
Secure Method Invocation in Jason ∗

Richard Brinkman

Department of Computer Science, University of Twente

P.O. Box 217, 7500 AE Enschede, the Netherlands

brinkman@cs.utwente.nl

Jaap-Henk Hoepman

Department of Computer Science, University of Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, the Netherlands

jhh@cs.kun.nl

Abstract

In this paper we describe the Secure

Method Invocation (SMI) framework imple-

mented for Jason, our Javacard As Secure

Objects Networks platform. Jason real-

ises the secure object store paradigm, that

reconciles the card-as-storage-element and

card-as-processing-element views. In this

paradigm, smart cards are viewed as secure

containers for objects, whose methods can

be called straightforwardly and securely us-

ing SMI. Jason is currently being developed

as a middleware layer that securely intercon-

nects an arbitrary number of smart cards,

terminals and back-office systems over the

Internet.

1 Introduction

JavaCard1 [Che00] technology makes it

possible to develop software for a smart card

using a high level language: Java. This

technology is platform independent, it can

handle multiple applications (each running

securely within its own sandbox) on one

smart card, post-issuance applications can

be added to it and it is compatible with inter-

national standards like ISO7816 [ISO7816].

∗Id: javacard-smi.tex,v 1.10 2002/09/23 06:04:03

hoepman Exp
1http://java.sun.com/products/javacard

In fact, the JavaCard platform brought

high level, Object Oriented Programming

(OOP) to the smart card developer. Unfor-

tunately, the OOP paradigm is only applied

to the software within the smart card it-

self: invoking methods implemented by ob-

jects on the smart card still requires the

developer to send commands to the smart

card using Application Protocol Data Units

(APDU’s) [ISO7816], which have to be pro-

cessed and transformed into method calls

‘by hand’.

It would be much more natural to view an

object stored on a JavaCard as a remote ob-

ject, accessible through a remote method in-

vocation mechanism. In fact, if we look at

a smart card application at a higher level of

abstraction, we basically see a large collec-

tion of interconnected objects. Some of these

objects are stored in back offices, others in

terminals or PC’s and many more stored se-

curely on millions of smart cards. This net-

work is highly dynamic: smart cards are

usually offline, and only connect to the net-

work when they are inserted into a terminal

(or when they connect to a terminal over a

wireless interface in the case of contactless

cards). Much more importantly, this network

needs to be highly secure. Access to certain

objects should be restricted, and the confid-

entiality and authenticity of the communic-

ation between the objects has to be guaran-

teed.

Hartel et al. [HJF95] pose that a smart

card should be seen as a processing element

rather than a storage element (as is tradi-

tionally done). In our opinion these views

are not contradictory at all, but rather sup-

plement each other nicely in the secure ob-

ject store paradigm. In this paradigm, smart

cards are viewed as secure containers for ob-

jects, whose methods can be called straight-

forwardly and securely using Secure Method

Invocation (SMI). We are currently develop-

ing the Javacards As Secure Objects Network

(Jason) platform as a middleware layer (on

these smart cards, terminals, PC’s and back

office systems) to support this paradigm. By

simplifying the communication with a smart

card, and by providing extensive support to

secure this communication, Jason aims to

greatly simplify the development of smart

card applications.

In this paper we will describe the Jason

Secure Method Invocation (SMI) scheme. In

this scheme, a Jason definition file (JDF) (re-

sembling a Java interface with some addi-

tional keywords) is used to specify the access

conditions on methods of an object. It also

specifies how the parameters of a method

call and the result should be protected when

transmitted between caller and callee. The

JDF is compiled into a stub (used by the

caller to set up a connection with the object

and to call its methods) and a skeleton (used

by the callee to accept incoming method in-

vocation requests and to handle the secur-

ity requirements). The big advantage is that

the smart card application developer only

needs to specify the security requirements,

but does not have to implement the security

protocols himself. This is done automatic-

ally, given the requirements.

