Radboud University Nijmegen %

Complexity IBC028, Lecture 2

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2021

H. Geuvers Version: spring 2021 Complexity 1/22

Radboud University Nijmegen

Outline

Techniques to prove complexity

The Master Theorem

H. Geuvers Version: spring 2021 Complexity 2/22

Techniques to prove complexity

Radboud University Nijmegen @

Techniques to prove T(n) = O(g(n))

[or T(n) =Q(g(n)) or T(n) = O(g(n))]

There a basically three techniques

® Substitution Method:
Choose (guess) g and ¢ (and Np) and prove T(n) < c g(n)
(for n > Np) by induction on n.

® Recursion Tree method :
Method to find g. And then you still have to prove g is
correct using (1)
©® Master theorem method :
General theorem for patterns of the shape
n
T(n) = aT(E) + f(n).
Actually: casting the heuristic method of (2) into a general
theorem.

H. Geuvers Version: spring 2021 Complexity 4 /22

Techniques to prove complexity

Radboud University Nijmege

Substitution method

Last week (MergeSort):

THEOREM

If T(n) <2T(|5])+ ©(n), then
T(n) € O(nlog n).

In fact, the nlog n was an educated guess, which we then proved
by induction.
When proving something by induction, sometimes a trick is needed.

H. Geuvers Version: spring 2021 Complexity 5/22

Techniques to prove complexity

Radboud University Nijmegen @

Substitution method: Example
Given T(n) =9T(%)+ ©(n?), prove that T(n) = O(n*y/n).

H. Geuvers Version: spring 2021 Complexity 6 /22

Techniques to prove complexity

Radboud University Nijmege

Substitution method: Induction loading

T(n) = T(EJH T(M)H for n>2, and T(1) = b
We guess that T(n) = O(n) and we try to show that T(n) < cn
for some appropriately chosen c.
n n
7
= c¢n+1 <cn ... nol

The trick is to add some constant: T(n) < cn+d.
Try the proof again and figure out what ¢ and d could be.
T(n) < {2J +d+c[2w +d+1
= cn+2d+1
< cn+d for d = —1 and any c.
For the base case: T(1) =b <c—1, so take c := b+ 1.
We have T(n) < (b+1)n—1forall n>1, so T(n) € O(n).

H. Geuvers Version: spring 2021 Complexity 7/ 22

Techniques to prove complexity

Radboud University Nijmege

Substitution method: Changing variables

T(n)=2T(|/n|)+logn
We rename variables and put n = 2™ (and so m = log n). Ignoring
rounding off errors, we have

T(2™) =2T(Q2™?) + m

Consider this as a function in m: S(m) = T(2™) and we have
m
2

This is well-known and we have S(m) = O(mlog m).
We conclude that

S(m)y=25(=)+m

T(n)=T(2") = S(m) < c(mlog m) = c(log nloglog n)

for some c.
So T(n) = O(log nloglog n).

H. Geuvers Version: spring 2021 Complexity 8 /22

Techniques to prove complexity

Radboud University Nijmege

Recursion Tree method (1)

Example T(n) =2T(5)+dn.

)

AN

T(Z) 4d2=dn
/

)
N

TG T
/ \

N/

® The height is log n, so there are log n + 1 layers
® per layer: d n contribution

® bottom: #leaves = 2/°6" = n: cost per leaf ©(1).
® So we conjecture: T(n) = ©(nlog n)

H. Geuvers Version: spring 2021 Complexity 9 /22

Techniques to prove complexity

Radboud University Nijmege

Some computation rules with log

For exponent: (b")

Per definition:

M = p™M and b" b = b,

nd so b8 " =

‘Iogbn:X@bX:n‘ a n
Rules for log
log,(n-m) = log,n+logym|log,(n*) = klog,n
logy(7) = logyn—logym| logy(z) = —logyn
Changing base:
_ log.a
logb a= log. b

H. Geuvers

plogca — glog b

Version: spring 2021

Complexity

10 / 22

Techniques to prove complexity

Radboud University Nijmege

Recursion Tree method (II)

Exercise 4.4-1: T(n) =3T(|4])+n.
Question: find a “good” f with T(n) = O(f(n)).

P T(n)]
‘ \

(%) T(5) T(2) 31

/ ‘ \)

(%) T(2) (%) 9

SN /IN /]

® The height is log n. At layer i we have 3’% contribution.
® Total: (3yesrin
I . 2\log n _1
zio:gon(%)ln:n 2 %71 zzn(%)logn:2‘3Iogn:2_nlog3.
* So we conjecture: T(n) = O(n'°83).

H. Geuvers Version: spring 2021 Complexity 11 /22

Techniques to prove complexity

Radboud University Nijmegen @

Substituion method

Exercise 4.4-1: T(n) =3T(L%J) +n.
Conjecture: T(n) = O(n'°83).

Proof. T(n) < cn'°&3 for appropriately chosen ¢
T(n) = 3T(L*J) +n

)Iog3 +n

3¢ nlog3
T T Dlog3 +n=cn83 4+ < cn'og3

The induction fails, so we add a linear factor: T(n) < cn'°83 4 dn.
We notice that it works for d = —2, because we have

T(n)=3T(\‘gJ)+n < < 3(c ()Iog3 22)+n — cn'°83_3n4n = cn'o83_2p

H. Geuvers Version: spring 2021 Complexity 12 / 22

Techniques to prove complexity

Radboud University Nijmegen @

Computing the median of an unsorted list

Problem: Given an unsorted list of elements, how to compute the
median? (book: pp. 220-222)

(Median of A = element that has half of the elements of A below
it and the other half above it.)

Possible solution:

e First sort the list A, with |A] = n.
® Then take the ng—th element

This takes O(nlog n) time.
But it can be done in linear time!

