
Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Complexity IBC028, Lecture 1

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2021

H. Geuvers Version: spring 2021 Complexity 1 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Outline

Organisation

Overview

Recursive Programs

H. Geuvers Version: spring 2021 Complexity 2 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

About this course I

Lectures
• Teacher: Herman Geuvers

• Weekly, 2 hours, on Monday, 15:30-17:15 (with some
exceptions)

• On line via zoom: link provided in Brightspace
• The lectures follow:

• these slides, available via the web
• extra lecture notes by Hans Zantema, available via the web
• Introduction to Algorithms by Thomas H. Cormen, Charles E.

Leiserson, Ronald L. Rivest and Clifford Stein

• Course URL:

www.cs.ru.nl/~herman/onderwijs/complexity2021/

Please check there first

H. Geuvers Version: spring 2021 Complexity 4 / 34

www.cs.ru.nl/~herman/onderwijs/complexity2021/


Organisation
Overview

Recursive Programs
Radboud University Nijmegen

About this course II

Exercises
• Weekly exercise classes, on Wednesday, 8:30-10:15 or

10:30-12:15

• On line via discord: check your group and time in Brightspace

• Answers (for old exercises) & Questions (for new ones)
• Schedule:

• New exercises on the web: Monday
• Next exercise meeting (Wednesday) you can ask questions

• At 2 points in the course, homework can be handed in with
the assistant at the exercise class. This will be graded.

• If a is the average grade of your homework assignments, a
10 is

added to your exam grade as a bonus.

H. Geuvers Version: spring 2021 Complexity 5 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

About this course III

Exercise Classes

6 Assistants:

08:30–10:15 Els Hoekstra
08:30–10:15 Jorrit de Boer
08:30–10:15 Thomas van Ouwerkerk
10:30–12:15 Ruben Holubek
10:30–12:15 Jana Wagemaker
10:30–12:15 Deivid Rodrigues do Vale

H. Geuvers Version: spring 2021 Complexity 6 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

About this course IV

Examination
• The final grade is composed of

• the grade of your final (2hrs) exam, f,
• the average grade of your exercises, a,

• Your final grade is min(10, f + a
10)

• The re-exam is a full 2hrs exam about the whole course. You
keep the (average) grade of the exercises.

• If you fail again, you must start all over next year

H. Geuvers Version: spring 2021 Complexity 7 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Overview

Topics

• Techniques for computing the complexity of algorithms,
especially recursive algorithms; the “master theorem”.

• Examples of algorithms and data structures and their
complexity.

• Complexity classes: P (polynomial complexity), NP;

NP-completeness and P
?
= NP?

Important:
=⇒ Precise formal definitions and precise formal proofs

H. Geuvers Version: spring 2021 Complexity 9 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Complexity of algorithms

Time complexity of algorithm A := # steps it takes to execute A.

• what is a “step”?
• algorithm ... not “program”!
• # steps should be related to size of input

Time complexity of algorithm A is f if

for an input of size n, A takes f (n) steps to compute the output.

Here, f is a function from N to N.

• We study worst case complexity: we want an upperboud that
applies to all possible inputs.
• We study complexity “in the limit” and ignore a finite number

of “outliers”: asymptotic complexity
• We ignore constants and lower factors: n2 and 5n2 + 3n + 7

are “the same” complexity.
H. Geuvers Version: spring 2021 Complexity 11 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Asymptotic complexity

Complexity definitions: “big O”, “big Ω”, “big Θ” notation.
For f , g : N→ N a functions,

• f ∈ O(g) if ∃c ∈ R>0 ∃N0 ∀n > N0(f (n) ≤ c g(n))

• f ∈ Ω(g) if ∃c ∈ R>0 ∃N0 ∀n > N0(c g(n) ≤ f (n))

• f ∈ Θ(g) if f ∈ O(g) ∩ Ω(g).

• O(g) is a set of functions (and similarly for Ω(g) and Θ(g)):

O(g) = {f | ∃c ∈ R>0 ∃N0 ∀n > N0(f (n) ≤ c g(n))}

• Nevertheless, one always writes f = O(g), and we will follow
that (abuse of) notation.

• Also: we follow the habit of writing f (n) for the function
n 7→ f (n), so we write f (n) = O(g(n)) etc.

