

Complexity IBC028, Lecture 5

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2021

Outline

Proving that a problem is NP-complete

More NP-complete satisfiability problems

Some other NP-complete problems

Recap: P and NP

P :=

$$\{L \subseteq \{0,1\}^* \mid \exists A, A \text{ polynomial}, w \in L \iff A(w) = 1\}$$

NP :=

$$\{L \subseteq \{0,1\}^* \mid \exists A, A \text{ polynomial}, w \in L \iff \exists y \in \{0,1\}^* (|y| \text{ polynomial in } |w| \wedge A(w,y) = 1)\}$$

- **P** = the class of polynomial time decision problems.
- **NP** = the class of non-deterministic polynomial time decision problems.
- Property: $\mathbf{P} \subseteq \mathbf{NP}$; Open question: $\mathbf{P} \stackrel{??}{=} \mathbf{NP}$.

Recap: NP-hard and NP-complete

DEFINITION

- **NPH** := $\{L \mid \forall L' \in \mathbf{NP} (L' \leq_P L)\}$
 L is **NP-hard** if $L \in \mathbf{NPH}$.
- **NPC** := $\mathbf{NP} \cap \mathbf{NPH}$
 L is **NP-complete** if $L \in \mathbf{NP}$ and L is **NP-hard**.

DEFINITION

L_1 (**polynomially**) **reduces to** L_2 , notation $L_1 \leq_P L_2$ if
there is a **polynomial** function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that

$$x \in L_1 \iff f(x) \in L_2$$

THEOREM

If $L' \leq_P L$ and $L' \in \mathbf{NPH}$, then $L \in \mathbf{NPH}$.

Proving that a problem is NP-complete

How to prove that L is NP-complete?

- ① Prove that $L \in \mathbf{NP}$: give a pol. algorithm and pol. certificate.
- ② Pick a well-known $L' \in \mathbf{NPH}$ and show that $L' \leq_P L$.

Known NP-complete problem (proof in Lecture 7): SAT:

- The boolean formulas are built from
 - Atoms, p, q, r, \dots
 - Boolean connectives \wedge, \vee, \neg .
- A formula φ is satisfiable if there is an assignment $v : \text{Atoms} \rightarrow \{0, 1\}$ such that $v(\varphi) = 1$ (" φ is true in v ").
- SAT is the problem of deciding if a boolean formula is satisfiable.
- SAT is in NP: the assignment v is the certificate, polynomial in $|\varphi|$, and $v(\varphi) = 1$ can be decided in polynomial time.
- SAT is in NPH is the famous Cook-Levin theorem (showing that every problem in NP can be reduced to a SAT-problem).

CNF-SAT is NP-complete

CNF-SAT is also NP-complete and will be used more often.

- The boolean formulas are again built from atoms, p, q, r, \dots and the Boolean connectives \wedge, \vee, \neg .
- CNF-SAT: satisfiability of conjunctive normal forms (CNF):
 - A CNF is a conjunction of clauses
 - A clause is a disjunction of literals
 - a literal is an atom or a negated atom.
- A CNF-formula φ is satisfiable if there is an assignment $v : \text{Atoms} \rightarrow \{0, 1\}$ such that $v(\varphi) = 1$ (" φ is true in v ").
- CNF-SAT is the problem of deciding if a CNF-formula is satisfiable.
- CNF-SAT is in NP: again the assignment v is the certificate.
- That CNF-SAT is in NPH will be shown in Lecture 7, and is a direct corollary of the proof of the Cook-Levin theorem.

$\leq_3\text{CNF-SAT}$ is NP-complete

DEFINITION

A **conjunctive normal form with ≤ 3 literals**, $\leq_3\text{CNF}$, is

- a **conjunction of clauses** where
- every clause is a **disjunction of at most three literals**

$\leq_3\text{CNF-SAT}$ is the problem of deciding for an $\leq_3\text{CNF}$ formula whether it is satisfiable.