General:

M(A, k) := the k-th element of the sorted version of A.

Then the median of A is M(A, 41).

H. Geuvers Version: spring 2021 Complexity 13 / 22

Techniques to prove complexity

Radboud University Nijmegen :¥:

Computing the median of a list in linear time (1)

M(A, k) := the k-th element of the sorted version of A.

Let n = |A|. For purpose of exposition, we assume n = 5P for some
p. (The book treats the general case.)
@ Split A randomly in ¢ groups of 5 elements
® Determine the median of each group of 5 elements.
© Determine recursively the median of these ¢ medians, say m
® Count the number of elements in A that are < m, say /.
® |f { = k, we are done and m is the output.
® If £ > k, then m is larger than the number we are looking for,
so we continue recursively with M(A\ Apigh, k)
® |f £ < k, then m is smaller than the number we are looking for,

so we continue recursively with M(A\ Aow, k — 3 [1)
® Until nis “very small”, say n < 10, then compute the k-th

element directly
Q. What exactly are Aypign and Aoy, and how large are they?

H. Geuvers Version: spring 2021 Complexity

14 / 22

Techniques to prove complexity

Radboud University Nijmege

Computing the median of a list in linear time (II)

M(A, k) := the k-th element of the sorted version of A.

H. Geuvers Version: spring 2021 Complexity

Techniques to prove complexity Radboud University Nijmege

Computing the median of a list in linear time (llI)

© Split A randomly in ¢ groups of 5 elements
® Determine the median of each group of 5 elements.
© Determine recursively the median of these ¢ medians, say m
® Count the number of elements in A that are < m, say /.
® |f { = k, we are done and m is the output.
® If £ > k, then m is larger than the number we are looking for,
so we continue recursively with M(A\ Apigh, k)
® |f £ < k, then m is smaller than the number we are looking for,

so we continue recursively with M(A\ Aiow, k — 3 [&)
® Until nis "very small", say n < 10, then compute the k-th

element directly

Complexity:
T(n) < T(})+ T(30) +en

for some c.
Note that steps (1), (2) and the first part of (4) are linear in n.

H. Geuvers Version: spring 2021 Complexity 16 / 22

Techniques to prove complexity

Radboud University Nijmegen @

Computing the median of a list in linear time (llI)

T(n) < T(=)+T(10)+Cn.
To find T we can make a recursion tree;
T(n) cn
e .
T(3) T({5) 0¢hn
/N /
() T(& g

So T(n)=%(55) cn<EX(55) cn=cnEXy (%) =10cn

H. Geuvers Version: spring 2021 Complexity 17 / 22

Techniques to prove complexity Radboud University Nijmege

Computing the median of a list in linear time (V)

n n

T(n) < T(=)+ T(-=

(n) < T(E)+ T(5g

From the recursion tree method we conjecture that T(n) < 10c n.

Proof by induction on n

® For small n, it is correct. (Possibly choose a larger c.)

) + cn.

® For larger n:

n n
< — —
T(n) < T(3)+T(gg)+en
IH n n
< — —
< 10c(5)+10c(10)+cn

= 2cn+7cn-+cn
10cn

So T is linear in n, and so M is linear in the length of the input list.

H. Geuvers Version: spring 2021 Complexity 18 / 22

The Master Theorem Radboud University Nijmege

Master Theorem

THEOREM

Suppose 2 > 1 and b > 1 and
T(n) = aT(g) + f(n).

Then
® T(n) = O(n'°8:2) if f(n) = O(n'°€>3=¢) for some & > 0.
f is “relatively small” compared to n'°&2
® T(n) = O(n'°8s?log n) if f(n) = O(n'es?).
E.g. the Mergesort case
© T(n) = O(f(n)) if f(n) = Q(n'°8»2%¢) for some ¢ > 0 and
for sufficiently large n, we have af(7) < c f(n) for some
c <1
f is “relatively large” compared to n'°8s2

H. Geuvers Version: spring 2021 Complexity 20 / 22

The Master Theorem Radboud University Nijmegen &

Using the Master Theorem (I)

® T(n) = O(n'°8:2) if f(n) = O(n'°&>23=¢) for some & > 0.

® T(n) = O(n'°8s2log n) if f(n) = O(n'es?).

® T(n) = O(f(n)) if f(n) = Q(n'°8>2%¢) for some £ > 0 and, for
sufficiently large n, we have af(3) < c f(n) for some ¢ < 1.

Now, a =9 and b = 3, so no82 = plogs9 — 2,
So f(n) = n= O(n) = O(n'°83¢) with ¢ = 1.
So case (1) of the Master Theorem applies and we have

H. Geuvers Version: spring 2021 Complexity 21 /22

The Master Theorem Radboud University Nijmege

Using the Master Theorem (II)

THEOREM

@ T(n) =0O(n'8?) if f(n) = O(n'°&2<) for some & > 0.
® T(n) = O(n'%?log n) if f(n) = ©(n'°%>?).

©® T(n) = O(f(n)) if f(n) = Q(n'€2+<) for some £ > 0 and, for
sufficiently large n, we have af(7) < c f(n) for some c < 1.

T(n) = 9T(£)+n2.

Now, a =9 and b = 4, so n'8ba — plogs9 ~y p1.584

So f(n) = n? = Q(n?) = Q(n'8»3%¢) for some ¢ > 0.
So case (3) of the Master Theorem applies and we have
T(n) = ©(n?).

'We need an extra check' dc < lEINo Vn> No(af(g) < cf(n)??
That is: 9(#)? < cn?, so take ¢ := =% and this is ok.

H. Geuvers Version: spring 2021 Complexity 22 /22

	Techniques to prove complexity
	The Master Theorem

