Master’s thesis

Web Services Security

Robert-Jan Boezeman

University of Nijmegen:
Security of Systems (SoS) group
University of Oxford:
Software Engineering Programme of the
Oxford University Computing Laboratory

June 10, 2003






Contents

Introduction

1.1 Webservices . ... .. . .. . . . ... ...
1.2 Architecture of web services . . . . . .. ... ... ...
1.3 Research and the problem description . . .. ... ... .....

The Simple Object Access Protocol

2.1 Using SOAP . . . . ..
2.1.1 Structure and syntax . . . . . . . ... ..o

2.2 Message Exchange Patterns . . . . ... ... ... ........
2.2.1 Web Services Description Language (WSDL) . . . . ...
2.2.2  Web Service Conversation Language (WSCL) . . . . . ..
2.2.3 Business Process Execution Language (BPEL) . . .. ..

2.3 Shortcomings of SOAP . . . . ... ... ... ... ... .. ...
2.3.1 Reliablemessaging . . . . . ... ... ... ... ..
2.3.2 Attachments . ... ... ... ... ... ... ...
2.3.3 Routing/intermediaries . . ... ... ... .. ... ...
2.3.4 Quality of Service . . ... ... ... ... ...,
2.3.5 Transaction support . . . . .. .. .. ... ... ...
2.3.6 Security . . . ... ...

SOAP security extensions

3.1 Securing SOAP . . . . . ...

32 SOAPD-Sig. . . . . . o e
3.2.1 Issues with creation/validation . . .. .. .. ... ... ..

3.3 XML-Encryption . . . .. .. ... ...
3.3.1 Issues with XML-Encryption . . ... ...........

The System at the SEP

4.1 Functionality . . . . . . . . . .. .

4.2 Previous situation . . . . ... .. .. ...

4.3 Design . . . . .. e

44 TImprovement . . . . . . .. .. ...

4.5 Specifications and models . . . . . ... ... ... ...
4.5.1 Communicationmodel . . . . . . . ... ... ... ....
4.5.2 The main web service . . ... .. .. ... .. ......
4.5.3 The Client web service web service . . .. ... .. ...
4.5.4 The Print webservice . . . . . . ... . ... ... ....
4.5.5 The Password web service . . . ... ... ........



0 424 # g a ®w o» X

4.5.6 The Database web service . . . . ... ... ... ....
4.5.7 The Security web service . . . . . . ... ... ... ...
458 Deployment . . .. ... ... ... L.
4.5.9 Faultsanderrors . . . ... ... ... ... ... ...,
4.5.10 Communication in sequence . . . . . . . . . . . ... ...
4.6 Risks and securityissues . . . . . . .. ..o
4.6.1 Performance . .. ... .. ... ... ... ... ..
4.6.2 Implementation/schedule risks . . .. .. ... ... ...
4.6.3 Securityrisks . . . ... ..o Lo

Setting up a session

5.1 Need for secured SOAP . . .. .. ... ... ... .. ...

5.2 Security context . . . .. ... oL
5.2.1 Non-encrypted content within context . . .. .. .. ...
5.2.2 Non-encrypted sessionsetup . . . . . . . ... ... ....
5.2.3 Encrypted content within context . . . . . ... ... ...
5.2.4 Encrypted sessionsetup . . . ... ... ... ... ...

5.3 Analysing SOAP session with Casper . . . . ... ... ... ...

Problems with the security extensions

6.1 Security context . . . .. .. ... L oo

6.2 Confidentiality issues . . . . . . . . ... ... ...
6.2.1 SOAP envelope counting . . . . . . ... ... .......
6.2.2 Message structure (XML-Encryption granularity) . . . . .
6.2.3 XML specifications . . . . . ... ..o

Conclusion

Glossary

Secure SOAP sequence
Sequence diagram
Sequence diagram
Sequence diagram
Sequence diagram

Sequence diagram

SOAP example

63

65

69

73

77

81

85

87



List of Figures

1.1
2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3

6.1

B.1
C.1
D.1
E.1l
F.1

G.1

The discovery of web services and the SOAP stack. . . . . .. .. 13
A SOAP example of a flight reservation . . ... ... ... ... 16
A SOAP envelope containing a security element . . . . . . .. .. 22
An example of a digital signature within a SOAP envelope. . . . 23
An example of a SOAP envelope with an encrypted body. . . . . 27
Use case diagram of the different functionalities of the system. . 30
Component diagram of current systems at SEP . . . . ... ... 30
Component diagram of current systems at SEP with web services 31
Architecture of web services setup . . . . .. ... ..o ... 33
The main ComlabWebService class which every web service extends 34
Legend for the UML diagrams . . . . . . . ... ... ... .... 35
The Client web service web service and its associations. . . . . . 36
The Print web service and its associations. . . . . . ... . ... 38
The Password web service and its associations. . . ... .. .. 40
The Database web service and its associations.. . . . . . . ... 41
The Security web service and its associations. . . . . ... .. .. 42
An example of a SOAP fault message bound to HTTP . . . . . . 44
An example of the response message sent to setup a session. . . . 51
The session protocol to setup an non-encrypted session. . . . . . 52
An example of a response with encrypted content . . . . . . . .. 53
An example of a SOAP request. . . . . . ... ... .. ... 60
Sequence diagram of how a session is setup. . . . . . . .. . ... 67
Client web service - Print web service sequence diagram . . . . . 71
Client web service - Password web service sequence diagram . . . 74
Print web service - Database web service sequence diagram . . . 78

Password web service - Database web service sequence diagram . 82

Security web service sequence diagram . . . . . ... ... ... 86






Abstract

This thesis describes the different security aspects of web services and the tech-
nologies they use. It describes a framework to introduce message level security
to the Simple Object Access Protocol (SOAP), the protocol used by web ser-
vices. This is done by using digital signatures and the encryption of elements of
SOAP elements to setup a security context. Furthermore, this thesis describes a
system designed for the Software Engineering Programme (SEP) of the Oxford
University Computing Laboratory (OUCL). The purpose of this system is to
enable an end-user, via a website, to locate documents on other servers and to
access a database on another server. Once the documents have been located,
the web services provide the end-user with a way to create a printable format
of each document and to send it to different printers. Also, the web services
enable the end-user to transfer a password file from the database on one server
to another server in order to merge the retrieved password file with the exist-
ing one. Once they are merged a web service can deploy the new password
file. Finally, this thesis discusses the problems with certain security aspects of
achieving message level security within SOAP. U
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Chapter 1

Introduction

This thesis is a report of the research done for the Software Engineering Pro-
gramme (SEP) of the Oxford University Computing Laboratory (OUCL). It
describes the security aspects of web services and the technologies they use. It
describes a framework to introduce message level security to the Simple Object
Access Protocol (SOAP), the protocol used by web services. This is done by
using the latest specifications® to incorporate digital signatures and the encryp-
tion of elements of SOAP to setup a security context. Furthermore, this thesis
describes a system, designed for the SEP, that makes use of these specifications
and a security context to setup a secure network of web services. The purpose
of this system is to enable an end-user to locate documents via a website on
other servers and to access a database on another server. Once the documents
have been located, the web services provide the end-user with a way to create
a printable format of each document and to send it to different printers. Also,
the web services enable the end-user to transfer a password file from a database
on one server to another server in order to merge the retrieved password file
with the existing one. Once they are merged, a web service can deploy the new
password file. First, this introduction will give a general introduction to web
services and the way they evolved from XML-Remote Procedure Calls into the
SOAP protocol and why SOAP is by far the most widely used protocol by web
services.

1.1 Web services

A web service is an application running on a computing system that can be
accessed from a network. It can perform any number of operations and can
be accessed using messages sent to it, that are described using the eXtensible
Markup Language (XML, see [1]) or an XML-based protocol, such as SOAP.
Before SOAP was developed, XML-based implementations of remote procedure
calls were already in use (the protocol being named XML-RPC). Unfortunately
XML-RPC was quite verbose and did not have good data typing. Its successor
is SOAP, the de facto standard for web services today. The protocols used by
web services are highly standardised and most of them are being developed and

IMore on these later.

11



12

CHAPTER 1. INTRODUCTION

maintained by the World Wide Web Consortium (W3C)? and the Organization
for the Advancement of Structured Information Standards (OASIS).

Web services provide a way to do distributed computing in a platform-independent
way. In having this property, they can connect different computing systems so
that they are able to use each others resources (such as information or pro-
cessing time). There are other technologies available that do exactly the same
thing, however web services have certain benefits over other technologies:

e Web services are very suitable to integrate completely different comput-

ing systems which each other, for example Unix platforms and Windows
platforms. They try to achieve high levels of interoperability between ap-
plications by using Web standards. This advantage is one of the biggest
appeals for big IT companies such as IBM and Microsoft to improve e-
business.

Web services are very fast and cheap to develop. There are many tools
available that make use of a certain description of a web service, specified
in the Web Service Description Language (WSDL)3. For an explanation on
how WSDL works, see [3]. Using such a description, these tools generate
nearly compilable code in a certain programming language; for example
WSDL2Java is a tool that generates Java code from a WSDL-description.
The developer only has to fill in the blanks and the web service has been
created. There are even more advanced packages such as Apache Axis*
that enable developers not having to think of SOAP or the other tech-
nologies web services use. They just write the operations they want their
web services to have and Axis builds web services out of those operations.

Web services are easy to deploy. There are various containers for different
transport layer protocols such as FTP, SMTP and especially HTTP to
quickly deploy a web service. With most of them, simply inserting the
web service in the container and reloading the container is sufficient.

Web services are easy to discover and invoke. Since every web service
that uses a Remote Procedure Call message exhange model® can have a
WSDL-description, these descriptions can be published in registries. The
advantage of doing this is that clients of web services can retrieve these
descriptions and invoke them accordingly. An example of such a registry
is a registry that conforms to the “Universal Description, Discovery and
Integration” or UDDI standard, see [4]. UDDI is a standard that defines
how a (client) web service can publish, find and bind descriptions of web
services. In binding a description, a client knows exactly how to invoke a
web service. More information on binding a description can be found in
section 2.2.1.

These advantages combined let endpoints (businesses) connect their computer
systems after they have been designed and built. Inter-application communica-
tion across a network (the Internet) can be established at run-time instead of

2Website can be found at http://www.w3c.org/

3WSDL is also developed by the W3C, see [2] for a formal description
4For Apache Axis, see http://ws.apache.org/axis/index.html

5More on this later.
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having to design it, resulting in loosely coupled systems. Each application can
be changed or modified more easily without upsetting the communication with
other applications.

SOAP, WSDL and UDDI are the cornerstones of web services today. The rea-
son that computer systems can be connected in such a way, is a result of the
standards emerging from organisations such as the W3C and OASISS. As long
as everybody uses these standards, the level of interoperability stays the same.

1.2 Architecture of web services

Web services use open Internet standards as the basis of communication. Con-
sider the following diagrams:

registry
Extensions
i SOAP
find /?)un q p@ confirmation =y
'+ response ' Transport  FTP, SMTP
P :
service requestor \/’ service provider Layer HTTP
regquest Wire

Figure 1.1: The discovery of web services and the SOAP stack.

The yellow parts depict the research done for the SEP, the topics discussed by
this thesis. The left figure illustrates how web services can be found and invoked
dynamically by a service requestor. The service provider publishes a description
of the operations it provides to a registry. Whenever a service requestor needs to
invoke one of those operations, it can look them up in the registry. A requestor
retrieves the WSDL-description and in doing so, it knows exactly how to call
the operation. It knows the format and the syntax of each message/request it
can send to the provider. This setup is very common in the web services world.
An example of such a registry is the “IBM UDDI registry”’. Requests and
responses to web services are carried over standard transport layer protocols
such as SMTP, FTP and HTTP but are protocol independent, a simple TCP-
socket connection can be sufficient. SSL can be added to that stack as an option
to increase the level of security. There is a paper [5] about SOAP and the use of
digital signatures with SOAP in combination with SSL to take care of security
issues such as authentication, integrity, confidentiality and non-repudiation. In
many cases this gives a good enough solution for secure web services, however
not always. More on this later.

6Website can be found at http://www.oasis-open.org/
"The IBM UDDI can be found at http://www-3.ibm.com/services/uddi/
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1.3 Research and the problem description

This thesis is a report of the research done for the SEP and has the following
topics:

e It focusses on the communication between the service requestor and the
service provider and how the proposed security extensions can be used
or improved upon to establish secure communication between them. The
way web services can be published and found is beyond the scope of the
research done for the SEP. The question here was how the communication
between the service requestor and the service provider works and how it
can be secured.

e To do so, it gives a thorough analysis of SOAP in chapter 2 and the way it
binds to the transport layer protocols. An important part of the research
was to analyse SOAP and to determine if web services and SOAP can be
used to design a system for the SEP to connect their computing systems
that they use for their administration. The system designed and built
for the SEP is discussed in detail in chapter 4. The question here was
whether or not it was possible to design a secure network of web services.
The (security) requirements for this system have been analysed and can
be found in [6].

e Finally, the proposed (security) extensions to SOAP, discussed in chapter
3 and how they can be used to setup a session/security context within
SOAP are discussed in detail. It was a big part of the research done
for the SEP. The system for the SEP uses such a SOAP session and is
discussed in chapter 5. The last chapter draws conclusions about the
performed research and the results.



Chapter 2

The Simple Object Access
Protocol

The Simple Object Access Protocol (SOAP) is the standard protocol used by
web services today. It is an XML-based messaging protocol that enables com-
puting systems to communicate with each other, without having to think of the
type of operating system or the environment each system is in. It is a lightweight
protocol of which the structure of the contents of messages can be defined by
the Web Services Description Language (WSDL) and XML Schemas!. This
chapter explains what the structure and syntax of a SOAP message is, how
SOAP messages must be processed, which features SOAP has, how it binds to
the underlying protocols and how peers can use these protocols when exchang-
ing SOAP messages. The focus here lies on the advantages and disadvantages.
Finally, a brief explanation of WSDL, the Web Services Conversation Language
(WSCL) and the Business Process Execution Language (BPEL) is given and
the ongoing work on SOAP.