THEOREM

$\leq_3\text{CNF-SAT}$ is NP-hard

Proof

- $\leq_3\text{CNF-SAT}$ is NP: an assignment $v : \text{Atoms} \rightarrow \{0, 1\}$ that makes the formula true is the certificate. (Checking is easy.)
- $\leq_3\text{CNF-SAT}$ is NP-hard: We prove $\text{CNF-SAT} \leq_P \leq_3\text{CNF-SAT}$.

Proof of CNF-SAT $\leq_P \leq_3$ CNF-SAT (I)

We define a function $f : \text{CNF} \rightarrow \leq_3 \text{CNF}$ such that φ is satisfiable iff $f(\varphi)$ is satisfiable.

The definition of f is based on the following Lemma:

LEMMA

$\varphi \wedge \bigvee_{i=1}^n \ell_i$ is satisfiable \iff
 $\varphi \wedge (\ell_1 \vee \ell_2 \vee a) \wedge (\neg a \vee \bigvee_{i=3}^n \ell_i)$ is satisfiable, where a is a fresh atom.

Proof. \Rightarrow :

Proof of CNF-SAT $\leq_P \leq_3$ CNF-SAT (II)

We define a function $f : \text{CNF} \rightarrow \leq_3 \text{CNF}$ such that φ is satisfiable iff $f(\varphi)$ is satisfiable.

The definition of f is based on the following Lemma:

LEMMA

$\varphi \wedge \bigvee_{i=1}^n \ell_i$ is satisfiable \iff

$\varphi \wedge (\ell_1 \vee \ell_2 \vee a) \wedge (\neg a \vee \bigvee_{i=3}^n \ell_i)$ is satisfiable, where a is a fresh atom.

Proof. \Leftarrow :

Proof of $\text{CNF-SAT} \leq_P \leq_3 \text{CNF-SAT}$ (III)

We define a function $f : \text{CNF} \rightarrow \leq_3 \text{CNF}$ such that φ is satisfiable iff $f(\varphi)$ is satisfiable.

DEFINITION

Define $f(\varphi)$ by recursively replacing in φ every disjunction $\bigvee_{i=1}^n \ell_i$ where $n > 3$ by $(\ell_1 \vee \ell_2 \vee a) \wedge (\neg a \vee \bigvee_{i=3}^n \ell_i)$ for a fresh atom a .

The Lemma (previous slide) proves that

φ is satisfiable iff $f(\varphi)$ is satisfiable.

Therefore $\text{CNF-SAT} \leq_P \leq_3 \text{CNF-SAT}$ and so $\leq_3 \text{CNF-SAT}$ is **NP-hard**. We have already shown $\leq_3 \text{CNF-SAT} \in \mathbf{NP}$, so $\leq_3 \text{CNF-SAT}$ is **NP-complete**.

- Note: f doesn't blow up the formula φ : $|f(\varphi)| = \mathcal{O}(|\varphi|)$.
- One could require that all literals in a clause are different.
That isn't needed for the definition of f to function properly, but we will sometimes assume that.

3CNF-SAT is **NP**-complete

DEFINITION

A 3CNF is a \leq_3 CNF where every clause is a disjunction of **exactly three** literals. 3CNF-SAT is the problem of deciding for an 3CNF whether it is satisfiable.

We prove that 3CNF-SAT is **NP**-complete by:

- 3CNF-SAT $\in \mathbf{NP}$. Again, the assignment is the certificate.
- Showing that \leq_3 CNF-SAT \leq_P 3CNF-SAT by defining $f : \leq_3$ CNF \rightarrow 3CNF. Choose fresh atoms a, a', p, q .
 - Add clauses $A = a \vee p \vee q, a \vee p \vee \neg q, a \vee \neg p \vee q, a \vee \neg p \vee \neg q$, and similarly A' for a' .
(Note: $A \wedge A'$ can only be satisfied if $v(a) = v(a') = 1$.)
 - Replace every clause c with two literals by $c \vee \neg a$.
 - Replace every clause c with one literal by $c \vee \neg a \vee \neg a'$.
- Then φ is satisfiable iff $f(\varphi)$ is satisfiable.