The remainder of this paper is organised

as follows. We first present related research

in the next section. Then, the main require-

ments for the Jason platform are presented

in Sect. 2. The design (in terms of the applic-

ation programmers view on Jason) is given

in Sect. 3. Section 4 discusses the architec-

ture and the way the Jason SMI is actually

implemented, while Sect. 5 presents a small

example of using Jason to implement a ba-

sic electronic purse. Finally, conclusions and

issues for further research appear in Sect. 6

1.1 State of the art

Itoi et al. [IFH00] add security to the Inter-

net infrastructure for smart cards developed

by Guthery et al. [Gut00, GBPR00] and Rees

et al. [RH00], adding the Simple Password

Exponential Key Exchange (SPEKE) protocol

and using the DNS as a location independent

naming scheme for the smart cards involved.

These aspects will be taken into account in

the networking and naming part of the Jason

platform.

Hagimont and Vandewalle [DH00] apply a

different approach to enforcing access con-

trol on (remote) objects. Their JCCap system

uses capabilities to specify which methods of

an object can be accessed by the owner of

that capability. Capabilities are implemen-

ted through Java interfaces, and provide a

limited view on the full interface of an as-

sociated object. This makes their system

dynamic (in the sense that capabilities can

be added and removed from the system in-

dependent of the actual implementation of

the object, and that capabilities can be del-

egated between objects. On the other hand,

they do not consider the general case of

caller and callee residing on different sys-

tems separated by a network (as well as the

terminal/card line interface). Moreover, the

very important matter of protecting the data

transfered with an actual method call is not

considered in their work.

The latest JavaCard specification (2.2) in-

cludes a lightweight version of Sun’s Remote

Method Invocation (RMI) [Sun99]. It provides

a mechanism for a client application running

on the terminal to invoke a method on a re-

mote object stored on the card just like an

invocation within the same virtual machine.

The parameters of a remote method should

be primitive (byte, boolean, short, int) or a

single-dimension array of a primitive type

(byte[], boolean[], short[], int[]). Unlike stand-

ard Java RMI, object parameters (whether re-

mote or not) are not allowed. The method

result is of primitive type, a single-dimension

array of primitive type, a remote interface ob-

ject or void. All parameters and return values

are transmitted by value, except for the re-

mote object. The remote object is transmit-

ted by reference. We have investigated sev-

eral approaches to implementing our Jason

Secure Method Invocation (SMI) system using

RMI, but none are quite satisfactory. We dis-

cuss this in Sect. 4.4.

Keht et al. [KRV00] describe the JiniCard

architecture, which allows seamless integra-

tion of smart card services in a spontaneous

network environment. The approach taken

is to keep all functionality required to inter-

act with a certain smart card remotely on the

network, and to download this functionality

into the card reader based on the ATR (An-

swer To Reset) of the particular card inser-

ted into it. They also discuss the service-as-

object metaphor, but as far as security is con-

cerned, they consider SSL sessions between

card and terminal objects over which RMI

calls are being sent. We, on the other hand,

introduce a much finer security granularity

at the method level.

There are also a number of related in-

dustry initiatives that deserve to be men-

tioned here.

The Global Platform Specification2

(formerly Visa’s Open Platform specific-

ation) is concerned with the secure and

platform independent installing and deletion

of applications on multi-application smart

cards.

The Open Card Framework3 (and the sim-

ilarly motivated PC/SC Workgroup4) aims to

allow software developers to build smart

card-aware products without having to worry

about platform, card terminal, or smart card-

specific interfaces. It supplies an API for

handling the communication between a PC

application and a smart card reader. Since

OCF is developed by the major smart card

companies, it supports all kinds of smart

cards and card readers. The application does

not even have to know which smart card

reader is being used during a communication

session with a card. OCF does not specify the

card side. The choice of a particular type of

smart card is free and may change without

changing the PC application.

2http://www.globalplatform.org
3http://www.opencard.org
4http://www.pcscworkgroup.com/

2 Platform requirements

With the Jason SMI system we want to

achieve:

• Separation of concerns: specifying se-

curity requirements (in the interface

definition of a Java applet using our

keyword approach), and their actual

implementation (provided once through

the Jason SMI system).

• Generic secured access to objects and

their methods, independent of their loc-

ation and whether they are on a compute

server or a smart card.

• Providing generic, interoperable, tools to

secure method invocations, which can

be shared among objects (decreasing the

code size) and which can be verified

once (increasing robustness and avoid-

ing repeated verification of similar per-

applet security measures).