2.1 Using SOAP

SOAP is a messaging protocol designed to let a SOAP-message sender and a
SOAP-message receiver exchange information, without having to know any de-
tails about each other on forehand. It is also a simple protocol because it leaves
out many features that can be found in distributed systems, such as reliability,
attachments, quality of service, routing, privacy and security. Instead, there are
extensions to SOAP to cope with some or parts of those features. This makes
SOAP a very small protocol and makes it possible for designers to completely
define their own applications with SOAP. Furthermore, SOAP is extensible via
the use of XML. This means that SOAP can be used/adapted for any situa-
tion or application, without going beyond the boundaries of the latest SOAP
specification? by the W3C, see [7].

1How XML and XML Schemas work are beyond the scope of this thesis, more information
on both of them can be found in [1]
2The latest recommendation is version 1.2 at the time of this writing.

15
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SOAP consists of three parts:

e An envelope in which you can define what is inside a SOAP message and
how you must process it.

e A set of encoding rules for defining and processing datatypes that can be
defined using XML Schemas.

¢ A method of making Remote Procedure Calls and Reponses to those calls.

2.1.1 Structure and syntax

A SOAP message consists of an envelope with two sub-elements, a header and a
body. The header element is optional and is included in the SOAP specification
to make it possible to include information or meta-data about the contents of
the message. This can be anything from routing information (as used in the
routing extension to SOAP [8], more on this later) to processing rules on how
to process the SOAP message. When using a header, SOAP can be extended
so it can be used in various scenarios. Note that the version 1.0 in the example
is the version of XML, not the version of SOAP.

<?xml version=’1.0’ 7>
<env:Envelope xmlns:env="http://www.w3.0rg/2003/05/soap-envelope">
<env:Header>
<m:reservation xmlns:m="http://www.ox.ac.uk/reservation"
env:actor="http://www.ox.ac.uk/reservation"
env:mustUnderstand="true">
<dateAndTime>2003-06-12T13:36:50.000-05:00</dateAndTime>
<passenger env:mustUnderstand="true">
<name>Robert-Jan Marijn Boezeman<name>
</passenger>
</m:reservation>
</env:Header>
<env:Body>
<p:itinerary xmlns:p="http://www.comlab.ox.ac.uk/reservation/travel">
<p:departure>
<p:departing>AMS</p:departing>
</p:departure>
<p:return>
<p:arriving>LHR</p:arriving>
</p:return>
</p:itinerary>
</env:Body>
</env:Envelope>

Figure 2.1: A SOAP example of a flight reservation

The (mandatory) body element of a SOAP envelope contains the actual in-
formation being transferred, intended to be processed by the final recipient
of the SOAP message. However, the SOAP specification does not say any-
thing about the structure and syntax of the sub-elements of the header or the
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body element. In fact, SOAP can be used to exchange any XML-document
as long as it is well-formed XML. Appendix H illustrates a SOAP envelope
with a header and a body element with attributes. As with normal XML, an
element of a SOAP envelope can have zero or more attributes, giving more in-
formation about the element or referencing others. In the example the envelope
itself is in the namespace http://www.w3.0org/2003/05/soap-envelope, indi-
cating which version of SOAP is used. A SOAP application must be able to
process all SOAP namespaces in messages that it receives. Whenever a mes-
sage contains an invalid namespace in the SOAP parts, the application can
discard the message as invalid or send a SOAP-fault message back, more on
this later. After the <env:Envelope> element, the optional <env:Header> el-
ement contains three sub-elements which are relevant to the application, not
to SOAP itself. Therefore those elements can exist in their own namespace.
The <m:reservation> element has two attributes: the actor-attribute and the
mustUnderstand-attribute. The actor-attribute indicates the final actor that
is supposed to process that header element. The mustUnderstand-attribute
means that the header element has to be understood by the final recipient, it is
not optional. Both attributes are in the same namespace as the envelope itself,
therefore they are a part of the SOAP communication and not only intended
for the final recipient. If there are intermediaries involved, any header element
may be removed or changed by an intermediary.

2.2 Message Exchange Patterns

SOAP is a message exchange protocol that can have an unlimited number of
setups, for example one-way messaging, request/response messages and conver-
sations. SOAP itself does not define a specific way, it is essentially designed
for sending a single message from one sender to a receiver. However, it can
be used for various message exchange patterns. With web services this is done
via the use of the Web Services Description Language (WSDL) or Web Services
Conversation Language (WSCL). However WSCL is, at the time of this writing,
being superceded by the Web Services Choreography Interface (WSCI) which
in its turn is being superceded by the Business Process Execution Language
(BPEL). Keeping up with these seems an endless challenge.

2.2.1 Web Services Description Language (WSDL)

SOAP itself does not provide a way of predefining the format of a particular
message. When an application wants to publish a service to the outside world,
users of those services must know exactly how to invoke them. WSDL has
been designed specifically for that purpose. It is a language that describes the
format of the SOAP message a requestor must send in order for the recipient
web service to understand the message. Furthermore, WSDL defines how SOAP
can be used with the underlying protocols (such as SMTP, HTTP, etc.), where a
web service can be found, at which port and what operations there are available.
It defines four basic operations:

e One-way messaging, a client only sends information to a web service and
never receives any messages back.
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e Notification, the inverse of one-way messaging where a web service only
sends information to the client and never receives information back.

e Request/Response messaging, this is the most widely used setup, also
known as Remote Procedure Calls, where a client makes a request to a
service and gets a response back. WSDL defines the structure and syntax
of the requests and responses.

e Solicit/Response, the inverse of request/response messaging, the service
pushes output to the client and the client sends information back. Also,
WSDL defines the format of the messages.

These are the only methods of messaging WSDL provides. To go into detail
how exactly WSDL defines these methods or what the structure and syntax of
WSDL-definitions is, is not the purpose of this paper; just an understanding of
what WSDL does, will suffice. For more information on WSDL, please see [2]
or [3].

2.2.2 Web Service Conversation Language (WSCL)

Since WSDL only allows for four message exchange patterns, the W3C is deve-
loping WSCL. WSCL can be used to design entire “XML conversations”. With
SOAP, it defines the sequence of the XML documents being exchanged and
what the format of those documents must be. Using this language, requestors
and providers are no longer limited to two messages at a time. WSCL may use
WSDL as a building block to exchange those XML documents. WSCL is espe-
cially useful for business that want to describe their business processes. WSCL
is relatively new and it is hardly being used anywhere at the time of this writing.
It may be used to address the problem of providing support for transactions that
involve the exchange of multiple messages, one of the shortcomings of SOAP
see section 2.3. For more information on WSCL, please see [9].

2.2.3 Business Process Execution Language (BPEL)

BPEL is a new language for describing business processes that make use of
web services. With BPEL, business processes that consist of the sequential
operation of web services can be specified. It enables you to model a business
process in XML in such a way that the operations of web services are called
in the right order and with the right parameters. Where WSDL describes the
grammar of a single web service and its operations, BPEL enables a business to
combine several web services as one. This is a relatively new specification (May
2003) and provides the designers of web services with another way of having a
conversation between web services.

2.3 Shortcomings of SOAP

The intent of the designers of SOAP was to keep it a small protocol that could
be extended so that it can be used for any situation or application. Therefore,
SOAP has a number of shortcomings/features that it lacks. This section dis-
cusses which features it lacks and which of those are a part of the research. For
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some of these features, there are extensions to SOAP that try to take it into
account, but not for all of them:

2.3.1 Reliable messaging

Reliable messaging means that when a client and a web service are exchanging
messages, that it is possible to guarantee delivery. SOAP does not have any
method of detecting whether or not a message has been lost in transit nor does
it have a method of asking to resend a message. Also, when an adversarial
intermediary has duplicated a message and resends it (replay attack), there is
no method in SOAP to detect this. In chapter 5 a security context is introduced
where message numbers and session id’s are used to address these problems.

2.3.2 Attachments

Whenever two entities want to use SOAP to exchange non-XML or binary data,
there is no way in SOAP to do this. There is already a preliminary specification
from the W3C, see [10]. Within this specification, content is encoded using
MIME. This shortcoming is not a part of the research done for this thesis.

2.3.3 Routing/intermediaries

SOAP messaging is specifically designed with intermediaries in mind. The ini-
tial SOAP specification [11] already mentiones SOAP applications processing
SOAP messages that have not reached their “ultimate destination”. The lat-
est version of SOAP [7] explains how intermediaries should perform relaying of
SOAP messages in terms of processing the headers of the messages. It does
not specify however what the structure and syntax of those routing elements is.
There is an extension designed by Microsoft that tries to incorporate routing
into SOAP, see [8]. When routing SOAP messages, new security issues arise.
These issues are also a part of the research done, please refer to section 5.1.

2.3.4 Quality of Service

When a business provides services to its customers, those customers can expect
a certain level of availability and performance from those services. At the time
of this writing SOAP does not have any mechanisms to provide for availability,
nor can it influence performance. During the design of the network of web
services for the SEP (see section 4) it was an important issue, because many
users may use the designed system. With web services, quality of service has to
be dealt with at another level.

2.3.5 Transaction support

Very often business processes involve exchanging multiple messages. Whenever
web services need to perform a group of operations it might be necessary to let
that group of operations succeed or fail. Currently SOAP does not provide a
way of doing this. Now, all transactions with SOAP are short in the way they
can only perform request/response transactions. WSCL (see 2.2.2) and BPEL
(see 2.2.3) might provide a solution to this problem in the future. It is not a
part of the research done for the SEP.
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2.3.6 Security

The latest version of SOAP [7] 3, does not specify how to handle authentication
in SOAP, nor does it predecessor version 1.1, see [11]. Other security related
issues such as integrity, confidentiality and non-repudiation have also not been
included in SOAP to keep it a lightweight protocol.

Furthermore, SOAP messaging is specifically designed with intermediaries in
mind. This means that SOAP messages traversing a certain path, can be
intercepted, read, modified and removed. However, the problem of making
SOAP messaging confidential between two computersystems can be addressed
by Transport Level Security (TLS) with for example Secure Sockets Layer (SSL).
SSL appends Message Authentication Codes (MAC’s) to the transmitted mes-
sages to ensure message integrity, which would preserve the integrity of the
SOAP messages transmitted with SSL as well.

However, when various intermediaries (may be adversaries) have to read the
SOAP message to determine who’s next in the communication chain, TLS is
not sufficient. When using SSL to encrypt communications, a separate SSL
connection between each pair of nodes on the path of the message is needed.
In this situation you would only have hop-to-hop security instead of end-to-end
security. It is possible that security has been breached on one of the web services
along the way. Therefore secure SOAP messaging is necessary. Also, the idea
behind SOAP messaging is to provide loosely coupled systems with a way that
they can communicate with each other in a connectionless way. For example,
there could be a message queue that a receiver has to process first. This way
the sender of a message must wait for the receiver to finish the queue, here SSL
is not a good solution to this problem.

This thesis goes indepth on the (proposed) extensions of SOAP to achieve a
higher level of security and is large part of the research done for the SEP.

3The latest version is 1.2, the working draft from the W3C



Chapter 3

SOAP security extensions

A big part of the research done for the Software Engineering Programme was
to build a secure network of web services. Since web services use SOAP, it
became necessary to find a way to use SOAP in a secure way. This chapter
gives a detailed analysis of the extensions to SOAP used to create secure SOAP
conversations. The security extensions combined, address the relevant security
issues. These issues are:

authentication
Web services communicating sensitive information with each other must
know without a doubt, that they are communicating with the web service
they think they are. Authentication is therefore needed at the message
level: this issue should not be resolved at another level, say for example the
transport layer, because SOAP messages may be routed through various
intermediaries.

integrity

In computing science, integrity means information sent from a sender
should arrive at its intended receiver in the exact the same way it was
sent. No adversary must be able to change its contents/meaning along
the way, without it being detected. For example, web services may per-
form critical tasks when receiving a SOAP message. This message must
not be altered along the way, making a web service perform the wrong
action. Therefore the integrity of SOAP messages must be preserved in
transit. The integrity of a SOAP message is preserved, when an adversary
fails to keep the validaty of a SOAP message when trying to change it.

confidentiality
Confidentiality means protecting information in a way that only the in-
tended receiver of the information can interpret its semantics. Web ser-
vices communicating sensitive information must be protected from ad-
versaries that are eavesdropping. Confidentiality for web services means
that SOAP messages must be protected (encrypted) so that eavesdropping
doesn’t result in exposure of the information being transmitted.

To take care of these security issues, the following specifications are relevant.
First, the specification of digitally signing a SOAP message (SOAP-DSIG). This
specification can be found in [5]. This paper extends XML Signatures [12] into
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SOAP to digitally sign messages. It provides a method of associating keys with
referenced data and is therefore used in SOAP-DSIG. To ensure that SOAP
messages stay confidential if needed, this thesis uses another specification-paper
produced by IBM and Microsoft, about web services and encryption [13]. These
additions to SOAP enable the web services in the system for the SEP to com-
municate in a secure enough way for that system, meaning having addressed
the risks as explained in [6]. That is, SOAP messages must be exchanged mak-
ing sure that a requesting web service has been authenticated, the integrity of
the message is preserved in transit and that the message is confidential. The
different elements added to the SOAP messages to make it secure are specified
in this chapter.

3.1 Securing SOAP

In this section, the way the SOAP messages will be constructed is explained.
Adding security to SOAP involves making use of a new element in the header of
a SOAP message, the <Security> element. This element can be separated from
the rest of the SOAP message, because it must be in the following namespace:
"http://schemas.xmlsoap.org/ws/2002/04/secext". The prefix wsse to the
<Security> element stands for “web services security extension”, but it may
be replaced by any other. To give an example of how this element resides in a
SOAP envelope, consider the following:

<?7xml version="1.0" encoding="utf-8"7>
<env:Envelope xmlns:env="http://www.w3.0rg/2001/12/soap-envelope"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
<env:Header>

<wsse:Security S:actor="..." S:mustUnderstand="...">
</wsse:Security>

</env:Header>
<env:Body>

</env:Body>
</env:Envelope>

Figure 3.1: A SOAP envelope containing a security element

The <Security> element is put in the header block of the SOAP envelope
and may have two attributes, in this case S:actor and S:mustUnderstand.
When a SOAP message is routed via various intermediaries, those intermediaries
are allowed to add and remove any elements contained within the header of
the SOAP message. The S:actor attribute indicates the intended recipient
of the <Security> element. If there are multiple <Security> elements in a
header block, only one may omit the S:actor attribute and no two <Security>
elements may have the same actors. The one omitting the S:actor attribute
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is intended to be processed by the final recipient. The S:mustUnderstand is
truly optional and indicates whether the intended actor must be able to process
the element. Note that these attributes are in the namespace of the envelope
itself and not the <Security> element, because the actors specified should be
the same actors as specified in the routing path, as defined in the WS-Routing
specification [8]. Within this <Security> element, it is possible to define digital
signatures and specify the way elements in the body are encrypted.

