Radboud University Nijmegen ¢

Complexity IBC028, Lecture 1

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2021

H. Geuvers Version: spring 2021 Complexity 1/34

Radboud University Nijmege

QOutline

Organisation

Overview

Recursive Programs

H. Geuvers Version: spring 2021 Complexity 2 /34

Organisation

Radboud University Nijmegen

About this course |

Lectures

® Teacher: Herman Geuvers

® Weekly, 2 hours, on Monday, 15:30-17:15 (with some
exceptions)

® On line via zoom: link provided in Brightspace

® The lectures follow:

® these slides, available via the web

® extra lecture notes by Hans Zantema, available via the web

® [ntroduction to Algorithms by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest and Clifford Stein

® Course URL:

www.cs.ru.nl/~herman/onderwijs/complexity2021/

Please check there first

H. Geuvers Version: spring 2021 Complexity 4 /34

www.cs.ru.nl/~herman/onderwijs/complexity2021/

Organisation

Radboud University Nijmegen

About this course Il

Exercises

Weekly exercise classes, on Wednesday, 8:30-10:15 or
10:30-12:15

On line via discord: check your group and time in Brightspace

Answers (for old exercises) & Questions (for new ones)
Schedule:

® New exercises on the web: Monday

® Next exercise meeting (Wednesday) you can ask questions
At 2 points in the course, homework can be handed in with
the assistant at the exercise class. This will be graded.

If a is the average grade of your homework assignments, 75 is

added to your exam grade as a bonus.

H. Geuvers Version: spring 2021 Complexity

Organisation

Radboud University Nijmegen i

About this course Il

Exercise Classes

6 Assistants:

08:30-10:15 Els Hoekstra
08:30-10:15 Jorrit de Boer
08:30-10:15 Thomas van Ouwerkerk
10:30-12:15 Ruben Holubek
10:30-12:15 Jana Wagemaker
10:30-12:15 Deivid Rodrigues do Vale

H. Geuvers Version: spring 2021 Complexity 6 /34

Organisation

Radboud University Nijmegen

About this course IV

Examination

® The final grade is composed of

® the grade of your final (2hrs) exam, f,
® the average grade of your exercises, a,

® Your final grade is min(10, f 4)
® The re-exam is a full 2hrs exam about the whole course. You
keep the (average) grade of the exercises.

® If you fail again, you must start all over next year

H. Geuvers Version: spring 2021 Complexity 7 /34

Overview Radboud University Nijmegen

Overview

® Techniques for computing the complexity of algorithms,
especially recursive algorithms; the “master theorem".

® Examples of algorithms and data structures and their
complexity.

e Complexity classes: P (polynomial complexity), NP;
NP-completeness and PL NP?

Important:
= Precise formal definitions and precise formal proofs

H. Geuvers Version: spring 2021 Complexity 9 /34

Radboud University Nijmegen

Recursive Programs

Complexity of algorithms

Time complexity of algorithm A := # steps it takes to execute A.
® what is a “step”?
® algorithm ... not “program”!
® - steps should be related to size of input

Time complexity of algorithm A is f if

for an input of size n, A takes f(n) steps to compute the output.
Here, f is a function from N to N.

® We study worst case complexity: we want an upperboud that
applies to all possible inputs.

® We study complexity “in the limit" and ignore a finite number
of “outliers”: asymptotic complexity

® We ignore constants and lower factors: n® and 5n®> +3n+7
are “the same” complexity.

H. Geuvers Version: spring 2021 Complexity 11 /34

Radboud University Nijmegen

Recursive Programs

Asymptotic complexity

Complexity definitions: “big O", “big ", "big ©" notation.
For f,g : N — N a functions,

e feO(g)if 3c € RugINgVn > No(f(n) < cg(n))

e feQ(g)if I3c € RuoINgVn > No(c g(n) < f(n))
feO(g)iffeO(g)NQg).

® O(g) is a set of functions (and similarly for Q(g) and ©(g)):

O(g) =A{f | Ic € RugINog Vn > No(f(n) < cg(n))}

Nevertheless, one always writes f = O(g), and we will follow
that (abuse of) notation.

Also: we follow the habit of writing f(n) for the function
n— f(n), so we write f(n) = O(g(n)) etc.