• Decreasing the complexity of writing se-

cure (smart card) applications.

3 Design

The Jason platform implements the se-

cure object store paradigm using the follow-

ing layers.

Network layer Implements the direct con-

nection between clients, servers, ter-

minals and smart cards, using the In-

ternet Protocol. Between terminal and

smart card IP packets are transferred

as APDU’s. In particular, a smart

card (when inserted in a terminal) has

an IP address, and the terminal acts

as a gateway relaying all incoming IP

packets to the appropriate smart card

(it may contain more than one smart

card) [GBPR00].

remote method invocation layer Serialises

method parameters into bytestreams

and vice versa, and executes the call on

the remote method

secure method invocation layer Provides

access control and data confidentiality

and authenticity.

In this paper we will focus on the design of

the secure method invocation layer, and de-

scribe it as seen from the application pro-

grammer’s point of view. We will discuss the

close interdependencies with the RMI layer.

The SMI layer only requires of the underlying

layers that it delivers messages at least to the

intended recipient.

3.1 Main components

The Secure Method Invocation (SMI) layer

allows a caller object to securely call a

method implemented by a callee object. Both

caller and callee are assumed to be stored

and run in a protected environment (a sand-

box) that disables access to all objects and

data within the sandbox except through pub-

lished interfaces.

The Jason SMI layer provides the following

services:

• identification and authentication of

caller and callee,

• role based access control at the method

level, and

• confidentiality and authenticity of

method parameters and results.

In future versions other services will be ad-

ded like:

• logging

• transaction support

• non-repudiation

To call a method of an object, the caller first

has to connect to the callee in a particu-

lar role. This establishes a security context

between caller and callee, that (among oth-

ers) contains the session keys used to pro-

tect the communication. Once connected,

the caller can call all methods declared by

the object accessible to this role. For Jason,

roles are equivalent to keys. In other words,

ownership of a particular key associated to

a role, proves that an object can connect in

that role.

To establish a connection, the caller needs

a stub corresponding to the object to con-

nect to. Similarly, the callee needs a skel-

eton that receives incoming connections, per-

forms access control decisions and protects

the method parameters and results. The role

keys used to authenticate the caller to the

callee are stored in a separate keystore object

belonging to the same sandbox. This design

is sketched in Fig. 1.

The stub and skeleton necessary to se-

curely call the methods of an object are gen-

erated automatically from a so called Jason

definition file. This file specifies the security

requirements for the callee object. The con-

tents and structure of this file are described

next. Note that the issue of key management

falls beyond the scope of this paper. We are

currently investigating the proper tools to

support key management within the Jason

framework. As far as the Jason SMI platform

is concerned, the keystore contains valid and

proper keys.

3.2 The Jason definition file

The Jason SMI system has a strict separ-

ation between the card application and its

security. An application developer has two

tasks.

• Write a card object without bothering

about security or APDU exchange, in-

stead focusing on the information pro-

cessing logic of the application.

• Write a Jason definition file describing

the security requirements.

Therefore, the security requirements for an

object are written in a separate Jason defini-

tion file that resembles the syntax of a Java

interface description.

caller

stub skeleton
key

store

sandbox

dispatchernetwork

callee

key
store

sandbox

Figure 1: Caller and callee components.

package com.ebank;

public interface Purse

{

roles BANK, MERCHANT, OWNER;

accessible to ALL

authentic short getBalance();

accessible to BANK

authentic short increaseBalance(confidential authentic short amount);

accessible to MERCHANT

authentic short decreaseBalance(authentic short amount);

}

Figure 2: Jason definition file for a simple purse.

A sample Jason definition file appears in

Fig. 2 (describing the interface of a simple

electronic purse application, that will be

studied further in Sect. 5). The Jason pre-

compiler will process the definition file and

generates three files.

• A plain Java interface file. All keywords

not known in Java are removed. This is

the interface implemented by both the

implementation of the callee object and

the client stub.

• A client/caller stub, whose methods are

called to execute the corresponding re-

mote methods, and that performs au-

thentication and marshalling (including

protection) of data.

• A callee skeleton performing access con-

trol decisions, unmarshalling of para-

meters (verifying signatures and de-

crypting parameters where necessary)

for incoming invocation requests, and

executing the actual method.

