
File: DISTL2 270701 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 4185 Signs: 2474 . Length: 58 pic 2 pts, 245 mm

Information and Computation � IC2707

Information and Computation 144, 18�39 (1998)

Self-Stabilizing Ring Orientation Using
Constant Space

Jaap-Henk Hoepman*

CWI, Amsterdam, The Netherlands
E-mail: jhh�cwi.nl

The ring-orientation problem requires all processors on an anonymous
ring to reach agreement on a direction along the ring. A self-stabilizing
ring-orientation protocol eventually ensures that all processors on the ring
agree on a direction, regardless of the initial states of the processors on
which the protocol is started. In this paper we present two uniform deter-
ministic self-stabilizing ring-orientation protocols for rings with an odd
number of processors using only a constant number of states per processor.
The first protocol operates in the link-register model under the distributed
daemon, and the second protocol operates in the state-reading model
under the central daemon. Both protocols do not assume an upper bound
on the length of the ring and are therefore applicable to dynamic rings. As
an application of our techniques we are able to prove that under the central
daemon on an odd-length ring, the link-register model and the state-reading
model are equivalent in the sense that any self-stabilizing protocol for the
one model can be transformed to an equivalent, self-stabilizing protocol
in the other model.] 1998 Academic Press

1. INTRODUCTION

On oriented rings, processors agree on a direction along the ring. Distributed
algorithms on rings are more easily derived if it is known that the ring is oriented
(cf. [ASW88]) and may be more efficient than similar algorithms for unoriented
rings (cf. [San84]). To orient a ring the processors must choose a left and right
neighbour consistently around the ring, such that the left neighbour of each processor
considers that processor to be its right neighbour. Processors can distinguish between
a first and second neighbour, but to exclude trivial solutions the processors are
required to be otherwise identical.

A comprehensive study on uniform rings in the asynchronous message passing
model has been published by Attiya et al. [ASW88]. They showed that there is no

Article No. IC982707

180890-5401�98 �25.00
Copyright � 1998 by Academic Press
All rights of reproduction in any form reserved.

* Partially supported by the Dutch foundation for scientific research (NWO) through NFI Project
ALADDIN, under Contract NF 62-376. A preliminary version of this paper appeared in the Int. Workshop
on Distributed Algorithms 1994 [Hoe94].

File: DISTL2 270702 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 4069 Signs: 3703 . Length: 52 pic 10 pts, 222 mm

deterministic protocol to orient even-length rings, and that there also cannot exist
a protocol to orient rings of arbitrary length, if the protocols are required to terminate.
Syrotiuk and Pachl [SP87] presented a simple asynchronous ring-orientation protocol
using message passing that is only guaranteed to work for rings whose lengths are
odd and bounded. These papers do not address self-stabilization.

Self-stabilizing protocols are protocols that will eventually satisfy their specification,
regardless of the initial state they were started in. Self-stabilization was introduced by
Dijkstra [Dij74, Dij82] and is a framework in which one can derive fault-tolerant
protocols capable of recovering from transient errors. This type of error can change
the state of certain processors, but leaves the processors themselves in working
order. Now consider a self-stabilizing protocol running on a set of processors and
consider the state just after the last error. This could just as well have been
the initial state of the protocol, so the protocol must attempt to recover from this
error. As the protocol is self-stabilizing it will be able to do so, provided the
next error does not occur too soon. Therefore if transient errors are infrequent
enough, self-stabilizing protocols keep the system in a correct state most of the
time.

Our interest in self-stabilizing ring-orientation protocols is threefold. First of all,
several self-stabilizing protocols that run on oriented rings have been published.
For instance Burns and Pachl [BP89] have shown that deterministic self-stabilizing
protocols can break symmetry on oriented rings of prime size. Recently, Itkis et al.
[ILS95] constructed a constant space protocol for the same problem. Our results
imply that the ring does not have to be oriented to achieve these results. Second,
if a ring can be oriented deterministically, we are interested in the necessary cost of
doing so. Finally, our self-stabilizing ring-orientation protocols allow us to show
that two models of interprocessor communication frequently used in the literature
on self-stabilization are in fact equivalent on odd-length rings.

Several models for interprocessor communication and processor scheduling in
self-stabilizing systems have been proposed in the literature. In the state-reading
model [Dij74] processors communicate by reading each others' state. Second, in
the link-register model [DIM93] a processor uses separate shared registers to
communicate with each of its neighbours. Third, in the message-passing model
processors communicate by sending messages (a)synchronously to other processors,
where each message may incur an unbounded but finite delay.

The scheduling of processor steps is also an important issue. The central daemon
[Dij74] schedules one processor at a time. This processor then performs one step
in which it reads the information it needs, does some local processing, and finally
writes its new state before returning control to the daemon. This model corresponds
to systems with a high granularity of atomicity or multitasking systems where a
single processor activates each process in turn. The distributed daemon [Bur87]
may schedule several processors concurrently, but it is assumed that all scheduled
processors first read the information they need, before any of them is allowed to
write. Systems that stabilize under the distributed daemon will stabilize on synchronous
systems (where processors proceed in lock-step) as well as on multitasking systems
where some (not necessarily one) processors activate the processes in the self-stabilizing
system. Finally, the read�write daemon [DIM93] allows arbitrary interleaving of

19SELF-STABILIZING RING ORIENTATION

File: DISTL2 270703 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 3996 Signs: 3636 . Length: 52 pic 10 pts, 222 mm

processor steps, much like the interleaving semantics considered for wait-free shared
memory constructions.

