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Attacks on databases



AOL search data leak

1

1M. Arrington, AOL Proudly Releases Massive Amounts of Private Data,
https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-
amounts-of-user-search-data/, Aug. 2006.
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Another example

2

2S. Nichols, FBI watchlist exposed by misconfigured Elasticsearch cluster,
https://www.techtarget.com/searchsecurity/news/252505403/FBI-
watchlist-exposed-by-misconfigured-Elasticsearch-cluster, 2021.
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Any more examples?
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More data breaches

3

3D. McCandless and T. Evans, World’s Biggest Data Breaches & Hacks,
https://www.informationisbeautiful.net/visualizations/worlds-
biggest-data-breaches-hacks/, 2021.
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Common attack vectors

• Lack of authentication

• Weak passwords

• SQL injection

• Command execution using malicious shared libraries

• CVEs

• Statistical inference

• …
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So what is the problem?

• Privacy-sensitive information used for statistical research.

• Statistical research published for scientific purposes. It should
not be possible to obtain private information.

• Privacy-preserving research allows participants to be honest in
their responses.
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CBS

CBS is one of the largest organisations that collects statistical
information in the Netherlands.

They also published a paper about privacy preserving techniques [5].
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GDPR

Art. 4
Processing means any operation or set of operations which is
performed on personal data or on sets of personal data, whether
or not by automated means, such as collection, recording,
organisation, structuring, storage …

Database owner is processor. Hence, needs to comply with GDPR!

8



GDPR

Art. 4
Processing means any operation or set of operations which is
performed on personal data or on sets of personal data, whether
or not by automated means, such as collection, recording,
organisation, structuring, storage …

Database owner is processor. Hence, needs to comply with GDPR!

8



GDPR - other relevant principles

Storage limitation

Art. 5.1e
Personal data shall be kept in a form which permits identification
of data subjects for no longer than is necessary for the purposes
for which the personal data are processed; personal data may be
stored for longer periods insofar as the personal data will be
processed solely for archiving purposes in the public interest,
scientific or historical research purposes or statistical purposes …

Integrity and confidentiality

Art. 5.1f
Personal data shall be processed in a manner that ensures
appropriate security of the personal data, …
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Impossibility result

• Information about an individual in a database could be
combined with auxiliary information to infer new private
information that is not available in the database.

Can you think of an example?

• Sometimes, even information about an individual that is not in
the database could be combined with auxiliary information to
infer new private information that is not available in the
database.

Can you think of an example?

• This makes semantic security for databases difficult to
guarantee!

• In practice, semantic security for databases is impossible
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Privacy enhancement techniques

• Statistical Disclosure Control

• Differential privacy

• k-anonymization
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Privacy enhancement techniques

Statistical Disclosure Control



Statistical Disclosure Control

• Approaches to mitigate risk of disclosing sensitive data

• Statistical queries should not identify individual subjects in the
database

• Many different controls are available

• Picking a suitable control depends on the data:
1 Analyse sensitivity of data.
2 Analyse use cases of data.
3 Analyse disclosure risk.
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Statistical Disclosure Control

• Sampling: Only part of a table is released.

• Cell suppression: Sensitive table cells are strategically removed.

• Table redesign: Re-code data to reduce sensitivity. For instance:
merging several rows.

• Swapping: Table units are swapped.

• Rounding: All table cells are rounded to an integer multiple of a
rounding base b.

• Simulation: Generation of synthetic data.
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Sampling

Game title Number of players

Assassin’s creed 100,500
Watch dogs 200,000

Star Wars: Battlefront 50,123
Harry Potter and the Order of the Phoenix 144,122

Game title Number of players

Watch dogs 200,000
Harry Potter and the Order of the Phoenix 144,122
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Cell suppression

Course Grade

Privacy Seminar 7
Privacy Seminar 8
Privacy Seminar 2

Average 52/3

Figure 1: Example primary suppression
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Cell suppression

Course Grade

Privacy Seminar 7
Privacy Seminar 8
Privacy Seminar 2

Average 52/3

Figure 1: Example primary suppression

Do you know how such a suppression might still leak information?
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Cell suppression

row A B C D

1 x1 4 2 x2
2 x3 0 6 2
3 6 2 x4 8
4 1 7 9 5

Category Average

A 53/4
B 31/4
C 6
D 53/4

Row Average

1 51/4
2 41/4
3 53/4
4 51/2
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Cell suppression

row A B C D

1 7 4 2 8
2 9 0 6 2
3 6 2 7 8
4 1 7 9 5

Category Average

A 53/4
B 31/4
C 6
D 53/4

Row Average

1 51/4
2 41/4
3 53/4
4 51/2

x1 = 21− 4− 2− x2
= 15− (23− 2− 8− 5)