Satisfiability problems that are **NP**-complete

- We have seen that SAT, CNF-SAT, \leq_3 CNF-SAT and 3CNF-SAT are **NP**-complete. (Proof for SAT, CNF-SAT in Lecture 7.)
- This has been proven by showing that they are in **NP** (easy) and by showing that they are **NP**-hard (the real work).
- For showing **NP**-hardness we have used the following chain of reductions.

$$\text{CNF-SAT} \leq_P \leq_3 \text{CNF-SAT} \leq_P \text{3CNF-SAT}$$

- Not all satisfiability problem are **NP**-hard! For example, 2CNF-SAT is polynomial.
(2CNF-SAT is the problem of deciding satisfiability of CNFs where every clause has **exactly 2** literals.)

There are also lots of other ("real") problems that are **NP**-complete.

ILP is NP-complete (I)

DEFINITION

Integer Linear Programming, ILP is the problem of deciding if a finite set of inequalities with coefficients in \mathbb{Z} has a solution in \mathbb{Z} .

Example with 2 variables

$$E := \begin{cases} x_1 + 3x_2 \geq 5 \\ 3x_1 + x_2 \leq 6 \\ 3x_1 - 2x_2 \geq 0 \end{cases}$$

NB. Has solutions in \mathbb{R} , but not in \mathbb{Z}

THEOREM

ILP is NP-complete

NB. The problem of finding solutions in \mathbb{R} is polynomial!

ILP is NP-complete (II)

THEOREM

ILP is NP-complete

- ILP \in NP. A certificate is a tuple of integers (r_1, \dots, r_n) that we substitute for x_1, \dots, x_n and check that E holds.
- We show that 3CNF-SAT \leq_P ILP by defining for $\varphi \in$ 3CNF with boolean atoms x_1, \dots, x_n a set of inequalities E_φ such that φ is satisfiable iff E_φ has a solution in \mathbb{Z} .
- Add $x_i \geq 0$ and $x_i \leq 1$ to E_φ .
- For every clause $\ell_1 \vee \ell_2 \vee \ell_3$, add $\ell_1 + \ell_2 + \ell_3 \geq 1$ to E_φ , where we replace negative literals $\neg x_i$ by $1 - x_i$.
- We now have

$$\varphi \text{ is satisfiable} \iff E_\varphi \text{ has a solution (in } \mathbb{Z}).$$

- Conclusion: 3CNF-SAT \leq_P ILP and so ILP is NP-complete.

Clique is NP-complete

DEFINITION

Given an undirected graph $G = (V, E)$ and a number k , is there a **clique** of size k in G ? A clique is a set of points $V' \subseteq V$ such that each pair of points in V' is connected.

Clique(G, k) is the problem of deciding whether there is clique of size k in G , that is

$$\exists V' \subseteq V (\#V' = k \wedge \forall u, v \in V' (u \neq v \rightarrow (u, v) \in E)).$$

THEOREM

Clique is NP-complete

- **Clique \in NP.** The certificate is the subset $V' \subseteq V$ that forms a k -clique. Checking whether V' constitutes a k -clique can easily be done in polynomial time.
- We prove **Clique is NP-hard** by showing $3\text{CNF-SAT} \leq_P \text{Clique}$.

Clique is NP-hard (I)

We define $f : 3\text{CNF} \rightarrow \text{Graphs}$ such that $\varphi = \bigwedge_{i=1}^k C_i$ is satisfiable iff $f(\varphi)$ has a k -clique. (Assume atoms occurs uniquely in a clause.)

- We write $C_i = \ell_1^i \vee \ell_2^i \vee \ell_3^i$ for each clause in φ ($i = 1 \dots k$).
- $f(\varphi)$ is a graph with $3k$ vertices; each vertex corresponds with a literal ℓ_p^i ($i = 1, \dots, k$, $p = 1, 2, 3$) in φ .
- The edges in $f(\varphi)$ are as follows.

There is an edge between ℓ_p^i and ℓ_q^j iff $i \neq j \wedge \ell_p^i \neq \neg \ell_q^j$.

Claim: if $f(\varphi)$ has a k -clique, then φ is satisfiable

Proof: A k -clique V contains exactly one literal from each clause.

