

Complexity IBC028, Lecture 4

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2021

Outline

Decision Problems

P and NP

NP-hard and NP-complete

Many algorithmic problems are decision problems

- A **Decision Problem** is the question whether some input i satisfies a specific property $Q(i)$. Its solution is a yes/no answer.
- Some examples:
 - Given a number n , is n prime?
 - Given a graph G , is there a Hamiltonian cycle in G ?
 - Given a graph G , is there an Euler tour in G ?
 - Given a graph G and two points p and q in G , are p and q connected?
- We can associate a decision problem Q with a **language** $L_Q \subseteq \{0, 1\}^*$

$w \in L_Q \Leftrightarrow w$ is an encoding of a problem for which Q holds.

Encodings of decision problems

- The precise encoding is left implicit.
- We have the usual operations on languages: union, intersection, complement, concatenation, Kleene-star.

$\text{Ham} \subseteq \{0, 1\}^*$

\coloneqq collection of strings w that encode a graph G
that has a Hamiltonian cycle

$\text{Path} \subseteq \{0, 1\}^*$

\coloneqq collection of strings w that encode $\langle G, p, q, n \rangle$,
where G is a graph, $p, q \in G$, such that
there is a path from p to q in G with at most n edges

Polynomial Decision Problems

DEFINITION

- An algorithm A is **polynomial** if we have for its time complexity T that $T(n) = \mathcal{O}(n^k)$ for some k .
- The algorithm $A : \{0, 1\}^* \rightarrow \{0, 1\}$ **decides** $L \subseteq \{0, 1\}^*$ if $w \in L \iff A(w) = 1$.
- A decision problem Q is **polynomial** if we have a polynomial algorithm that decides L_Q .

What encoding?

Encodings $e_1, e_2 : I \rightarrow \{0, 1\}^*$ are **polynomially related** if there are polynomial functions f and g such that $f(e_1(i)) = e_2(i)$ and $g(e_2(i)) = e_1(i)$ for all $i \in I$.

If e_1, e_2 are polynomially related, then, for a problem $Q \subseteq I$:

$e_1(Q)$ is polynomial if and only if $e_2(Q)$ is polynomial.

Closure operations for Polynomial Decision Problems

LEMMA

Polynomial decision problems are closed under complement, intersection, union, concatenation

Proof

- If A decides $L \subseteq \{0, 1\}^*$ in polynomial time, then $B(w) := 1 - A(w)$ decides \bar{L} in polynomial time.
- If A_i decides L_i in polynomial time, then $B(w) := \text{sg}(A_1(w) + A_2(w))$ decides $L_1 \cup L_2$ in polynomial time.
- If A_i decides L_i in polynomial time, then

$$B(w) := \text{sg}(\sum_{w=uv} A_1(u) \cdot A_2(v))$$

decides $L_1 L_2$ in polynomial time.

The class **P**

DEFINITION

$$\mathbf{P} := \{L \subseteq \{0,1\}^* \mid \exists A, A \text{ polynomial, } A \text{ decides } L\}$$

- $\text{Path} \in \mathbf{P}$, $\text{EulerTour} \in \mathbf{P}$,
- $\text{Ham} \notin \mathbf{P}$ (...everyone thinks)

For Ham, no polynomial algorithm is known, but there is a notion of **certificate** that can be checked in polynomial time.

$$w \in \text{Ham} \iff w \text{ encodes a graph } G \wedge \exists y (y \text{ encodes a Hamiltonian cycle in } G).$$

Non-deterministic Polynomial Decision Problems

DEFINITION

- The algorithm A **verifies** $L \subseteq \{0, 1\}^*$ if $A : \{0, 1\}^* \rightarrow \{0, 1\}$ and

$$w \in L \iff \exists y \in \{0, 1\}^* (A(w, y) = 1).$$

- $L \subseteq \{0, 1\}^*$ is **non-deterministic polynomial** (NP) if there is a polynomial algorithm A that verifies L with polynomial certificates, that is

$$w \in L \iff \exists y \in \{0, 1\}^* (|y| \text{ polynomial in } |w| \wedge A(w, y) = 1).$$

- Ham is non-deterministic polynomial.
- NonPrime (determining whether a number is not prime) is non-deterministic polynomial.

