Fuzzy Private Matching

Lukasz Chmielewski
Security of Systems (SoS) group
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
lukaszc@cs.ru.nl

Jaap-Henk Hoepman
TNO ICT

P.O. Box 1416, 9701 BK Groningen, The Netherlands

jaap-henk.hoepman@tno.nl, and

Security of Systems (SoS) group

Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
jhh@cs.ru.nl

Abstract

In the private matching problem, a client and a server each hold a set of n elements as
their input. The client wants to privately compute the intersection of these two sets: the
client learns the elements it has in common with server (and nothing more), while the server
obtains no information at all. In certain applications it would be useful to have a private
matching protocol that reports a match even if two elements are only similar instead of equal.
Such a private matching protocol is called fuzzy, and is useful, for instance, when elements
may be inaccurate or corrupted by errors.

We consider the fuzzy private matching problem, in a semi-honest environment. Elements
are similar if they match on ¢ out of T" attributes. First we show that the original solution
proposed by Freedman et al. [FNP04] is not private: the client can “steal” elements even
if the sets have no similar elements in common. Following that we present 2 fuzzy private
matching protocols. The first, simple, protocol has message complexity O(n (::)) The second,
improved, protocol has message complexity O(nT'), but here the client incurs a O(n? (%)) time
complexity penalty.

1 Introduction

In the private matching problem [FNP04], a client and a server each hold a set of elements as
their input. The size of the set n and the type of elements is publicly known. The client wants
to privately compute the intersection of these two sets: the client learns the elements it has in
common with server (and nothing more), while the server obtains no information at all. This
problem is related to the set intersection problem, except that one of the parties is not allowed
to learn even the elements within the intersection (see below). Efficient protocols solving this
problem are known.

In certain applications, the elements (think of them as words consisting of letters, or tuples
of attributes) may not always be accurate or completely known. For example, due to errors,
omissions, or inconsistent spelling, entries in a database may not be identical. In these cases, it
would be useful to have a private matching algorithm that reports a match even if two entries
are only similar. Such a private matching is called fuzzy, and was introduced by Freedman et

al. [FNP04]. Elements are called similar in this context if they match on ¢ out of T' attributes (or
t out of T letters).

Fuzzy private matching (FPM) protocols could also be used to implement a more secure and
private form of biometric pattern matching. Instead of sending over the complete template corre-
sponding to say a scanned finger, a fuzzy private matching protocol could be used to determine
the similarity of the scanned finger with the templates stored in the database, without revealing
any information about this template in case no match is found.

Freedman et al. [FNP04] introduce the fuzzy private matching problem and present a protocol
for 2-out-of-3 fuzzy private matching. We show that, unfortunately, this protocol is incorrect
(see Section 3): the client can ”steal” elements even if the sets have no similar elements in
common. Building and improving on their ideas, we present two protocols for t-out-of-T fuzzy
private matching (henceforth simply called fuzzy private matching). The first, simple, protocol
has message complexity O(n(f)) The second, improved, protocol is based on linear secret sharing

and has message complexity O(nT). Here the client incurs a O(n? (f)) time complexity penalty,
however.

Indyk and Woodruff [[TW06] present another approach for solving fuzzy private matching, using
generic techniques like secure 2-party computation and oblivious transfer. To compare their results
to ours, we use their notation to express the bit complexity of the protocols: they define f = O(g)
if f(n,k)=0 (g(n, k) 1ogo(1)(n)poly(kz)), where k is the security parameter.

Solutions based on secure function evaluation (using generic secure 2-party computation) work
in bit complexity O(n2T'), while the solution of Indyk and Woodruff [[W06] works in O(nT? +n?).
The Freedman et al. [FNP04] protocol (though incorrect), as well as our first corrected version
work in bit complexity O(n(})). In comparison, our most efficient protocol works in bit complexity

O(nT) (however with the aforementioned increased time complexity of the client). Moreover, our
protocols (including the one based on protocols from [FNP04]) do not use generic secure 2-party
computation constructions or oblivious transfer protocols. Because of that they are more efficient
than would appear from the O notation (see above).

Related work can be traced back to private equality testing [BST01, FNW96, FNP04, NP99]
in the 2-party case, where each party has a single element and wants to know if they are equal
(without publishing these elements). Private set intersection [FNP04, NP99, KS05] (possibly
among more than two parties) is also related. In this problem the output of all the participants
should be the intersection of all the input sets, but nothing more: a participant should gain no
knowledge about elements from other participant’s sets that are not in the intersection.

Similarly related are so called secret handshaking protocols [BDS103, CJT04]. They consider
membership of a secret group, and allow members of such groups to reliably identify fellow group
members without giving away their group membership to non-members and eavesdroppers. We
note that the (subtle) difference between secret handshaking and set-intersection protocols lies in
the fact that a set-intersection protocol needs to be secure for arbitrary element domains (small
ones in particular), whereas group membership for handshaking protocols can be encoded using
specially constructed secret values taken from a large domain.