3.2 SOAP D-Sig

The SOAP D-Sig specification [5] is a document that describes the rules for the
syntax and the processing of an element that can be added to the header of
a SOAP message, to digitally sign portions of an envelope. The web services
built for the SEP make use of this specification to ensure secure communication
between each other. A digital signature included inside a SOAP message looks
like this:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header>
<wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
<ds:Signature xmlns:ds="http://www,w3.0org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm= "http://.../xml-exc-cl4n#"/>
<ds:SignatureMethod Algorithm= "http://.../xmldsig#hmac-shal"/>
<ds:Reference URI="#msgbody">
<Transforms>
<ds:XPath>child—or—self:RobertsOperation</ds:XPath>
</Transforms>
<ds:DigestMethod Algorithm= "http://.../2000/09/xmldsig#shal"/>
<ds:DigestValue>LyLsFOPi4wPU...</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>KiGF9JK7G4Tyu. . .</ds:SignatureValue>
<ds:KeyInfo>
<ds:KeyName>robert’s public key</ds:KeyName>
</ds:KeyInfo>
</ds:Signature>
</wsse:Security>
</S:Header>
<S:Body Id="msgbody">
<This is not signed/>
<RobertsOperation/>
</S:Body>
</S:Envelope>

Figure 3.2: An example of a digital signature within a SOAP envelope.

The interesting part of this example is the <Signature> element inside the
<Security> element. Within this signature element it is possible to specify
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which parts of the body are signed, which algorithms are used to create the
digests' and which key is used to calculate the signature value. The first sub-
element of the <ds:Signature> element is the <ds:SignedInfo> element. This
element specifies which canonicalisation method? is used to normalise the entire
<ds:SignedInfo> element. Normalisation has to be performed, because it is
possible for XML documents which are semantically equivalent to differ in phys-
ical representation. For example, they may differ in their structure, ordering of
attributes and character encoding. For the validation and creation of a digital
signature the input must be the same.

The next element, the <ds:SignatureMethod> specifies which algorithm is used
to calculate the signature value from the canonicalised <ds:SignedInfo> ele-
ment. The <ds:Reference> element has an URI attribute that refers to the
element being signed. This element can be included more than once in a
<ds:SignedInfo> to digitally sign multiple parts of a SOAP message. This
<ds:Reference> element contains a optional <Transform> element, which spec-
ifies the algorithm used to perform additional transformations on the informa-
tion being signed. In this example, an XPath transformation is included. This
one means that the element <RobertsOperation> is being signed instead of the
entire body element! This may pose a security risk, see 3.2.1. The other two
elements in the <ds:Reference> element are the digest method and the digest
value. Since a signature value is computed only over the <ds:SignedInfo> ele-
ment and not over the SOAP elements themself, each <ds:Reference> element
must have a digest method and a digest value specified. This digest value is dig-
itally signed to ensure that an adversary cannot change the data (of which the
digest value has been computed) en route without invalidating the signature.
After the <ds:SignedInfo> element, there must be a <ds:SignatureValue>
element which is the signed version of the entire <ds:SignedInfo> element.
The <ds:KeyInfo> element specifies which key is used to compute the signa-
ture value. Note that the method of calculating the signature value is specified
inside the <ds:SignedInfo> element, so that an malicious intermediary cannot
change it to a weaker algorithm without corrupting the signature value.

The Signature element

The <Signature> element in combination with the setup of a session® was a big

part of the research and is used as a part of the authentication mechanism in the
system for the SEP. In short: the web service creating a SOAP message signs
the body element with a nonce with its own private key and verifies the identity
of the creator of the SOAP message by using the creator’s public key. Note that
it cannot verify who sent the SOAP message, because it might have been resent
by a third party. Upon receiving this envelope, the recipient creates a random
session id and includes it, along with the same nonce and its identity, in a SOAP
envelope which is sent back. The first web service reads the session id and verifies
the nonce and responds by sending a SOAP envelope back in which the session
id is signed. In doing this, the first web service gives proof of possession of its
private key. The session is now setup and the recipient can perform its task. If
the private keys of both web services is not compromised, this is sufficient for

1Both parties in a session must decide whether or not to use a certain algorithm
2The method to “normalise” the XML to ensure that the digest is computed correctly
3 A session is setup to prevent replay attacks, as explained in more detail in section 5.3
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authentication. The recipient web service determines whether or not to trust a
public key by inspecting the list of public keys of web services that have access
to it.

3.2.1 Issues with creation/validation

There are a couple of considerations one should think of, when using a digi-
tal SOAP signature that could compromise the level of security. First of all,
when web services are communicating with each other, they must trust the se-
curity model they are using. The way they trust public keys, algorithms and
communication in general is very important. They must trust the policies they
establish for communication to be secure. When creating a signature, only what
is relevant and used by the receiving application should be signed. Also, the ap-
plication should only output data that was signed. The following considerations
become relevant when using the SOAP-DSig specification:

Transformations

Because it is possible with SOAP to perform transformations on the infor-
mation before creating a signature, the information in the SOAP message
that is lost by performing a transformation is not secured. Only the por-
tion from which a digest is calculated is secured. These transformations
can be any kind of transformation that is allowed in the SOAP-DSig spec-
ification: XSLT, XPointer, XPath or even a custom made one is possible.
In the example on page 23, the body element <This is not signed/>
is not signed, because there is an XPath transformation inside the sig-
nature that only takes the <RobertOperation/> element as input. The
<This is not signed/> element can be changed en route. Therefore,
only what is signed is secured.

Canonicalisation

One advantage of canonicalising the SOAP elements before calculating
a digest is that all references to elements or attributes and all names-
paces are replaced by their actual values. This ensures that those ele-
ments/attributes are also signed, even when the source being signed has
references to elements. If one does not use canonicalisation before creating
a signature value, those elements are not protected and can be changed in
transit.

Headers

By definition, headers of SOAP messages may be removed by intermedi-
aries at will. If an adversal intermediary decides to remove the signature
or elements relevant to it, the endpoint or application does not have a
method of validating the SOAP message. When the receiving application
processes the message without checking for signatures, integrity might be
compromised. Two applications communicating with each other should
agree upon signatures and signature methods.

Signature/digest methods
The strength of a particular signature depends heavily on the algorithms
used to create the signature and the message digest. Weak algorithms
may be broken or their output predicted. Also, the keys used for creating
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the signatures must be created using secure random numbers because
adversaries may predict them by reproducing the environment they were
created in resulting in exposure of the private key. Furthermore, long keys
are preferrable over short ones, because using a long key creates more
possibilities for an attacker to try and therefore makes it more difficult to
break.

3.3 XML-Encryption

To make SOAP message confidential for intermediaries, this thesis introduces
a subset of the XML Encryption standard [14] which has become a W3C rec-
ommendation December 2002. Since a SOAP envelope is just another version
of a XML-document, this specification can be used to encrypt elements inside
a SOAP envelope as well. The recommendation specifies how an element in a
XML-document may be encrypted and replaced by its original value. It makes
use of the <Security> element as well to specify which element is encrypted.
The encryption of SOAP elements is done by establishing a session key (using
a symmetric cipher) per session (explained in section 5.2), which can be used
to encrypt arbitrary elements of SOAP elements. A SOAP message that has an
encrypted element, is shown in figure 3.3. For brevity, the signature is omitted.

Note that in the example in figure 3.3 an encrypted key has also been in-
cluded in the SOAP envelope. However, this is optional. It is included only
to illustrate what XML Encryption provides. Using these encrypted elements,
the contents of parts of a SOAP message can be protected. The encrypted
elements must be in a specific namespace to conform with the specification:
“http://wuw.w3.org/2001/04/xmlenc#”. A list of every encrypted element is
kept in the <Security> element. Whenever a web service in the system for the
SEP needs to keep information confidential, it uses these encryption methods.
To improve the confidentiality, the entire body of the message is encrypted and
not only the “sensitive” elements.

3.3.1 Issues with XML-Encryption

Also with the XML-Encryption specification, there are a few issues and security
considerations to be thought of when using it. The following issues have become
relevant during the research and the design of the system of the SEP.

Using both signatures and encryption

The web services for the SEP use digital signatures as well as the encryption
of elements of SOAP. A new issue arises when there are encrypted elements
that must also be signed or vice versa. There is a difference between signing
encrypted elements or encrypting elements after a digital signature has been
computed. First of all, what has been done first, signing or encryption, has to
be very clear. Otherwise validation of a signature will fail. There is another
specification released (see [15]) by the W3C in december 2002 which specifies
the advantages and disadvantages of signing before encrypting and vica versa.
Also, it specifies how you can make it clear in a SOAP message what has been
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<?7xml version="1.0" encoding="utf-8"7>
<S:Envelope xmlns:S="http://www.w3.0rg/2001/12/soap-envelope"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
xmlns:xenc="http://wuw.w3.0rg/2001/04/xmlenc#">
<S:Header>

<wsse:Security>
<xenc:ReferencelList>
<xenc:DataReference URI="#body"/>
</xenc:ReferenceList>

</wsse:Security>

</S:Header>
<S:Body>
<EncryptedKey Id="sessionkey-582af99" xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1_5"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:KeyName>public key of recipient web service</ds:KeyName>
</ds:KeyInfo>
<CipherData><CipherValue>xy87BH65Vuyto89zabc</CipherValue></CipherData>
<CarriedKeyName>
sessionkey-582af99
</CarriedKeyName>
</EncryptedKey>

<xenc:EncryptedData Id="body">
<xenc:CipherData>
<xenc:CipherValue>J8Jh7HGF4H89Kh. . .</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>
</S:Body>
</S:Envelope>

Figure 3.3: An example of a SOAP envelope with an encrypted body.

done first. It is not necessarily the case that a signature has always been created
before elements are encrypted. For instance, when an actor A signs a message
and encrypts a few elements and actor B in its turn also signs the entire envelope
and includes the signature. Usually it is the case that encryption after signing
is desirable, because then it is clear that the signer understood the plaintext.
Another disadvantage of including a signature over encrypted elements is, that
the signature may reveal information about the encrypted elements so that
plain text guessing attacks might be possible by inspecting the digest value.
Such a value is always included in a signature. For the system of the SEP,
the web services will always sign a SOAP envelope after the body of the SOAP
message has been encrypted. Doing it this way means that an invalid or changed
SOAP message can be detected as soon as possible, without having to decrypt
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the encrypted elements first and also consumes less resources, which becomes
relevant when there are few resources available:

Availability /Denial of Service

Digitally signing and encrypting SOAP elements, consumes resources. It might
be possible for an adversary to send bogus SOAP messages with signatures and
encrypted elements to force the endpoint or application to spend many resources
before invalidating a message. Furthermore, the XML-Encryption specification
allows for recursive processing. The decryption of a symmetric key A might
require the decryption of another key B which in its turn needs key A. This
creates a deadlock situation and must be dealt with. Also, a SOAP message
might reference items necessary for decryption that take a lot of time to retrieve.
These three issues can heavily reduce the availability of a web service and might
even result in the denial of service of a “valid” SOAP message.



Chapter 4

The System at the SEP

A very large part of the research done for the SEP was to design a system
useful for the SEP by making use of web services. The purpose of the system
is to enable an end-user to locate documents via a website on various servers
and to access a database on another specific server. Once the documents have
been located, the system provides the end-user with a way to create a printable
format of each document and can send it to different printers. Also, the system
enables the end-user to transfer a password file from the database on one server
to another server in order to merge the retrieved password file with the existing
one. Once they are merged the new password file must be deployed.

The purpose of this chapter is to give an understanding of the process and the
design of the system and to explain the design decisions made. Furthermore,
after reading this chapter, one should be able to explain what the system does,
how it works and what its added value is to the SEP. The specification of each
component in the system can be found in section 4.5, along with its models and
diagrams. These models have been made using the Unified Modelling Language
(UML), for more information on the UML-diagrams used in this design please
refer to [16]. First, an introduction to the system is given, to provide a general
idea of how the end-user interacts with the system followed by how it is deployed
and designed.

4.1 Functionality

First the different functionalities that the end-user would benefit from having®,
are depicted in the diagram below. These functions were performed manually.
The system that is designed in this document implements them. The use case
diagram in figure 4.1 depicts the way the end-user sees and interacts with the
system. Note that the end-user does not see the security measures used by the
system?.

End-users have three pieces of functionality at their disposal:

e It can perform a passwordfile transfer from a database called the “Server
for Support for Learning and Teaching” database (SSTL-database).

1For the reasons why the end-user would benefit, see section 4.4
2End-users have no notion of the Security web service explained later in this chapter
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Figure 4.1: Use case diagram of the different functionalities of the system.

e It can view information on a specific course.
e It can print documents that belong to a certain course.

These are the three main functionalities of the system. There are also non-
functional ones such as scalability, availability, stability and ease of use. The
security requirements of this system are very also very important, because the
information being transferred is of a sensitive nature. All these requirements
have been analysed and documented in [6].

4.2 Previous situation

The existing computer systems and infrastructure to perform these tasks were
sufficient to perform these task manually. However, the information and data
needed to perform these tasks are distributed over different computer systems.
The SSTL-database for example, is running on a Solaris server called the sed.
This database was only easy accessable via a website. Also, the password files
that need to be changed and deployed regularly on another Solaris server called
the sef, are stored in the SSTL-database. The documents that belong to a
course are also stored on Solaris server sef. The diagram in figure 4.2 explains
the setup of the situation in more detail.
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Solaris server (softeng) Solaris server (sef) Solaris server (sed)
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B . Server : a course
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: password files Postscript -
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Encrypted
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Figure 4.2: Component diagram of current systems at SEP
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In the previous situation, the end-user had to log in to the server sed to manually
convert the documents to a printable format and to send them to a printer.
Furthermore, the password files had to be first retrieved from the database (via
the website) manually, copy-pasted from the page and sent to the administrator
of the sef via email.