If $\ell_i^p \in V$, then its negation does not occur in V . So the clique gives us a $v : \text{Atoms}(\varphi) \rightarrow \{0, 1\}$ that makes φ true.

Clique is NP-hard (I)

We define $f : 3\text{CNF} \rightarrow \text{Graphs}$ such that $\varphi = \bigwedge_{i=1}^k C_i$ is satisfiable iff $f(\varphi)$ has a k -clique. (Assume atoms occurs uniquely in a clause.)

- We write $C_i = \ell_1^i \vee \ell_2^i \vee \ell_3^i$ for each clause in φ ($i = 1 \dots k$).
- $f(\varphi)$ is a graph with $3k$ vertices; each vertex corresponds with a literal ℓ_p^i ($i = 1, \dots, k$, $p = 1, 2, 3$) in φ .
- The edges in $f(\varphi)$ are as follows.

There is an edge between ℓ_p^i and ℓ_q^j iff $i \neq j \wedge \ell_p^i \neq \neg \ell_q^j$.

Claim: if φ has satisfying assignment v , then $f(\varphi)$ has a k -clique.

Proof: From each clause we choose a literal ℓ_p^i for which

$v(\ell_p^i) = 1$. This gives us a k -clique in the graph $f(\varphi)$.

VertexCover is NP-complete

DEFINITION

Given an undirected graph $G = (V, E)$ and a number k , is there a **vertex cover** of size k in G ?

A vertex cover is a set of points $V' \subseteq V$ such that each edge has an endpoint (or both) in V' .

VertexCover(G, k) is the problem of deciding whether there is a vertex cover of size k in G , that is

$$\exists V' \subseteq V (|V'| = k \wedge \forall (u, v) \in E (u \in V' \vee v \in V')).$$

THEOREM

VertexCover is NP-complete

Proof. (1) $\text{VertexCover} \in \mathbf{NP}$. The certificate is the subset $V' \subseteq V$ that forms a vertex cover of size k .

(2) We will now prove that VertexCover is NP-hard.

VertexCover is NP-hard

We prove $\text{Clique} \leq_P \text{VertexCover}$.

We define $f : \text{Graphs} \rightarrow \text{Graphs}$ such that

$G = (V, E)$ has a k -clique $\iff f(G)$ has a $(|V| - k)$ -vertex cover.

Define $f(V, E) := (V, \bar{E})$ where

$$\bar{E} := \{(u, v) \mid u \neq v \wedge (u, v) \notin E\}.$$

Claim: (V, E) has a clique of size k iff (V, \bar{E}) has a vertex cover of size $|V| - k$.

Proof.

$$\begin{aligned} V' \text{ is a clique in } (V, E) &\iff \forall (u, v) \in V' \times V' (u \neq v \rightarrow (u, v) \in E) \\ &\iff \forall (u, v) \notin E (u \neq v \rightarrow (u, v) \notin V' \times V') \\ &\iff \forall (u, v) \in \bar{E} (u \in V \setminus V' \vee v \in V \setminus V') \\ &\iff V \setminus V' \text{ is a vertex cover in } (V, \bar{E}) \end{aligned}$$

3Color is NP-complete

DEFINITION

3Color: given an undirected graph $G = (V, E)$, is there a **3-coloring** of G , that is, a map $c : V \rightarrow \{r, y, b\}$ such that $\forall (u, v) \in E (c(u) \neq c(v))$.

THEOREM

3Color is NP-complete

Proof.

- 3Color \in NP. The certificate is the map $c : V \rightarrow \{r, y, b\}$.
Checking that, for a given c , we have
 $\forall (u, v) \in E (c(u) \neq c(v))$ can be done in polynomial time.
- We prove that 3Color is NP-hard by proving
 $3\text{CNF-SAT} \leq_P 3\text{Color}$. The construction of
 $f : 3\text{CNF} \rightarrow \text{Graphs}$ will be done on the next slide or on a
separate note.

$3\text{CNF-SAT} \leq_P 3\text{Color}$ (I)

The construction of $f : 3\text{CNF} \rightarrow \text{Graphs}$ for which
 φ is satisfiable if and only if $f(\varphi)$ is 3-colorable