Privacy preservation issues have also been considered for approximation of a function f among
vectors owned by several parties. The function f may be Euclidean distance ([DA00], [FIM*01],
[TW06]), set difference ([FNP04]), Hamming distance ([DA00], [IW06]), and scalar product (re-
viewed in [GLLMO4]).

Our paper is structured as follows. We formally define the fuzzy private matching problem in
Section 2, and introduce our system model, some additional notation, and primitives there as well.
Then in section 3 we present the solution from [FNP04] for 2-out-of-3 fuzzy private matching and
show where it breaks. Section 4 contains our first protocol for t-out-of-T' fuzzy private matching
that uses techniques similar to the ones used in [FNP04]. We then present our second protocol
based on linear secret sharing in section 5. All our protocols assume a semi-honest environment
(see Section 2.4).

2 Preliminaries

In this section, we introduce the fuzzy matching problem as well as the mathematical and cryp-
tographic tools that we use to construct our protocols.

2.1 Fuzzy Private Matching Problem Definition

Let a client and a server each own a set of words. A fuzzy private matching scheme is a 2-party
protocol between a client and a server, that allows the client to compute the fuzzy set intersection
of these sets (without leaking any information to the server).

To be precise, let all the words X = z!... 27 in these sets consist of T letters z* from a domain
D. We define an auxiliary relation X ~; Y among these words as follows: we say that two words
X=z'...27 and Y = y'...y" match on ¢ letters if and only if

t<Hk:a"=y" N1 <k<T)}.

The input and the output of the protocol are defined as follows.

input:
e For the client: set X = {X1,... X, } of nc words of length T.
e For the server: set Y = {Y7,...Y,} of ng words of length T
e For both client and server: ng, ng, T and t.

output:

e Output of the client is a set: {Y; € Y|3X; € X : X; =, Y;}. This set consist of all the
elements from Y that match with any element from the set X.

e Output of the server is empty (the server does not learn anything).

Usually we assume that nc = ng = n. In any case, the sizes of the sets are fixed and known to
the other party a priori (so the protocol does not have to prevent the other party to learn the size
of the set).

2.2 Additively Homomorphic Cryptosystem

We use a semantically-secure, additively homomorphic public-key cryptosystem, e.g., Paillier’s
system [Pai99]. Let {-},x denote the encryption function with public key pk. The homomor-
phic cryptosystem supports the following two operations, which can be performed without the
knowledge of the private key.

1. Given the encryptions {a},i and {b}x, of a and b, one can efficiently compute the encryption
of a +b, denoted {a + b}pr = {a}pr +n {b}pk

2. Given a constant ¢ and the encryption {a},, of a, one can efficiently compute the encryption
of ¢ a, denoted {c- a}lpr :=c-n {a}tpk

These properties hold for suitable operations +j and -, defined over the range of the encryption
function. In Paillier’s system, operation + is a multiplication and -} is an exponentiation.

2.2.1 Operations on encrypted polynomials

We represent any polynomial p of degree n (on some ring) as an ordered list of its coefficients:
[ag, a1, ...,). We denote the encryption of a polynomial p as {p},» and define it to be the list
of encryptions of its coefficients: [{co}pk, {01 }pks - -+ {0n }pk]-

Many possible operation can be performed on such encrypted polynomials (assuming that the
encryption has an additively homomorphic property), like: addition of two encrypted polynomials

or multiplication of an encrypted and a plain polynomial. However in this paper we use the
following property: given an encryption of a polynomial {p},, and some x one can efficiently
compute a value {p(z)}px. This follows from the properties of the homomorphic encryption scheme:

{p(x)}pk = {Z Q- IZ} = Zh {Oéz' 'Ii}pk = Zh {ai}pk ‘h xt
i=0 i=0 i=0

pk

2.3 Linear Secret Sharing

Secret sharing refers to any method for distributing a secret among a group of n participants, each
of which is allocated a share of the secret. The secret can only be reconstructed when at least ¢
shares are combined together. Combining less than ¢ individual shares are of no use and should
give no information whatsoever about the secret. We denote a secret share as's; (for i € {1...n})
and the corresponding secret as s.

A Linear Secret Sharing (LSS) scheme is a secret sharing scheme with additional properties.
In this paper we use the following property: given ¢ shares S; (of secret 5), and ¢ shares 7; (of
secret) on the same indecies, using §; +7; one can reconstruct the sum of the secrets s+ 7. Such
a LSS scheme is Shamir’s original secret sharing scheme [Sha79].