In Java the keywords private,

protected and public are used to limit

access to methods and fields to certain

classes. An object can only access it’s own

private members, protected members of it’s

superclasses or classes in the same package

and all public members. These keywords

work fine if used inside a single virtual

machine. However, when using a distributed

system a more fine grained solution is

necessary.

In the Jason SMI system, access control

is role based. Moreover, the communication

between caller and callee has to be protected

as well. To specify these requirements, the

Java interface description is extended with

the following keywords.

• roles 〈role-list〉, listing the different

roles in which a caller can connect to

this object. The roles in this list corres-

pond to keys stored in the keystore.

• accessible to 〈role-list〉, specifying

which roles can call the indicated

method.

• confidential and/or authentic, spe-

cifying that a parameter or a method

result should be confidential and/or au-

thenticated.

Here a 〈role〉 is an identifier (usually in all

caps because it is a constant), and a 〈role-

list〉 is a comma-separated list of roles. Let

us discuss the last three keywords in a little

more detail.

accessible to 〈role-list〉 Access to

a method can be limited by using the

accessible keyword. Access is only to be

granted if the caller can be identified (using

the corresponding keys in the keystore) as

a role in 〈role-list〉. The predefined role ALL

indicates that access is allowed for all roles

defined for this object (through the roles

keyword). The predefined role ANYBODY spe-

cifies a role that can be assumed by anybody

(i.e., a role whose identity is not verified). For

security reasons only methods are accessible

from off-the-card applications. Variables

should be accessed through corresponding

set and get methods.

confidential Parameters and return val-

ues can be specified as confidential, mean-

ing that the data involved should be sent en-

crypted between caller and callee. This guar-

antees that nobody else can eavesdrop the

value. In the negotiation phase (see below)

a (symmetric) session key is exchanged and

an encryption algorithm chosen.

authentic Parameters and return values

can also be specified as authentic. This

gives the following guarantees.

authenticity Only the caller can construct

valid parameters5, and only the callee

can construct valid responses. The para-

meter received by the callee was sent by

the caller, and the result received by the

caller was sent by the callee. In par-

ticular, this gives the caller the guar-

antee that the intended side effects of

the method call did in fact occur at the

callee (like decreasing the balance of a

purse).

integrity The parameter (or the result) re-

ceived was not altered while in transit.

freshness The parameter received was

passed by the caller for the current call

of the method (and not for any previous

call). The result received was sent by the

callee for the current call of the method

(giving the guarantee that the method

was actually executed at this time, see

above).

In practice this means that the data involved

should be signed, and that a form of replay

protection is added as well.

3.3 Using SMI

To call a method using the SMI framework,

the caller has to perform the following two

steps (see also Fig. 3 for an example connect-

ing to the purse object whose interface was

given previously).

• The first step is to connect to the callee

and to establish a security context. The

5Strictly speaking, because a symmetric session key

is used to protect the data, also the callee can construct

valid parameters. Therefore non-repudiation cannot be

guaranteed.

try {

Purse purse = (Purse) SMINaming.connect("smi://smartcard/Purse",

Purse.MERCHANT, purseKeyStore) ;

try {

purse.decreaseBalance(10);

System.out.println("You have paid");

}

catch (UserException ue) {

System.out.println("Transaction failed. You have not paid.");

}

}

catch (RemoteException re) {

System.out.println("Failed to connect to service.");

}

Figure 3: Caller connecting to a callee

caller passes the name and location of

the desired service, the desired role in

which to connect, and a reference to the

key store to SMINaming.connect(). When

successful, this returns a reference to

the required stub.

• Subsequently, the methods of the re-

mote object can be called securely as if

they were local methods of the stub re-

turned by the previous step.

If a connection is established, the stub

also contains the current security context

for that connection. Among other things,

this security context contains a session key

used to secure subsequent method invo-

cations. Also, it contains further identi-

fication information on the callee object.

This identity can be retrieved by the stub’s

getSessionIdentifier() method.

Note that even for a single call to a method,

a connection has to be set up. This may

be wasteful for certain applications where

transaction speed is very important (e.g.,

public transport). We are investigating the

possibility of calling a single method without

connecting to the object first (in fact merging

the connection and the calling into one step).