H. Geuvers Version: spring 2021 Complexity 12 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

f (n) = O(g(n))

f (n) = O(g(n)) if

∃c ∈ R>0 ∃N0 ∀n > N0(f (n) ≤ c g(n))

H. Geuvers Version: spring 2021 Complexity 13 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

f (n) = Ω(g(n))

f (n) = Ω(g(n)) if

∃c ∈ R>0 ∃N0 ∀n > N0(c g(n) ≤ f (n))

H. Geuvers Version: spring 2021 Complexity 14 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

f (n) = Θ(g(n))

f (n) = Θ(g(n)) if f (n) = O(g(n)) ∧ f (n) = Ω(g(n)).
This is equivalent to saying:

∃c1, c2 ∈ R>0 ∃N0 ∀n > N0(c1 g(n) ≤ f (n) ≤ c2 g(n))

H. Geuvers Version: spring 2021 Complexity 15 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Why can we ignore constants and lower factors

For f (n) = akn
k + ak−1n

k−1 + . . . + a0 with ak 6= 0, we have

f (n) = Θ(nk)

We show this by an example: 7n2 + 5n + 8 = Θ(n2)

H. Geuvers Version: spring 2021 Complexity 16 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Space complexity

Apart from running time as a measure of complexity, one could
also look at memory consumption. This is called space

complexity’: memory it takes to execute an algorithm. In the final
lectures we will say something about space complexity, but for now
we restrict to time complexity. Just one observation:

space complexity ≤ time complexity, because it takes at least n
time steps to use n memory cells.

H. Geuvers Version: spring 2021 Complexity 17 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Example of a recursive program and its complexity (I)

A naive (inefficient) recursive algorithm to compute 2n

A(n) := if n = 0 then 1
else A(n − 1) + A(n − 1)

What is the complexity of A?
Define T (n) := # steps it takes to execute A(n).
Assuming 1 step for addition and 1 step for the case-distinction,
we have

T (0) = 1

T (n + 1) = 1 + 2T (n)

We want to find a closed expression for T (n) so we can try some
values.

H. Geuvers Version: spring 2021 Complexity 18 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Example of a recursive program and its complexity (I)

Educated guess: T (n) = 2n+1 − 1. We now prove that this is
actually the case.
Theorem. For all n ∈ N, T (n) = 2n+1 − 1

Proof by induction on n

• base case, n = 0: T (0) = 1 = 21 − 1 X

• step case: suppose (IH) T (n) = 2n+1 − 1, we need to prove
(TP) T (n + 1) = 2n+2 − 1.

T (n + 1) = 1 + 2T (n)
IH
= 1 + 2(2n+1 − 1)

= 1 + 2n+2 − 2

= 2n+2 − 1

-
H. Geuvers Version: spring 2021 Complexity 19 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Strong induction (I)

The induction principle that we have used is also called structural
induction: it relies directly on the inductive structure of N.

P(0) ∀n ∈ N (P(n)→ P(n + 1))

∀n ∈ N (P(n))

We will often use strong induction, which relies on the fact that <
is well-founded on N. (No infinite decreasing <-sequences in N.)

Strong induction:

∀n ∈ N (∀k < n(P(k))→ P(n)

∀n ∈ N (P(n))

Strong induction gives a stronger induction hypothesis: to prove
P(n) we may assume as (IH): ∀k < n (P(n)) (and not just
P(n − 1)).
H. Geuvers Version: spring 2021 Complexity 20 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Strong induction (II)

Strong induction:

∀n ∈ N (∀k < n(P(k))→ P(n)

∀n ∈ N (P(n))

Strong induction is only seemingly stronger: in fact the two
reasoning principles are equivalent.

Strong induction can be proved by proving ∀k < n (P(k)) by
(structural) induction on n.

H. Geuvers Version: spring 2021 Complexity 21 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Fibonacci (I)

The Fibonacci function is defined as follows.

fib(0) = 0 fib(1) = 1

fib(n + 2) = fib(n + 1) + fib(n) (1)

Claim: fib is exponential.

• So we are looking for an a such that fib(n) = Θ(an).
• Let’s first try to find an a such that fib(n) = an.

Looking at equation (1), a should satisfy

an+2 = an+1 + an.