4.3 Design

Since all the resources are distributed on different servers, web services were
very suitable to solve the inconveniences of the previous situation. This section
describes how a network of web services is built to perform the tasks. The web
services that implement the desired functionalities have to contact a separate
web service that is the only web service that has access to the SSTL-datbase.
The end-user never has access to it. A component diagram is drawn in figure 4.3
to give a general idea of how the web services are deployed on the Solaris servers.
It consists of five web services deployed on four different Solaris servers, all
communicating with each other. The diagram in figure 4.3 depicts the different
web services and their place in the system.

Solaris ser\)er (softeng) Solaris server (sef) Solaris server (sed)
T :
! . eb service :
HTTP \ Web | Web W TR RS SOAP Database : database
""" : ; - - View & Print - -
&HTML server | Service = >~ ! - > N
g | Client SOAP | W eb service | Web service : Encrypted
| various ost - passwords
l documents Ecript :
3 Y
A I o
SOAP Printer
Solaris server X
\ Security Web service SOAP
SOAP (web service)

Figure 4.3: Component diagram of current systems at SEP with web services

In abstract, these web services combined let an enduser specify which of the
documents on server sef are to be printed and how many times (performed by
the Print web service). Since all the information needed to perform that task
is dispersed on all the four different servers, the web services call each other to
retrieve information. Instead of just printing documents, another web service,
the Password web service, is deployed on server sef to transfer and deploy
password files. The database can be accessed when necessary by calling the
Database web service. Since web service are designed for program-to-program
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interaction, meaning the end-user does not directly contact them, the Client
web service is deployed on server softeng to interact with the end-user and to
make requests to the other web services.

In this network of web services, the Security web service (SWS) is trusted by all
the other web services. It provides the web services with a way to authenticate
each other. A more detailed description and explanation of this communication
model is given in chapter 4.5. Every web service holds a list of public keys of the
web services that have access to it. This list is maintained by the administrator
of the SWS per web service. All the lists are stored in a database on the
SWS. Whenever a list is changed by the administrator, the SWS contacts the
corresponding web service and updates its list. When a web service requests a
service from another, it sets up a session/security context to communicate with
it. Section 5.2 goes into detail on how such a session can be setup in order to
have a secure enough® information exchange.

4.4 Improvement

This system is an improvement for the situation in the SEP of the OQUCL.
Transferring password files by hand or by email and deploying them manually
is insecure and error prone. Doing this whenever users are added/removed or
when passwords are changed, is very cumbersome. The Password web service
automates this process. Also, the implementation of the Print web service is
an improvement. The person responsible for printing the documents, has to
convert them manually to a printable format which may vary per document. To
do this, that person also has to retrieve information from the SSTL-database
manually to retrieve the number of assessors, observers, lecturers and students
that are involved in a course in order to know how many times documents need
to be printed. In the future, when the knowledge of how to use web services
and SOAP securely becomes available, other systems may be connected as well.

4.5 Specifications and models

This section describes the details of the network of web services. First, it ex-
plains the communication model used and the way trust is being provided for
the web services in the network. Second, the main web service class is intro-
duced. Every web service being specified in the design, has certain functionality
in common with others. This common functionality is designed into an abstract
ComlabWebService class. After that, there is a section for each web service
that describes how the web service is constructed.

4.5.1 Communication model

The preliminary security whitepaper by IBM and Microsoft (see [17]) proposes
various architectures of deploying a security service or token service which pro-
vides the necessary tokens in a network of web services to manage access and
authentication. In the design one of those architectures has been chosen and

3Secure enough means covering the risks as analysed in [6]
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eventually implemented. The diagram in figure 4.4 should explain the architec-
ture used.

Security Web
Service
o 1
Secur
key exchange
SOAP ¥ 9
2.
_ ) * secured  « :
Client Web service
J SOAP

Figure 4.4: Architecture of web services setup

In this architecture each web service in the system has a public and a private
key. Of course, the private key is kept secret. The public key of each web service
is stored in the Security web service. Also, every web service that provides a
service to others has a list of the public keys of the web services that have
access to it. Whenever the list of a web service in the Security web service is
updated by the administrator, the SWS contacts the web service by establishing
a session with it and updates its list. This is done by encoding the latest list
inside the body of the SOAP envelope. The web services that make requests
to other web services do not to contact the SWS. This architecture has been
chosen for scalability and availability reasons: when a lot of web services in the
network need to communicate with each other, the SWS may be flooded with
requests for security tokens. In this architecture, the web services only need to
be updated when something changes in the setup of the web services or in the
way they communicate with each other.
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4.5.2 The main web service

This section describes the abstract ComlabWebService class and its depen-
dencies and associations with the other necessary classes to setup a secure SOAP

communication.

Validator

—envelope : SOAPEnvelope
—keypair : KeyRepository

—checkSignature()

+validate() : Boolean

+setSession(in session:Session)
+setEnvelope(in envelope:SOAPEnvelope)
+setKeyPair(in keypair:KeyRepository)

KeyRepository

Session

+digestMethod : String
+canonMethod : String

ComlabWebService

+receivedEnvelope : SOAPEnvelope
+currentEnvelope : SOAPEnvelope

+encryptionMethod : String
+sentNonce : int
+receivedNonce : int
+sessionID : int

—privateKey : PrivateKey
—publicKey : PublicKey
+accessList : Vector

+getPublicKey() : PublicKey
+setPublicKey(_publicKey:PublicKey)
+getPrivateKey() : PrivateKey
+setPrivateKey(_privateKey:PrivateKey)

SOAPEnNvelope

-body : SOAPBody

EncryptedBody

—envelope : SOAPEnvelope
—keypair : KeyRepository

+getEnvelope() : SOAPEnvelope

—header : SOAPHeader

+keyPair : KeyRepository
—-session : Session
—url : String

—init()

—doGet()
—doPost()
+checkSignature()

+addBody()
+addHeader()
+addHeaderElement()
+getBody()
+getBodyElements()

+getKeypair() : KeyRepository
+setKeypair(_keypair:KeyRepository)
+encryptBody()

+setEnvelope(_envelope:SOAPEnNvelope)

SOAPDiIgitalSigner

+removeElement()

—envelope : SOAPEnvelope
—keypair : KeyRepository

—ComputeDigest()

+signEnvelope()
+checkMethods()

+setKeyPair(in kp:KeyRepository)
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+encryptBody()
+decryptBody()
+createSOAPEnNvelope()
+handleSOAPEnNvelope()
+handleAccessListEnvelope()
+sendEnvelopeTo(in id:void)
+makeReportEnvelope()
+publish()

+signEnvelope() : int
+getEnvelope() : SOAPEnvelope

+setEnvelope(in envelope:SOAPEnvelope)

Figure 4.5: The main ComlabWebService class which every web service extends

In figure 4.5 the abstract ComlabWebService class is depicted. It is the main
class that every web service in the system for the SEP extends. It provides all
the basic functionality of digitally signing an envelope, reading signatures, set-
ting up a messaging framework, setting up a session and a security context. It
comprises of four other subclasses. The Validator class, the EncryptedBody
class, the SOAPDigitalSigner and the KeyRepository class. The Valida-
tor class is responsible for validating a digital signature included in a SOAP
Envelope. Whenever a web service receives an envelope, it has an instance of the
Validator to check the signature. The Validator class must check this signa-
ture according to the processing rules as defined in [12]. The KeyRepository
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Figure 4.6: Legend for the UML diagrams

class holds the public and the private key of the web service and it also contains
a list of the public keys of the web services that have access to it. Each element
of this list is an object which holds an ID and the public key of the web service.
The KeyRepository class is always instantiated whenever the ComlabWeb-
Service class is. When a web service is first started, the KeyRepository class
determines its access list by reading the XML-file accesslist.zml which is stored
in the same directory as the web service is deployed in, more on this later.
The EncryptedBody class has but one function. It takes a SOAP envelope
and a key pair and encrypts the body of that envelope using the private key.
The SOAPDigitalSigner computes the digest of the body of the SOAP enve-
lope. It then encrypts the digest by using the settings from the session of the
web service and its keypair to create and add a <Signature> element in the
<Security> element of the envelope it has to sign.

In the future, more web services can be added to the network of web services by
deploying a web service class that extends the ComlabWebService. Future
classes only have to build their own envelopes for their purpose or application
and call the functions of the parent to digitally sign or encrypt and send the
envelope.

The structure and format of a SOAP envelope

Apart from the security elements added by the ComlabWebService class, the
internal structure of the body of a SOAP envelope is standardised in this system
as well. Every SOAP envelope that is sent or received in the system for the SEP
conforms to the same structure as the class it represents. This means that every
attribute or structure of the class is stored in the SOAP envelope in the same
way. This is done by using normal SOAP elements and SOAP arrays if multiple
elements are needed. An example of such a SOAP envelope can be found in
appendix H. For more information on the structure of SOAP and SOAP arrays,
please see [7]. There are four different structures used in the SOAP messages
in the system: the Report, Course, AccessList and the PasswordFile structured
SOAP envelope. To see which web service uses which, see the class diagrams in
the following sections.
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4.5.3 The Client web service web service

This web service communicates with all the other web services to call remote
procedures and to retrieve information. It acts as the interface between the
end-user and the network of web services. Note that the authentication of the
end-user is outside the scope of this design and has been taken care of by the
website in which the Client web service will be deployed. The Client web
service extends the ComlabWebService and has the necessary operators to
perform its function. Since the purpose of this web service is to be accessible via
a web browser, this web service must have the capability to process HTML-form
requests. Most of the work has already been done by the servlet container (see
“deployment” section 4.5.8), however it must translate requests from the user
into SOAP Remote Procedure calls; therefore it has the two operations to do
this. Before explaining exactly how the Client web service works, consider the
diagram in figure 4.7.

PasswordFile < .

ComlabWebService
/\ /N /N

PrintWebService

‘I PasswordWebService |

ClientWebService

| SecurityWebService|

—course : Course
—documentList : Vector
+acronym : String

+createSOAPEnNvelope()
+handleSOAPEnNvelope()
+requestPasswordFileTransfer()
+retrieveCourse(in acron:String)
+retrieveNrAttendants()
+retrieveDirectoryList()
+printDocument(in amount:int)
+processHTMLRequest()
+returnHTMLAnNswer(in return:void)
+handleCourseEnvelope()
+handleReportEnvelope()

Attendant

+name : String

—acronym : String
—documentList : Vector

+getName() : String
+getAttendantList() : Vector
+getAcronym() : String
+getDate() : Date

+status : int
|
I
I
I
I
I
I
Course DocumentFile

—name : String —filename : String

—id : int —location : String
—attendantList : Vector +getLocation() : String
—date : Date +setLocation(_location:String)

+getFilename() : String
+setFilename(_filename:String)
+makePrintable(in file:String)

Figure 4.7: The Client web service web service and its associations.

The Client web service has a dependency relationship to the Course class,
since it retrieves a SOAP envelope containing the information on a course along
with a list of the deployed files.

Issueing print commands

The Client web service retrieves a course specification from the print web ser-
vice by providing it with the acronym for the course. The end-user provides the
Client web service with this acronym (by posting a form), which is the same
acronym as used in the SSTL-database. This form is already integrated in the
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website of the SEP. The Client web service translates this request into a SOAP
envelope and sends it to the Print web service. After that, the print web service
gives the course specification? back to the client. This specification contains a
list of the attendants and of all the files deployed on the Solaris server sed for
that course. The client returns this information back to the web browser of
the end-user. The user is then able to select a file and issue a print command,
specifying how many the times the document must be printed. The following
printers are available to the end-user:

e sep2 on the server psi
e sep3 on the server psi

e sep4 on the server psi, which is the color printer

The Client web service translates this request into a SOAP message and sends
this to the Print web service. For details on how exactly the messages are
exchanged between the Client web service and the Print web service, the
corresponding sequence diagram is included in appendix C.

Viewing the database

To issue print commands the end-user also has to query the database for infor-
mation on courses. The Client web service provides the end-user with a way to
retrieve information per course. It also gives meta-data about the course that
might be of relevance.

Transfer of password file

The only thing the Client web service has to do in order to do perform a
password file transfer is to issue this command, given by the end-user, inside a
SOAP envelope to the Password web service (PWS). The necessary steps to
complete this operation are done by the PWS itself. The Client web service sets
up a session with the PWS, using the standard functionality which is already a
part of the ComlabWebService. A session is needed, instead of a single SOAP
envelope containing a SOAP remote procedure call, for security reasons®. After
the session setup, it sends a SOAP message containing the request. It then waits
for confirmation of the transfer of the password file and returns feedback to the
end-user. A sequence diagram is included in appendix D that depicts exactly
how this request is made.

4conform the internal structure of the Course class
5please refer to chapter 4.6.3 for details
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4.5.4 The Print web service

This web service is responsible for the printing of the documents stored (per
course) on Solaris server sed. It interfaces only with the client web service and
the database web service.

> ComIabWebService <

T

PrintWebService

+acronym : String

+printer : String = sep2

ClientWebService

—course : Course

DatabaseWebService

—urldb : String

+printDocument(in doc:DocumentFile, in amount:int)
+retrieveCourse(in acronym:String)
+createSOAPEnNvelope()

+handleSOAPEnNvelope()

+retrieveDirList(in course:Course)

+makeCourseEnvelope()

+transformCourseEnvelope()
T
\

W

************* > Course <7777777777777***4

Figure 4.8: The Print web service and its associations.

