Privacy in databases

Gijs Kopmeiners en Thomas van Harskamp

Outline

Statistical Disclosure Control

- What is Statistical Disclosure Control?
- Why/when is Statistical Disclosure Control used?
- Risk assessment
- SDC techniques

Differential privacy

- Introduction
- Definition of differential privacy
- ε -differential privacy
- Composability of ε -differential privacy
- Group privacy
- Laplace mechanism
- Randomised response
- Usages

Definitions

- Data

- Microdata/Macrodata
- Aggregate/tabular data
- Surveys/Frequency tables/etc.

- Data intruder

- The "Attacker" / Adversary
- Something or someone seeking to identify population units within a dataset
- Legal/Illegal access

- Key variable

- Information known to a data intruder about a population unit which is also present on an anonymised dataset
- Indirect identifier that could be used to re-identify individuals

Statistical Disclosure Control

What is Statistical Disclosure Control (SDC)?

Definition: Statistical Disclosure Control is the practice of reducing the risk of finding people or entities in data (re-identification) and/or associating data with a person or entity (association).

Different types of disclosure

- Re-identification: the association of a particular record within a set of data with particular population unit
- Association: the association or disassociation of a particular attribute with a particular population unit
- Often together, but not always the case
- Important to balance between data utility and confidentiality/privacy
- SDC aims to disclose data in a way such that no information is leaked
- Examples?

Re-identification

- The association of a particular record within a set of data with particular population unit
- Direct identifiers:
 - Names, BSN, etc.
- Indirect identifiers:
 - What do you think?
- Combining key values with information you know

Re-identification example

- What can the data intruder learn?
- What is/are the identifying/key variable(s)?
- How can you handle this problem without impacting usefulness of data?

ID	Net worth in \$	Hair color	American shoe size
45	186.900.000.000	Brown	13
46	243.000	Blonde	12
47	110.000	Brown	13

Attribute disclosure

- The association or disassociation of a particular attribute with a particular population unit
- Can happen together with or without re-identification
 - With: what is the shoe size of elon musk?
 - Without: how do you think?

Attribute disclosure example

- What can be learned from this dataset?
- Do you need to identify units in the dataset?

Age	Sex	% of people with cancer	% of people eating meat
50	F	27	30
50	M	29	40
51	F	100	41
51	M	40	23
52	F	56	26

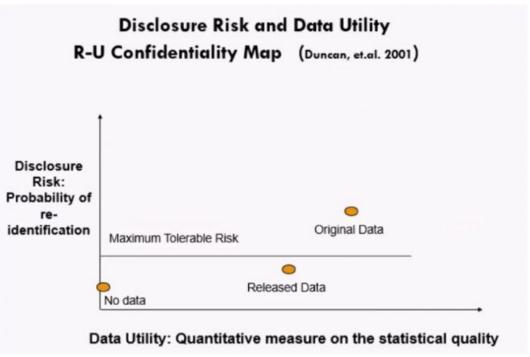
Who uses SDC and why?

- Researchers

- Research uses potentially sensitive data
- Not interested in information about one single person
- Balance between protecting confidentiality and data utility
- Organizations have their own policies
- CBS
 - Regulation
 - GDPR

Actual and perceived risk

- Perceived risk is a complex psychosocial process
- Assessing and controlling disclosure risk are highly complex
 - What is the actual risk?
 - What knowledge does data intruder have?
- Key selection
 - Key combinations
 - Exponantial growth
- Data utility



Risk assessment

- Population uniqueness

- Proportion of population units that are unique on a given key
- Assume the intruder information is 100% compatible
- Unique =/= risky

- Risky records

- Rare
- Target for SDC

- Matching

- Match records of two files
- Very specific

Risk factors

- Data divergence
 - Inconsistencies
 - Reduces the probability of correct attribution or identification
- Size of key
 - Larger keys more options

SDC-in SDC-out

- SDC-in aka pre-tabulation disclosure control: Doing something to the data before it is put in the tables
 - Anonymization
- SDC-out aka aka post-tabulation disclosure control: Doing something to the tables that contain the data
 - Random noise
 - (Differential privacy)
 - Etc
- Active research areas

Data anonymization

- Process of protecting sensitive information by removing identifiers
- **Enforced by GDPR**
- Data masking: hiding data with altered values
- Pseudonymization: replacing identifiers with pseudonyms
- Limits ability to derive value and insight from data