Self-stabilizing ring-orientation protocols were studied by Israeli and Jalfon [IJ93].
They prove that no uniform deterministic self-stabilizing ring-orientation protocols
exist in (a) the link-register model under the distributed daemon for even-length rings,
(b) the state-reading model for either (b1) even-length rings under the central daemon
or (b2) arbitrary rings under the distributed daemon. This leads them to construct
a randomized self-stabilizing ring-orientation protocol in the link-register model
under the distributed daemon for arbitrary rings. To complement their impossibility
results, they also present a uniform deterministic self-stabilizing ring-orientation
protocol to orient odd-length rings in the link-register model under the distributed
daemon. This protocol assumes knowledge of an upper bound on the length of the
ring; it uses a nonconstant number of states per processor.

Recently, Tsai and Huang [TH95] also studied self-stabilizing ring orientation.
Their main contribution is a deterministic protocol that will orient any (also even)
ring under the central daemon in a model where the neighbour of a node can see
whether the orientation of that node points towards or instead points away from
it. This model is stronger than the state-reading model: a node can convey different
information to each of its neighbours, which makes it essentially equivalent to the
link-register model. In Section 4.1 we show, however, that deterministic ring orentation
of arbitrary rings in the link-register model under the central daemon is a trivial
corollary of the Israeli�Jalfon protocol.

We present two uniform deterministic self-stabilizing ring-orientation protocols
for odd-length rings, both using only a constant number of states per processor.
The first protocol operates in the link-register model under the distributed daemon.
This protocol is an adaption of the general randomized Israeli�Jalfon protocol.
Contrary to the deterministic Israeli�Jalfon protocol for odd-length rings, our
protocol does not depend on the length of the ring. This implies that our protocol
can be used on dynamic rings on which the number of processors may change over
time (provided that the length of the ring is odd in between these changes). The
second protocol operates in the state-reading model under the central daemon and
complements the impossibility results of Israeli and Jalfon. Note that these results
do not contradict the impossibility results of Attiya et al. [ASW88], as self-stabiliz-
ing protocols can never be required to terminate. Nor do these results contradict
the impossibility of uniform self-stabilizing mutual-exclusion on rings of nonprime
length proven by Dijkstra [Dij82], as a cyclic symmetrical configuration is not
necessarily unoriented.

The number of models encountered in the literature on distributed algorithms is
overwhelmingly large. Some of these models are clearly distinct, other models may
only differ significantly for certain classes of problems. It is a major challenge to
explore these different models and to find conditions or problem areas such that
using either model yields the same result. These models are then called equivalent.
We prove that under the central daemon for a class of graphs, including oriented
rings, the state-reading and link-register model are equivalent in the sense that any
self-stabilizing protocol for the one model can be transformed to an equivalent, self-
stabilizing protocol in the other model. Using our second protocol this proves that

20 JAAP-HENK HOEPMAN

File: DISTL2 270704 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 3991 Signs: 3241 . Length: 52 pic 10 pts, 222 mm

the link-register model and the state-reading model are equivalent, in the same
sense, under the central daemon on odd-length rings. Our results extend those of
Gouda et al. [GHR90] to system models often used in the literature on self-
stabilization.

The structure of this paper is as follows. Section 2 describes the model of a
distributed system assumed throughout this paper. Several formal definitions of self-
stabilization and their ramifications are discussed in Section 3. Then in Section 4 we
start with a brief description of the Israeli�Jalfon protocol and continue presenting
our uniform deterministic self-stabilizing ring-orientation protocol in the link-register
model under the distributed daemon for odd-length rings. Section 5 describes the
uniform deterministic self-stabilizing ring-orientation protocol in the state-reading
model under the central daemon for odd-length rings. We conclude this paper by
showing the equivalence of the link-register and the state-reading model on odd-
length rings under the central daemon in Section 6 and presenting some interesting
directions of further research in Section 7.

2. THE MODEL

We consider an anonymous ring R=(VR , ER) consisting of an odd number n of
clockwise numbered nodes q # VR=[0, ..., n&1] and clockwise edges e # ER=
[pq | p, q # VR 7 q=(p+1) mod n]. The nodes of the ring are numbered purely for
notational convenience: as the ring is anonymous no node has access to its number.
Two nodes p, q are neighbours if either pq or qp is an element of ER . Neighbouring
nodes can communicate with each other directly. Each node can distinguish a first
and second neighbour. For neighbours p of q we define portq(p) to equal 1 if p is
the first neighbour of q and 2 if p is the second neighbour of q.1 In the remainder
of this section, let nodes p and r be neighbours of a node q, with portq(p)=1.