2.4 Adversary Models

In this section we describe the adversary model that we use. We prove correctness of our protocols
only against a semi-honest adversary (we do not consider a malicious one). Here we provide the
intuition and the informal notion of this model, the reader is referred to [Gol02] for full definitions.
To simplify matters we only consider the case of only two participants (the client and the server).

In the model with a semi-honest adversary, both parties are assumed to act accordingly to their
prescribed actions in the protocol (but they are allowed to use all information that they collect
in an unexpected way to obtain extra information). The security definition is straightforward in
our particular case, as only one party (client) learns the output. Following [FNP04] we divide the
requirements into:

e The client’s security — indistinguishably:
Given that the server gets no output from the protocol, the definition of the client’s privacy
requires simply that the server cannot distinguish between cases in which the client has
different inputs.

e The server’s security — comparison to the ideal model:
The definition ensures that the client does not get more or different information than the
output of the function. This is formalized by considering an ideal implementation where a
trusted third party TTP gets the inputs of the two parties and outputs the defined function.
We require that in the real implementation of the protocol (one without TTP) the client
does not learn different information than in the ideal implementation.

Due to space constraints our proofs are informal, presenting only the main arguments for correct-
ness and security.

3 The Original FPM Protocol

In this section we present the original fuzzy private matching protocol from Freedman et al. [FNP04]
(pages: 16-17). We show (following the original paper) the version for T'= 3 and ¢ = 2. Then we
present an example of an input data where this protocol fails. The protocol is presented in Figure
1.

Figure 1: FPM protocol — version from [FNP04]
Domain remark: The domain R of the plaintext of the homomorphic
cryptosystem is defined as follows: R should be bigger than D7 and the
following property should hold: “a random element from R is with negligi-
ble probability in DT”. This property can be satisfied by representing an
element a € DT by r, = 0*||a in R.

1. The client chooses a private key sk, a public key pk and parameters
for homomorphic encryption scheme and sends pk and parameters to
the server.

2. The client:

(a) chooses, for every ¢ (such that 1 < i < n¢), a random value
T, € R

(b) creates 3 polynomials: P;, P, P; (where polynomial P; is used
to encode all letters on the jth position) defined by the set of
equations r; = Py(z}) = Pa(2?) = P3(2?), for 1 <i < n¢

(¢) uses interpolation to calculate coefficients of the polynomials
(Py, Py, P3) and sends their encryptions to the server.
Remark: These polynomials have degree nc — 1 (in [FNP04] it
is written that they have degree n¢).

3. For each Y; (such that 1 <14 < ng), the server responds to the client:
{r- (Pi(yi) — P2(y})) + Yi}pr,
{r' - (Pa(y?) — Ps(y7)) + Yi}pw,
{r" - (Pr(yi) — P3(y7)) + Yitpr,
where r, 7', 7" are always fresh random values in R. This uses the
properties of the homomorphic encryption scheme and the use of en-
crypted polynomials explained in section 2.2.1.

4. If the client receives encryption of encoding of Y;, which is similar to
any word from his set X then he adds it to the output set.

3.1 The idea behind, and the problem of protocol 1:

Intuitively the protocol works because if X; ~9 Y then, say, z? = y? and x? = yf Hence
Py(x7) = Pa(y;) = ri and Ps(x}) = Ps(y}) = i so Pa(y]) — P3(yj) = 0. Then the result
{r" - (P2(y3) — Ps(y})) + Yj}pi sent back by the server simplifies to {Y;}, (the random value 7/
is canceled by the encryption of 0) which the client can decrypt. If X; and Y; do not match,
the random values 7, r’ and r” do not get canceled and effectively blind the value of Y; in the
encryption, hiding it to the client.

There is a problem with this approach however. Consider the following proper input data.

Client’s INPUT: Server’s INPUT:
{[1,2,3] , [1,4,5]} {5,4,3]}

Then in step 2c of the protocol 1, the polynomials are defined (by the client) in the following way:

P1: Pg: P3:
Pl(l):rlﬂpl(l):Tg P2(2):7’1QP2(4):7’2 P3(3):7’1QP3(5>:7’2

But now we see that, unless r; = ro (which is unlikely when they are both chosen at random), Py
remains undefined! Freedman et al. do not consider this possibility. However, if we try to remedy

this problem by setting ;1 = ro we obtain another one. Among other things, the server computes
{r'-(Pa(y?)— P5(y?)) + Yi} pk, which, in this particular case equals {r’-(Py(4) — P5(3))+[5,4, 3]} pk.-
This equals {r’ - (ro — 1) + [5,4, 3]}k, which by equality of r; and r reduces to {[5,4,3]},x. In
other words, the client learns [5,4, 3] even if this value does not match any of the elements held
by the client. This violates the requirements of the fuzzy private matching problem.