H. Geuvers Version: spring 2021 Complexity 12 / 34

Radboud University Nijmegen i

Recursive Programs

H. Geuvers Version: spring 2021 Complexity 13 / 34

Radboud University Nijmegen i

Recursive Programs

f(n) = Q(g(n))

F(n) = Q(g(n) if

dc € Ry 3dNgVn > No(c g(n) < f(n))

H. Geuvers Version: spring 2021 Complexity 14 / 34

Radboud University Nijmegen i

Recursive Programs

f(n) = O(g(n))

f(n) = ©(g(n)) if £(n) = O(g(n)) A f(n) = 2(g(n)).

This is equivalent to saying:

Jdey, 0 € RugINg Vn > No(cr g(n) < f(n) < cxg(n))

—— c24(n)
S i ()]

S clg(n)

NO

H. Geuvers Version: spring 2021 Complexity

Radboud University Nijmege

Recursive Programs

Why can we ignore constants and lower factors

For f(n) = axn® 4+ a_1n*~1 4 ... 4+ ap with ax # 0, we have

We show this by an example: 7n? + 5n + 8 = ©(n?)

H. Geuvers Version: spring 2021 Complexity

16 / 34

Radboud University Nijmegen

Recursive Programs

Space complexity

Apart from running time as a measure of complexity, one could
also look at memory consumption. This is called space

complexity’: memory it takes to execute an algorithm. In the final
lectures we will say something about space complexity, but for now
we restrict to time complexity. Just one observation:

space complexity < time complexity, because it takes at least n
time steps to use n memory cells.

H. Geuvers Version: spring 2021 Complexity 17 / 34

Radboud University Nijmegen i

Recursive Programs

Example of a recursive program and its complexity (I)

A naive (inefficient) recursive algorithm to compute 2"

A(n):= if n=0 then 1
else A(n—1)+A(n—-1)

What is the complexity of A?

Define T(n) := # steps it takes to execute A(n).

Assuming 1 step for addition and 1 step for the case-distinction,
we have

T(0) =1
T(n+1) = 142T(n)

We want to find a closed expression for T(n) so we can try some
values.

H. Geuvers Version: spring 2021 Complexity

18 / 34

Radboud University Nijmege

Recursive Programs

Example of a recursive program and its complexity (I)

Educated guess: T(n) = 2"t1 — 1. We now prove that this is
actually the case.
THEOREM. For all n € N, T(n) =21 —1

® basecase, n=0: T(0)=1=2' -1/
e step case: suppose (IH) T(n) =2"t1 — 1, we need to prove
(TP) T(n+1) =221,
T(n+1) = 1+42T(n)
SRS (DR)

S N
2n+2_1

H. Geuvers Version: spring 2021 Complexity 19 / 34

Radboud University Nijmegen ¢

Recursive Programs

Strong induction (I)

The induction principle that we have used is also called structural
induction: it relies directly on the inductive structure of N.

P(0) Vn e N(P(n) = P(n+1))
Vn € N(P(n))

We will often use strong induction, which relies on the fact that <
is well-founded on N. (No infinite decreasing <-sequences in N.)

Strong induction:
Vn e N(Vk < n(P(k)) — P(n)
Vn € N(P(n))

Strong induction gives a stronger induction hypothesis: to prove
P(n) we may assume as (IH): Yk < n(P(n)) (and not just
P(n—1)).

H. Geuvers Version: spring 2021 Complexity 20 / 34

Radboud University Nijmege

Recursive Programs

Strong induction (II)

Strong induction:

Vn € N(vk < n(P(k)) = P(n)
Vn € N(P(n))

Strong induction is only seemingly stronger: in fact the two
reasoning principles are equivalent.

Strong induction can be proved by proving Vk < n(P(k)) by
(structural) induction on n.

H. Geuvers Version: spring 2021 Complexity 21/ 34

Radboud University Nijmegen i

Recursive Programs

Fibonacci (1)

The Fibonacci function is defined as follows.
fib(0) = 0 fib(l) = 1
fib(n+2) = fib(n+ 1)+ fib(n) (1)
Claim: fib is exponential.

® So we are looking for an a such that fib(n) = ©(a").
e Let's first try to find an a such that fib(n) = a".