= 7

x2 = 4 · 53/4− 2− 8− 5

= 23− 2− 8− 5

= 8

x3 = 4 · 41/4− 0− 6− 2

= 17− 8

= 9

x4 = 4 · 6− 2− 6− 9

= 24− 17

= 7
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Table redesign

Game title Number of players

Assassin’s creed 100,500
Watch dogs 200,000

Star Wars: Battlefront 50,123
Harry Potter and the Order of the Phoenix 144,122

Game publisher Number of players

Ubisoft 300,500
EA 194,245
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Swapping

Student Length

Arlin 176
Maurice 196

Sebastiaan 195
Patrick 182

Student Length

Arlin 195
Maurice 196

Sebastiaan 176
Patrick 182
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Rounding

Student Length

Arlin 176
Maurice 196

Sebastiaan 195
Patrick 182

Student Length

Arlin 180
Maurice 200

Sebastiaan 200
Patrick 180

The entropy depends on the rounding base b as every original value
is in an interval of the rounded value (ni):

Ii = [ni − 1/2b,ni + 1/2b] (1)
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Simulation

X

Y

(a) Original dataset

X

Y

(b) Simulated dataset

Figure 2: Simulating points based on a standard distribution
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Evaluating information utility

• Depends on variable type.

• Categorical variables: check equivalence

• Continuous variables: measure correlation

21



Statistical Disclosure Control
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Privacy enhancement techniques

Differential privacy



Differential privacy

• Algorithm A analyses a dataset D and computes statistics
(mean, variance, mode, median, etc)

Differential Privacy
An algorithm A is differentially private if by looking at the output, it
is impossible to determine whether any individual’s data is
included in the dataset or not.
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Statistical inference - an example

• Consider a dataset D2 that differs from D1 in only one row

• Statistical differences between D2 and D1 can leak information
about this row. How?

D1 Name Age
Arlin 23

Maurice 25
Max 24

Sebastiaan 37
Patrick 20

A(D1)
Average : 25.8
Median : 24
Variance : 34.16

D2 Name Age
Arlin 23

Maurice 25
Max 24

Sebastiaan 37

A(D2)
Average : 27.25
Median : 24.5
Variance : 42.917
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Query set control

What if we introduce lower and upper bounds to the query size?

• Consider a threshold t such that any query must involve at least
a set of ≥ t rows.

• For a database of N entries, only allow queries on a subset size
between t and N - t

• Don’t allow successive queries of sets K and L if K ⊆ L and
|L| − |K| < t

Does this solve the problem?

An attacker could make many, many more queries to eventually
circumvent this limitation. Query set control might not be the right
approach.
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Introducing randomness

What if we add random noise to A to (slightly) distort results.
A simple protocol to determine if a row has a certain property:

1 Flip a coin.
2 If tails, respond truthfully.
3 If heads, flip a second coin.

a If heads again, respond ‘Yes’.
b If tails again, respond ‘No’.

Does this solve the problem?
• Random noise allows for refutability.

• The accuracy is not always ideal, but if ρ rows contain the
attribute, we can expect ( 14 )(1− ρ) + ( 34 )ρ = 1

4 +
ρ
2 positive

responses.

• Since ρ can be estimated, sufficiently large datasets can have
significant statistics.

26
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Calibrating noise to sensitivity

• A transcript is the interaction between a user and a privacy
mechanism

t = [Q1,a1,Q2,a2...,Qd,ad] (2)

• Ideally, noise should be optimised to acceptable margin of error

• Use random noise function with a carefully chosen distribution

• Sensitivity - the maximum amount that any single argument to a
function can change its output

∆A = max
Di,Dj∈S

(||A(Di),A(Dj)||1) (3)

Here, S denotes the set of all pairs of databases that differ from
each other in at most one row, and || · ||1 denotes the `1 norm
(Manhattan distance)

27



Additive noise mechanisms

• For each query, the server either refuses to answer, or answers
fi(x) + the desired amount of noise, where fi(x) is the requested
information.

• Ideally, these have a low sensitivity (≤ 1)

• Controlled noise based on a carefully chosen probability
distribution

(a) LaPlace (b) Gaussian

Figure 3: Probability distributions as additive noise mechanism
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Exponential mechanism

• Adding random noise doesn’t work for some types of data

Can you think of some examples?

• Consider a set R of possible outputs we are interested in

• Design a scoring function u : D × R → R with sensitivity ∆u

• Output r ∈ R will have a probability proportional to:

Pr[r] = exp(
ε · u(d, r)
2 ·∆u

) (4)

• This is the probability defined in r, which is the possibility for a
single r to be selected.
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A mathematical notion of differential privacy

• Ideally, A (D1) should be hard to distinguish from A (D2)

• Consider ε the maximum distance between a query on D1 and
the same query on D2.

