned} T(n + 1) &= 1 + 2T(n) \\ &\stackrel{IH}{=} 1 + 2(2^{n+1} - 1) \\ &= 1 + 2^{n+2} - 2 \\ &= 2^{n+2} - 1 \end{aligned}$$

Strong induction (I)

The induction principle that we have used is also called **structural induction**: it relies directly on the inductive structure of \mathbb{N} .

$$\frac{P(0) \quad \forall n \in \mathbb{N} (P(n) \rightarrow P(n+1))}{\forall n \in \mathbb{N} (P(n))}$$

We will often use **strong induction**, which relies on the fact that $<$ is well-founded on \mathbb{N} . (No infinite decreasing $<$ -sequences in \mathbb{N} .)

Strong induction:

$$\frac{\forall n \in \mathbb{N} (\forall k < n (P(k)) \rightarrow P(n))}{\forall n \in \mathbb{N} (P(n))}$$

Strong induction gives a stronger induction hypothesis: to prove $P(n)$ we may assume as (IH): $\forall k < n (P(k))$ (and not just $P(n-1)$).

Strong induction (II)

Strong induction:

$$\frac{\forall n \in \mathbb{N} (\forall k < n (P(k)) \rightarrow P(n))}{\forall n \in \mathbb{N} (P(n))}$$

Strong induction is only seemingly stronger: in fact the two reasoning principles are equivalent.

Strong induction can be proved by proving $\forall k < n (P(k))$ by (structural) induction on n .

Fibonacci (I)

The Fibonacci function is defined as follows.

$$\begin{aligned}\text{fib}(0) &= 0 & \text{fib}(1) &= 1 \\ \text{fib}(n+2) &= \text{fib}(n+1) + \text{fib}(n)\end{aligned}\tag{1}$$

Claim: fib is exponential.

- So we are looking for an a such that $\text{fib}(n) = \Theta(a^n)$.
- Let's first try to find an a such that $\text{fib}(n) = a^n$.

Looking at equation (1), a should satisfy

$$a^{n+2} = a^{n+1} + a^n.$$

Knowing that $a \neq 0$, we obtain the quadratic equation $a^2 = a + 1$ that we can easily solve. Its solutions are called φ and $\hat{\varphi}$:

$$\varphi := \frac{1 + \sqrt{5}}{2} \approx 1.618 \quad \hat{\varphi} := \frac{1 - \sqrt{5}}{2} \approx -0.618$$

Fibonacci (II)

$$\begin{aligned}\text{fib}(0) &= 0 & \text{fib}(1) &= 1 \\ \text{fib}(n+2) &= \text{fib}(n+1) + \text{fib}(n)\end{aligned}\tag{1}$$

$$\varphi := \frac{1 + \sqrt{5}}{2} \approx 1.618 \quad \hat{\varphi} := \frac{1 - \sqrt{5}}{2} \approx -0.618$$

Neither φ^n nor $\hat{\varphi}^n$ provide solutions to the equations for fib, but

- the sum of two solutions to (1) is again a solution to (1)
- a solution to (1) multiplied with a c is again a solution to (1)

So we try to find c_1 and c_2 such that $\text{fib}(n) = c_1\varphi^n + c_2\hat{\varphi}^n$. This yields a unique solution and we obtain

$$\text{fib}(n) = \frac{1}{5}\sqrt{5} \varphi^n - \frac{1}{5}\sqrt{5} \hat{\varphi}^n.$$

As $\hat{\varphi}^n \rightarrow 0$, we can conclude that $\text{fib}(n) = \Theta(\varphi^n)$.

Binary search trees

A **binary search tree**, bst, is a binary tree that has, in its nodes and leaves, elements of an ordered structure (A, \sqsubseteq) , where for every node labeled a with left subtree ℓ and rightsubtree r ,

- for all labels x in ℓ : $x \sqsubseteq a$
- for all labels y in r : $a \sqsubseteq y$.