P and NP

P :=

$$\{L \subseteq \{0,1\}^* \mid \exists A, A \text{ polynomial}, w \in L \iff A(w) = 1\}$$

NP :=

$$\{L \subseteq \{0,1\}^* \mid \exists A, A \text{ polynomial}, w \in L \iff \exists y \in \{0,1\}^* (|y| \text{ polynomial in } |w| \wedge A(w,y) = 1)\}$$

- **P** = the class of polynomial time decision problems.
- **NP** = the class of non-deterministic polynomial time decision problems.
- First property: $\mathbf{P} \subseteq \mathbf{NP}$.

What is the non-determinism in NP?

Polynomial algorithm for L = a deterministic Turing Machine M that halts on every input w in a number of steps polynomial in $|w|$ such that $w \in L$ iff $M(w)$ halts in q_f .

Non-deterministic polynomial algorithm for L = a **non-deterministic** Turing Machine M that halts on every input w in a number of steps polynomial in $|w|$ such that $w \in L$ iff $M(w)$ **has a computation** that halts in q_f .

A non-deterministic TM can be turned into a deterministic TM by making choices. The “certificate” is the successful choice from the list of possible choices.

Polynomial Reducibility

DEFINITION

L_1 (polynomially) **reduces to** L_2 , notation $L_1 \leq_P L_2$ if
there is a polynomial function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that

$$x \in L_1 \iff f(x) \in L_2$$

LEMMA

- \leq_P is transitive: if $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$ then $L_1 \leq_P L_3$.
- If $L_1 \leq_P L_2$ and $L_2 \in \mathbf{P}$, then $L_1 \in \mathbf{P}$.

NP-hard and NP-complete

DEFINITION

- L is called **NP-hard** if

$$\forall L' \in \mathbf{NP} (L' \leq_P L).$$

That is: all **NP**-problems can be reduced to L .

- **NPH** := $\{L \mid L \text{ is NP-hard}\}$.
- L is called **NP-complete** if $L \in \mathbf{NP}$ and L is **NP-hard**.
- **NPC** := $\mathbf{NP} \cap \mathbf{NPH}$.

THEOREM

If $L' \leq_P L$ and $L' \in \mathbf{NPH}$, then $L \in \mathbf{NPH}$.

Proof: Let $L'' \in \mathbf{NP}$. Then $L'' \leq_P L' \leq_P L$, so $L'' \leq_P L$. □

NP-hard and NP-complete problems

How to prove that L is **NP**-complete?

- First prove that $L \in \mathbf{NP}$: give a polynomial algorithm and a certificate for each input.
- Pick a well-known $L' \in \mathbf{NPH}$ and show that $L' \leq_P L$.

There are very many known **NP**-hard problems.

- $\text{SAT} \in \mathbf{NPH}$ (Cook-Levin, 1970), to be discussed further in the next lecture. In the final lecture we will prove that $\text{SAT} \in \mathbf{NPH}$.
- $\text{Ham} \in \mathbf{NPH}$ and so is “traveling salesman problem” (TSP)
- “Clique” and “vertex cover” are graph-problems in **NPH**.

$$\mathbf{NL} \subseteq \mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{PSPACE} \subseteq \mathbf{EXPTIME} \subseteq \mathbf{EXPSPACE}$$

All these inclusions are known; for none of them it is known if they are strict inclusions.

Satisfiability

DEFINITION

The boolean formulas are built from

- Atoms, p, q, r, \dots
- Boolean connectives \wedge, \vee, \neg .

A formula is **satisfiable** if we can assign values (from $\{0, 1\}$) to the atoms such that the formula is true.

SAT is the problem of deciding if a boolean formula is satisfiable.

SAT was the first problem shown to be **NP**-complete.

A (seemingly simpler) variant of SAT is already **NP**-complete:

CNF-SAT: satisfiability of **conjunctive normal forms** (CNF):

- A CNF is a **conjunction of clauses**
- A clause is a **disjunction of literals**
- a literal is an atom or a negated atom.

NP and co-NP

DEFINITION

co-NP := $\{L \mid \bar{L} \in \mathbf{NP}\}$. (\bar{L} is the complement of L .)

- Some well-known problems are in **co-NP**, for example Prime, which tests if a number n is a prime number.
- Prime $\in \mathbf{NP} \cap \mathbf{co-NP}$, and it is unknown if Prime $\in \mathbf{P}$ (but not to be expected).
- The precise relations between **P**, **NP** and **co-NP** are a major open question in Computer Science, most notably:

$$\mathbf{P} \stackrel{??}{=} \mathbf{NP}.$$