• Then, exp(ε) provides us with the dilation of the probability.

Pr[A(D1) ∈ S] ≤ exp(ε) · Pr[A(D2) ∈ S] (5)

Extended for group privacy: instead of difference in one row,
consider difference of c rows

Pr[A(D1) ∈ S] ≤ exp(ε · c) · Pr[A(D2) ∈ S] (6)
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Privacy enhancement techniques

k-anonymization



k-anonymization

• Each data point is indistinguishable from k− 1 other data points

• Trade-off between equivalence class size and minimal loss of
data utility

• Three main steps:
1 Partition data into clusters
2 Re-assign attributes to ensure each cluster has at least k points
3 Anonymization of the original data values to something useful:

• Numerical values: centeroids

• Categorical values: common ancestor

• An optimal solution is NP-hard
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Example dataset: Public transport

Departure station Distance

Nijmegen 233/4

Nijmegen 8km
Nijmegen Goffert 5km
Nijmegen Heyendaal 73km
Nijmegen Lent 9km

Arnhem 142/3

Arnhem 6km
Arnhem zuid 14km
Arnhem Presikhaaf 24km

Station

Nijmegen

Goffert Heyendaal Lent

Arnhem

Zuid Presikhaaf
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Example dataset: Public transport

Departure station Distance

Nijmegen 233/4
Nijmegen 8km
Nijmegen Goffert 5km
Nijmegen Heyendaal 73km
Nijmegen Lent 9km
Arnhem 142/3
Arnhem 6km
Arnhem zuid 14km
Arnhem Presikhaaf 24km

Station

Nijmegen

Goffert Heyendaal Lent

Arnhem

Zuid Presikhaaf

In total: 2c − c − 1 = 28 − 8− 1 = 247 options

What are limitations of k-anonimity?
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Attacks on k-anonimity

• Background knowledge attack: use demographics and public
records to increase probability of identifying records.

• Homogeneity attack: attack reveals private information when all
values of sensitive attributes are the same in a equivalence
class.
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l-diversity: distinctness

Any generalized attribute should consist of sufficiently many
different sensitive values.

• Distinctness can be ensured with well-represented groups
• An attacker needs information about l− 1 data points to infer a
specific data point

Departure station Distance

Nijmegen 27
Nijmegen Goffert 6km
Nijmegen Heyendaal 73km
Nijmegen Lent 9km
Arnhem 142/3
Arnhem Zuid 6km
Arnhem Zuid 14km
Arnhem Zuid 24km
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Entropy l-diversity

A measure to determine if there is sufficient distinctness

• q a generalized nonsensitive value (”Arnhem” as departure
station instead of ”Arnhem Zuid”)

• s a possible value of a sensitive attribute S

• p(q, s) fraction of data points white nonsensitive value q and
sensitive value s.

• l the protection against l data points of background knowledge

−
∑
s∈S

p(q, s) ln(p(q,s′)) ≥ ln(l) (7)
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Entropy l-diversity

Q S

Arnhem F
Arnhem T
Arnhem F
Arnhem F
Arnhem F

p(A,F) =
4
5

p(A, T ) =
1
5

−
∑
s∈S

p(q,s) ln(p(q,s′)) = −
(
p(A,F) lnp(A,T ) + p(A,F) lnp(A,T )

)
= −

(
4
5 · ln 15 +

1
5 · ln 45

)
≈ 0.18+ 0.32

≈ 0.5

−
∑
s∈S

p(q, s) ln(p(q,s′)) ≥ ln(l)

0.5 6≥ 0.69
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Summary

Statistical Disclo-
sure Control

Differential Privacy K-anonymity

Easy to implement
Some privacy guar-
antees

Prerequisite for
privacy protection

Prerequisite for
other approaches

Refutability
k-anonymity is NP-
hard

Protection only for
accounted attacks

Too much noise re-
duces utility

Too large k reduces
utility
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Summary

• Statistical disclosure methods can help.

• Disclosure risk vs data utility.

• Combination of methods provides most protection.
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Questions?
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It’s important to make sure your analysis destroys as much
information as it produces.

4

4https://xkcd.com/2582/
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ldiversity: recursiveness

Recursive definition:
q* as defined earlier, l being the number of sensitive values
A q*-block is (c, 2)-diverse if r1 < c(r2 + · · ·+ rm) for chosen
constant c
For l > 2:
(c, l)-diversity if we can eliminate one sensitive value and
(c,l-1)-diversity still holds
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