
Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Complexity IBC028, Lecture 2

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2021

H. Geuvers Version: spring 2021 Complexity 1 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Outline

Techniques to prove complexity

The Master Theorem

H. Geuvers Version: spring 2021 Complexity 2 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Techniques to prove T (n) = O(g(n))
[or T (n) = Ω(g(n)) or T (n) = Θ(g(n))]

There a basically three techniques

1 Substitution Method:
Choose (guess) g and c (and N0) and prove T (n) ≤ c g(n)
(for n > N0) by induction on n.

2 Recursion Tree method :
Method to find g . And then you still have to prove g is
correct using (1)

3 Master theorem method :
General theorem for patterns of the shape

T (n) = aT (
n

b
) + f (n).

Actually: casting the heuristic method of (2) into a general
theorem.

H. Geuvers Version: spring 2021 Complexity 4 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Substitution method

Last week (MergeSort):

Theorem

If T (n) ≤ 2T (
⌊
n
2

⌋
) + Θ(n), then

T (n) ∈ O(n log n).

In fact, the n log n was an educated guess, which we then proved
by induction.
When proving something by induction, sometimes a trick is needed.

H. Geuvers Version: spring 2021 Complexity 5 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Substitution method: Example

Given T (n) = 9T (n2) + Θ(n3), prove that T (n) = O(n3
√
n).

H. Geuvers Version: spring 2021 Complexity 6 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Substitution method: Induction loading

T (n) = T (
⌊n

2

⌋
) + T (

⌈n
2

⌉
) + 1 for n ≥ 2, and T (1) = b

We guess that T (n) = O(n) and we try to show that T (n) ≤ c n
for some appropriately chosen c .

T (n) ≤ c
⌊n

2

⌋
+ c

⌈n
2

⌉
+ 1

= cn + 1
??
≤ cn . . . no!

The trick is to add some constant: T (n) ≤ c n + d .
Try the proof again and figure out what c and d could be.

T (n) ≤ c
⌊n

2

⌋
+ d + c

⌈n
2

⌉
+ d + 1

= cn + 2d + 1

≤ cn + d for d = −1 and any c .

For the base case: T (1) = b ≤ c − 1, so take c := b + 1.
We have T (n) ≤ (b + 1)n − 1 for all n ≥ 1, so T (n) ∈ O(n).
H. Geuvers Version: spring 2021 Complexity 7 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Substitution method: Changing variables

T (n) = 2T (
⌊√

n
⌋
) + log n

We rename variables and put n = 2m (and so m = log n). Ignoring
rounding off errors, we have

T (2m) = 2T (2m/2) + m

Consider this as a function in m: S(m) = T (2m) and we have

S(m) = 2S(
m

2
) + m

This is well-known and we have S(m) = O(m logm).
We conclude that

T (n) = T (2m) = S(m) ≤ c(m logm) = c(log n log log n)

for some c .
So T (n) = O(log n log log n).
H. Geuvers Version: spring 2021 Complexity 8 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Recursion Tree method (I)

Example T (n) = 2T (n2) + d n.

T (n)

T (n2)

T (n4)T (n4)

T (n2)

T (n4)T (n4)

d n

2 d n
2 = d n

4 d n
4 = d n

• The height is log n, so there are log n + 1 layers

• per layer: d n contribution

• bottom: #leaves = 2log n = n; cost per leaf Θ(1).

• So we conjecture: T (n) = Θ(n log n)

H. Geuvers Version: spring 2021 Complexity 9 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Some computation rules with log

For exponent: (bn)m = bn·m and bn bm = bn+m.
Per definition:

logb n = x ⇐⇒ bx = n and so blogb n = n

Rules for log

logb(n ·m) = logb n + logb m logb(nk) = k logb n
logb(n

m) = logb n − logb m logb(1n) = − logb n

Changing base:

logb a = logc a
logc b

blogc a = alogc b

H. Geuvers Version: spring 2021 Complexity 10 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Recursion Tree method (II)

Exercise 4.4-1: T (n) = 3T (
⌊
n
2

⌋
) + n.