4 Polynomial Based Protocol for FPM problem

In this section we present our protocol solving private fuzzy matching problem inspired by the
protocol from [FNP04] (presented in Section 3). Our protocol works for any T" and ¢. The protocol
is presented in Figure 2. In the protocol we use the following definition of o. Let o be a combination
of t different indecies 01,09, ...,0; from the range {1,...,T} (there are (:tr) of those). For a word
X € DT, define o(X) = z°||---||z° (i.e., the concatenation of the letters in X found at the
indecies in the combination).

Figure 2: Corrected Protocol solving private fuzzy matching problem.

Domain remark: like in the protocol 1.

1. The client chooses a private key sk, a public key pk and parameters
for homomorphic encryption scheme and sends pk and the parameters
to the server.

2. For every combination ¢ of ¢t out of T" indecies the client:

(a) constructs polynomial:
P,(z) =(x—0o(X1)) (v —0(X2)) - (x —0(Xpn.)) of degree n¢

(b) sends {P,}px (the encrypted polynomial, see section 2.2.1) to the
server.

3. For every Y; € Y, 1 <1 < ng, the server performs:

(a) for every received polynomial { P, },; (corresponding to the com-
bination o):

i. evaluate polynomial {P,},; at the point o(Y;) to compute
{wf}pe = {r * Py(c(Y;)) + Yi}pk, where r € R is always a
fresh random value.

ii. sends {wy }, to the client.

4. The client decrypts all received messages and if a received message
w? € DT and it matches with any word from X then he adds w¢ to
the output set.

4.1 Correctness of protocol 2

In the protocol the client produces (7;) polynomials P, of degree ne. Every polynomial represents
one of the combinations o of ¢ letters from T letters. It is easy to see that if X ~; Y then
0(X) = o(Y) for some such combination o. The roots of each polynomial are concatenated letters
(of every word in the client set) corresponding to each combination. Hence, if in the set Y there
is an element Y; that matches with any X; € X, then in step 3(a)i of the protocol the value of

the evaluated polynomial at a “matching point” ¢ is 0 and then the encryption of Y; is sent to
the client. Afterwards the client can recognize this value. Otherwise (if Y; does not match with
any element form X) then all of the values sent to the client contain a random blinding element
r (and therefore their decryptions are in X with negligible probability).

4.2 Security of protocol 2

Client input data is secure because all of the data received by the server are encrypted (using a
semantically secure cryptosystem). Hence the server cannot distinguish between different client
input.

Privacy of the server is protected because the client learns about those elements from Y that
are also in X (if element y; € Y does not belong to X then a random value is sent by the server,
see the previous section).

4.3 Complexity

Messages being sent in this protocol are encryptions of plaintext from a domain that contains DT,
enlarged by k bits (where k is the security parameter). In step 2 the client sends (::) polynomials
of degree ng. Then in step 3 the server responds with ng values for every polynomial. Hence in
total O((ns + n¢) - ({)) messages are send. Time complexities of the participants also contain

factor (f) (which follows from the bit complexity).

4.4 Optimization for a domain of messages

A domain of messages for large D and T can significantly slow down the bit performance. However
there is a way to make this domain smaller by slightly modifying the protocol. For every Y; the
server should prepare an unique secret key sk; and public key pk;. Then for every Y; he sends
Epk, (0%]]Y;) to the client. After that, the protocol should be run unchanged, except that in step
3(a)i the server calculates and sends {w¢ },, = {r* P,(c(Y;)) + (0%||sk;)}px instead. Later in step
3(a)i the client can distinguish a valid secret key from the random value (by the prefix 0%) and
check to which encryption E,, (0F||Y;) it fits. After he finds such an encryption he can add it to
his output set.

In this modified protocol O((ng +n¢) - (7;)) messages from a domain of size O(k) are sent and
O(n,) messages from a domain of size O(log(|D|T) + k).

4.5 Remarks

All of the optimizations described in [FNP04] used for private matching problem can be easily
used in this protocol.

It is also easy to modify our protocol to be resistant to a malicious adversary (using the
protocol resistant to a malicious adversary from [FNP04]). Every polynomial should be protected
from a malicious adversary separately (it is a similar situation to (?) instances of private matching
problem against a malicious adversary).

5 Secret Sharing Based Protocol for FPM problem

In this section we present two of our protocols solving FPM problem. Both of them use the
linear secret sharing technique (described in Section 2.3) and work in the model with semi-honest
adversary. First we describe simple (but slow) protocol and later faster, improved one.