Often we have (\mathbb{N}, \leq) as ordered structure.

- A bst is an efficient data-structure for storing search data if the tree is balanced: searching in a tree t is efficient if the height t is $\mathcal{O}(\log k)$ for k the number of nodes in t .
- In a previous lecture you have seen red-black trees.
- We now introduce **AVL-trees**, also because they give a nice application of the fib function.

AVL trees

DEFINITION

An **AVL tree** is a binary search tree in which, for every node a , the difference between the height of the left and the right subtree of a is ≤ 1 .

The following Theorem shows that AVL trees are efficient.

THEOREM

The height of an AVL tree t with k nodes is $\mathcal{O}(\log k)$.

The Theorem follows from our result that fib is exponential and a Lemma.

LEMMA

The number of nodes in an AVL tree of height n is $\geq \text{fib}(n)$.

The number of nodes in an AVL tree

LEMMA

The number of nodes in an AVL tree of height n is $\geq \text{fib}(n)$.

Proof. By (strong) induction on n .

IH: for all $p < n$: if t is an AVL tree of height p , then the number of nodes in t is $\geq \text{fib}(p)$.

To prove: if n is the height of an AVL tree s , then the number of nodes in s is $\geq \text{fib}(n)$.

Case distinction on n :

- $n = 0, 1$. Easy; check for yourself.
- $n \geq 2$. Then $n = 1 + \max(\text{height}(s_1), \text{height}(s_2))$, where s_1 and s_2 are the left and right subtrees of the top node of s . One of s_i has $\text{height}(s_i) = n - 1$, while the other has height $n - 1$ or $n - 2$. Using (IH) we derive that the number of nodes in s is $\geq 1 + \text{fib}(n - 1) + \text{fib}(n - 2)$, which is $\geq \text{fib}(n)$.

AVL trees are efficient

THEOREM

The height of an AVL tree t with k nodes is $\mathcal{O}(\log k)$.

Proof

Let $d(k) :=$ the largest height of an AVL tree with k nodes. So for every k there is an AVL tree with k nodes that has height $d(k)$.

Following the Lemma and our earlier result on fib: there is a $c > 0$ such that: $k \geq c\varphi^{d(k)}$ for all k (larger than some fixed N_0).

Therefore: $\log k \geq \log(c\varphi^{d(k)}) = \log c + d(k) \log \varphi$ and so

$$d(k) \leq \frac{\log k - \log c}{\log \varphi} = \mathcal{O}(\log k)$$

Divide and Conquer algorithms: Mergesort

For A an array p, r numbers, $\text{MergeSort}(A, p, r)$ sorts the part $A[p], \dots, A[r]$ and leaves the rest of A unchanged.

```
MergeSort( $A, p, r$ ) = if  $p < r$  then
     $q := \left\lfloor \frac{p+r}{2} \right\rfloor$ ;
    MergeSort( $A, p, q$ );
    MergeSort( $A, q+1, r$ );
    Merge( $A, p, q, r$ )
```

- $\text{Merge}(A, p, q, r)$ merges the parts $A[p], \dots, A[q]$ and $A[q+1], \dots, A[r]$. It is linear (in the length of A) and produces a sorted array (if the input arrays are sorted). See the book.
- We write a recurrence relation for $T(n)$, the time it takes to compute $\text{MergeSort}(A, p, r)$, with $n = r - p$

Mergesort

For A an array p, r numbers, $\text{MergeSort}(A, p, r)$ sorts the part $A[p], \dots, A[r]$ and leaves the rest of A unchanged.

```
MergeSort( $A, p, r$ ) = if  $p < r$  then
     $q := \left\lfloor \frac{p+r}{2} \right\rfloor$ ;
    MergeSort( $A, p, q$ );
    MergeSort( $A, q+1, r$ );
    Merge( $A, p, q, r$ )
```