In this paper two models of communication are considered (see Fig. 1). In the
link-register model, q will communicate with p and r using separate registers: Rqp is
written by q and read by p, whereas Rqr is written by q and read by r. In the state-
reading model q stores its state in a register Rq readable by both p and r. The state-
reading model is weaker than the link-register model, since in the state-reading
model a processor q cannot introduce asymmetry in the states observed by p and
r, whereas it can do so in the link-register model by writing different values to Rqp

and Rqr .
The state sq of a node q is comprised of its internal state and the contents of the

registers it writes. The configuration C of the system is the Cartesian product
>q # VR

sq over the states of all nodes in the ring. We write C[q] for the state of

node q in configuration C, and similarly C[Rq] for the value of register Rq in
configuration C. Node q can update its state according to its program $q . Each step
of node q in configuration C changes q's state to $q(C). In the link-register model,
$q(C) is defined as $q(C[Rpq], C[q], C[Rrq]). In the state-reading model, $q(C) is
defined as $q(C[Rp], C[q], C[Rr]). A protocol consists of a program $q for every
node q # VR . A protocol is uniform if for all p, q # VR we have $p=$q .

21SELF-STABILIZING RING ORIENTATION

1 Of course node q is not necessarily the first neighbour of node p if pq # ER .

File: 643J 270705 . By:XX . Date:28:05:98 . Time:08:20 LOP8M. V8.B. Page 01:01
Codes: 3275 Signs: 2447 . Length: 52 pic 10 pts, 222 mm

FIG. 1. Registers used by q to communicate with its neighbours.

A schedule is an infinite sequence (Pi) i�0 of activations Pi�VR . A schedule is fair
if each node q # VR occurs in infinitely many activations Pi . Define the sequence
(ti) i�0 for a given schedule (Pi) i�0 setting t0=0 and, for all j>0, setting tj to the
minimal t such that � t&1

i=tj&1
Pi=VR . This sequence is unique and partitions the

schedule into rounds i, starting at ti and ending at ti+1 , such that in each round
each node is activated at least once. Thus a fair schedule is partitioned into
infinitely many rounds. Under the central daemon one node is activated at a time
to execute exactly one step: hence the central daemon only allows Pi that consist
of exactly one node. Under the distributed daemon a set of nodes is simultaneously
activated to concurrently execute exactly one step each. It allows arbitrary Pi . All
nodes executing a step must have read the values in neighbouring registers before
any node can be allowed to write the new value. Under both daemons activating
Pi in configuration C yields a configuration C$, denoted C �Pi

C$, such that for all

q � Pi we have C$[q]=C[q], whereas for all q # Pi we have C$[q]=$q(C).
A schedule (Pi) i�0 and an initial configuration C0 induce an execution

E=(Ci) i�0 such that for all i�0 we have Ci �Pi
Ci+1. We write E(i) for the i th

configuration in execution E, and if i� j we write E(i) OE E(j). An execution is fair
if it is induced by a fair schedule.2 We write E for the set of all fair executions
allowed by the daemon under consideration. Let the schedule be partitioned into
rounds as above. Then in execution E, round i starts in configuration E(ti), for
which we write E� (i).

We use some additional definitions in this paper. A property X is called stable in
configuration C (of execution E) if X holds in all configurations C$ with C OE C$.
A property X is called stable from configuration Cf up to configuration Cl (of
execution E) if this property holds in all configurations C$ with Cf OE C$ OE Cl .
A clockwise chain is a sequence of nodes q0 } } } qk , not necessarily k<n, such that
for all i with 0�i<k, qiqi+1 # ER . An anticlockwise chain is a sequence of nodes
q0 } } } qk such that for all i with 0�i<k, qi+1qi # ER . A chain is either a clockwise
or an anticlockwise chain.

22 JAAP-HENK HOEPMAN

2 Note that we do allow stuttering (i.e., transitions C �P C) to occur in executions. In fact we need
stuttering to make all executions infinite.

File: DISTL2 270706 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 4114 Signs: 3286 . Length: 52 pic 10 pts, 222 mm

3. ABOUT SELF-STABILIZATION

A self-stabilizing protocol is a protocol that, when started in an arbitrary initial
configuration, will eventually behave according to its specification. If we want to
give a formal definition of self-stabilization, we first have to formalize what we
mean by the specification of a protocol. In the early papers on self-stabilization the
specification was viewed as describing the set of configurations L, called the
legitimate configurations, the protocol should be in. A mutual exclusion protocol,
for instance, should always be in a configuration in which at most one node is
executing its critical section. In this setting a protocol is self-stabilizing to a specification
L if for every execution E the protocol will eventually reach a legitimate configura-
tion E(i), and once the configuration is legitimate it will remain legitimate forever:
(\E # E, _i�0 :: E(i) # L) and (\C # L, \P :: C �P C$ O C$ # L).

One drawback of configuration-based specifications becomes apparent if we
again consider mutual exclusion. Usually it is required that the privilege��the node
allowed to execute its critical section��is passed fairly among all nodes competing.
This fairness-property cannot be expressed in a configuration-based specification
and is therefore not captured in the above definition of a self-stabilizing protocol.