5.1 A simple version of the protocol

The simple protocol is presented in Figure 3. In this protocol the client first sends encryptions
of all of his words (every letter is encrypted separately) to the server. Then the participants, for

every couple of words from X and Y, run subroutine find-matching(é,j). The aim of a single
call of this procedure is to provide Y; to the client if and only if X; ~; Yj. This is achieved by
using t—out—of-1" secret sharing scheme. The client receives a correct share from the server if
corresponding letters z;” and y;’ are equal (otherwise he receives random value). Hence he can
recover Y; if he receives at least t correct shares (and this happens if and only if at least ¢ letters
from X; are equal to Yj).

Figure 3: Simple protocol solving private fuzzy matching problem

1. The client generates sk, pk and parameters for a semantically secure,
additively homomorphic cryptosystem and sends pk and parameters
to the server.

2. For each X; € X

(a) The client encrypts each letter =} of X; and sends {z}"}, to the
server.

(b) For each Y; € Y run protocol find-matching(i,j).

find-matching(4,5)

1. The server prepares t—out—of-T secret shares [sq,3a,...57]
with secret 0%||Y;, where k is the security parameter.

2. For every letter yi’ in Y}, the server computes:
vw = (({#3" Yk —n{Y} Fpr)n7) +{5w }pr Which equals {((z}’—
YY) T +5uw) }pk, where r is always a fresh, random value from
the domain of plaintext.

3. The server sends [v1,va,...vr| to the client.

4. The client decrypts the values and checks if it is possible to
reconstruct the secret 0%||z from them. In order to do that,
it needs to try all possible combinations of ¢ among the T’
decrypted (potential) shares. If it is possible and z matches
X; then he adds z to his output set.

5.1.1 Correctness of protocol 3

In this protocol the client encrypts all of his words and sends results to the server. Then partici-
pants for every couple of words (X;,Y;) run a subroutine find-matching. In the subroutine the
server divides his words into 7" shares (with the threshold t) and for every letter in Y; calculates
vy = {((z} = y}’) -7+ Bw)}pk. If 2} =y’ then the client receives the correct share, otherwise
a random value. However at this step the client cannot distinguish in which situation he is (he
cannot distinguish a random value from the correct share). Then the client checks if he can re-
construct secret using any combination of ¢ out of the T elements {Dgx(vy)|1 < w < T}. He
recognizes the secret by the 0% prefix, and similarity with one of the words from his set. If he has
less than ¢ correct secret shares then he cannot recover the secret and the retrieved data looks
random to him (it follows from the security of the secret sharing scheme). Hence all required
elements from Y appear in the client’s output. The probability that some incorrect element is in
the output set is negligible.

5.1.2 Security of protocol 3

The client input data is secure because all of the data received by the server is encrypted (using
semantically secure cryptosystem). Hence the server cannot distinguish between different client
inputs.

Privacy of the server is protected because the client receives correct secret shares of some
Y; € Y if and only if there is an element X; € X such that X; ~; Y;. In this situation the client
has at least ¢ correct secret shares an he can reconstruct the secret 0%||Y;. If there is no element
in X to which Yj is similar then the client receives ng independent groups of shares, which has
no group with at least ¢ correct shares. Hence from any of these groups he cannot retrieve any
secret. The probability that a random value from R is a correct share is negligible (with respect
to security parameter k). Therefore the probability that the client can recover an illicit secret is
negligible.

5.1.3 Complexity

Messages being sent in this protocol are encryptions of plaintext from the domain that contains
DT enlarged by k bits (where k is a security parameter). Optimization from Section 4.4 can be
applied in a straightforward way to this protocol.

In step 2a the client sends encryptions of all letters of all his words to the server. This is
O(n¢ - T) messages. The subroutine find-matching is called n¢ - ng times. In this subroutine
the server, in step 3, sends O(T) ciphertexts. Hence, in total there are O(n¢ - ng - T') messages
sent in this protocol.

The main part of the server time complexity is preparing ng - n¢ times the T secret shares.
Producing T secret shares can be done efficiently. Hence the time complexity of the server is
reasonable.

The crucial part for the time complexity of the client is step 4 (that is performed once in
every subroutine call). In this step the client verifies if he can reconstruct secret Y;. Using
the scheme from Section 2.3 checking if in a group of T potential shares there are ¢ real shares
costs (Tf) reconstructions (and one reconstruction can be done efficiently). Hence the number of

reconstructions is in the order of O(ng - n¢ - (3’;)) That is a big drawback of this protocol.

5.2 Improved protocol

The improved protocol is presented in Figure 4. For simplicity we assume here that in the server’s
set there are no matching elements:

Yy, v,ey (i #J) = Yi#: Y

Later we describe which modification to the protocol is necessary to allow all of the possible input
data in the protocol.