Printing documents

The documents and course notes that can be printed are stored in several dif-
ferent directories per course. A directory name always starts with the acronym
of the course for which a document needs to be printed, followed by the month
the course is given in, followed by the year; making the format of the directory
<acronym>-<month>-<year>. The web service assumes the document is stored
in the directory starting with the provided acronym. It prints a document by
using the details that are specified in the class DocumentFile, a parameter
of the print operation. Before a print command is sent to the printer spooler,
it may need to be converted. The Print web service assumes that there is a
Makefile for every file that is not in the PostScript format, with extension .ps.
It makes the system call make <filename> to convert it if necessary. If the
document is not in the PostScript format and no rule in the Makefile exists
to process it, the operation is aborted with a SOAP fault message, more on
that later. The print commands are also issued by making system calls to the
sed server. Since this server is a Unix server, this is done by the command
lpr -P<printer> -m -#<amount> <document>.
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The -m option indicates that progress of the print job is emailed, furthermore
the printer is specified, the amount of times it needs to be printed and of course
the document itself. If any of these steps fail, a SOAP fault envelope with the
faultcode Server.PrintFailure is sent back to the client web service, specifying
the reason as the faultstring. For more information on SOAP fault messages,
see section 4.5.9 or [18]. When needed, the Print web service contacts the
Database web service in order to provide the Client web service with the
right details of a course.

The Print web service sets up a session with the Database web service when
information is needed. The way this is exactly done, is depicted in the sequence
diagram in appendix E. To make a request, it creates a SOAP envelope with the
same structure as the Course class, but with empty elements. The Database
web service returns the same envelope with the same elements, provided with
the course details. The Print web service converts this SOAP envelope into its
own session with the Client web service web service and sends it.

4.5.5 The Password web service

This web service is responsible for the complete transfer of a password file from
the SSTL-database to the Solaris server sed on which this file is merged with
the existing password file and deployed. In the SSTL-database each course has
several students attending it. The Password web service retrieves the password
file, which is created per course, via the Database web service. Consider the
class diagram in figure 4.9, the SWS is omitted.

After this web service received a valid request for a transfer of the password file of
a particular course, it creates a SOAP envelope with the same internal structure
as the PasswordFile class with empty elements inside the envelope. The only
element that is set in the envelope is the acronym attribute. This indicates
to the Database web service which password file is needed. It then starts a
session and retrieves the password file. For security reasons, the session that is
setup with the Database web service uses encryption of the body of the SOAP
envelope. For a more detailed description of how exactly this communication
takes place, a sequence diagram is included in appendix F. After it has retrieved
the password file, there are two possible scenarios.

If the web service has sufficient rights to merge the existing with the retrieved
file, it proceeds. This merging process is done in the following way. For each
entry in the retrieved password file, it looks up the corresponding entry in the
existing file. If it does not exist, it adds the new entry. If it does exist and it is
changed, it updates the entry in the existing password file; else it does nothing.
The Password web service never removes an entry. For each entry made or
changed, a report is sent back to the Client web service.

If it does not have enough rights to merge the password files, it saves the file
in the same directory and changes the file rights to read-only for itself. The
administrator of the existing file has to manually merge the files afterwards.

80n the Solaris server this corresponds to rights 200



40

DatabaseWebService

_—V A

CHAPTER 4. THE SYSTEM AT THE SEP

ComlabWebService

N

\VA

PasswordWebService

ClientWebService

PasswordFile

—entries : Vector

—acronym : String

+addEntry(in entry:Entry)

+removeEntry(in entry:Entry)

—existingPwdfile : PasswordFile
—coursePwdfile : PasswordFile
-mergedPwdfile : PasswordFile
—urldb : String

Entry

-line : String
—username : String
—encryptedPwd : String
—shell : String

—homedir : String

+createSOAPEnNvelope()
+handleSOAPEnvelope()
+makePwdfileEnvelope()
+readExistingPwdFile()
+handlePwdfileEnvelope()
+mergePasswordFiles()
+deployPwdfile()

+makeReportEnvelope()

+getLine() : String

+setLine(_line:String)

Figure 4.9: The Password web service and its associations.

4.5.6 The Database web service

The purpose of this web service is to access the SSTL-database on the Solaris
server sed. There are two types of information the web services retrieves, a de-
scription of a course and the password file that belongs to a course. Therefore,
the structure of the SOAP envelopes it creates correspond to the Course and
the Password class. It also has an interface with the SSTL-database on which
it can execute queries. First, consider its class diagram in figure 4.10, the SWS

is omitted.
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ComlabWebService

- DatabaseWebService - -
PasswordWebService PrintWebService

I —pwdfile : PasswordFile ‘
!
| —course : Course |

|
\/ +createSOAPEnNvelope() \/

PasswordFile  [<< ~ | +handleSOAPEnvelope() --> Course

+fillPwdfileEnvelope()
+connectToDatabase()
+retrieveCourse(in acronym:String)
+retrievePasswordFile(in acronym:String)
+handleCourseEnvelope()
+execQuery(query:String)
+handlePwdfileEnvelope()

+fillCourseEnvelope()

Figure 4.10: The Database web service and its associations.

The query that is executed on the database that will enable the Database web
service to retrieve the necessary information is:

FROM Course

SELECT courseSubject.acronym, courseStartDate,
courseLecturers, courseAssessors,courselbservers,
FROM attended
SELECT studentContact.contactAccess.username,

studentContact.contactAccess.password

END

WHERE courseSubject.acronym = [what?]

END

Note that this is not normal SQL; a different query language is used on the
SSTL-database. The latest course and the latest password file that have been
accessed in the database are kept in memory by the web service. This is done
so that another database lookup is not always necessary. Whenever a request
is made to the web service to transfer a password file, it always encrypts the
body to ensure confidentiality using the operations of its parent class, the Com-
labWebService. The way this web service communicates with the other web
services can be found in appendices E and F.
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4.5.7 The Security web service

The SWS is responsible for providing trust within the network of web services.
It does this by maintaining a database of all the web services deployed in the
network. For each web service, it has a list of the web services that have ac-
cess to it. Whenever this list is changed by the administrator, it updates the
corresponding web service(s) with their new list. A list, the AccessList class,
consists of a public key and a KeyRepository class. The keyrepository holds
all the entries of the web services that have access. See the class diagram of the
SWS in figure 4.11.

ﬁ ComlabWebService 3 | KeyRepository

T |

SecurityWebService

AccessList

—database : Vector
—<@{ —publicKey : PublicKey
+keyRepos : KeyRepository
+makeAccessListEnvelope() ~id : String

+updateWebService(in id:String)

PrintWebService +initialiseAccessList() +getPublicKey() : PublicKey

+reviewAccess() : String +setPublicKey(_publicKey:PublicKey)
+newWS(id:void, pk:PublicKey, url:int)

+removeWS(id:String)
+addToWS(s_lId:String, c_Id:String, c_pk:PublicKey, c_url:String)
+removeFromWS(s_ld:String, c_ld:String)

+changeEntry(in id:String, in pk:PublicKey, in url:int)
+addEntry(in id:String, in pk:PublicKey, url:String)
+getld() : String

+setld(_id:String)

+removeEntry(in id:String)

+saveAccessList()

4' DatabaseWebService PasswordWebService [

Figure 4.11: The Security web service and its associations.

The operations to add, update and remove an entry on the list of a web service,
can be called by the administrator on demand. The database is stored in mem-
ory the entire time the SWS is deployed. Whenever the administrator changes
this list, the SWS also saves this list in a XML-file (accesslist.xml), which is
easily parsable, to store the database. Whenever needed, the SWS can read this
XML-file to create the AccessList classes. This file is stored in the same direc-
tory as the SWS is deployed in. The SWS does not have to communicate with
an encrypted SOAP body, because the keys that are exchanged are public keys
anyway. When the SWS sets up a session with a web service, it can securely
update its list. Please refer to appendix G for a sequence diagram on how the
SWS updates a web service.

Bootstrapping web services

Whenever a web service is to be added and deployed in this network of web
services, it publishes its public key to the SWS. Each web service can do this
by calling the publish() method from the ComlabWebService. This causes
its public key to be encoded inside a SOAP envelope and is then sent to the
Security web service by setting up a session. The SWS then notifies the ad-
ministrator of the new web service. The administrator has the option to issue
the command to the SWS to instruct other web services to let the new web
service have access to them.
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4.5.8 Deployment

The web services are not standalone services. They have to be deployed inside
a servlet container to handle HTTP-GET or HTTP-POST requests, or via any
other protocol for that matter. However, these web services are designed to
process HTTP requests. That is the reason that each web service inherits the
doPost() and doGet() methods from the ComlabWebService. However, other
operations can be easily added to support different protocols, such as SMTP or
FTP. However, HTTP is probably the most widely supported protocol on the In-
ternet and virtually all firewalls let HTTP through. With this idea in mind, the
web services in the system for the SEP must be deployed in a servlet container
that supports HT'TP requests. Since all servers on which they will deployed are
Unix servers, they will use the servlet container called Apache Tomcat. Tomcat
is the servlet container that is used in the official implementation for the Java
Servlet and JavaServer Pages technologies developed by Sun’. This servlet con-
tainer is a Java based one, meaning that it can be deployed on any platform.
In the future, computer systems running different operating systems/platforms
at the Oxford University Computing Laboratory can be connected using Tom-
cat. It is released under the Apache Software License, meaning it is free for
download; it is easy to install and use®.

4.5.9 Faults and errors

Whenever a fault or error occurs, the requesting web service must receive feed-
back of the exception. This is done in two ways. First, the web service that
notices the fault or error, creates a SOAP fault message with the correct <Fault>
element with a faultcode, a faultstring specifying the reason, and the faultac-
tor. The second method of error detection the web services use, is looking at the
HTTP response codes. Since SOAP is bound to HTTP in this case, every SOAP
envelope is exchanged inside a HT'TP request. The HTTP request is used to de-
termine what the type of the SOAP envelope is. This is done inside the protocol
specific methods doGet() and doPost() in the ComlabWebService class. For
example, a typical HT'TP response code is the 500 Internal Server Error
message, a required response by the HT'TP transport binding as defined in the
SOAP specification [11]. A HTTP response with a SOAP fault message used
by this system, looks like this:

"The website of Sun can be found at http://www.sun.com
8 Apache Tomcat can be downloaded from http://jakarta.apache.org/tomcat/
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HTTP/1.0 500 Internal Server Error
Content-Type: text/xml; charset="utf-8"
Content-Length: nnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<Faultcode>Client.MustUnderstand</faultcode>
<Faultstring>Did not provide digital signature</faultstring>
<Faultactor>
<Id>pwdws</Id>
</faultactor>
</SOAP-ENV:Fault>
</SOAP-ENV :Body>
</SOAP-ENV:Envelope>

Figure 4.12: An example of a SOAP fault message bound to HTTP

The Faultcode element inside the Fault provides an insight for the web service
where the problem lies. “Client” means that the the requesting web service
made an error, “MustUnderstand” means that the web service did not under-
stand a certain header in the header element of the SOAP message. These
values can be: “Client” or “Server” for the first part and “VersionMismatch” or
“MustUnderstand” or any other namespace that is appropriate. The Faultstring
is not processed but displayed to the end-user. The Faultactor element specifies
the Id of the web service where the error occurred.

4.5.10 Communication in sequence

To visualise the way a secure communication must be set up in the system for
the SEP, a sequence diagram is shown in appendix B. This diagram consists
of classes that each perform a task of the secure SOAP messaging framework.
The functions and attributes for these classes are explained in more detail in
chapter 4.5. For this communication sequence, the function of each step and
class and what part of the framework it addresses, will be discussed. This
sequence diagram depicts a typical SOAP communication. This sequence is a
“normal” sequence, no errors occur like, for example, faulty signatures and other
errors. These are discussed in section 4.5.9.
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4.6 Risks and security issues

This section explains how the risks, as analysed in [6], are addressed by the
system. A brief explanation is given for each risk and the part of the system in
the system that addresses it.

4.6.1 Performance

The web services are deployed inside a servlet container (Tomcat). This servlet
is a Java-based servlet; Java programs are known to be somewhat slower than
other programs. Fortunately, for each request to a web service, the servlet
container calls the instance of the web service, making it unnecessary for the
web services to be multithreaded. If the servlet dies, it is respawned by the
container leaving the web service in tact. There should not be a significant
performance risk here. However, in the future, the servlet may provide for many
web services. This poses a performance risk to the servlet container itself, not to
the Solaris servers. The performance of the web services decrease significantly
when multiple web services are deployed within the same servlet container.

4.6.2 Implementation/schedule risks

The “hard” part of implementing the system as specified in previous sections
was to make the main messaging framework between the web services work.
The ComlabWebService, see section 4.5.2, performs all the necessary trans-
formations to the SOAP envelopes: such as digital signatures, the encrypting
of body elements and such. It sets up the communication between the web
services, making sure that an particular web service that extends it, only has
to create the SOAP envelopes that are specific to its application. There was
no precedence for implementing this framework and therefore posed a high im-
plementation and schedule risk. Unexpected problems or difficulties occurred,
while implementing it. The problem during implementation was that new tech-
nologies that had not been used before had to be used or even implemented.
The advantage of this framework is however, that future web services can be
easily added to the network of existing web services at the OUCL.

4.6.3 Security risks

The messaging framework used by the system has been specifically created in
this way to incorporate message level security into web services communication.
The security issues of authentication, integrity and confidentiality are addressed
in this system, via various methods. Before explaining how they are addressed,
the system relies on the following assumptions. Each assumption must be upheld
now and in the future.

e The public and private keys can not be cryptographically broken within
a reasonable amount of time. To ascertain this, the web services use
well-known and established algorithms. The algorithms used can easily
be changed by changing the default settings of the SOAPDigitalSigner
and the EncryptedBody class as specified in section 4.5.2 if they are not
sufficient.
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e The private keys themselves are not compromised. When an adversary
gets hold of the private key of one of the web services, it can pose as it.
This risk becomes specifically dangerous when, for example, the private
key of the SWS is compromised.

e The servers on which the servlet container is running, are secure. When-
ever a malicious third party has access to one of those servers, changes
can be made to the web service itself or the way it communicates. This
assumption can be asserted by making sure that nobody® can change any-
thing inside in the Tomcat directory or in any of its subdirectories and it is
impossible for a third party to access the computer systems memory where
the web service is running. In the event that a server and the keypair of
a web service is compromised, the manager of the SWS can then revoke
a keypair by letting the SWS update the lists of the other web services.