Another, more general, way to view the specification of a protocol is as describing
the set of behaviours B�E the protocol should abide: i.e., any execution of the
protocol should belong to its specification. In this setting a protocol is self-stabilizing
to specification B if for all executions E of the protocol there exists an i�0 such that
all executions of the protocol starting in configuration E(i) belong to B:

(\E # E, _i�0, \F # E : F(0)=E(i) :: F # B).

In other words, a self-stabilizing protocol eventually cannot violate its specification.
Using this as a starting point, Burns et al. [BGM93] called a protocol pseudo-

stabilizing to specification B if for all executions E=(Cj)j�0 of the protocol there
exists an i�0 such that (E(j)) j�i # B; i.e., if

(\E # E, _i�0 :: (E(j)) j�i # B).

In other words, a pseudo-stabilizing protocol eventually will not violate its specifica-
tion. Pseudo-stabilizing protocols are weaker than self-stabilizing protocols. The first
will not violate its specification, whereas the other cannot violate its specification. As the
second statement depends on the assumption that the system will not be disrupted by
another transient error, the difference seems artificial in practice. As Burns et al.
[BGM93] observed that it is much easier to make pseudo-stabilizing protocols than to
make self-stabilizing protocols, one might favour the first. However, pseudo-stabilizing
protocols are not required to stabilize within a certain amount of time. In fact, if
B is closed under taking suffixes, one easily sees that if one can prove an upper
bound on the stabilization time of a pseudo-stabilizing protocol, then this protocol
is also self-stabilizing3 [Tel94]. Thus pseudo-stabilizing protocols that are not self-
stabilizing actually do not guarantee that the system will be legitimate even once.

23SELF-STABILIZING RING ORIENTATION

3 Observe that if i is bounded, (\E # E, _i : 0�i<k :: (E(j)) j�i # B), so if B is closed under taking
suffixes, (\E # E :: (E(j)) j�k # B).

File: DISTL2 270707 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 3995 Signs: 3234 . Length: 52 pic 10 pts, 222 mm

One can build self-stabilizing protocols from scratch, or one can try to combine
previous results to obtain more generally applicable protocols. Dolev et al. [DIM93]
introduced fair protocol combination as a useful tool to construct a self-stabilizing
protocol from two, simpler, self-stabilizing protocols. Informally speaking, fair protocol
combination combines a master-protocol PM��that stabilizes to a certain specification
provided certain external conditions hold��with a slave-protocol PS that stabilizes to
executions in which exactly these conditions hold. The resulting protocol is a self-
stabilizing version of PM without requiring those external conditions. In the
combined protocol the steps of both protocols are taken alternately; the states of
both protocols are merged so that the master protocol can read the state of the
slave protocol. For more details we refer to Dolev et al. [DIM93]. Their construction
of a self-stabilizing mutual exclusion protocol for arbitrary graphs is a good example
of the use of fair protocol combination. It combines a self-stabilizing mutual exclusion
protocol that only operates on tree-shaped graphs (the master protocol) with a self-
stabilizing spanning tree protocol for arbitrary graphs (the slave protocol). The
slave protocol ensures that the master protocol is eventually run a tree-shaped
graph, which in turn guarantees that the combined protocol will eventually satisfy
the mutual exclusion requirements.

4. RING ORIENTATION IN THE LINK-REGISTER MODEL

In the ring-orientation problem it is required that all nodes agree on an orienta-
tion. That is, all nodes should choose a left and right neighbour such that the left
neighbour of each node considers that node to be its right neighbour. Thus a self-
stabilizing ring-orientation protocol must stabilize to the set of executions BRO=
[E=(C0C1 } } })] where

(\q # VR , _p # VR :: left(q)=p 7 right(p)=q is stable in C0 of E).

To obtain a uniform deterministic self-stabilizing ring-orientation protocol for odd-
length rings, we use the randomized ring-orientation protocol of Israeli and Jalfon
[IJ93]. This protocol is composed of two layers, combined using fair protocol
combination, both operating in the link-register model under the distributed daemon.
The lower layer is (what we will call) a randomized self-stabilizing neighbour-ordering
protocol that will stabilize to a state in which any two neighbours agree on the
order between them. The second layer is a deterministic self-stabilizing ring-orientation
protocol assuming that all neighbours are mutually ordered, using only a constant
number of states per node.

Intuitively the second layer of the Israeli and Jalfon protocol operates as follows.
Initially certain nodes may hold a token, while others may be about to create tokens.
If the ring is not oriented initially, at least one token is present or about to be created.
However, once a node has created a token, it will never create a new token.4 Each
token has a fixed direction in which it travels around the ring. Whenever a node passes

24 JAAP-HENK HOEPMAN

4 This may seem to conflict with self-stabilization, but is easily achieved if one makes sure that no
configuration in which a token may be generated by a node q can be the result of a step of q.

File: DISTL2 270708 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 3377 Signs: 2280 . Length: 52 pic 10 pts, 222 mm

a token, this token directs the node. If two tokens meet, one of them will be eliminated
based on the neighbour-ordering between the two nodes. Due to the elimination of
opposite tokens, eventually all tokens will travel in the same direction around the
ring, and thus the ring will eventually be oriented. For details we refer to [IJ93].