This protocol consists of a polynomial and a ticket phase. Aim of the polynomial phase is to
provide to the client n lists of groups of encryptions of secret shares, from which he should be
able to recover his output set (it is possible because of the simplification assumption). However,
if he receives these shares in the plaintext he can abuse the protocol by gaining illicit information.
Because of that there is a ticket phase whose aim is to protect the server privacy. This phase
makes lists of groups of secret shares independent and therefore the client cannot mix shares from
different groups to abuse the protocol.

5.2.1 Correctness of protocol 4

The first important issue appears in step 2 of the polynomial phase. Here the server prepares n
groups of shares [S; 1,5;2,...5;r]. From the ith group he can recover Y;. During the creation of
these shares the server uses the rule: if y; = y;» then 5; ,, = 5p,.,. This rule is necessary because
later these shares are encoded as polynomials. It is possible to create these groups with such secrets

Figure 4: Improved protocol solving FPM problem

Polynomial Phase:

1. The server prepares sk, pk and parameters for a semantically secure,
additively homomorphic cryptosystem and sends pk and parameters to the
client.

2. For all Y; € Y, the server prepares t—out—of-T secret shares
[5i1,3i,2,...5:.,7] with the secret 0°||Y;, where k is the security parame-
ter.

If yi* = ypm then Si v = Sm,w-

3. The server prepares T polynomials (for w =1 to T') of degree n :

() ((Pu(yi’) = S1w) N (Pu(yy) = S20) 0. (Puyn) = Snw))
(b) The server encrypts each polynomial { P}, and sends it to the client.
4. The client evaluates T polynomials (for w = 1 to T') on each letter of each
word (for ¢ =1 to n): {vi’}pr = {Puw(x’)}pk.
If 2} = y,n then v;’ = S -

5. The client blinds the result v;" and sends them to the server: {vi” + r{’ }pi.

Ticket Phase:
6. For ¢ = 1 to n, the server prepares t—out—of-1 secret shares
[Fi,hFi,Q, .. .7¢,T] with secret 0.
7. Fori=1tonand for w =1 to T, the server decrypts the received messages
D ({vi® + 7" }pr) and sends (vi" + 7" + 75°) to the client.
8. The client unblinds them (by subtracting ;") and achieves ¢;".
If *T;U - y% then q;u = gm,w +7i,w~

9. For i = 1 to n, the client checks if it is possible to reconstruct the secret
0%||z from [g},q?,...qF]. If it is possible and z is similar to any X; € X
then he adds z to his output set.

in the given manner because of the simplification assumption (otherwise for similar elements from
set Y it would be impossible to choose different secrets for different groups of shares). After
that, in step 3, the server creates T' polynomials of degree n in such a way that evaluating the
polynomial on a corresponding letter from some word from Y results in a corresponding secret
share. Later he sends the polynomials to the client. The client evaluates the polynomials on his
words and achieves {v}},, (where the following property holds: if z = y% then v}’ = Sy .u)-
After the ticket phase the client receives ¢ = v} +7; , where [T; 1,72, .. 7i,r] are secret shares
with the secret 0. Hence the client receives the group: [v} + 71,02 + Ti2,...v] + 7; 7], where
if 3" = yp» (for some Y,, € Y') then v}’ = 5,, . Therefore, by linear property of LSS, if v} is a
correct secret share then v} +7; 1 is also a correct secret share. Moreover, if in the group there are
enough corresponding secret shares then the secret that could be recovered from them is 0%||Y;,
(because the secret of T secret shares is 0). Hence, in step 9 the client recovers all of the secrets
that he has corresponding shares.

5.2.2 Security of protocol 4

The client’s privacy of the input data is secure because all of the data received by the server (in
step 5 of the polynomial phase) is of the form: v} + r¥, where 7}’ is a random value from the
domain of the plaintext. Hence the server cannot distinguish between different client input.

The privacy of the server is protected because the client receives correct secret shares of some
Y; € Y if and only if there is an element X; € X such that X; ~; Y;. Everything that client

10

receives in the polynomial phase is encrypted so there is no leakage of information. He receives
information in plaintext in step 7 of ticket phase 7. In this situation the client has at least ¢ correct
secret shares and he can reconstruct the secret 0%|Y;.

If there is no such an element in X to which Y; is similar then the client receives in every
group of potential shares no more than t shares: 7;,, + 5;. (¢ is an index of the received group
of potential shares). The client cannot reconstruct Y; for any group separately (secret sharing
assumption). 7 values for every group of shares are different and make every received group of
shares independent. The probability that a random value from R is a correct share is negligible
(with respect to security parameter k). Therefore the probability that the client can recover illicit
information is negligible.