Authentication

Since authentication is done via a public and private key scheme, web services
are authenticating each other by trusting the public keys the SWS provides.
Since it is the task of a serving web service to determine a session id and every
SOAP envelope has a unique session id or nonce (during setup of) in a session,
it is not possible for an adversary to resend SOAP envelopes without the serving
web service being able to detect it. This implies that the creator and the sender
of every SOAP envelope can be authenticated, proving the identity of both.

Confidentiality

Confidentiality means that the contents of a message, or a transmission for
that matter, is never exposed when an adversary listens in (eavesdrops). For
this SOAP messaging framework the sensitive information being transferred
is the password file stored in the SSTL-database. The password file itself, if
previous assumptions are upheld, is not exposed. However, it is obvious to an
intermediary if it can see every SOAP envelope transmitted in the network,
that a certain SOAP envelope contains the password file. This is one of the
reasons that the system uses the encryption of the entire body element of a
SOAP message, instead of for example encrypting only the encrypted password
in the file. The level of confidentiality of the content of the SOAP envelopes that
the system provides is considered to be confidential enough for this particular
situation.

Integrity

The ComlabWebService class, if extended by a web service, ensures that
every SOAP envelope transmitted in the network is provided with a digital
signature and checked upon delivery. Also in the security context of a SOAP
communication (see section 5 for details), a SOAP envelope can not be changed
in transit. If previously mentioned assumptions hold, the integrity of a SOAP
envelope is preserved.

9except the trusted administrator
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Implementation faults

The risks that remain are risks such as buffer overflow attacks and exploits and
for example DoS-attacks. Buffer overflow attacks are very hard to countermand.
This is especially hard, because the ComlabWebService makes use of higher
level functions to parse SOAP envelopes such as JAXP'®. DoS-attacks rely on
the flooding of a single server/web service with a large amount of requests.

10JAXP, Java API for XML Processing, see [18]
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Chapter 5

Setting up a session

The latest version of SOAP [7] version 1.2, the working draft from the W3C,
does not have a notion of a session context, or a security context for that mat-
ter. This means that each and every SOAP message must have an elaborate
<Security> element to address all the security issues at the message level. A
big part of the research done for the SEP was to design web services that have
message level security. This chapter explains how this can be achieved by set-
ting up a session context with SOAP between two web services so that they can
communicate securely. This is done by making use of the security extensions to
SOAP explained in chapter 3. Later on in this chapter, a proof is given that no
adversary can tamper with the protocol or (re-)send messages to compromise
security, using the verification tool Casper!, more on this later.

5.1 Need for secured SOAP

The problem of making SOAP messaging confidential between two computer-
systems can be addressed by Transport Level Security (TLS) for example Secure
Sockets Layer (SSL). SSL appends Message Authentication Codes (MAC’s) to
the transmitted messages to ensure message integrity, which would preserve the
integrity of the SOAP messages transmitted with SSL as well.

However, when various intermediaries (may be adversaries) have to read the
SOAP message to determine who’s next in the communication chain, message
integrity and confidentiality must be preserved. SSL does not provide for non-
repudation to start with. You only have hop-to-hop security when you are using
SSL to encrypt communications instead of end-to-end security; because it is
possible that security has been breached on one of the web services along the way.
Also, the idea behind SOAP messaging is to provide loosely coupled systems
with a way that they can communicate with each other in a connectionless way.
For example, there could be a message queue that a receiver has to process first.
This way the sender of a message must wait for the receiver to finish the queue,
here SSL is not a good solution to this problem.

1Casper has been developed at the Oxford University Computing Laboratory by Gavin
Lowe.
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5.2 Security context

This section introduces a security context into SOAP. The properties of this
context and the schema type definitions of new elements are given in more
detail in the SOAP D-Sig and the XML Encryption specification. The web
services in the system for the SEP make use of the <Security> element and
of a new element, the <Continue> element, to initiate a session and to agree
on the way they will communicate; call it a “handshake”. The first message a
client sends to a web service may look like the example on page 23, however
the body element contains the <Continue> element as the last element. Adding
this element does not have implications to the validaty of the SOAP message,
because it still conforms to the official SOAP specification. It is allowed to add
your own elements. This <Continue> element indicates to the receiving web
service that a security context is requested and contains a <Nonce> element,
an empty <Session/> element and a <Nr/> element set to “1”. The <Nonce>
element contains a by the client web service (cws) randomly generated number.
This nonce has to be added, because the cws has to identify the serving web
service (sws) as well: the sws returns this nonce digitally signed. There are
two situations to distinguish from: an non-encrypted SOAP communication
within context and an encrypted one within context. The web services for the
SEP may only have the need to communicate in such a way that messages are
authenticated and that the integrity has been preserved. In that situation, the
obfuscation of information by the encryption of elements is not necessary.

5.2.1 Non-encrypted content within context

Web services might need to communicate in a secure way where confidentiality
is not very important. Important is however that they are correctly authenti-
cated to each other and that no intruder can intervein. Therefore it is necessary
to setup a non-encrypted session. The setup of a non-encrypted session starts
as following. The client web service (cws) sends a SOAP envelope with a digital
signature using its own private key and a <Continue> element with its subele-
ments as the last element in the body of the SOAP message. Upon receiving
this message, the serving web service (sws) determines if it agrees with the
way communication will take place. It determines if it agrees using the same
canonicalisation method, the signature method, the transform algorithm and
the digest method. If it does, it remembers these methods and adopts them. In
return the sws sends a SOAP envelope back with a digital signature of the body.
However, the <Continue> element is different. It contains three subelements,
the <Nonce> element it received, the <Session> element filled with a session id
and the <Nr> element. This session id is a concatenation of a timestamp and
a randomly generated number to ensure uniqueness. Note that this number id
must be a secure random number, meaning it cannot be predicted. Because
the <Nonce> element is included in the signature, the cws knows it is commu-
nicating with the intended sws. The sws is the web service that has to generate
this number, otherwise if the cws would generate a session id, the sws has to
maintain a list of sessions it already had to ensure uniqueness of the session.
The <Nr> element indicates how many SOAP message the each web service has
sent within this session, not the total number of messages sent in this session.
By examining this number, each web service can determine, upon receiving a
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SOAP envelope, whether or not it is the right one (in order) and that no en-
velopes have been lost in transit. The following example of a SOAP envelope
illustrates the response the sws could give:

<?7xml version="1.0" encoding="utf-8"7>
<S:Envelope xmlns:S="http://www.w3.0rg/2001/12/soap-envelope"
<S:Header>
<ds:Signature>
. specifying which element, key, algorithm and methods are
. used and of course the signature value.
</ds:Signature>
</S:Header>
<S:Body>
<eg:0Operation xmlns:eg="http://www.exempli.gratia.com/">
. whatever the normal operation may be ...
</eg:0peration>
<S:Continue>
<S:Identity>sws</S:Identity>
<S:Nonce>2394</S:Nonce>
<S:Session>2A8GH35-a98J5V-Kjg7J</S:Session>
<S:Nr_sws>1</S:Nr_sws>
</S:Continue>
</S:Body>
</S:Envelope>

Figure 5.1: An example of the response message sent to setup a session.

5.2.2 Non-encrypted session setup

Now it is clear how the SOAP message are constructed, the entire session is a
sequence of three SOAP messages sent back and forth. The purpose of this ses-
sion is to ensure that the two web services are indeed communicating with each
other and that no adversary can compromise security. The following diagram is
a schematic representation of the SOAP messages that are exchanged between
web services a and 3. It illustrates which SOAP messages are sent and in which
order. In the session protocol a initiates the session in figure 5.2.

After a complete run of this protocol, both a and S agree upon the session
id and they know how many messages each web service has sent (now and in
the future). Using this session setup they can call each others operations and
exchange information securely, meaning no adversary can come in between them,
at least in theory. In practice there might always be implementation errors or
other factors involved that can compromise security. However, for a verification
of this protocol, see section 5.3. Any web service can end a session by sending
a SOAP envelope back in which a <SessionEnd/> element is the last element
of the <Continue> element.
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Figure 5.2: The session protocol to setup an non-encrypted session.

5.2.3 Encrypted content within context

Since the web services will have a notion of a security context by remembering
the handshake and session id, they can establish a session key as well to encrypt
the content of their SOAP envelopes. First, consider the example in figure 5.3
which is a typical response from the sws during the setup of a session. The
signature is omitted for brevity.
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<?7xml version="1.0" encoding="utf-8"7>
<S:Envelope xmlns:S="http://www.w3.0rg/2001/12/soap-envelope"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
xmlns:xenc="http://wuw.w3.0rg/2001/04/xmlenc#"
xmlns:ds="http://wuw.w3.0rg/2000/09/xmldsig#">
<S:Header>
<wsse:Security>
<ds:Signature> .... </ds:Signature>
<xenc:Referencelist>
<xenc:DataReference URI="#body"/>
</xenc:Referencelist>
</wsse:Security>
</S:Header>
<S:Body>
<eg:0Operation xmlns:eg="http://www.exempli.gratia.com/">
. whatever the normal operation may be ...
</eg:0peration>
<S:Continue>
<S:Identity>sws</S:Identity>
<S:Nonce>345243</S:Nonce>
<S:Session>2A8GH35-a98J5V-Kjg7J</S:Session>
<S:Nr_sws>1</S:Nr_sws>
<S:Encryption>
<S:SessionKey>
<EncryptedKey Id=’2A8GH35-a98J5V-Kjg7J’
xmlns="http://www.w3.org/2001/04/xmlenc#’ >
<EncryptionMethod
Algorithm="http://www.w3.o0rg/2001/04/xmlenc#rsa-1_5"/>
<CipherData><CipherValue>xyzabc</CipherValue></CipherData>
</EncryptedKey>
</S:SessionKey>
</S:Encryption>
<S:/Continue>
</S:Body>
</S:Envelope>

Figure 5.3: An example of a response with encrypted content

If the sws agreed upon the security methods, it generates a session key to be used
with a symmetric cipher (for example 3DES or AES) and encrypts this session
key using the public key of the cws. This encrypted key is added to the subele-
ment <Encryption> of the <Continue> element, inside the <EncryptedKey>
element which is specified in [14]. The first element of the <Continue> element
is the identity of the sws. The second element is the <Nonce> element as ex-
plained before, followed by the <Session> element and the <Nr> elements. The
<Encryption> element contains the session key which the sws used to encrypt
the body of the SOAP envelope. The session key is put in a <EncryptedKey>
element with an “Id” attribute linking the session key to the session. Further-
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more, the encryption method and the key that can be used to obtain the session

key from its encrypted form are included in the <EncryptedKey> element.

5.2.4 Encrypted session setup

The session setup with establishing a session key, is similar to the non-encrypted
one. The following diagram is a schematic representation of the SOAP messages

being exchanged:

SOAP
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Signature(Body) PrivateKey o
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Continue — to
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Encryption/
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Continue
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Session vy
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This works as follows: the cws first sends a SOAP message with a digital
signature. The <Continue> element contains a <Nonce> element and empty
<Session> and <Nr> elements. In this case another element, the <Encryption>
element, is added that indicates it wants to communicate with encrypted content
and to establish a session key. Upon receiving this SOAP message, the serving
web service (sws) determines if it agrees with the way communication will take
place. It determines if it agrees using the same canonicalisation method, the
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signature method, the transform algorithm and the digest method. If it does,
it remembers these methods and adopts them. If the sws does not agree on
these methods, it sends a SOAP message back using its own preferences. For
simplicity reasons, the cws must then conform with the preferences set by the
sws, otherwise the session is aborted?. The session key is encoded and sent back
to the cws.

5.3 Analysing SOAP session with Casper

It is not uncommon for security protocols to have flaws so that an intruder can
attack it. The purpose of the session protocol as explained in previous sections
is to authenticate two web services to each other and to establish a shared secret
session key with which they can encrypt their messages to ensure confidentiality.
Also, it must not be possible for an adversal intermediary to change anything to
the messages in transit without the web services detecting it. To make sure such
a protocol is valid, it must be verified. Casper is a Compiler for the Analysis of
Security Protocols, developed by the Oxford University Computing Laboratory,
see [19]. It is possible to use Casper to model a security protocol and to verify it.
Casper converts the modelled protocol into the process algebra CSP [20]. For
the language CSP there is model checker FDR [21] that checks certain security
properties. These security properties can be statements such as ” authenticated
correctly” or ”shared session key is secret”. If there is a reachable state (while
executing the protocol) where such a statement is not true, FDR will find a
trace. If there is a trace, then there is an attack upon on the protocol. The
setup of a session can be modelled as follows. This first example was the first
attempt of finding a working protocol. For brevity, only the encrypted version
where the session also establishes a session key is displayed below. After mod-
elling it in Casper, the resulting Casper script looked like this:

Msga; A — B : Header, {Body, Continue, Nonce, Session, Nr, (1),
Encryption}Signed{PrivateKey a}
Msg 1 B — A : Header, {Body, Continue, Nonce, Session(v), Nrg(1),
Nrj(1), {SessionKey? }PublicKey aSigned PrivateKey
Msgay; A — B : Header, {Body, {operation}Sesi°"Ke¥” Continue, Nr, (2),

Session(y)}Signed PrivateKey o

The assertions that had to be verified were, whether or not web service a and 8
were correctly authenticated to each other and whether or not they agreed upon
the session id and the session key. The session key also had to be a shared se-
cret between the two web services. Unfortunately, running the protocol through
Casper resulted in an attack upon the protocol itself, where the intruder acts
as if it was alpha. This is a very common attack to a security protocol. The
following trace consists of three actors where “I” stands for the intruder and the

2This is designed this way to avoid a long handshake algorithm
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subscript to the intruder means that it is posing as another actor:

Msga; A —1T : Header, {Body, Continue, Nonce, Encryption }Signed PrivateKey a

Msgay I4 — B : Header, {Body, Continue, Nonce, Encryption }Signed PrivateKey o

Msgfi B — Iy : Header, {Body, Continue, Nonce, Session(y), Nrg(1),
{SessionKey’y}PublicKey a}Signed PrivateKey 3

Msgp I — A : Header, {Body, Continue, Nonce, Session(y), Nrg(1),
{SessionKey’Y}PublicKey a}Signed PrivateKey 3

Msga: A — 1T : Header, {Body, {operation}Sesi°"Ke¥” Continue,
SeSSiOl’l(’)’)}Signad PrivateKey o

Msgas, I4— B : Header, {Body, {operation}seSSi""K‘”ﬂ , Continue,
SeSSiOl’l(’y)}Signed PrivateKey o

The trace found by Casper means that after a complete run of the protocol,
a thinks she has established a session with the intruder, however the intruder
establishes a session with § and 8 thinks it has established a session with a.
This was just one trace that Casper found during the design of a session. Af-
ter thorough analysis of the protocol, the correct definition of the protocol in
Casper is:

Msga; A — B : Header, {Body, Continue, Nonce, Session, Nr, (1),
Encryption}Signed{PrivateKey a}

Msg 1 B — A : Header, {Body, Continue, B, Nonce, Session(vy), Nrg(1),
NI‘B(].), {SessionKey’y}PublicKey a}Signed PrivateKey 3
Msgas; A — B : Header, {Body, {operation}Sesio"Ke¥” Continue, Nr, (2),

SeSSiOI’l(’)’)}SigHEd PrivateKey «

Casper did not find an attack to this protocol. The difference here is that « can
determine the identity of 3, because in the message is receives back from either g
or the intruder, it is stated that the identity of the sender of the second message
must be 8. The question is though whether or not this is a good representation
of a session setup with SOAP. It must be certain that all properties of the SOAP
session are modelled in Casper. This means that every aspect of SOAP, relevant
to the session setup, must be modelled in Casper. For example, in chapter 3
each specification has a number of security considerations that might influence
such a session. For instance, the fact that headers may always be removed
by intermediaries may influence the level of security achieved. It is the task
of the application to make sure that digital signatures are always verified and
abnormalities dealt with.