As an alternative for the lower layer we present a uniform deterministic self-stabiliz-
ing neighbour-ordering protocol for odd-length rings, using only a constant number of
states per node, in the link-register model under the distributed daemon. Combining
this with the second layer of the Israeli and Jalfon protocol yields the desired self-
stabilizing ring-orientation protocol for odd-length rings using a constant number
of states per node.

4.1. Neighbour Ordering in the Link-Register Model

In the neighbour-ordering problem it is required that eventually any two neighbours
p and q agree on an order < between them and that once p<q holds, p<q remains
to hold forever. That is, a self-stabilizing neighbour-ordering protocol must stabilize
to the set of executions BNO=[E=(C0C1 } } })] where

\pq # ER :: (p<q stable in C0 of E) 6 (p>q stable in C0 of E)).

In this section we develop a uniform deterministic self-stabilizing neighbour-ordering
protocol operating in the link-register model under the distributed daemon.5 It is
based on certain properties of odd-length rings that we derive in the next few
paragraphs.

Define for neighbours p, q # VR the relations << and # by

p<<q if portp(q)< portq(p), and

p#q if portp(q)= portq(p).

Label the edges pq # ER (recall that ER only contains clockwise edges) with O #
[<<, #, >>] such that pOq if and only if pq is labelled O (see Fig. 2). If we
consider chains q0 } } } qk+1 , then

q0>>q1# } } } #qk<<qk+1 implies k is even, and (1)

q0>>q1# } } } #qk>>qk+1 implies k is odd. (2)

This leads us to the following claim.

Claim 4.1. For any ring R with edges labelled as defined above, the number of
edges labelled # is even.

25SELF-STABILIZING RING ORIENTATION

5 Under the central daemon neighbour ordering is easily achieved deterministically. Let each register
Rpq contain a value in the set [0, 1], and define p<q if Rpq<Rqp . For any edge pq run the following
protocol on p (and q, with p and q interchanged):

if Rpq=Rqp then invert Rpq .

This protocol will stabilize in exactly 1 round.

File: 643J 270709 . By:XX . Date:28:05:98 . Time:08:21 LOP8M. V8.B. Page 01:01
Codes: 3263 Signs: 2428 . Length: 52 pic 10 pts, 222 mm

FIG. 2. Labelling edges with <<, #, and >>.

Proof. Let R be an arbitrary ring, and consider neighbouring nodes p, q, r, and
s (in that order). If q<<r it is easily seen that portq(r)= portr(s)=1 and portr(q)=
portq(p)=2. Thus we can remove all edges not labelled # (merging their endpoints)
and the remaining ring has the same number of #-labelled edges as R has. But
obviously if all edges in the remaining ring are labelled #, the ring must have an
even number of edges. K

From this claim it follows that any odd-length ring exhibits a certain asymmetry.
The construction of our protocol will take this asymmetry as point of departure.

Corollary 4.2. Let R be an odd-length ring, whose edges are labelled as defined
above. Then there exists at least one edge labelled with << or >>, and the parity of
the number of edges labelled >> is unequal to the parity of the number of edges
labelled <<.

Now the straightforward approach to construct a self-stabilizing protocol for ring
orientation of odd-length rings might be one in which one generates tokens on <<-
or >>-labelled edges, letting them travel in the direction of the << or >>. This
will not work, however, because the parity-difference between <<- and >>-labelled
edges on which it is based may be destroyed by two causes: initially extra tokens
may be present on #-labelled links, and each <<-labelled edge has to generate
infinitely many tokens, because it can never know it generated one. Apparently our
previous corollary alone will not do: we are in need of an additional property of
odd-length rings.

Definition 4.3. Mark an arbitrary, nonzero number of edges originally labelled
with � instead. Then a clockwise chain pl+1 pl } } } p0q0 } } } qr qr+1 is called a
�-delimited chain K � if the edges pl+1 pl , p0q0 and qrqr+1 are the only edges
marked � in K �.

Note that this definition also captures the case in which only one edge is marked �,
because chains are allowed to span the ring more than once. This definition is used in
the following lemma to expose yet another source of asymmetry on odd-length
rings.

Lemma 4.4. Let R be an odd-length ring, whose edges are labelled as defined
above. Mark an arbitrary number of edges with � according to the previous definition.
Then there exists a �-delimited chain pl+1pl } } } p0q0 } } } qr qr+1 such that the parity of
the number of edges between pl and p0 labelled >> is unequal to the parity of the
number of edges between q0 and qr labelled <<.

26 JAAP-HENK HOEPMAN

File: DISTL2 270710 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 3465 Signs: 2828 . Length: 52 pic 10 pts, 222 mm

Proof. Let * be the total number of edges labelled >> and let \ be the total
number of edges labelled <<. By Corollary 4.2 we know that * is odd (even)
whereas \ is even (odd). Given a ring R marked with �, consider the set [K �

i] of
all �-delimited chains along R. For each K �

i let l i be the number of >>-labelled
edges left of the middle �, and let ri be the number of <<-labelled edges right of
the middle �.