Knowing that a 6= 0, we obtain the quadratic equation a2 = a + 1
that we can easily solve. Its solutions are called ϕ and ϕ̂:

ϕ :=
1 +
√

5

2
≈ 1.618 ϕ̂ :=

1−
√

5

2
≈ −0.618

H. Geuvers Version: spring 2021 Complexity 22 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Fibonacci (II)

fib(0) = 0 fib(1) = 1

fib(n + 2) = fib(n + 1) + fib(n) (1)

ϕ :=
1 +
√

5

2
≈ 1.618 ϕ̂ :=

1−
√

5

2
≈ −0.618

Neither ϕn nor ϕ̂n provide solutions to the equations for fib, but
• the sum of two solutions to (1) is again a solution to (1)
• a solution to (1) multiplied with a c is again a solution to (1)

So we try to find c1 and c2 such that fib(n) = c1ϕ
n + c2ϕ̂

n. This
yields a unique solution and we obtain

fib(n) =
1

5

√
5 ϕn − 1

5

√
5 ϕ̂n.

As ϕ̂n → 0, we can conclude that fib(n) = Θ(ϕn).
H. Geuvers Version: spring 2021 Complexity 23 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Binary search trees

A binary search tree, bst, is a binary tree that has, in its nodes and
leaves, elements of an ordered structure (A,v), where for every
node labeled a with left subtree ` and rightsubtree r ,

• for all labels x in `: x v a

• for all labels y in r : a v y .

Often we have (N,≤) as ordered structure.

• A bst is an efficient data-structure for storing search data if
the tree is balanced: searching in a tree t is efficient if the
height t is O(log k) for k the number of nodes in t.

• In a previous lecture you have seen red-black trees.

• We now introduce AVL-trees, also because they give a nice
application of the fib function.

H. Geuvers Version: spring 2021 Complexity 24 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

AVL trees

Definition

An AVL tree is a binary search tree in which, for every node a, the
difference between the height of the left and the right subtree of a
is ≤ 1.

The following Theorem shows that AVL trees are efficient.

Theorem

The height of an AVL tree t with k nodes is O(log k).

The Theorem follows from our result that fib is exponential and a
Lemma.

Lemma

The number of nodes in an AVL tree of height n is ≥ fib(n).

H. Geuvers Version: spring 2021 Complexity 25 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

The number of nodes in an AVL tree

Lemma

The number of nodes in an AVL tree of height n is ≥ fib(n).

Proof. By (strong) induction on n.

IH: for all p < n: if t is an AVL tree of height p, then the number of
nodes in t is ≥ fib(p).
To prove: if n is the height of an AVL tree s, then the number of nodes
in s is ≥ fib(n).
Case distinction on n:

• n = 0, 1. Easy; check for yourself.

• n ≥ 2. Then n = 1 + max(height(s1), height(s2)), where s1 and s2
are the left and right subtrees of the top node of s. One of si has
height(si ) = n − 1, while the other has height n − 1 or n − 2.
Using (IH) we derive that the number of nodes in s is
≥ 1 + fib(n − 1) + fib(n − 2), which is ≥ fib(n). -

H. Geuvers Version: spring 2021 Complexity 26 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

AVL trees are efficient

Theorem

The height of an AVL tree t with k nodes is O(log k).

Proof

Let d(k) := the largest height of an AVL tree with k nodes. So for
every k there is an AVL tree with k nodes that has height d(k).
Following the Lemma and our earlier result on fib: there is a c > 0
such that: k ≥ cϕd(k) for all k (larger than some fixed N0).
Therefore: log k ≥ log(cϕd(k)) = log c + d(k) logϕ and so

d(k) ≤ log k − log c

logϕ
= O(log k)

H. Geuvers Version: spring 2021 Complexity 27 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Divide and Conquer algorithms: Mergesort

For A an array p, r numbers, MergeSort(A, p, r) sorts the part
A[p], . . .A[r ] and leaves the rest of A unchanged.

MergeSort(A, p, r) = if p < r then q :=

⌊
p + r

2

⌋
;

MergeSort(A, p, q);

MergeSort(A, q + 1, r);

Merge(A, p, q, r)

• Merge(A, p, q, r) merges the parts A[p], . . .A[q] and
A[q + 1], . . .A[r ]. It is linear (in the length of A) and produces
a sorted array (if the input arrays are sorted). See the book.

