

Complexity IBC028, Lecture 2

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2021

Outline

Techniques to prove complexity

The Master Theorem

Techniques to prove $T(n) = \mathcal{O}(g(n))$ [or $T(n) = \Omega(g(n))$ or $T(n) = \Theta(g(n))$]

There are basically three techniques

① Substitution Method:

Choose (guess) g and c (and N_0) and prove $T(n) \leq c g(n)$ (for $n > N_0$) by induction on n .

② Recursion Tree method :

Method to find g . And then you still have to prove g is correct using (1)

③ Master theorem method :

General theorem for patterns of the shape

$$T(n) = aT\left(\frac{n}{b}\right) + f(n).$$

Actually: casting the heuristic method of (2) into a general theorem.

Substitution method

Last week (MergeSort):

THEOREM

If $T(n) \leq 2T(\lfloor \frac{n}{2} \rfloor) + \Theta(n)$, then

$$T(n) \in \mathcal{O}(n \log n).$$

In fact, the $n \log n$ was an educated guess, which we then proved by induction.

When proving something by induction, sometimes a trick is needed.

Substitution method: Example

Given $T(n) = 9T\left(\frac{n}{2}\right) + \Theta(n^3)$, prove that $T(n) = \mathcal{O}(n^3\sqrt{n})$.

Substitution method: Induction loading

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1 \quad \text{for } n \geq 2, \text{ and } T(1) = b$$

We guess that $T(n) = \mathcal{O}(n)$ and we try to show that $T(n) \leq c n$ for some appropriately chosen c .

$$\begin{aligned} T(n) &\leq c \left\lfloor \frac{n}{2} \right\rfloor + c \left\lceil \frac{n}{2} \right\rceil + 1 \\ &= cn + 1 \quad \stackrel{??}{\leq} cn \quad \dots \text{no!} \end{aligned}$$

The trick is to add some constant: $T(n) \leq c n + d$.

Try the proof again and figure out what c and d could be.

$$\begin{aligned} T(n) &\leq c \left\lfloor \frac{n}{2} \right\rfloor + d + c \left\lceil \frac{n}{2} \right\rceil + d + 1 \\ &= cn + 2d + 1 \\ &\leq cn + d \quad \text{for } d = -1 \text{ and any } c. \end{aligned}$$

For the base case: $T(1) = b \leq c - 1$, so take $c := b + 1$.

We have $T(n) \leq (b + 1)n - 1$ for all $n \geq 1$, so $T(n) \in \mathcal{O}(n)$.

Substitution method: Changing variables

$$T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \log n$$

We **rename variables** and put $n = 2^m$ (and so $m = \log n$). Ignoring rounding off errors, we have

$$T(2^m) = 2T(2^{m/2}) + m$$

Consider this as a function in m : $S(m) = T(2^m)$ and we have

$$S(m) = 2S\left(\frac{m}{2}\right) + m$$

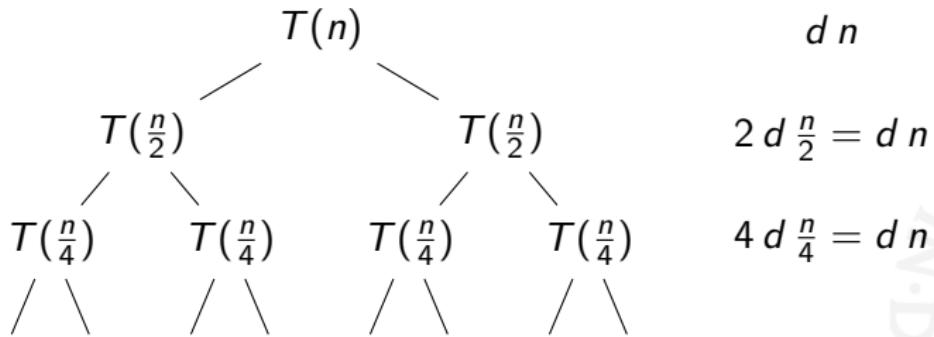
This is well-known and we have $S(m) = \mathcal{O}(m \log m)$.
We conclude that

$$T(n) = T(2^m) = S(m) \leq c(m \log m) = c(\log n \log \log n)$$

for some c .