As all edges marked � were labelled with #, and as all other edges occur exactly
once left and exactly once right of the middle � of some K �

j , we see that � li=*
and � ri=\. Assume * odd and \ even (the other case leads to the same result).
Then the number of odd li must be odd, whereas the number of odd ri must be
even. Therefore there must be a chain K �

i for which the parity of l i does not equal
the parity of ri . K

Now we are ready to give an informal description of the neighbour-ordering
protocol. Each register Rpq holds a field dir # [0, 1] such that Rpq .dir<Rqp .dir if
and only if p<q. If an edge pq is unordered, i.e., if neither p<q nor p>q, then we
write p=q. If p{q, neither p nor q will try to order the edge pq. If p=q, node q
can try to order pq by inverting Rqp .dir, but under the distributed daemon both p
and q might try to order pq simultaneously. In that case the net result will be zero,
and if the daemon always schedules p and q simultaneously, pq will never become
ordered.

To avoid the above livelock schedule we propose the following. First we make
sure that for any p and q with p>>q, only q tries to order pq. By Corollary 4.2 at
least one such pq exists, which means that eventually one pair of nodes will be
ordered. To order the remaining edges pq with p#q, we only allow nodes q that
are already ordered with respect to their other neighbour r (i.e., nodes q with q{r)
to try to order pq.

Now there are two cases to consider

1. o=p=q{r: p will not try to order pq so q must be allowed to do so, or

2. o{p=q{r: the situation for p and q is symmetric and livelock might still
occur.

To enable q to tell case 1 and 2 apart, Rpq will store whether o=p in a field
ord # [{, =]. To break the symmetry in case 2 we apply Lemma 4.4: the parity of
>>-labelled edges left of p must be unequal to the parity of <<-labelled edges right
of q for at least one edge pq in case 2. We let each node maintain the parity of
>>-labelled edges coming in from the other side in a field parity # [0, 1], and only
allow q to try to order pq if the parity it holds equals 1.

4.1.1. The protocol. Let p and r be the neighbours of node q. In the neighbour-
ordering protocol each register Rqp has the following fields:

v youare # [1, 2], to encode the ordering << between p and q. This field is
always set such that Rqp .youare=portq(p).

v dir # [0, 1], to encode the desired node-ordering < between p and q.

27SELF-STABILIZING RING ORIENTATION

File: 643J 270711 . By:XX . Date:28:05:98 . Time:08:21 LOP8M. V8.B. Page 01:01
Codes: 1962 Signs: 1192 . Length: 52 pic 10 pts, 222 mm

v ord # [{, =], to tell p whether q=r or not.

v parity # [0, 1], holding the parity of the number of <<-labelled edges
coming in from the other side (i.e., through r).

Thus the protocol uses 24_24 states per node. Define for neighbouring nodes p
and q

p<<$ q if Rpq .youare<Rqp .youare,

p#$ q if Rpq .youare=Rpq .youare,

p<q if Rpq .dir<Rqp .dir, and

p=q if Rpq .dir=Rqp .dir.

These predicates can be evaluated locally at both p and q.
In the neighbour-ordering protocol all nodes run the same program, consisting

of two subroutines. The subroutine for a node q with neighbours p and r to update
the register used to communicate with p (i.e., Rqp) is presented in Protocol 4.1.
Node q runs a similar subroutine to update Rqr (obtained by swapping p and r in
the subroutine code). The subroutine consists of a set of guarded commands,
denoted by if-statements. Whenever node q is scheduled by the distributed daemon
to take a step, all commands (both for updating Rqp and Rqr) whose guards are true
are executed. At the start of each step, q reads Rpq and Rrq once, and q will write
the new contents for Rqp and Rqr once at the end of each step.

Protocol 4.1. Neighbour-ordering subroutine for node q to adjust Rqp .

28 JAAP-HENK HOEPMAN

File: DISTL2 270712 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 3619 Signs: 2762 . Length: 52 pic 10 pts, 222 mm

4.1.2. Proof of correctness. Throughout the proof, let (Pi) i�0 be an arbitrary
fair schedule under the distributed daemon, let C0 be an arbitrary initial configura-
tion, and let E be the execution they induce.

Claim 4.5. If p<q holds in a configuration C of E, then p<q is stable in C
of E.

Proof. The only steps of p or q that can change Rpq .dir or Rqp .dir (and there-
fore the ordering between p and q) are those on line 7, 8, and 9. But these three
steps are guarded by the condition p=q (see line 6), so the result follows. K

Thus it remains to be shown that there exists an i such that for all pq # ER we
have p{q in configuration Ci of execution E. We prove this by exhibiting an upper
bound on the number of rounds of E after which a configuration satisfying this
condition is guaranteed to be reached. This also provides us with an upper bound
on the stabilization time, measured in rounds, of the protocol. Recall that E� (i) is
the configuration at the start of round i in execution E.

Lemma 4.6. For all pq # ER , if p�q then p{q in E� (2).