4 Architecture

In this section we describe how the Jason

SMI platform is actually implemented, and

how the security requirements are actually

met using several cryptographic protocols.

In particular we show how a secure connec-

tion is setup, how the ownership of roles is

verified, and how the security context is es-

tablished. Secondly, we show how a method

is called securely using the information and

session keys in the current security context.

But first we will discuss the keys stored in

the keystore in a little more detail.

4.1 On keys

The keys in the keystore correspond one-

to-one to the roles declared in the Jason

definition file. The keystore also contains

keys for key-management. This is discussed

in a forthcoming paper.

Jason supports the use of different types

of keys in the keystore, depending on the se-

curity requirements of the application (or in-

deed individual objects on particular smart

cards). Currently, the following types of keys

are supported.

• RSA, with 512, 1024 and 2048 bit keys.

• DES and 3DES.

• AES, with 128, 192 and 256 bit KEYS.

Moreover, Jason supports diversified

keys [AB96] where the key ki stored by

callee i (used by the callee to authenticate

the caller or vice versa) is derived from the

master key kM stored by the caller. The key

is derived using the formula

ki = {i}kM ,

where {m}k denotes encryption of message

m using key k (where the encryption method

is defined by the type of the key). Note that

in this case ki performs the role of a public

key (from which the corresponding private

key cannot be derived), but with additional

property that it proves to the caller the iden-

tity i of the callee.

Depending on the type of key stored in the

keystore, the appropriate authentication pro-

tocol is run. Note that the caller keystore

contains the keys necessary to prove its role

(e.g., private keys), while the callee keystore

contains the keys necessary to verify a role

(e.g., public keys). If an entry in the caller

keystore is null or invalid, the caller cannot

assume the corresponding role. If an entry

in the callee keystore is null or invalid, the

role cannot be verified and all connections

for that role will be refused.

Finally, the keystore contains, for each role

key, information about the type of cipher

that should be used to protect the session

once the caller has been authenticated and

accepted.

4.2 Connecting to an object

Connecting to an object exchanges and

verifies the identity and role of the caller and

the callee. Furthermore, a security context is

established (containing a shared secret key)

that is used to protect all calls to methods of

the object. To connect to an object and estab-

lish a session the following steps are taken

(assuming RSA style authentication).

• The caller sends a message containing

– the role (as an index in the key-

store) as which it wants to connect,

– the type of key it will use to au-

thenticate the role (RSA in this ex-

ample),

– a list of all ciphers it will accept to

protect the session, and

– a nonce.

• The callee looks up the role and the type

of keys it can accept. If it can accept

the suggested authentication method, it

will select one of the ciphers to pro-

tect the session from the list it received

(provided it supports it). It then sends

the following message

– the selected cipher to protect the

session,

– a random master secret encrypted

with the public RSA key found for

the role in the keystore, and

– a nonce,

• The caller validates the proposed cipher,

decrypts the master secret with its

private key in the keystore.

• Both caller and callee generate the ses-

sion key (using hashes) from the master

secret and both the caller and the callee

nonces.

• Caller and callee exchange further

identifying information encrypted and

MAC-ed using the session key, and re-

cord that in the security context.

Both caller and callee record the session key

in the security context for this connection.

Note that if a connection is established as

ANYBODY, no verification of that role can be

performed. In that case, the master secret

must be exchanged using a Diffie-Helman

type key exchange. Future method invoca-

tions are will be secured using this session

key.

The session context also contains two

counters, one to count the number of mes-

sages sent in this session, and one to count

the number of messages received. Both are

reset to 0 at the start of a session, and incre-

mented for each message sent or received.

These numbers are used to protect against

replay, as explained below.

4.3 Method invocation

Informally speaking, after session setup

the stub and the skeleton are connected by

a (secure) byte stream. The byte stream

is routed by the communications layer to

the correct skeleton. In fact, when a stub’s

method is invoked, it does the following:

• reconnect to the remote JVM containing

the remote object,

• marshal(write and transmit) the para-

meters to the remote JVM,

• wait for the result of the method invoc-

ation,

• unmarshal (read) the return value or ex-

ception returned, and

• return the value to the caller.