Question: find a “good” f with T (n) = O(f (n)).

T (n)

T (n
2)T (n

2)

T (n
4)T (n

4)T (n
4)

T (n
2)

n

3 n
2

9 n
4

• The height is log n. At layer i we have 3i n
2i

contribution.
• Total:

Σlog n
i=0 (32)i n = n

(3
2
)log n+1−1

3
2
−1 ≈ 2n(32)log n = 2 · 3log n = 2 · nlog 3.

• So we conjecture: T (n) = O(nlog 3).
H. Geuvers Version: spring 2021 Complexity 11 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Substituion method

Exercise 4.4-1: T (n) = 3T (
⌊
n
2

⌋
) + n.

Conjecture: T (n) = O(nlog 3).

Proof. T (n) ≤ cnlog 3 for appropriately chosen c

T (n) = 3T (
⌊n

2

⌋
) + n

IH
≤ 3c(

n

2
)log 3 + n

=
3c nlog 3

2log 3
+ n = cnlog 3 + n

??
≤ cnlog 3

The induction fails, so we add a linear factor: T (n) ≤ cnlog 3 + dn.
We notice that it works for d = −2, because we have

T (n) = 3T (
⌊n

2

⌋
)+n

IH
≤ 3(c(

n

2
)log 3−2

n

2
)+n = cnlog 3−3n+n = cnlog 3−2n

H. Geuvers Version: spring 2021 Complexity 12 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Computing the median of an unsorted list

Problem: Given an unsorted list of elements, how to compute the
median? (book: pp. 220-222)
(Median of A = element that has half of the elements of A below
it and the other half above it.)
Possible solution:

• First sort the list A, with |A| = n.

• Then take the
⌊
n
2

⌋
-th element

This takes O(n log n) time.
But it can be done in linear time!

General:

M(A, k) := the k-th element of the sorted version of A.

Then the median of A is M(A, |A|2).

H. Geuvers Version: spring 2021 Complexity 13 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Computing the median of a list in linear time (I)

M(A, k) := the k-th element of the sorted version of A.

Let n = |A|. For purpose of exposition, we assume n = 5p for some
p. (The book treats the general case.)

1 Split A randomly in n
5 groups of 5 elements

2 Determine the median of each group of 5 elements.

3 Determine recursively the median of these n
5 medians, say m

4 Count the number of elements in A that are ≤ m, say `.
• If ` = k , we are done and m is the output.
• If ` > k , then m is larger than the number we are looking for,

so we continue recursively with M(A \ Ahigh, k)
• If ` < k , then m is smaller than the number we are looking for,

so we continue recursively with M(A \ Alow, k − 3
⌈

n
10

⌉
).

• Until n is “very small”, say n ≤ 10, then compute the k-th
element directly

Q. What exactly are Ahigh and Alow and how large are they?
H. Geuvers Version: spring 2021 Complexity 14 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Computing the median of a list in linear time (II)

M(A, k) := the k-th element of the sorted version of A.

H. Geuvers Version: spring 2021 Complexity 15 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Computing the median of a list in linear time (III)

1 Split A randomly in n
5 groups of 5 elements

2 Determine the median of each group of 5 elements.

3 Determine recursively the median of these n
5 medians, say m

4 Count the number of elements in A that are ≤ m, say `.
• If ` = k , we are done and m is the output.
• If ` > k , then m is larger than the number we are looking for,

so we continue recursively with M(A \ Ahigh, k)
• If ` < k , then m is smaller than the number we are looking for,

so we continue recursively with M(A \ Alow, k − 3
⌈

n
10

⌉
).

• Until n is “very small”, say n ≤ 10, then compute the k-th
element directly

Complexity:

T (n) ≤ T (
n

5
) + T (

7n

10
) + cn,

for some c .
Note that steps (1), (2) and the first part of (4) are linear in n.
H. Geuvers Version: spring 2021 Complexity 16 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Computing the median of a list in linear time (III)

T (n) ≤ T (
n

5
) + T (

7n

10
) + cn.