Recurrence equation for T of MergeSort

$$T(1) = 1$$

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$

The complexity of Mergesort (I)

```
MergeSort( $A, p, r$ ) = if  $p < r$  then  $q := \left\lfloor \frac{p+r}{2} \right\rfloor$ ; MergeSort( $A, p, q$ );  
MergeSort( $A, q+1, r$ ); Merge( $A, p, q, r$ )
```

We find that

- $T(1) = 1$
- $T(n) = 2T(\frac{n}{2}) + \Theta(n)$ (for $n \geq 2$)

THEOREM

If $T(n) \leq 2T(\lfloor \frac{n}{2} \rfloor) + \Theta(n)$, then

$$T(n) = \mathcal{O}(n \log n).$$

The complexity of Mergesort(II)

THEOREM

If $T(n) \leq 2T(\lfloor \frac{n}{2} \rfloor) + \Theta(n)$, then $T(n) = \mathcal{O}(n \log n)$.

Proof (by strong induction)

Suppose $T(n) \leq 2T(\lfloor \frac{n}{2} \rfloor) + c n$ for some constant c .

Take $c' \geq c$ large enough so that $T(n) \leq c' n \log n$ for $n = 1, 2, 3$.

Let $n > 3$. Then $\lfloor \frac{n}{2} \rfloor < n$, so we can apply strong induction.

$$\begin{aligned} T(n) &\leq 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + c n & \stackrel{\text{IH}}{\leq} & 2c' \left\lfloor \frac{n}{2} \right\rfloor \log \left\lfloor \frac{n}{2} \right\rfloor + c' n \\ &\leq 2c' \frac{n}{2} \log \frac{n}{2} + c' n \\ &\leq c' n(\log n - 1) + c' n \\ &= c' n \log n \end{aligned}$$

□

Back to Mergesort

For MergeSort, we had $T(n) = 2T(\frac{n}{2}) + \Theta(n)$.

What if, in fact, we need to “round up” and have

$$T(n) = 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + \Theta(n)?$$

We show that it doesn't matter: If $T(n) \leq 2T(\lfloor \frac{n}{2} \rfloor + D) + c n$, for fixed D and c , then $T(n) = \mathcal{O}(n \log n)$.

Define $U(n) := T(n + 2D)$. Then

$$\begin{aligned} U(n) = T(n + 2D) &= 2T\left(\left\lfloor \frac{n + 2D}{2} \right\rfloor + D\right) + c(n + 2D) \\ &\leq 2U\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 2c n \quad (\text{for } n \geq 2D) \end{aligned}$$

Earlier Theorem: $U(n) = \mathcal{O}(n \log n)$. So we also have
 $T(n) = \mathcal{O}(n \log n)$. □

Pitfalls in proving complexity

Suppose $T(1) = 1$ and $T(n) = T(n-1) + n$ for $n > 1$.

Claim: then $T(n) = \mathcal{O}(n)$

Proof: By induction on n :

$$\begin{aligned} T(n) &= T(n-1) + n \\ &= \mathcal{O}(n) + \mathcal{O}(n) = \mathcal{O}(n) \end{aligned}$$

⇒ This is **WRONG!** We need to be **precise about functions and constants in induction proofs**:

$T(n) = \mathcal{O}(n)$ means: $\exists c \exists N_0 \forall n > N_0 (T(n) \leq c n)$

Correct reasoning:

$$\begin{aligned} T(n) &= T(n-1) + n \\ &\leq c(n-1) + n && \text{(for } n > N_0\text{)} \\ &= c n + n - c && \not\leq c n \end{aligned}$$

and the induction proof doesn't go through.

Some final advice

- Make sure you can do induction proofs. See the exercises.
- Make sure you know how to compute with log, exponents etcetera. That means: you don't have to look up the "rules" but you know them by heart and you can apply them swiftly and correctly. See Section 3.2 of the book.
- Make sure you know how to compute with summations. See Appendix A.1 of the book.