The stub hides the serialisation of paramet-

ers and the network-level communication in

order to present a simple invocation mech-

anism to the caller.

In the remote JVM, each remote object has

a corresponding skeleton. The skeleton is re-

sponsible for dispatching the call to the ac-

tual remote object implementation. When a

skeleton receives an incoming method invoc-

ation it does the following:

• unmarshal (read) the parameters for the

remote method,

• invoke the method on the actual remote

object implementation, and

• marshal (write and transmit) the result

(return value) to the caller.

The byte stream sent from stub to skeleton

contains the following elements.

• The name (or rather the index) of the

method to call, together with a MAC

computed using the session key and

the current value of the sent messages

counter. Even if RMI is used as the trans-

port mechanism, this information is ne-

cessary to prevent remote method in-

vocations being redirected to the wrong

method.

• Each confidential parameter is encryp-

ted.

• For each authentic parameter, a MAC

computed using the session key and

the current value of the sent messages

counter is appended to the parameter.

For efficiency reasons parameters are

shuffled so that the confidential and

authentic parameters are placed in con-

tiguous blocks within the byte stream (see

Fig. 4). All confidential parameters are en-

crypted as a single block. Similarly, the MAC

for all authentic parameters is computed in

a single block, appending the sent messages

counter only once.

The return stream from skeleton to stub to

communicate results has the following struc-

ture.

• If the return type is confidential, the re-

turn value is encrypted with the session

key.

• If the return type is authentic, the sent

messages count is appended to the byte

stream, and both the count and the

value are used to compute a MAC with

the session key. The result is appended

to the byte stream.

4.4 Inter object communication

Because the caller and callee are physic-

ally separated by a network, the call to a re-

mote method must be transferred to the re-

mote object over the network before it can be

executed there. The most natural approach

would be to use Java’s Remote Method In-

vocation mechanism to achieve this. At the

caller side, the SMI stub first converts the

method �
� � �
� � � �
���

� � � �
� � � �
���

legend: MAC over indicated bytes
and message count using k

Bytes encrypted using k

� � � �
� � � �
���

confidential parameters

authentic parameters

Figure 4: Byte stream structure from caller to callee.

parameters to a protected bytestream, as ex-

plained in Sect. 4.3. The RMI layer than

transmits this bytestream to the callee, and

invokes the corresponding method of the

callee SMI skeleton. There, the access per-

missions are checked and the bytestream is

unpacked before the original callee method

is invoked.

However, this scenario is complicated by

the fact that JavaCard (as of version 2.2)

uses a different RMI system, if only because

a JavaCard is not connected to a network

directly, but instead communicates with the

outside world through a terminal using an

APDU stream. This would imply that the ter-

minal has to convert an incoming RMI re-

quest to a JavaCard specific JC-RMI request

(and similarly for the responses). This does

not appear to be straightforward, because

the RMI wire protocols are different. The

only option is to create – for each skeleton

on the callee smart card – a separate skel-

eton (and stub) for the terminal, that receives

the incoming RMI request and simply calls

the remote method on the smart card using

JC-RMI. This means the terminal potentially

needs access to a huge number of skeletons

and stubs, simply to pass bytestreams ver-

batim!

Moreover, we note that RMI’s support for

marshalling and unmarshalling of method

parameters and results becomes totally su-

perfluous in this approach, because the SMI

layer already converts the parameters to a

bytestream in the first place.

To solve the first problem RMI and JC-

RMI need to be brought more in line, such

that their wire protocols become sufficiently

compatible to allow translations between

them using a generic translation mechan-

ism running in the terminal. To solve the

second problem, the RMI system should

provide versatile hooks to allow the outgo-

ing bytestream to be protected in the fine

grained manner required by Jason. Or, SMI

should be incorporated into the RMI layer.

5 Example

Fig. 2 in section 3.2 shows the security

requirements of a simple purse application.

It corresponds to the actual implementation

given in Fig 5. Clearly the implementation is

quite straightforward. Also, the strictness of

the separation between implementation and

its security is apparent. The implementation

does not contain a single line of code con-

cerning security. All the security is contained

in the generated stub and skeleton. The skel-

eton calls the implementation and adds se-

curity to it. Note that each method is defined

with the default Java visibility, to allow the

skeleton to access them, but not giving ac-

cess to subclasses outside the package.