Recoding

- Collapse categories of a variable
- Low frequencies conjoined
- Topping
 - Elon Musk example
- Grouping
 - Age, occupation
- Visible
- Small benefit
- High cost

ID	Net worth in \$	Hair color	American shoe size
45	250.000+	Brown	13
46	200.000-250.000	Blonde	12
47	100.000-150.000	Brown	13

Cell suppression

- Leaving cell blank
- Sensitive
- Low count
- Suppress more cells
- Complementary suppressions
- Can quickly reduce analytical value

Rounding

- Disguise exact frequency
- Random rounding
- Cell counts may not add up

Masking/Blurring

- Add noise
- Add/subtract numbers to cells
- Changing values to other values
- Overwrite sensitive values

Data swapping

- Swap variables
- Data intruder doesn't know which ones
- Random swapping
- Record swapping

Impact on data

- Mathematical models
- Information loss
- Dependant on what user wants

Alternatives/additions

Alternatives/additions

- Safe settings
 - Data holders good view on what is happening
 - Hard to set up
 - No ease of access
- Only allow queries
- Simulated data
 - Mutation algorithms
 - Analytically equivalent?

Differential Privacy

Collecting analytical data

- Suppose we want to collect analytical data on a database
- We also want to preserve the privacy of individuals
- Can we just disclose statistics of the database?

Introduction

Example

Sally:

- Has a rare illness
- Is in a database of the local abortion clinic

Problems?

Introduction

Example

How do we solve this problem?

What is differential privacy?

In general

- Collecting analytical data while preserving the privacy of individuals

- Collecting analytical data while preserving the privacy of individuals
- Adds noise in a controlled way

Differential Privacy

- Collecting analytical data while preserving the privacy of individuals
- Adds noise in a controlled way
- Introduced by Cynthia Dwork and Frank McSherry, et al. in 2006

Differential Privacy

- Collecting analytical data while preserving the privacy of individuals
- Adds noise in a controlled way
- Introduced by Cynthia Dwork and Frank McSherry, et al. in 2006
- Individual record should not significantly outcome of analytical function

- Collecting analytical data while preserving the privacy of individuals
- Adds noise in a controlled way
- Introduced by Cynthia Dwork and Frank McSherry, et al. in 2006
- Individual record should not significantly outcome of analytical function
- Standard for measuring privacy in data analysis

Differential Privacy

Usefulness

Differential Privacy

Usefulness

- Does not matter what the adversary knows or does

Usefulness

- Does not matter what the adversary knows or does
- Even when attacker has unlimited computing power

Usefulness

- Does not matter what the adversary knows or does
- Even when attacker has unlimited computing power
- Future-proof

Mechanism

- Computation on a database

- Computation on a database
- Randomised mechanism

- Computation on a database
- Randomised mechanism
- Considered differentially private if the probability of an outcome of the mechanism occurring is almost the same for all pairs of datasets that only differ in one record

- Computation on a database
- Randomised mechanism
- Considered differentially private if the probability of an outcome of the mechanism occurring is almost the same for all pairs of datasets that only differ in one record
- A single person participating in the database should not make a difference

- Computation on a database
- Randomised mechanism
- Considered differentially private if the probability of an outcome of the mechanism occurring is almost the same for all pairs of datasets that only differ in one record
- A single person participating in the database should not make a difference
- Next up: a mathematical definition

Mechanism

Complete differential privacy is really hard to achieve, why is that?

In general

- The way of denoting privacy for a mechanism
- Mathematical notation
- Composability
- Group privacy

Defined as follows^[1] for datasets D1 and D2 that differ in only one entry, mechanism K, S \subseteq Image(K), and $\varepsilon \ge 0$:

$$Pr[K(D_1) \in S] \le e^{\varepsilon} \cdot Pr[K(D_2) \in S]$$

 Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, pages 1–12, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Alternatively in literature^[2]:

$$\left| ln(\frac{Pr[K(D_1) \in S]}{Pr[K(D_2) \in S]}) \right| \le \varepsilon$$

Rewrite steps show this is the same.

[2] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, *Theory of Cryptography*, pages 265–284, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

- ε = 0 means we would have complete differential privacy
- ε = 10 is hardly worth anything, since e^{10} = ~22000

- ε = 0 means we would have complete differential privacy
- ε = 10 is hardly worth anything, since e^{10} = ~22000
- Next up: composition of mechanisms

Composition

- A way of measuring privacy of mechanisms together

Composition

- A way of measuring privacy of mechanisms together
- What do you think that the total privacy of the use of n privacy mechanisms used on the same database is, with respective differential privacy ε_1 , ε_2 , ..., ε_n ?