Proof. First observe that after round 0 each node has taken step 1 at least once,
so we have p#q � p#$q, and similarly p>>q � p>>$q and p<<q � p<<$q for
all pq # ER . Clearly these properties are stable in E� (1). Take an arbitrary edge
pq # ER with p�q. Assume p>>q (the case p<<q is handled similarly). Then
p>>$q during round 1, which means that p cannot apply steps 7, 8, or 9 on Rpq

during round 1. If p{q in E� (1), then we are done according to Claim 4.5.
Otherwise, q will apply step 7 on Rqp in round 1, setting p{q. K

This leaves edges pq with p#q. We first show that every node q faithfully
conveys its order-relation with neighbour r to the other neighbour p.

Claim 4.7. Let p and r be the neighbours of q. If q{r is stable from E� (i) to E� (j),
then Rqp .ord=``{'' is stable from E� (i+1) to E� (j). Similarly, if q=r is stable from
E� (i) to E� (j), then Rqp .ord=``='' is stable from E� (i+1) to E� (j).

Proof. If q{r is stable from E� (i) to E� (j), then q will apply step 5 in rounds i
through j&1, setting Rqp .ord=``{''. Thus Rqp .ord=``{'' is stable from E� (i+1) to
E� (j). The case for q=r is handled similarly. K

The next claim shows that if for a certain edge rp we have r= p for l rounds, then
all nodes q with distance k<l from p (without another equal pair of nodes in
between) correctly store the parity of >>-labelled edges (i.e., those pointing away
from p) between p and q.

Claim 4.8. Let rp0p1 } } } pkpk+1 be a chain along the ring such that pi&1{ pi

for all i with 1�i�k. Let i>2 be an arbitrary round and suppose r= p0 is stable
from E� (i) to E� (i+n). Define _k=|[p i | 1�i�k 7 pi&1>> pi] |, i.e., the number of
>>-labelled edges between p0 and pk . Then Rpk pk+1

.parity=_k mod 2 is stable from
E� (i+k+1) up to E� (i+n).

29SELF-STABILIZING RING ORIENTATION

File: DISTL2 270713 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 3969 Signs: 2875 . Length: 52 pic 10 pts, 222 mm

Proof. Proof by induction on k. In the base case k=0 we have _0=0. Since
r= p0 holds during round i through i+n&1, p0 applies step 2 in these rounds,
setting Rp0 p1

.parity=0 as required. Thus this property is stable from E� (i+1) up

to E� (i+n).
Assume the induction hypothesis holds for k, and let pk{ pk+1 (hence k<n&1).

Then Rpk pk+1
.parity=_k mod 2 from E� (i+k+1) up to E� (i+n). Then there are two

cases to consider. If pk>>pk+1 , then pk>>$pk+1 stable in E� (i+k+1) (as i�2)
and _k+1=1+_k . Now pk+1 takes step 3 in rounds i+k+1 through i+n&1,
setting Rpk+1 pk+2

.parity to (Rpk pk+1
.parity+1) mod 2 in these rounds as required. If

pk>>3 pk+1 , then pk>>3 $pk+1 stable in E� (i+k+1) (as i�2) and _k+1=_k . So
pk+1 takes step 4 in rounds i+k+1 through i+n&1, setting Rpk+1 pk+2

.parity
to Rpk pk+1

.parity in these rounds as required. K

Theorem 4.9. The neighbour-ordering protocol stabilizes on an odd-length ring,
under the distributed daemon, to a configuration in which for any two neighbours p,q,
p{q. Furthermore, once p<q, then p<q holds forever. The system stabilizes in at
most 2+n2 rounds.

Proof. We prove that in every sequence of n rounds, the number of edges pq
with p=q decreases by at least 1, until none are left. Then after at most n2 rounds,
p{q holds for all edges pq # ER . By Claim 4.5 the theorem follows. Towards a
contradiction, let i>2 be an arbitrary round, and assume that for all edges pq with
p=q, p=q is stable from E� (i) to E� (i+n). There are two cases to consider.

1. Suppose that in configuration E� (i) there exist triplets o, p, q with o= p=q.
By Corollary 4.2 and Lemma 4.6 for at least one we actually have the quartet
o= p=q{r. By Claim 4.7, and by assumption that o= p is stable, then Rpq .ord=
``='' and Rqp .ord=``{'' during round i+1. Consequently, in round i+1 node p
cannot apply any of the steps 7, 8, and 9. On the other hand, as p=q during round
i+1 by assumption, node q will apply step 8 in round i+1, setting p{q contrary
to assumption.

2. Suppose that in configuration E� (i) for all edges pq with p=q and op # ER

and qr # ER we have o{ p=q{r (the only other possible case). Now mark all
edges pq # ER with p=q (and hence p#q) with �. By Lemma 4.4 there exists at
least one �-delimited chain pl+1= p l } } } p0=q0 } } } qr=qr+1 such that the parity of
the number of edges between pl and p0 labelled >> is unequal to the parity of the
number of edges between q0 and qr labelled <<. Note that for all edges pq between
pl and p0 or between q0 and qr we have p{q.