So $T(n) = \mathcal{O}(\log n \log \log n)$.

Recursion Tree method (I)

Example $T(n) = 2T(\frac{n}{2}) + d n$.

- The height is $\log n$, so there are $\log n + 1$ layers
- per layer: $d n$ contribution
- bottom: $\#\text{leaves} = 2^{\log n} = n$; cost per leaf $\Theta(1)$.
- So we conjecture: $T(n) = \Theta(n \log n)$

Some computation rules with log

For exponent: $(b^n)^m = b^{n \cdot m}$ and $b^n \cdot b^m = b^{n+m}$.

Per definition:

$$\log_b n = x \iff b^x = n$$

and so $b^{\log_b n} = n$

Rules for log

$$\begin{aligned}\log_b(n \cdot m) &= \log_b n + \log_b m \\ \log_b\left(\frac{n}{m}\right) &= \log_b n - \log_b m\end{aligned}$$

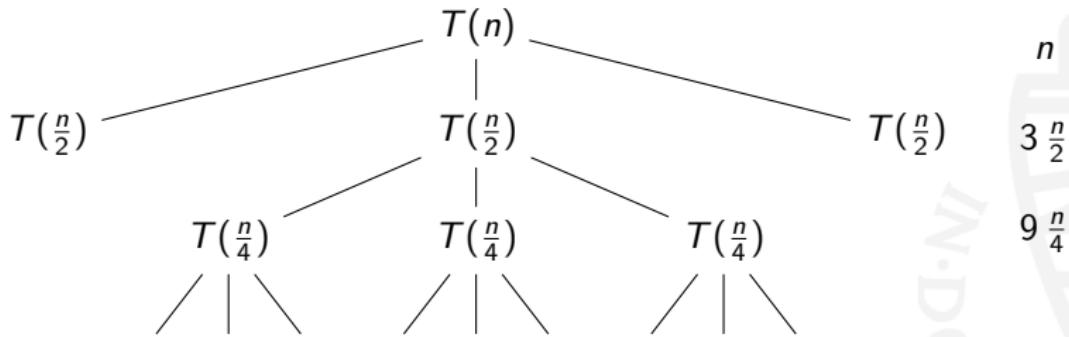
$$\begin{aligned}\log_b(n^k) &= k \log_b n \\ \log_b\left(\frac{1}{n}\right) &= -\log_b n\end{aligned}$$

Changing base:

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$b^{\log_c a} = a^{\log_c b}$$

Recursion Tree method (II)

Exercise 4.4-1: $T(n) = 3T(\lfloor \frac{n}{2} \rfloor) + n$.Question: find a “good” f with $T(n) = \mathcal{O}(f(n))$.

- The height is $\log n$. At layer i we have $3^i \frac{n}{2^i}$ contribution.
- Total:
$$\sum_{i=0}^{\log n} \left(\frac{3}{2}\right)^i n = n \frac{\left(\frac{3}{2}\right)^{\log n+1} - 1}{\frac{3}{2} - 1} \approx 2n \left(\frac{3}{2}\right)^{\log n} = 2 \cdot 3^{\log n} = 2 \cdot n^{\log 3}.$$
- So we conjecture: $T(n) = \mathcal{O}(n^{\log 3})$.

Substitution method

Exercise 4.4-1: $T(n) = 3T(\left\lfloor \frac{n}{2} \right\rfloor) + n$.Conjecture: $T(n) = \mathcal{O}(n^{\log 3})$.Proof. $T(n) \leq cn^{\log 3}$ for appropriately chosen c

$$\begin{aligned} T(n) &= 3T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \\ &\stackrel{IH}{\leq} 3c\left(\frac{n}{2}\right)^{\log 3} + n \\ &= \frac{3c n^{\log 3}}{2^{\log 3}} + n = cn^{\log 3} + n \stackrel{??}{\leq} cn^{\log 3} \end{aligned}$$

The induction fails, so we add a linear factor: $T(n) \leq cn^{\log 3} + dn$.
We notice that it works for $d = -2$, because we have

$$T(n) = 3T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n \stackrel{IH}{\leq} 3\left(c\left(\frac{n}{2}\right)^{\log 3} - 2\frac{n}{2}\right) + n = cn^{\log 3} - 3n + n = cn^{\log 3} - 2n$$

Computing the median of an unsorted list

Problem: Given an unsorted list of elements, how to compute the median? (book: pp. 220-222)

(Median of A = element that has half of the elements of A below it and the other half above it.)