Composition

- A way of measuring privacy of mechanisms together
- What do you think that the total privacy of the use of n privacy mechanisms used on the same database is, with respective differential privacy ε_1 , ε_2 , ..., ε_n ?
 - a) max(ε_i) over all 1 <= i <= n
 - **b)** $\prod_{i=1}^{n} \varepsilon_{i}$
 - c) $\sum_{i=1}^{n} \varepsilon_i$

Sequential Composition

- Different mechanisms used on same database

Sequential Composition

- Different mechanisms used on same database
- No restrictions on mechanisms or data used for mechanisms

- Different mechanisms used on same database
- No restrictions on mechanisms or data used for mechanisms
- Mechanisms can be computed after each other

- Different mechanisms used on same database
- No restrictions on mechanisms or data used for mechanisms
- Mechanisms can be computed after each other
- Example: first requesting the average age in a database, and then based on this requesting the percentage of people with a certain illness

Mathematical proof of privacy in sequential composition:

- write exp(x) for e^x
- databases A and B that differ in at most one entry
- write A ⊕ B for difference between A and B,
 |A ⊕ B| for number of entries different between A and B
- sequence of mechanisms M = {M_i}_{i=1}
- sequence r of outcomes r_i ∈ Range(M_i)
- write M_i^r for mechanism M_i supplied with r₁, . . . , r_{i-1}
- probability of output r from the sequence of M_i^r(A):

$$\mathbf{Pr}[M(A) = r] = \prod_{i} \mathbf{Pr}[M_i^r(A) = r_i]$$

Mathematical proof continued^[3]:

$$ext{Pr}[M(A) = r] = \prod_i ext{Pr}[M_i^r(A) = r_i] \leq \prod_i ext{Pr}[M_i^r(B) = r_i] imes \prod_i \exp(\epsilon_i imes |A \oplus B|) = \ ext{Pr}[M(B) = r] imes \expigg(\sum_i \epsilon_iigg)$$

[3] Frank D. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data analysis. In *Proceedings of the 2009 ACM SIG-MOD International Conference on Management of Data*, SIGMOD '09, page 19–30, New York, NY, USA, 2009. Association for Computing Machinery.

Mathematical proof continued^[3]:

$$\Pr[M(A) = r] = \prod_i \Pr[M_i^r(A) = r_i] \leq \prod_i \Pr[M_i^r(B) = r_i] imes \prod_i \exp(\epsilon_i imes |A \oplus B|) =
onumber \ \Pr[M(B) = r] imes \expigg(\sum_i \epsilon_iigg)$$

This means that the total privacy of mechanisms used sequentially is equal to the sum of their ε -values.

[3] Frank D. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIG-MOD International Conference on Management of Data, SIGMOD '09, page 19–30, New York, NY, USA, 2009. Association for Computing Machinery.

Parallel Composition

- Different mechanisms used on same database

- Different mechanisms used on same database
- Restriction: datasets on which mechanisms are used must be disjoint

- Different mechanisms used on same database
- Restriction: datasets on which mechanisms are used must be disjoint
- Mechanisms can be computed in parallel, since no mechanism gives information about the other one anyways

- Different mechanisms used on same database
- Restriction: datasets on which mechanisms are used must be disjoint
- Mechanisms can be computed in parallel, since no mechanism gives information about the other one anyways
- Example: requesting the average age of customers in a database, while also requesting the average cost of products in the database

- Different mechanisms used on same database
- Restriction: datasets on which mechanisms are used must be disjoint
- Mechanisms can be computed in parallel, since no mechanism gives information about the other one anyways
- Example: requesting the average age of customers in a database, while also requesting the average cost of products in the database
- For the mathematical proof, we consider the mechanisms computed sequentially (should not matter given restriction)

Mathematical proof of privacy in sequential composition:

- write exp(x) for e^x
- databases A and B that differ in at most one entry
- write A ⊕ B for difference between A and B,
 |A ⊕ B| for number of entries different between A and B
- split input domain into $D = D_1 \cup D_2 \cup ...$ where all D_i are disjoint
- write $A_i = A \cap D_i$ and $B = B \cap D_i$ to split A and B into disjoint subsets
- sequence of mechanisms M = {M_i}_{i=1}
- sequence r of outcomes r_i ∈ Range(M_i)
- write M_i^r for mechanism \dot{M}_i supplied with r_1, \ldots, r_{i-1}
- probability of output r from the sequence of M_i^r(A):

$$\mathbf{Pr}[M(A) = r] = \prod_{i} \mathbf{Pr}[M_i^r(A_i) = r_i]$$

Mathematical proof continued^[3]:

$$\begin{aligned} &\mathbf{Pr}[M(A) = r] &= & \prod \mathbf{Pr}[M_i^r(A_i) = r_i] \\ &\leq & \prod_i \mathbf{Pr}[M_i^r(B_i) = r_i] \times \prod_i \exp(\epsilon_i \times |A_i \oplus B_i|) \\ &\leq & \prod_i \mathbf{Pr}[M_i^r(B_i) = r_i] \times \exp(\epsilon_j \times |A \oplus B|) &\leq & \mathbf{Pr}[M(B) = r] \times \max_l \{\epsilon_l\} \end{aligned}$$

[3] Frank D. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data analysis. In *Proceedings of the 2009 ACM SIG-MOD International Conference on Management of Data*, SIGMOD '09, page 19–30, New York, NY, USA, 2009. Association for Computing Machinery.

Mathematical proof continued^[3]:

$$\begin{aligned} & \mathbf{Pr}[M(A) = r] &= \prod \mathbf{Pr}[M_i^r(A_i) = r_i] \\ & \leq \prod_i \mathbf{Pr}[M_i^r(B_i) = r_i] \times \prod_i \exp(\epsilon_i \times |A_i \oplus B_i|) \\ & \leq \prod_i \mathbf{Pr}[M_i^r(B_i) = r_i] \times \exp(\epsilon_j \times |A \oplus B|) & \leq \mathbf{Pr}[M(B) = r] \times \max_i \{\epsilon_i\} \end{aligned}$$

This means that the total privacy of mechanisms used in parallel is equal to the biggest ε -value of all mechanisms.

[3] Frank D. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIG-MOD International Conference on Management of Data, SIGMOD '09, page 19–30, New York, NY, USA, 2009. Association for Computing Machinery.

Group Privacy

Definition

Group Privacy

Definition

- Privacy of a group of individuals

Group Privacy

Definition

- Privacy of a group of individuals
- Does information about a group of c people leak?

Group Privacy

Definition

- Privacy of a group of individuals
- Does information about a group of c people leak?
- For example: can you guess the age of a group of 3 people with high probability, when requesting the average age of everyone in the database?

Group Privacy

Definition

- Privacy of a group of individuals
- Does information about a group of c people leak?
- For example: can you guess the age of a group of 3 people with high probability, when requesting the average age of everyone in the database?
- Easily extended from definition of ε -differential privacy

Just apply the definition of ε -differential privacy repeatedly.

Just apply the definition of ε -differential privacy repeatedly.

For c individuals:

$$Pr[K(D_1) \in S] \le e^{c\varepsilon} \cdot Pr[K(D_2) \in S]$$

Just apply the definition of ε -differential privacy repeatedly.

For c individuals:

$$Pr[K(D_1) \in S] \le e^{c\varepsilon} \cdot Pr[K(D_2) \in S]$$

So this gives c*ε-differential privacy.

Definition

Definition

- Adds noise to analytical data in the form of the Laplace distribution

Definition

- Adds noise to analytical data in the form of the Laplace distribution
- Desired ε -differential privacy can be exactly chosen

Definition

- Adds noise to analytical data in the form of the Laplace distribution
- Desired ε -differential privacy can be exactly chosen
- Variations like Gaussian Mechanism exist

We must first define the sensitivity of a function:

$$\Delta f = \max_{D_1, D_2} \|f(D_1) - f(D_2)\|_1$$

We must first define the sensitivity of a function:

$$\Delta f = \max_{D_1, D_2} \|f(D_1) - f(D_2)\|_1$$

This is basically the largest difference between two outcomes of a function on all possible pairs of datasets that differ in one entry.

We must first define the sensitivity of a function:

$$\Delta f = \max_{D_1, D_2} \|f(D_1) - f(D_2)\|_1$$

This is basically the largest difference between two outcomes of a function on all possible pairs of datasets that differ in one entry.