6 Conclusions & Further Research

We are currently implementing the

Jason SMI framework on a JavaCard

2.2 platform. The final implementa-

tion will be available under the GNU

package com.ebank;

class PurseImpl implements Purse {

public static final byte OVERFLOW = (byte) 1;

public static final byte UNDERFLOW = (byte) 2;

private short balance = 0;

private static final short MAX = (short) 500;

short getBalance() {

return balance;

}

short increaseBalance(short amount) throws UserException {

if (balance + amount < MAX) {

balance += amount;

return amount;

} else

UserException.throwIt(OVERFLOW);

}

short decreaseBalance(short amount) {

if (balance - amount > 0) {

balance -= amount;

return amount;

} else

UserException.throwIt(UNDERFLOW);

}

}

Figure 5: Implementation of a simple purse.

General Public License (GPL) through

http://www.cs.kun.nl/∼jhh/jason.html

within a few months.

We intend to extend Jason’s SMI function-

ality with logging and auditing functions, as

well as transaction (and rollback) support.

Related to the logging and auditing issue,

is the fact that the current implementation

does not provide non-repudiation. The rami-

fications for implementing non-repudiation

are the subject of further investigations.

Also, one could argue that the authentic

keyword is overloaded (in the sense that it

gives too many guarantees, especially fresh-

ness, at the cost of a more complex and

resource consuming protection mechanism).

Using Jason to develop several real-world

smart card applications will tell whether a

more fine grained set of security specifica-

tion keywords is required.

Finally, to make the Jason vision of a

smart card application consisting of millions

of distributed objects a reality, object broker

functionality has to be added that is con-

sistent with the high security requirements

of typical smart card applications, and the

highly dynamical nature of the smart card

network.

7 Acknowledgements

We thank the anonymous referees for the

valuable comments and suggestions, and es-

pecially for bringing to our attention that the

JavaCard 2.2 standard contains support for

RMI.

References

[AB96] Anderson, R. J., and Bezuiden-

houdt, S. J. On the reliability of

electronic payment systems. IEEE

Trans. on Softw. Eng. 22, 5 (1996),

294–301.

[Che00] Chen, C. Java Card (tm) for Smart

Cards: Architecture and Program-

mer’s Guide. The Java Series.

Addison-Wesley, 2000.

[DH00] D. Hagimont, J.-J. V. Jccap:

capability-based access control

for java card. In 4th CARDIS (Bris-

tol, UK, 2000), pp. 365–388.

[Gut00] Guthery, S. How to turn a

GSM SIM into a web server. In

4th CARDIS (Bristol, UK, 2000),

pp. 209–224.

[GBPR00] Guthery, S., Baudoin, Y., Pos-

sega, J., and Rees, J. Ip and arp

over iso 7816-3. Internet Draft

guthery-ip7816-00, 2000.

[HJF95] Hartel, P. H., and Jong Frz,

E. K. de. Smart cards and card

operating systems. Tech. rep.,

Dept. of EE and CS, University of

Southampton, UK, 1995.

[ISO7816] International Organisation

for Standardisation (ISO), JTC

1/SC 17. ISO/IEC 7816 Identifica-

tion cards – Integrated circuit(s)

cards with contacts.

[IFH00] Itoi, N., Fukuzawa, T., and

Honeyman, P. Secure internet

smartcards. In 1st JAVACARD

(Cannes, France, 2000), I. Attali

and T. Jensen (Eds.), LNCS 2041,

Springer-Verlag, pp. 73–89.

[KRV00] Kehr, R., Rohs, M., and Vogt,

H. Issues in smartcard mid-

dleware. In 1st JAVACARD

(Cannes, France, 2000), I. Attali

and T. Jensen (Eds.), LNCS 2041,

Springer-Verlag, pp. 90–97.

[RH00] Rees, J., and Honeyman, P. Web-

card: A java card web server. In

4th CARDIS (Bristol, UK, 2000),

pp. 197–208.

[Sun99] Sun. Java remote method invoca-

tion specification. Tech. rep., Sun

Microsystems, Inc., 1999. Revision

1.7.