• We write a recurrence relation for T (n), the time it takes to
compute MergeSort(A, p, r), with n = r − p

H. Geuvers Version: spring 2021 Complexity 28 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Mergesort

For A an array p, r numbers, MergeSort(A, p, r) sorts the part
A[p], . . .A[r ] and leaves the rest of A unchanged.

MergeSort(A, p, r) = if p < r then q :=

⌊
p + r

2

⌋
;

MergeSort(A, p, q);

MergeSort(A, q + 1, r);

Merge(A, p, q, r)

Recurrence equation for T of MergeSort

T (1) = 1

T (n) = 2T (
n

2
) + Θ(n)

How can we solve this and compute T?H. Geuvers Version: spring 2021 Complexity 29 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

The complexity of Mergesort (I)

MergeSort(A, p, r) = if p < r then q :=
⌊p + r

2

⌋
;MergeSort(A, p, q);

MergeSort(A, q + 1, r);Merge(A, p, q, r)

We find that
• T (1) = 1

• T (n) = 2T (n2 ) + Θ(n) (for n ≥ 2)

Theorem

If T (n) ≤ 2T (
⌊
n
2

⌋
) + Θ(n), then

T (n) = O(n log n).

H. Geuvers Version: spring 2021 Complexity 30 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

The complexity of Mergesort(II)

Theorem

If T (n) ≤ 2T (
⌊
n
2

⌋
) + Θ(n), then T (n) = O(n log n).

Proof (by strong induction)

Suppose T (n) ≤ 2T (
⌊
n
2

⌋
) + c n for some constant c .

Take c ′ ≥ c large enough so that T (n) ≤ c ′n log n for n = 1, 2, 3.
Let n > 3. Then

⌊
n
2

⌋
< n, so we can apply strong induction.

T (n) ≤ 2T (
⌊n

2

⌋
) + c n

IH
≤ 2c ′

⌊n
2

⌋
log
⌊n

2

⌋
+ c ′n

≤ 2c ′
n

2
log

n

2
+ c ′n

≤ c ′n(log n − 1) + c ′n

= c ′n log n

H. Geuvers Version: spring 2021 Complexity 31 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Back to Mergesort

For MergeSort, we had T (n) = 2T (n2 ) + Θ(n).
What if, in fact, we need to “round up” and have

T (n) = 2T (
⌈n

2

⌉
) + Θ(n)?

We show that it doesn’t matter: If T (n) ≤ 2T (
⌊
n
2

⌋
+ D) + c n, for

fixed D and c , then T (n) = O(n log n).

Define U(n) := T (n + 2D). Then

U(n) = T (n + 2D) = 2T (

⌊
n + 2D

2

⌋
+ D) + c(n + 2D)

≤ 2U(
⌊n

2

⌋
) + 2c n (for n ≥ 2D)

Earlier Theorem: U(n) = O(n log n). So we also have
T (n) = O(n log n).
H. Geuvers Version: spring 2021 Complexity 32 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Pitfalls in proving complexity

Suppose T (1) = 1 and T (n) = T (n − 1) + n for n > 1.
Claim: then T (n) = O(n)
Proof: By induction on n:

T (n) = T (n − 1) + n

= O(n) +O(n) = O(n)

=⇒ This is wrong! We need to be precise about functions and
constants in induction proofs:
T (n) = O(n) means: ∃c ∃N0 ∀n > N0 (T (n) ≤ c n)
Correct reasoning:

T (n) = T (n − 1) + n

≤ c(n − 1) + n (for n > N0)

= c n + n − c 6≤ cn

and the induction proof doesn’t go through.
H. Geuvers Version: spring 2021 Complexity 33 / 34



Organisation
Overview

Recursive Programs
Radboud University Nijmegen

Some final advice

• Make sure you can do induction proofs. See the exercises.

• Make sure you know how to compute with log, exponents
etcetera. That means: you don’t have to look up the “rules”
but you know them by heart and you can apply them swiftly
and correctly. See Section 3.2 of the book.

• Make sure you know how to compute with summations. See
Appendix A.1 of the book.

H. Geuvers Version: spring 2021 Complexity 34 / 34


	Organisation
	Overview
	Recursive Programs