Possible solution:

- First sort the list A , with $|A| = n$.
- Then take the $\lfloor \frac{n}{2} \rfloor$ -th element

This takes $\mathcal{O}(n \log n)$ time.

But it can be done in linear time!

General:

$M(A, k) :=$ the k -th element of the sorted version of A .

Then the median of A is $M(A, \frac{|A|}{2})$.

Computing the median of a list in linear time (I)

$M(A, k) :=$ the k -th element of the sorted version of A .

Let $n = |A|$. For purpose of exposition, we assume $n = 5^p$ for some p . (The book treats the general case.)

- ① Split A randomly in $\frac{n}{5}$ groups of 5 elements
- ② Determine the median of each group of 5 elements.
- ③ Determine recursively the median of these $\frac{n}{5}$ medians, say m
- ④ Count the number of elements in A that are $\leq m$, say ℓ .
 - If $\ell = k$, we are done and m is the output.
 - If $\ell > k$, then m is larger than the number we are looking for, so we continue recursively with $M(A \setminus A_{\text{high}}, k)$
 - If $\ell < k$, then m is smaller than the number we are looking for, so we continue recursively with $M(A \setminus A_{\text{low}}, k - 3 \lceil \frac{n}{10} \rceil)$.
 - Until n is “very small”, say $n \leq 10$, then compute the k -th element directly

Q. What exactly are A_{high} and A_{low} and how large are they?

Computing the median of a list in linear time (II)

$M(A, k)$:= the k -th element of the sorted version of A .

Computing the median of a list in linear time (III)

- ① Split A randomly in $\frac{n}{5}$ groups of 5 elements
- ② Determine the median of each group of 5 elements.
- ③ Determine recursively the median of these $\frac{n}{5}$ medians, say m
- ④ Count the number of elements in A that are $\leq m$, say ℓ .
 - If $\ell = k$, we are done and m is the output.
 - If $\ell > k$, then m is larger than the number we are looking for, so we continue recursively with $M(A \setminus A_{\text{high}}, k)$
 - If $\ell < k$, then m is smaller than the number we are looking for, so we continue recursively with $M(A \setminus A_{\text{low}}, k - 3 \lceil \frac{n}{10} \rceil)$.
 - Until n is “very small”, say $n \leq 10$, then compute the k -th element directly

Complexity:

$$T(n) \leq T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + cn,$$

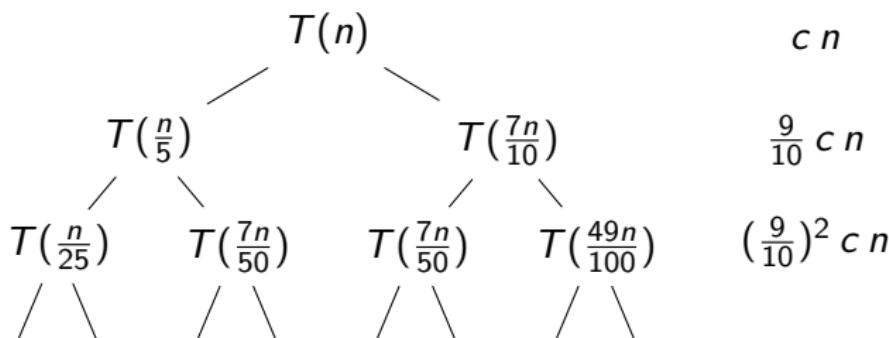
for some c .