Looking at equation (1), a should satisfy
an+2 _ an+1 + an.

Knowing that a # 0, we obtain the quadratic equation a°> = a + 1
that we can easily solve. Its solutions are called ¢ and ¢:

145 1- V5
+2\f ~1.618 &= 2\f ~ —0.618

H. Geuvers Version: spring 2021 Complexity 22 / 34

P =

Radboud University Nijmege

Recursive Programs

Fibonacci (1)
fib0) = 0 fib(l) = 1
fib(n+2) = fib(n+ 1)+ fib(n) (1)
oot +2ﬁ ~ 1.618 5=t _2\/5 ~ —0.618

Neither ¢" nor ¢" provide solutions to the equations for fib, but
® the sum of two solutions to (1) is again a solution to (1)
® a solution to (1) multiplied with a c is again a solution to (1)

So we try to find ¢; and ¢ such that fib(n) = c;0" + c2@". This
yields a unique solution and we obtain

1 1
fib(n) = g\/E " — gx/ﬁ o

As $" — 0, we can conclude that fib(n) = ©(y").

H. Geuvers Version: spring 2021 Complexity

23/ 34

Radboud University Nijmegen

Recursive Programs

Binary search trees

A binary search tree, bst, is a binary tree that has, in its nodes and
leaves, elements of an ordered structure (A, C), where for every
node labeled a with left subtree ¢ and rightsubtree r,

e for all labels x in ¢: xC a
e for all labels y in r: aC y.

Often we have (N, <) as ordered structure.

® A bst is an efficient data-structure for storing search data if
the tree is balanced: searching in a tree t is efficient if the
height t is O(log k) for k the number of nodes in t.

® |n a previous lecture you have seen red-black trees.

® We now introduce AVL-trees, also because they give a nice
application of the fib function.

H. Geuvers Version: spring 2021 Complexity 24 / 34

Radboud University Nijmege

Recursive Programs

AVL trees
[DEFINITION

DEFINITION

An AVL tree is a binary search tree in which, for every node a, the
difference between the height of the left and the right subtree of a
is < 1.

The following Theorem shows that AVL trees are efficient.

THEOREM
The height of an AVL tree t with k nodes is O(log k).

The Theorem follows from our result that fib is exponential and a
Lemma.

LEMMA
The number of nodes in an AVL tree of height n is > fib(n).

H. Geuvers Version: spring 2021 Complexity

Radboud University Nijmege

Recursive Programs

The number of nodes in an AVL tree

LEMMA

The number of nodes in an AVL tree of height n is > fib(n).

Proof. By (strong) induction on n.

IH: for all p < n: if t is an AVL tree of height p, then the number of
nodes in t is > fib(p).

To prove: if n is the height of an AVL tree s, then the number of nodes
in s is > fib(n).

Case distinction on n:

® n=0,1. Easy; check for yourself.

® n>2 Then n= 1+ max(height(s1), height(sy)), where s; and s,
are the left and right subtrees of the top node of s. One of s; has
height(s;) = n — 1, while the other has height n — 1 or n — 2.

Using (IH) we derive that the number of nodes in s is
> 1+ fib(n — 1) + fib(n — 2), which is > fib(n). ()

H. Geuvers Version: spring 2021 Complexity

Radboud University Nijmegen i

Recursive Programs

AVL trees are efficient

THEOREM

The height of an AVL tree t with k nodes is O(log k).

Proof

Let d(k) := the largest height of an AVL tree with k nodes. So for
every k there is an AVL tree with k nodes that has height d(k).
Following the Lemma and our earlier result on fib: thereisa ¢ >0
such that: k > cp(%) for all k (larger than some fixed Np).
Therefore: log k > log(cp?(k)) = log ¢ 4 d(k) log ¢ and so

log k — log ¢
dlk) < = = O(log k
(1) < 2525 = 0(1og k)

H. Geuvers Version: spring 2021 Complexity 27 / 34

Radboud University Nijmege

Recursive Programs

Divide and Conquer algorithms: Mergesort

For A an array p, r numbers, MergeSort(A, p, r) sorts the part
A[p], ... A[r] and leaves the rest of A unchanged.