5.2.3 Removing the simplification assumption

Steps that have to be changed to achieve independence of the simplification assumption are 2, 6,
and 9. The following modifications should be made:

step 2 Instead of t—out—of-T" secrets sharing of 3, (t + T')—out—of—(2 - T') secret scheme should be
generated. Values [S;1+1,8:17+2,- - - Si,2.7] should be sent in the plaintext to the client.

step 6 Instead of t—out—of-T" secrets sharing of 7, (t + T')—out—of—(2 - T") secret scheme should be
generated. Values [T; 741, 7i 142, - .- Ti2.7) should be sent in the plaintext to the client.

step 9 For i =1 ton and j = 1 to n, the client checks if it is possible to reconstruct the secret
0%||z from

4}, @y .- a4l S;T41 + TiT41, 55,042 + Ti, 742, --- Sj2.1 + Ti2.1)
If it is possible and z is similar to any X; € X then he adds z to his output set.

In this setting it is possible to perform step 2 even if some words from the server set are similar.
This is achieved by making threshold of the sharing scheme big enough and sending additional
shares in the plaintext. These additional shares are needed to prepare different secrets even if
more than ¢ shares are equal. These modification enlarge only the complexity of step 9 by factor
n (in O sense).

5.2.4 Complexity

Here we discuss the complexity of protocol 4 (without the simplification assumption). Messages
being sent in this protocol are encryptions of plaintext from the domain that contains D7 enlarged
by k bits (where k is a security parameter). Optimization from Section 4.4 can be applied to this
protocol in a straightforward way.

In step 3 the server sends encryptions of T polynomials of degree n, i.e., this is O(n-T) messages.
For every received polynomial the client computes n values and sends them encrypted to the server
(again O(n - T') messages). In the ticket phase the server answers to every received message with
sending one non-encrypted value. Hence in whole protocol there are O(n - T') messages sent.

The main part of the server time complexity is preparing 2-n times 2-7T secret shares. Producing
2 - T secret shares can be done efficiently. Therefore time complexity of the server is reasonable.

The crucial part for the time complexity of the client is step 9 (this step is performed n? times).
In this step the client verifies if he can reconstruct the secret Y;. Using scheme from Section 2.3
checking if in a group of T potential shares there are ¢ real shares costs (th) reconstructions (and
one reconstruction can be done efficiently). Hence in the time complexity of the client there is a
factor O(n? - (:tr)) That is a big drawback of this protocol.

11

6 Summary and Future Work

In this paper we have shown few protocols solving FPM problem. The most efficient one works in a
linear bit complexity with respect to a size of the input data. However we cannot call this protocol
really efficient, because of the slow time complexity of the client. Currently, we are researching to
speed up the time complexity of the client by using error correcting codes. If we succeed in that
we are planning to implement this protocol and make efficiency tests.

References

[BDS+03]

[BSTO01]

[CITO4]

[DA0O]

[FIM*01]

[FNP04]

[FNWO6]

[GLLMO4]

[Gol02]

[TWO06]

[KS05]

[NPY9]

[Pai99)

[Sha79]

Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana Smetters, Jessica Staddon, and
Hao-Chi Wong. Secret handshakes from pairing-based key agreements. In 2/th IEEE
Symposium on Security and Privacy, Oakland, CA, May 2003.

Fabrice Boudot, Berry Schoenmakers, and Jacques Traoré. A fair and efficient solution
to the socialist millionaires’ problem. Discrete Applied Mathematics, 111(1-2):23-36,
2001.

Claude Castelluccia, Stanislaw Jarecki, and Gene Tsudik. Secret handshakes from
ca-oblivious encryption, 2004.

Kevi Du and Mike Atallah. Protocols for secure remote database access with approx-
imate matching, 2000.

Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J. Strauss, and
Rebecca N. Wright. Secure multiparty computation of approximations. Lecture Notes
in Computer Science, 2076:927+, 2001.

Michael Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and
set intersection. In Advances in Cryptology — EUROCRYPT 2004., 2004.

Ronald Fagin, Moni Naor, and Peter Winkler. Comparing information without leaking
it. Communications of the ACM, 39(5):77-85, 1996.

Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikainen. On private scalar
product computation for privacy-preserving data mining. Information Security and
Cryptology - ICISC, 2004.

Oded Goldreich. Secure multi-party computation. Cambridge University Press, 2002.

Piotr Indyk and David Woodruff. Polylogarithmic private approximations and efficient
matching. In TCC 2006, volume 3876 of LNCS, pages 245-264, 2006.

Lea Kissner and Dawn Song. Privacy-preserving set operations. In Advances in Cryp-
tology — CRYPTO 2005., 2005.

Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. Thirty-
First Annual ACM Symposium on the Theory of Computing, pages 245-254, May 1-4
1999.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology — FEUROCRYPT 1999., pages 223-238, May 1999.

Adi Shamir. How to share a secret. In Communications of the ACM, vol. 22, n.11,
pages 612-613, November 1979.