Note that steps (1), (2) and the first part of (4) are linear in n .

Computing the median of a list in linear time (III)

$$T(n) \leq T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + cn.$$

To find T we can make a recursion tree;



$$\text{So } T(n) = \sum_{i=0}^{\infty} \left(\frac{9}{10}\right)^i cn \leq \sum_{i=0}^{\infty} \left(\frac{9}{10}\right)^i cn = cn \sum_{i=0}^{\infty} \left(\frac{9}{10}\right)^i = 10 cn$$

Computing the median of a list in linear time (IV)

$$T(n) \leq T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + cn.$$

From the recursion tree method we conjecture that $T(n) \leq 10c n$.

Proof by induction on n

- For small n , it is correct. (Possibly choose a larger c .)
- For larger n :

$$\begin{aligned} T(n) &\leq T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + cn \\ &\stackrel{\text{IH}}{\leq} 10c\left(\frac{n}{5}\right) + 10c\left(\frac{7n}{10}\right) + cn \\ &= 2cn + 7cn + cn \\ &= 10cn \end{aligned}$$

So T is linear in n , and so M is linear in the length of the input list.

Master Theorem

THEOREM

Suppose $a \geq 1$ and $b > 1$ and

$$T(n) = aT\left(\frac{n}{b}\right) + f(n).$$

Then

- ① $T(n) = \Theta(n^{\log_b a})$ if $f(n) = \mathcal{O}(n^{\log_b a - \varepsilon})$ for some $\varepsilon > 0$.
 f is “relatively small” compared to $n^{\log_b a}$
- ② $T(n) = \Theta(n^{\log_b a} \log n)$ if $f(n) = \Theta(n^{\log_b a})$.
E.g. the Mergesort case
- ③ $T(n) = \Theta(f(n))$ if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$ and
for sufficiently large n , we have $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some
 $c < 1$.
 f is “relatively large” compared to $n^{\log_b a}$

Using the Master Theorem (I)

$$T(n) = 9T\left(\frac{n}{3}\right) + n.$$

THEOREM

- ① $T(n) = \Theta(n^{\log_b a})$ if $f(n) = \mathcal{O}(n^{\log_b a - \varepsilon})$ for some $\varepsilon > 0$.
- ② $T(n) = \Theta(n^{\log_b a} \log n)$ if $f(n) = \Theta(n^{\log_b a})$.
- ③ $T(n) = \Theta(f(n))$ if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$ and, for sufficiently large n , we have $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some $c < 1$.

Now, $a = 9$ and $b = 3$, so $n^{\log_b a} = n^{\log_3 9} = n^2$.

So $f(n) = n = \mathcal{O}(n) = \mathcal{O}(n^{\log_b a - \varepsilon})$ with $\varepsilon = 1$.

So case (1) of the Master Theorem applies and we have

$$T(n) = \Theta(n^2).$$

Using the Master Theorem (II)

THEOREM

- ① $T(n) = \Theta(n^{\log_b a})$ if $f(n) = \mathcal{O}(n^{\log_b a - \varepsilon})$ for some $\varepsilon > 0$.
- ② $T(n) = \Theta(n^{\log_b a} \log n)$ if $f(n) = \Theta(n^{\log_b a})$.
- ③ $T(n) = \Theta(f(n))$ if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$ and, for sufficiently large n , we have $a f(\frac{n}{b}) \leq c f(n)$ for some $c < 1$.

$$T(n) = 9T\left(\frac{n}{4}\right) + n^2.$$

Now, $a = 9$ and $b = 4$, so $n^{\log_b a} = n^{\log_4 9} \approx n^{1.584}$.

So $f(n) = n^2 = \Omega(n^2) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$.

So case (3) of the Master Theorem applies and we have

$$T(n) = \Theta(n^2).$$

!!We need an extra check: $\exists c < 1 \exists N_0 \forall n \geq N_0 (a f(\frac{n}{b}) \leq c f(n))??$

That is: $9(\frac{n}{4})^2 \leq cn^2$, so take $c := \frac{9}{16}$ and this is ok.