MergeSort(A, p,r) = if p < r then q = {p—; rJ ;

MergeSort(A, p, q);
MergeSort(A, g + 1, r);
Merge(A, p, q, r)

® Merge(A, p, q, r) merges the parts A[p], ... A[qg] and
Alg+1],...A[r]. Itis linear (in the length of A) and produces
a sorted array (if the input arrays are sorted). See the book.

® We write a recurrence relation for T(n), the time it takes to
compute MergeSort(A, p,r), with n=r —p

H. Geuvers Version: spring 2021 Complexity

Radboud University Nijmege

Recursive Programs

Mergesort

For A an array p, r numbers, MergeSort(A, p, r) sorts the part
A[p], ... A[r] and leaves the rest of A unchanged.

MergeSort(A, p,r) = if p < r then G = {p + rJ ;

2
MergeSort(A, p, q);
MergeSort(A, g + 1, r);
Merge(A, p, q,r)

Recurrence equation for T of MergeSort

T() = 1
T(n) = 2T(3)+6(n)

H. Geuvers Version: spring 2021 Complexity

Radboud University Nijmegen i

Recursive Programs

The complexity of Mergesort (1)

MergeSort(A,p,r) =ifp<r then ¢:= V)THJ ; MergeSort(A, p, q);
MergeSort(A, g + 1, r); Merge(A, p, q, r)

e T(1)=1
® T(n)=2T(5)+6O(n) (for n > 2)

THEOREM

If T(n) <2T([5])+ ©(n), then

T(n) = O(nlog n).

H. Geuvers Version: spring 2021 Complexity 30/ 34

Radboud University Nijmege

Recursive Programs

The complexity of Mergesort(Il)

THEOREM

If T(n) <2T(|5])+ ©(n), then T(n) = O(nlog n).

Proof (by strong induction)

Suppose T(n) <2T(|3]) + cn for some constant c.
Take ¢’ > c large enough so that T(n) < c’nlogn for n=1,2,3.
Let n> 3. Then [4] < n, so we can apply strong induction.

n H _ in n ,
T(n)§2T(bJ)—|—cn < 2c [EJ log bJ%—cn
< 2c’g Iogg +c'n
< n(logn—1)+c'n

c’nlogn O

H. Geuvers Version: spring 2021 Complexity 31/ 34

Radboud University Nijmegen

Recursive Programs

Back to Mergesort

For MergeSort, we had T(n) = 2T(5) + ©(n).
What if, in fact, we need to “round up” and have

T(n) =2T(|]) + ©(n)?

We show that it doesn't matter: If T(n) <2T(|5|+ D)+ cn, for
fixed D and c, then T(n) = O(nlog n).

Define U(n) := T(n+2D). Then

U(n) = T(n+2D) = 2T(V+22DJ + D)+ c(n+2D)
< 2U([gJ)+2cn (for n > 2D)

Earlier Theorem: U(n) = O(nlogn). So we also have
T(n) = O(nlog n). O

H. Geuvers Version: spring 2021 Complexity 32 /34

Radboud University Nijmegen i

Recursive Programs

Pitfalls in proving complexity

Suppose T(1)=1and T(n)=T(n—1)+ nfor n> 1.
Claim: then T(n) = O(n)
Proof: By induction on n:
T(n) = T(n—=1)+n
= 0O(n)+0(n) = O(n)
= This is WRONG! We need to be precise about functions and
constants in induction proofs:

T(n) = O(n) means: 3c3INgVn > No (T(n) < cn)
Correct reasoning:

T(n) = T(n—1)+n
< ¢c(n—=1)+n (for n > Np)
= cn+n—c L cn

and the induction proof doesn’t go through.
H. Geuvers Version: spring 2021 Complexity 33 /34

Radboud University Nijmegen

Recursive Programs

Some final advice

® Make sure you can do induction proofs. See the exercises.

® Make sure you know how to compute with log, exponents
etcetera. That means: you don't have to look up the “rules’
but you know them by heart and you can apply them swiftly
and correctly. See Section 3.2 of the book.

® Make sure you know how to compute with summations. See
Appendix A.1 of the book.

H. Geuvers Version: spring 2021 Complexity 34 /34

	Organisation
	Overview
	Recursive Programs