An example:

When requesting the total number of women in a database, the sensitivity of the function is 1, since two databases that differ in one entry can have 1 woman more or less.

We must first define the sensitivity of a function:

$$\Delta f = \max_{D_1, D_2} \|f(D_1) - f(D_2)\|_1$$

This is basically the largest difference between two outcomes of a function on all possible pairs of datasets that differ in one entry.

Using this, we can define the Laplace Mechanism for a desired differential privacy:

$$\mathcal{M}_{ ext{Lap}}(x,f,\epsilon) = f(x) + ext{Lap}\left(\mu = 0, b = rac{\Delta f}{\epsilon}
ight)$$

We can now prove that this indeed gives the desired differential privacy using the following definition for ε -differential privacy:

$$\frac{Pr[K(D_1) \in S]}{Pr[K(D_2) \in S]}) \leq exp(\varepsilon)$$

Complete proof is on the next slide.

$$\Delta f = \max_{D_1, D_2} \|f(D_1) - f(D_2)\|_1$$

$$\frac{Pr[K(D_1) \in S]}{Pr[K(D_2) \in S]}) \leq exp(\varepsilon)$$

$$\Delta f = \max_{D_1, D_2} \|f(D_1) - f(D_2)\|_1 \qquad \frac{Pr[K(D_1) \in S]}{Pr[K(D_2) \in S]} \leq exp(\epsilon) \qquad \mathcal{M}_{Lap}(x, f, \epsilon) = f(x) + Lap\left(\mu = 0, b = \frac{\Delta f}{\epsilon}\right)$$

Proof:

$$\frac{\Pr\left(\mathcal{M}_{\operatorname{Lap}}\left(x,f,\epsilon\right)=r\right)}{\Pr\left(\mathcal{M}_{\operatorname{Lap}}\left(y,f,\epsilon\right)=r\right)} = \frac{\Pr\left(f(x) + \operatorname{Lap}\left(0,\frac{\Delta f}{\epsilon}\right)=r\right)}{\Pr\left(f(y) + \operatorname{Lap}\left(0,\frac{\Delta f}{\epsilon}\right)=r\right)} = \frac{\Pr\left(\operatorname{Lap}\left(0,\frac{\Delta f}{\epsilon}\right)=r - f(x)\right)}{\Pr\left(\operatorname{Lap}\left(0,\frac{\Delta f}{\epsilon}\right)=r - f(y)\right)}$$

$$= \frac{\frac{1}{2b}\exp\left(-\frac{|r - f(x)|}{b}\right)}{\frac{1}{2b}\exp\left(-\frac{|r - f(y)|}{b}\right)} = \exp\left(\frac{|r - f(y)| - |r - f(x)|}{b}\right) \le \exp\left(\frac{|f(y) - f(x)|}{b}\right) \le \exp\left(\frac{\Delta f}{b}\right) = \exp(\epsilon)$$

Mathematical notation

$$\Delta f = \max_{D_1, D_2} \|f(D_1) - f(D_2)\|_1 \qquad \frac{Pr[K(D_1) \in S]}{Pr[K(D_2) \in S]}) \leq exp(\epsilon) \qquad \mathcal{M}_{Lap}(x, f, \epsilon) = f(x) + Lap\left(\mu = 0, b = \frac{\Delta f}{\epsilon}\right)$$

Proof:

$$\frac{\Pr\left(\mathcal{M}_{\operatorname{Lap}}\left(x,f,\epsilon\right)=r\right)}{\Pr\left(\mathcal{M}_{\operatorname{Lap}}\left(y,f,\epsilon\right)=r\right)} = \frac{\Pr\left(f(x) + \operatorname{Lap}\left(0,\frac{\Delta f}{\epsilon}\right)=r\right)}{\Pr\left(f(y) + \operatorname{Lap}\left(0,\frac{\Delta f}{\epsilon}\right)=r\right)} = \frac{\Pr\left(\operatorname{Lap}\left(0,\frac{\Delta f}{\epsilon}\right)=r - f(x)\right)}{\Pr\left(\operatorname{Lap}\left(0,\frac{\Delta f}{\epsilon}\right)=r - f(y)\right)}$$

$$= \frac{\frac{1}{2b}\exp\left(-\frac{|r - f(x)|}{b}\right)}{\frac{1}{2b}\exp\left(-\frac{|r - f(y)|}{b}\right)} = \exp\left(\frac{|r - f(y)| - |r - f(x)|}{b}\right) \le \exp\left(\frac{|f(y) - f(x)|}{b}\right) \le \exp\left(\frac{\Delta f}{b}\right) = \exp(\epsilon)$$

So we can exactly choose what privacy we want to provide!