To find T we can make a recursion tree;

T (n)

T (7n10)

T (49n100)T (7n50)

T (n5)

T (7n50)T (n
25)

c n

9
10 c n

(9
10)2 c n

So T (n) = Σ??
i=0(9

10)i c n ≤ Σ∞i=0(9
10)i c n = c nΣ∞i=0(9

10)i = 10 c n

H. Geuvers Version: spring 2021 Complexity 17 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Computing the median of a list in linear time (IV)

T (n) ≤ T (
n

5
) + T (

7n

10
) + cn.

From the recursion tree method we conjecture that T (n) ≤ 10 c n.

Proof by induction on n

• For small n, it is correct. (Possibly choose a larger c .)

• For larger n:

T (n) ≤ T (
n

5
) + T (

7n

10
) + cn

IH
≤ 10 c (

n

5
) + 10 c (

7n

10
) + c n

= 2 c n + 7 c n + c n

= 10 c n

So T is linear in n, and so M is linear in the length of the input list.
H. Geuvers Version: spring 2021 Complexity 18 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Master Theorem

Theorem

Suppose a ≥ 1 and b > 1 and

T (n) = aT (
n

b
) + f (n).

Then

1 T (n) = Θ(nlogb a) if f (n) = O(nlogb a−ε) for some ε > 0.
f is “relatively small” compared to nlogb a

2 T (n) = Θ(nlogb a log n) if f (n) = Θ(nlogb a).
E.g. the Mergesort case

3 T (n) = Θ(f (n)) if f (n) = Ω(nlogb a+ε) for some ε > 0 and
for sufficiently large n, we have a f (nb) ≤ c f (n) for some
c < 1.

f is “relatively large” compared to nlogb a

H. Geuvers Version: spring 2021 Complexity 20 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Using the Master Theorem (I)

T (n) = 9T (
n

3
) + n.

Theorem

1 T (n) = Θ(nlogb a) if f (n) = O(nlogb a−ε) for some ε > 0.

2 T (n) = Θ(nlogb a log n) if f (n) = Θ(nlogb a).

3 T (n) = Θ(f (n)) if f (n) = Ω(nlogb a+ε) for some ε > 0 and, for
sufficiently large n, we have a f (nb) ≤ c f (n) for some c < 1.

Now, a = 9 and b = 3, so nlogba = nlog3 9 = n2.
So f (n) = n = O(n) = O(nlogba−ε) with ε = 1.
So case (1) of the Master Theorem applies and we have

T (n) = Θ(n2).

H. Geuvers Version: spring 2021 Complexity 21 / 22

Techniques to prove complexity
The Master Theorem Radboud University Nijmegen

Using the Master Theorem (II)

Theorem

1 T (n) = Θ(nlogb a) if f (n) = O(nlogb a−ε) for some ε > 0.

2 T (n) = Θ(nlogb a log n) if f (n) = Θ(nlogb a).

3 T (n) = Θ(f (n)) if f (n) = Ω(nlogb a+ε) for some ε > 0 and, for
sufficiently large n, we have a f (n

b) ≤ c f (n) for some c < 1.

T (n) = 9T (
n

4
) + n2.

Now, a = 9 and b = 4, so nlogba = nlog4 9 ≈ n1.584.
So f (n) = n2 = Ω(n2) = Ω(nlogba+ε) for some ε > 0.
So case (3) of the Master Theorem applies and we have

T (n) = Θ(n2).

!!We need an extra check: ∃c < 1 ∃N0 ∀n ≥ N0(a f (nb) ≤ c f (n)??
That is: 9(n4)2 ≤ cn2, so take c := 9

16 and this is ok.
H. Geuvers Version: spring 2021 Complexity 22 / 22

	Techniques to prove complexity
	The Master Theorem