12

A Protocol solving private fuzzy matching problem based
on computing hamming distance

A technique of computing an encrypted hamming distance to solve FPM problem is used in [ITW06].
However, generic 2-party computations together with oblivious transfer are used in the protocol
from that paper and that makes that solution less practical. We show two solutions (that use
calculation of encrypted hamming distance): one that is simple and efficient for small domains
and the second one that uses oblivious transfer. Oblivious transfer is described for example in
[NP99]. Both solutions are shown in Figure 5. The difference between them is the implementation
of subroutine obtain-letters.

Figure 5: Protocol solving private fuzzy matching problem using Hamming distance

Domain remark: like in protocol 1.

1. The client prepares sk, pk and parameters for a semantically secure,
additively homomorphic cryptosystem and sends pk and parameters
to the client.

2. Run subroutine obtain-letters.
During this subroutine the server has obtained the following function:

{0}pr, for z =y’

i) = { {0 ok 7
where w € {1,... T} and 4,5 € {1,...n}

3. For each X; € X and Y; € Y run protocol find-matching(s,j).

find-matching(i,j)

1. The server computes:
T
{AXL Y3 = {0 Gy w)}pn
w=1

2. For [=0 to T — t the server sends
{(A(X;,Y;) = 1) -7+ (0¥]|Y;)) }pk to the client.

A.1 Correctness and Security of protocol 5

Assuming that in subroutine obtain-letters function f is set properly and security is maintained,
then protocol 5 calculates a correct output. This follows from two facts:

o {A(X;,Y;)}pk is calculated properly.

o If X, ~, Y, then in step 2 subroutine find-matching A(X;,Y;) € {0...T —t} and therefore
{0%|]Y; }pk is sent to the client.

Formal proof of correctness of this protocol looks similar to the one of protocol 3.
Argument for privacy of the client is the same as for protocol 3.

13

Privacy of the server is protected because in step 2 of subroutine find-matching if X; %, Y;
then A(X;,Y;) €{0...T — ¢} and therefore all values received by the client look random to him.

A.2 Subroutines obtain-letters

Subroutine v1 works properly because of the way vectors d}” are defined. All of the values received
by the server are encrypted, hence security is maintained.

In subroutine v2 the server wants to achieve encryption of di’(Y;”). In step 2 it receives
temp = d}’ (Y;*) @ b}’; and {b}’; }px. The server wants to achieve: {temp @ b’; }pr. = {di" (Y}")}pk-
If temp = d?(Y") @ b, = 0 then {d}(Y;*)}pr = {b}’;}pr and the server achieved the desired
value. Otherwise, if temp = 1 then the following property holds:

{657 + temp) =2 (b2 - temp) }pr, = {(0; @ temp) }pw = {3 (Y}*) Jok

All of the values received by the server in this subroutine are encrypted or blinded by random
values b}’;. Hence, the security of this subroutine is maintained.

A.3 Conclusions

These protocols are less efficient than protocols presented in the main part of this paper. They
strongly depend on the size of D and also contain factor n?7T in a bit complexity. Moreover, at
the moment, we do not foresee a way how to improve them.

However, the protocols are interesting because they do not use generic 2-party computation.
Furthermore techniques used there are interesting, especially subroutine obtain-letters-v2 and
the technique for obtaining encryption of a single bit using only one oblivious transfer.

14

Figure 6: Subroutines obtain-letters -v1 and -v2

obtain-letters-vi

1. The client generates vectors: d¥: [0..|D|—1] (where ¢ € {1,...n¢}
and w € {1,...T} such that:
d¥(v) =1if v =X/, and d¥(v) = 0 otherwise.

2. The client sends all E(d{(u)) to the server.

3. The server sets function f by: f(w,i,5) = d(w).

obtain-letters-v2

1. The client generates vectors: d¥: [0..|D]| —1] (wherei € {1,...n¢c}
and w € {1,...T} such that:
d¥(v) =1if v =X/, and d¥(v) = 0 otherwise.

2. Function f is set in the following way (for all 4,5 € {1,...n} and
we{l,...T}):

(a) The server and client performs oblivious transfer in following
manner:
temp := oblivious_transfer(Y;", hi’;) where:
e Y” represents the index that the server is asking for.
e h}’; is a vector [0..|D| — 1] defined in the following way:
Ry =dif @b, = [di"(0) @ b";,dy" (1) @ by, ... di (|ID] — 1) @ b}’
This vector contains an element that is interesting for the
server element and is owned by the client.
e b}’; is a random bit.
(b) The client sends {b}’; }pk to the server.

(C) f(w7z7.7) =

{ {63 Yok for temp =0
{(b;

iy +temp) — 2. (byY; - temp) }pi, for temp =1

15