Randomised Response

In general

In general

- For asking questions about individuals in the database

In general

- For asking questions about individuals in the database
- Probability p of giving a truthful response, probability 1-p of giving a random response

In general

- For asking questions about individuals in the database
- Probability p of giving a truthful response, probability 1-p of giving a random response
- Allows users the possibility to deny that data given about them was truthful

Randomised Response

Limitations

Limitations

- Probability of giving a truthful answer must be decently high to ensure accuracy of analytical data

Limitations

- Probability of giving a truthful answer must be decently high to ensure accuracy of analytical data
- This can impact the whole privacy goal of this mechanism

- Collecting telemetry data in Windows:

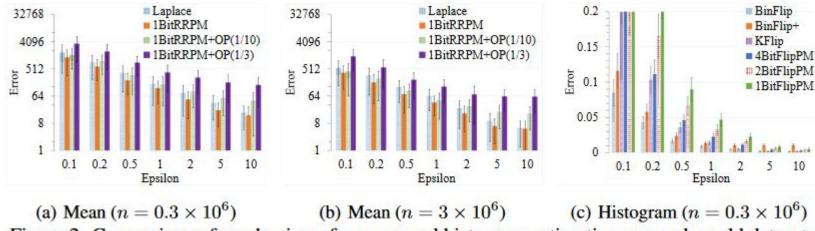
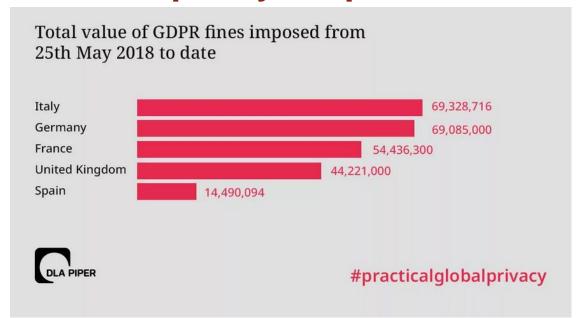


Figure 2: Comparison of mechanisms for mean and histogram estimations on real-world datasets

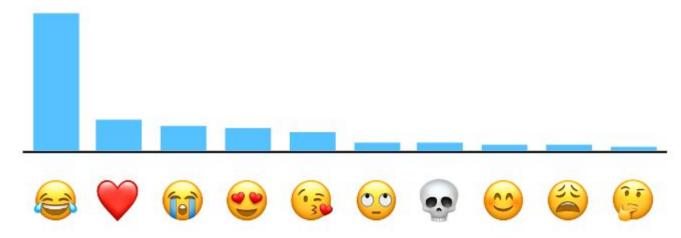
https://www.microsoft.com/en-us/research/publication/collecting-telemetry-data-privately/

Differential privacy is important:



https://www.dlapiper.com/en-us/insights/publications/2021/01/dla-piper-gdpr-fines-and-data-breach-survey-2021

Most popular emojis by Count Mean Sketch used by Apple:

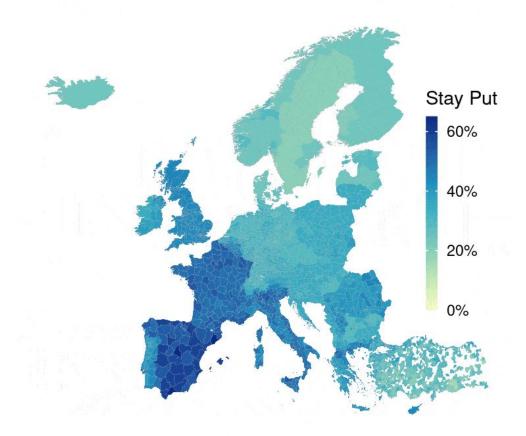


The Count Mean Sketch technique allows Apple to determine the most popular emoji to help design better ways to find and use our favorite emoji. The top emoji for US English speakers contained some surprising favorites.

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf

Date: 2020-04-02

Even Facebook uses it:
 Location tracking during COVID



https://research.facebook.com/blog/2020/06/protecting-privacy-in-facebook-mobility-data-during-the-covid-19-response/

Do/would you use one of these methods?

Questions?