Chapter 6

Problems with the security
extensions

Other then the security considerations of each of the (security) extensions to
SOAP used in the design of the system for the SEP, there are other problems
with SOAP or with the extensions to it. These problems might compromise
security via different ways. This chapter explains the security issues that became
relevant during the design of the system and during the research of the setup of
a SOAP session. For some of them it is hard to find a solution to the problem,
resulting in possible exposure of information.

6.1 Security context

By using the session setup as explained in the previous chapter it is possible to
create a session/security context. The benefit of such a session is, that when two
web services are communicating with each other, they can have a “conversation”
by using SOAP and its extensions as the underlying protocol. The specifica-
tions available only provide ways of performing or encoding a certain item or
action relevant to security. For example, they allow to encode a security token.
This can be any kind of token, like a username or a sessionid. They provide
ways of digitally signing (portions of) SOAP messages and the encryption of el-
ements. A complete security solution is never given. Since December 2002 there
are two draft specifications that are relevant to the setup of a security context:
Web Services- Trust (WS-Trust, see [22]) and Web Services-SecureConversation
(WS-SecureConversation, see [23]). WS-Trust defines extensions that build on
WS-Security to request and issue security tokens and to manage trust relation-
ships. However, it only specifies how security tokens can be encoded in XML
and how trust can be federated to other services. It only states that “the re-
questor must prove any required claims to the satisfactory of the security token
service” as a method of requesting a security token. The other draft specifi-
cation, WS-SecureConversation, specifies how the information about a secure
conversation or a security context can be encoded in XML. This includes infor-
mation such as the identifier, when the context was created, when it expires and
which keys are used. It does not specify explicitly how such a context can be
setup. Especially when web services are exchanging multiple SOAP messages

57
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with for example a WSCL specification or within a business process by using a
BPEL specification, such a setup becomes important. Another problem arises
because there are a lot of actors contributing to the world of web services. Due
to the creation of many specifications by different companies and institutions,
maintaining interoperability between web services seems a very difficult task.
The setup of a security context between web services from different companies
might become quite difficult when they use their own rules and policies.

6.2 Confidentiality issues

The system for the SEP makes use of the XML Encryption specification to
ensure the confidentiality of SOAP messages being exchanged between two web
services. However, it is not a complete solution to hide the contents of SOAP
messages.

6.2.1 SOAP envelope counting

Every SOAP message has a lot of meta-data in the header of a SOAP envelope
and in the attributes of the SOAP elements. By carefully analysing the mes-
sages being exchanged, either by analysing them in transit as in intermediary
(in case of the routing of messages) or by looking at them as they pass by, an
adversary may be provided with a lot of information about the conversation.
Consider the following example:

A— B “Product information please”
A+—B “Here it is, what do you want?”
A— B “How much is this in total?”
A+—B “It’s expensive of course!!”
A— B “Here is my credit information”

A«+—B “Thank you for shopping!”

Even with the encryption of the elements or the body of every SOAP message,
the service endpoint of any operation is always known (otherwise routing would
be impossible). By looking at the number of messages, it could be possible to
determine the type of operation being requested. Furthermore, other meta-data
in every SOAP message, think of namespace declarations and attributes, might
also reveal information. Of course, this is not a problem if it is not relevant
whether or not it is known to a third party what type of conversation it is or
what the outcome is. As long as the details (such as creditcard numbers) are
protected. Which brings up the topic of XML-Encryption granularity.

6.2.2 Message structure (XML-Encryption granularity)

The XML Encryption specification does not define any level of encryption by
encrypting elements or their sub-elements. Such a choice is completely arbitrary
and left to the application or endpoint. This might also provide information to
a third party about the type of conversation being held:
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<CreditCard Limit="5,000" Currency="GBP">
<Number>
<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
type="http://www.w3.0rg/2001/04/xmlenc#Content">
<CipherData>
<CipherValue>A23B45C56</CipherValue>
</CipherData>
</EncryptedData>
</Number>
<Expiration>04/04</Expiration>
</CreditCard>

It is evident from this example that a creditcard is being used. The only thing
that is being protected is the number itself. It might be better to make the
granularity of the encryption of the SOAP elements like the following example.
However, you might reveal more cipher text for a key which may make it easier
to break cryptographically.

<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
type="http://www.w3.0rg/2001/04/xmlenc#Content">
<CipherData>
<CipherValue>A23B45C56</CipherValue>
</CipherData>
</EncryptedData>

In this example, the entire <CreditCard> element is encrypted. When there
are more encrypted blocks, it might not be known which element is which.

6.2.3 XML specifications

With web services, it is quite easy to retrieve the layout from a certain SOAP
message. There are various methods of doing so. The first one is making
use of the XML Schema definitions of the XML documents or XML elements
being transferred. Every SOAP request is a request in XML and therefore
usually has an XML schema, definition of the elements that are used in the
SOAP message. When an intruder knows this definition and has access to a
SOAP message with encrypted content, it can determine via the meta-data
which request/conversation is being held. By analysing the XML schemas, the
adversary also knows most of the encrypted content.

This gets worse when the WSDL or the WSCL definitions are known. Since
web services are designed to let computers communicate at run-time and in a
platform independant way and , the syntax and the structure of every operation
of web services can be looked up in registries and therefore an adversary knows
even in more detail what the content of an encrypted SOAP message is. Con-
sider the following example of a SOAP request, the SOAP elements themselves
have been omitted for brevity:
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<student>
<first-name>Robert</first-name>
<last-name>Boezeman</last-name>
<date0fBirth>19-12-1979</date0fBirth>
<room>453</room>
<supervisor>andrew</supervisor>
</student>

Figure 6.1: An example of a SOAP request.

If this piece of XML is transmitted and the WSDL/WSCL is known, it might
be possible for an adversary to perform cryptographic attacks. In this example,
there 156 characters of which then only 33 unknown. If this block is completely
encrypted, already 78% of the content is known. This is especially a problem
when the type of encryption is one of which the length of the encryption block
is equal to length of the plaintext. This is the case with algorithm such as DES,
Blowfish, IDEA and AES. This problem cannot be solved if it is desirable to
have web services that are highly interoperable.
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Conclusion

This chapter discusses the research topics as explained in the introduction. For
each topic, it gives a small report of how the research proceeded and what the
results are.

e The first part of the research focusses on the communication between the
service requestor and the service provider. Also, it focusses on how the
proposed security extensions can be used or improved upon to establish
secure communication between them. The question here was how the
communication between the service requestor and the service provider
works and how it can be secured.

During the research it became evident that a lot of work is going on the
world of web services. Big IT companies such as Microsoft and IBM are
spending many resources on the development of standards, also relating to
security. However, it seems to be the case that there are more standards
being developed than actual web services being built. Most of the speci-
fications under development are not used or have not been implemented
yet. Therefore, it was sometimes hard to implement. The communication
between the service requestor and the service provider is not very hard
to setup. However, when using extensions to SOAP, it turns out that the
implementations that implement the extensions are in a very early stage
of development as well. This is especially difficult when building a net-
work of secure web services that use the (proposed) security extensions.
However, it was possible to implement the setup of a SOAP session as
explained in chapter 5.3.

e The second part of the research done involved a thorough analysis of SOAP
and the way it binds to the transport layer protocols. An important part
of the research was to analyse SOAP and to determine if web services
and SOAP can be used to design a system for the SEP to connect their
computing systems that they use for their administration. The system
designed and built for the SEP is discussed in detail in chapter 4. The
question here was whether or not it was possible to design a secure network
of web services. What are the requirements of that system and how must
it be designed?

The design of the system resulted in a schematic view of the computer
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systems used by the SEP of the OUCL. UML-models were made to give
an insight in the architecture of the network of web services and of each
class. After discussions with the involved actors, it became evident that
the design met the requirements of the desired system. However, because
of the proportions of the system, it was impossible to implement all parts
of it. Instead, the choice was made to implement the portions of the design
with which the suitability of the design could be proved. Although the
system is not fully implemented, the work done is a very good starting
point to finish the implementation.

e Finally, the proposed (security) extensions to SOAP and how they can
be used to setup a session/security context within SOAP were a big part
of the research done for the SEP. The existing standards do not have a
notion of a session/security context at the time of this writing.

In theory it is possible to setup a secure SOAP session. This can be done
by using the proposed security extensions to SOAP, which are still under
development. The research involved the analysis of those standards and
ways to use and develop them to create such a session, by using parts of
those standards. The result of the research is a definition of a security
protocol that has been analysed using Casper. More information on how
a security context can be setup can be found in chapter 5. The analysis
of the session setup proves that an adversary can not break the protocol
by the interception, alteration or the (re-)sending of messages. However,
implementation faults and the insecurity of the servers running the web
services, faults in the security considerations of each specification or if
any of the assumptions made in chapter 4.6 are not upheld, the level of
security might be compromised. Furthermore, security is most of all a
social problem as well as a technical one.

Remaining work

First, there is still some implementation work to be done. As explained, there
are parts of the design document that have not been implemented. There are
also beta versions or newer implementations of for example the SOAP D-Sig
specification that are improvements upon the already implemented one.
Furthermore, there are a lot of specifications still under development that add
extensions to SOAP and try to tackle the security issues mentioned in this
thesis from another way. There is a lot of work to be done still in the area of
securing web services and it might be very well possible that there are already
specifications under development that try to setup a SOAP session and try to
achieve message level security with web services. The stated solution in this
thesis is just one of the ways to do this.
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Glossary

cws - client (of a) web service. This term is used in this thesis to indicate the
initiator of a SOAP request/conversation.

BPEL - Business Process Execution Language. This language is designed to
model a business process consisting of various web services into one.

OUCL - Oxford University Computing Laboratory. This is the part of the
University of Oxford where research is being performed in many of the
areas of computing science.

SOAP - Simple Object Access Protocol. The protocol used by web services
nowadays. It is a simple lightweight protocol designed to let computer
systems communicate in a platform independant, highly interoperable way.

SEP - Software Engineering Programme. At the Oxford University Computing
Laboratory there is programme called the software engineering programme
which is responsible for everything related to software engineering.

sws - serving web service. This term is used in this thesis to indicate the serving
web service that receives the first SOAP message from a client of a web
service.

UDDI - Universal Description Discovery and Integration - This is a standard
for discovering Web Service Description Language definitions of web ser-
vices to dynamically discover and invoke them. This standard is used in
many registries on the Internet.

W3C - World Wide Web Consortium. This institution is responsible for main-
taining standards on the Internet. They are responsible for the develop-
ment of many protocols and standards such as XML, SOAP and many
others.

WSCL - Web Services Conversation Language. This language is designed to
describe conversations between web services so that they can exchange
multiple SOAP messages. It is possible to describe entire XML documents
that can be exchanged between them.
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WSDL - Web Services Description Language. This language is designed to
describe web services and the way their operations can be invoked dy-

namically.

XML - eXtensible Markup Language. This language is being developed by the
World Wide Web Consortium and is a simple, very flexible text format to
structure data and information.



Appendix B

Secure SOAP sequence

There are three different classes in the diagram on page 67. The ComlabWeb-
Service is the parent class of all the web services in the design of the network
of web services. It is an abstract class meaning that each web service extends
it. Explaining the diagram:

1

10
11

12

The client web service makes a normal SOAP request (an envelope) as
each web service does. This function is abstract in the class Web service.
This means that every web service extending the class must implement
the function CreateSOAPEnvelope().

The client web service instantiates a SOAPDigitalSigner class which is
responsible for digitally signing a SOAP message and to add a <Security>
element with a <Signature> element.

The SOAPDigitalSigner is provided with a pointer to the right SOAPEn-
velope.

The KeyPair to make the signature is declared.

The SOAPDigitalSigner is given the command to make the signature. It
makes this signature according to the processing rules specified in [12].

The SOAPEnvelope is sent to the other web service.

The receiving web service instantiates an Validator class. This class is re-
sponsible for validating digital SOAP signature. It also does this according
to the processing rules in [12].

The web service gives the Validator the correct SOAPEnvelope.
The right KeyPair to validate the signature is specified to the Validator.
The session is set, s is aware of the session and the security context.

The walidate() function is called to give the command to validate the
signature.

The serving web services handles the SOAP request normally. This func-
tion is abstract, meaning that every web service that extends the class
ComlabWebService must implement the function HandleSOAPEnvelope().
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13-17 These steps are analogous to steps 1 through 5.
18 The SOAPEnvelope is sent back.
19-23 These steps are analogous to steps 7 through 11.

x,y Each web service instantiates a new SOAPDigitalSigner and a Validator
per session. After the session is completed, they are destroyed.

This SOAP messaging diagram does not depict the encryption of the body of
a SOAP message for brevity and readibility of the diagram. However, there
is another class for that, the EncryptedBody class (see page 34). It can easily
be understood how this class should be deployed: by letting every web service
instantiate this class if needed and before sending a SOAPEnvelope, let this
class encrypt the body first. Upon receiving a SOAP envelope with an encrypted
body, a web service calls the EncryptedBody class to decrypt it.
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Figure B.1: Sequence diagram of how a session is setup.
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Appendix C

Sequence diagram

In figure C.1 there is a sequence diagram that explains the way the Client
web service and the Print web service communicate. This sequence is just
one possible trace of execution, but illustrates all the available functionality for
retrieving information about courses and printing documents. To explain the
diagram in a step by step manner:

1 The DoPost() operation is inherited from the ComlabWebService class
and handles the way SOAP envelopes are binded to the HT'TP protocol.
This operation is called by the servlet container that xthe web services
are deployed in.

2 Since the Client has to interact with the end-user, it has the ProcessHTML-
Request() to do this.

3 The normal creation of any SOAPEnvelope is done here, this method is
inherited from the ComlabWebService class.

4 This function retrieves the acronym given by the end-user and adds it to
the SOAP envelope, to make the request to the Print web service.

5 The envelope is sent.
6 Same as step 1.

7 The method HandleSOAPEnvelope() is also inherited from the Comlab-
WebService. Every web service must implement it, in order to process
it.

8 This function of the Print web service takes a normal SOAP envelope

and adds elements to the body, according to the internal structure of the
Course class.

9 The function RetrieveDirList() retrieves the directory list of a particular
course, so that it can be added to the SOAP envelope.

10 The SOAP envelope retrieved from the Database web service contains
all the information on a particular course. The Print web service incor-
porates this information along with the retrieved directory list in to its
own session with the Client inside a SOAP envelope.
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APPENDIX C. SEQUENCE DIAGRAM

Are the same as steps 6 and 7.

The special operation in the Client to interpret SOAP envelopes with a
course specified inside.

Respectively, the directory list and the number of attendants of a course
are retrieved.

The retrieved information is displayed back to the end user, in the form
of a web page.

If the end-user then decides to print any of the documents an X amount
of times, the function printDocument() is called. This function adds the
request to print document to the newly created SOAP envelope (steps 1
to 3).

This envelope is then sent to the Print web service.

When the Print web service handled the SOAP envelope, it gives the
correct command to the printer.

It makes a report envelope of its progress.

This envelope is sent back to the Client which in its turns processes it
and gives the report back to the end-user.
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9 : retfieveDirList(x)

!

10 : transformCourseEnvelope()

1

11 : [doPost()

!

12 : handle$OAPEnvelope()

1

13 : handlgeCourseEnvelope()

!

14 : retrieveDirectoryList()

1

15 : retrieyeNrAttendants()

1

16 : returnHTMLANswer(x)

17 : printDocument(x)

9 : SendEnvelopeTo(x)

|

18 : SendEnvelopeTo(x) N

From here the PrintWebService
contacts the DatabaseWebService

If the client chooses to

steps 1

to 3 are repeated and steps 18
and further are taken.

print

X

Steps 6 and 7 are repeated

19 : prinfDpcument(x, x)

20 : makeReportEnvelope()

21 : SendEnvelopeTo(x)

l Ad infinidum l

Figure C.1: Client web service - Print web service sequence diagram
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Appendix D

Sequence diagram

The diagram in figure D.1 is a sequence diagram that explains the way the
Client web service and the Password web service communicate. To explain
the diagram in a step by step manner:

1 The DoPost() operation is inherited from the ComlabWebService class
and handles the way SOAP envelopes are binded to the HT'TP protocol.
This operation is called by the servlet container that the web services are
deployed in.

2 Since the Client has to interact with the end-user, it has the ProcessHTML-
Request() to do this.

3 The normal creation of any SOAPEnvelope is done here, this method is
inherited from the ComlabWebService class. The acronym of the course
of which the password file must be retrieved is added to the envelope.

4 The envelope is sent.
5 Same as step 1.

6 The method HandleSOAPEnvelope() is also inherited from the Comlab-
WebService. Every web service must implement it, in order to process
it.

7 This function of the Print web service takes a normal SOAP envelope
and adds elements to the body, according to the internal structure of the
PasswordFile class.

8 The Database web service filled the envelope with the password file of
the course. The function handlePwdfileEnvelope() retrieves the password
file from the SOAP envelope and stores it in memory.

9 The function readEzistingPwdfile() reads the currently deployed password
file from the right directory on the Solaris server and stores it in memory.

10 After both password files have been retrieved and stored in memory, this
operation merges them, according to the steps mentioned in section 4.5.5.
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client : ClientWebService ‘

‘ password : PasswordWebService ‘

1 :: doPost()

2 : procegsHTMLRequest()

3 : createSOAPEnNvelope()

4 : SendEnvelopeTo(x) N

5|: doPost()

i

6 : handleSOAPEnvelope()

i

7 : makeRwdfileEnvelope()

i

8 : handlePwdfileEnvelope()

1

9 : readBxistingPwdFile()

i

10 : mergeRasswordFiles()

i

11 : d

i

ployPwdfile()

i

12 : makeReportEnvelope()

i

14 : \doPost()
15 : handle$SOAPEnNvelope()
16 : handleReportEnvelope()

17 : returnHTMLANswer(x)

<4

13 : SendEnvelopeTo(x)

Now,

the PasswordWebServi ce conmuni cates
with the DatabaseWbService in order
to retrieve the correct PassWrdFile

Figure D.1: Client web service - Password web service sequence diagram

11 Once the password files have been merged into a new one, it can be de-
ployed. This is also done according to the rules mentioned in section 4.5.5.

12 To provide the Client web service with feedback, report envelope is cre-

ated.

13 The envelope is then sent back to the [Client]




14-15 These are the same as steps 5 and 6.
16 The report envelope is processed to give feedback to the end-user

17 The end-user is provided with feedback.
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Appendix E

Sequence diagram

The diagram in figure E.1 is a sequence diagram that explains the way the Print
web service and the Database web service communicate. The Print web service
does not start this communication chain by itself, it is a an elaboration of the
diagram in appendix C. To explain the diagram in a step by step manner:

1

10-11

After the Client web service requested information on a certain course,
by providing the Print web service with the corresponding acronym, it
creates a SOAP envelope with the internal structure as the Course class.
This is done by the operation makeCourseEnvelope().

The envelope is sent.

The DoPost() operation is inherited from the ComlabWebService class
and handles the way SOAP envelopes are binded to the HTTP protocol.
This operation is called by the servlet container that the web services are
deployed in.

The method HandleSOAPEnvelope() is also inherited from the Comlab-
WebService. Every web service must implement it, in order to process
it.

The Database web service stores the envelope. The function handle-
CourseEnvelope() retrieves the acronym, the course and its structure from
the SOAP envelope and stores it in memory.

A connection to the SSTL-database is established.

The operation retrieveCourse() makes the right query that is executed
on the database. When it has created the query, it calls the function
execQuery() which performs the call to the database. The output of the
query is stored in the memory of the Database web service.

The envelope is then filled with the retrieved course information.
The envelope is sent back to the Password web service.

These stept are the same as stept 3 and 4.

7
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print : PrintWebService

database : DatabaseWebService

1 : makeGourseEnvelope()

2 : SendEnvelopeTo(x) N
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4 : handl

1l
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OAPEnvelope()

!

5 : handleCpurseEnvelope()

!

6 : connectToDatabase()

!

7 : retrtieveCourse(x) /

Here the course information
is retrieved fromthe database

by calling the execQuery() operation

!

8 : fillCourseEnvelope()

!

1Q :|doPost()

11 : hand|eSOAPEnNvelope()

12 : transformCourseEnvelope()

9 : SendEnvelopeTo(x)

From here comunication is
perfornmed as depicted in
the diagramin appendi x A

Figure E.1: Print web service - Database web service sequence diagram
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12 The received envelope containing the course information is processed by
the Print web service.

After this, the Print web service proceeds as depicted in the sequence diagram
in appendix C.
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Appendix F

Sequence diagram

The diagram in figure F.1 is a sequence diagram that explains the way the Pass-
word web service and the Database web service communicate. The Password
web service does not start this communication chain by itself, it is a an elabo-
ration of the diagram in appendix D. To explain the diagram in a step by step
manner:

1

10-11

After the Client web service requested a password file transfer by provid-
ing the Password web service with the acronym of the course, it creates
a SOAP envelope of which the structure corresponds to the structure of
the PasswordFile class. This is done by calling the operation MakePwd-
fileEnvelope().

The envelope is sent.

The DoPost() operation is inherited from the ComlabWebService class
and handles the way SOAP envelopes are binded to the HTTP protocol.
This operation is called by the servlet container that the web services are
deployed in.

The method HandleSOAPEnvelope() is also inherited from the Comlab-
WebService. Every web service must implement it, in order to process
it.

The Database web service stores the envelope with the password file of
the course. The function handlePwdfileEnvelope() retrieves the password
file from the SOAP envelope and stores it in memory.

A connection to the SSTL-database is established.

The operation retrievePasswordFile() makes the right query that is exe-
cuted on the database. When it has created the query, it calls the function
execQuery() which performs the call to the database. The output of the
query is stored in the memory of the Database web service.

The envelope is then filled with the contents of the retrieved password file.
The envelope is sent back to the Password web service.

These stept are the same as stept 3 and 4.
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password : PasswordWebService ‘ ‘

database : DatabaseWebService

1: maker%/dfiIeEnvelope()

2 : SendEnvelopeTo(x) N

7 : retriev

4 : handlg
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!
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!
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9 : SendEnvelopeTo(x)
10 : doPost()
11 : handleSOAPEnvelope()
12 : handlePwdfileEnvelope()

Pl ease see the sequence di agram
in appendix A for nore details

sswordFile(x)

!

leEnvelope()

!

I

Here the database is accessed,
by calling the execQuery() operation

Figure F.1: Password web service - Database web service sequence diagram
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12 The received envelope containing the password file is processed.

After this, the Password web service proceeds as depicted in the sequence
diagram in appendix D.
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Appendix G

Sequence diagram

The sequence diagram in figure G.1 illustrates how the ComlabWebService
is updated by the SWS.

1

When the SecurityWebService is started, it initialises the access list,
which holds all the lists of the web services that have access to each other.
It does this by calling the function initialiseAccessList(). This is done
only once when the SWS is started the first time. This list is then stored
in memory. The SWS assumes that the list is accurate upon reading,
meaning that no web service needs to be updated.

If the administrator of the network of web services changes one of the lists
on file, the administrator calls the function reviewAccess(). The SWS then
compares the access list stored in memory with the file accesslist.xml
stored in the same directory as the SWS is deployed in. If any changes are
made, the SWS proceeds with updating the corresponding web service(s).

It creates a new SOAP envelope first.

The SWS then adds elements to the body of the SOAP envelope according
to the internal structure of the AccessList class appropriate to the web
service that needs its list updated.

The envelope is sent.

The DoPost() operation is inherited from the ComlabWebService class
and handles the way SOAP envelopes are binded to the HTTP protocol.
This operation is called by the servlet container that the web services are
deployed in.

The method HandleSOAPEnvelope() is also inherited from the Comlab-
WebService. Every web service must implement it, in order to process
it.

Every web service that extends the ComlabWebService automatically

has the operation HandleAccessListEnvelope() which is responsible for up-
dating the key repository that it has.

When this function has updated the access list a new SOAP envelope is
created.
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| SwWs : SecurityWebService| | comlabwebservice : ComlabWebService%
[

I
1: initia,iseAccessList()

1

Wienever a web service is updated,
or a new is added, reviewAccess()
is called and communication starts from here

2 : reviewAccess()

i

3 : creafeSOAPENvelope()

i

4 : makeAcgessListEnvelope()

i

5 : SendEnvelopeTo(x) N

6|: doPost?%

7 : handigSOAPEnNvelope()
8 : handlepgcessListEnvelope()

9 : creaje[SOAPEnNvelope()

10 : makel| QeEortEnveIope()

11 : SendEnvelopeTo(x)

~N

121 doPost%

13 : hanqlgSOAPEnNvelope()

14 : |

1

eAccessList()

Figure G.1: Security web service sequence diagram

10 A report is created indicating success or failure.
11 The report SOAP envelope is sent back to the SWS.
12-13 These are the same steps as 6 and 7.

14 Once the SWS has confirmation that the access list of the web service
has been updated, it saves its list into memory and the administrator is
notified of the succes or failure.
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Appendix H

SOAP example

<7xml version="1.0" encoding="utf-8"7>
<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"
xmlns:ds="http://wuw.w3.0rg/2000/09/xmldsig#">
<S:Header>
<wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
<ds:Signature>
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm= "http://www.w3.org/2001/10/xml-exc-c14n#"/>
<ds:SignatureMethod Algorithm= "http://www.w3.0rg/2000/09/xmldsig#hmac-shal"/>
<ds:Reference URI="#msgbody">
<Transform Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
</Transforms>
<ds:DigestMethod Algorithm= "http://www.w3.org/2000/09/xmldsig#shal"/>
<ds:DigestValue>LyLsFOPi4wPU...</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>KiGF9JK7G4Tyu. . .</ds:SignatureValue>
<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="[reference to sender’s keyl"/>
</usse:SecurityTokenReference>
</ds:KeyInfo>
</ds:Signature>
</wsse:Security>
</S:Header>
<S:Body Id="msgbody">
<Course>
<name>XML processing</name>
<id>xml</id>
<attendantList>
<attendant>John Doe</attendant>
<attendant>Jane Doe</attendant>

</attendantList>

<date>31-01-2003</date>

<acronym>xml</acronym>

<documentList>
<document>lecturesnotes.pdf</document>
<document>errata.ps</document>

</documentList>
</Course>
</S:Body>
</S:Envelope>
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This example illustrates how a the internal structure of a SOAP envelope
matches the internal structure of the class it represents. For each class there is
a standard SOAP envelope.
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