Consider the above chain. By assumption pl+1= pl , p0=q0 , and qr=qr+1 are
stable from E� (i) to E� (i+n). Then using Claim 4.8, Rp0q0

.parity{Rq0 p0
.parity

during round i+n&1. By Claim 4.7 also Rp0q0
.ord=``{'' and Rq0 p0

.ord=``{''

during round i+n&1. Then in round i+n&1 either p0 or q0 (but not both) will
apply step 9 setting p{q contrary to assumption that p=q holds up to E� (i+n).

This completes the proof. K

30 JAAP-HENK HOEPMAN

File: DISTL2 270714 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 4332 Signs: 3638 . Length: 52 pic 10 pts, 222 mm

5. RING-ORIENTATION IN THE STATE-READING MODEL

In this section we present a uniform deterministic self-stabilizing ring-orientation
protocol for odd-length rings operating in the state-reading model under the central
daemon, using only a constant number of states per node. This is the best we can
hope for, as Israeli and Jalfon [IJ93] have already shown that such a protocol is
impossible under the distributed daemon and under the central daemon if the
length of the ring is even. Most ring-orientation protocols operate by forwarding a
token with a fixed direction around the ring. But in the state-reading model both
neighbours of a node read the same state. If that node were to hold a token with
a direction, it is not immediately obvious how to forward that token to the one
neighbour it points to without possibly forwarding it to the other neighbour as well.
In view of this observation it is perhaps surprising that it is possible at all to orient
a ring in the state reading model.

Intuitively the protocol operates as follows. Let each node have a colour taken
from the set [0, 1]. Try to give neighbouring nodes alternating colours by inverting
the colour of a node if it has the same colour as both its neighbours.6 Of course
on an odd-length ring this is never completely possible, so we are bound to end up
with patterns like 001 and 110 around the ring. Call such patterns tokens. It is
worth noting that Herman [Her90] used the same idea to achieve probabilistic self-
stabilization to a single token on odd length, but oriented, rings.

Now the idea is to make these tokens travel around the ring, orienting the nodes
they visit. This requires us to impose a direction on tokens, for which we let each
node store a phase taken from the set [+, &]. A token is directed if the nodes with
equal colour have opposite phase: then the direction of the token points from the
node with phase + to the node with phase &. Undirected tokens can be directed
by letting the middle node in a token invert its phase.

Let us write 0& for a node with colour 0 and phase &, and consider the pattern
0+0&1&0& around the ring. If we allow the second node to change its state to 1+ we
get the pattern 0&1+1&0& : the token has moved one step in its direction. Now let a
node also maintain its orientation, taken from [�, �]��for instance by storing the port
of the neighbour the head of the arrow points to. If a token moves one step, the node
changing colour is oriented into the direction of the token. Our protocol depends on the
fact that a token always keeps the same direction, until it is eliminated. Then in the situa-
tion 0+0&1+0& it is unwise to allow the second node to change its state to 1+ as this
would yield the situation 0+1+1+0& . Here the token becomes undirected and thus
may decide to invert its direction: 0+1&1+0& . Therefore, in situations like
0+0&1+0& we must wait until the third node sets its phase to &.

We have already seen that in almost all configurations (except for the special case
in which all nodes have the same colour) at least one token exists. If we can make
sure that eventually all tokens travel in the same direction around the ring, the ring
will eventually become oriented. Now consider what happens when two tokens with
opposite direction meet. This situation is depicted in Fig. 3 (where the steps are

31SELF-STABILIZING RING ORIENTATION

6 This trick cannot be applied immediately under the distributed daemon, because the distributed
daemon is free to schedule all nodes simultaneously. If all nodes in the ring have the same colour, then
under such a schedule all nodes will simultaneously invert their colour.

File: 643J 270715 . By:XX . Date:28:05:98 . Time:08:22 LOP8M. V8.B. Page 01:01
Codes: 1905 Signs: 1387 . Length: 52 pic 10 pts, 222 mm

FIG. 3. Example of two tokens with opposite direction meeting.

taken from the complete description of the protocol in Protocol 5.1). Other nodes
in this example may take a step instead, but this leads to essentially the same
situation. We see that both tokens are eliminated altogether.

5.1. The Protocol

Let p and r be the neighbours of q. Each node q stores its whole state (i.e., its
colour, phase, and orientation) in register Rq . In the ring-orientation protocol, all
nodes q run the same program, presented in Protocol 5.1 as a state-transition func-
tion $. The tables list the applicable steps for a node q with neighbours p and r,
depending on the state of p, q, and r (i.e., the contents of Rp , Rq , and Rr). The
entries under q$ list the new state of q after applying $. To reduce the size,
symmetric steps (with p and r interchanged) are not shown. So steps (e) through
(j) actually represented two steps. If only some components of a state are specified,
the other components may have an arbitrary value. If in the new state the orienta-
tion is not specified, it should equal the direction of q in the old state. In cases (e)
and (f), the direction of q in the new state should be read as pointing from p to r.
Node q can always determine this orientation because in these steps p and r hold
opposite colours. The port of p and r is used to encode the direction.

32 JAAP-HENK HOEPMAN

File: 643J 270716 . By:XX . Date:28:05:98 . Time:08:22 LOP8M. V8.B. Page 01:01
Codes: 2925 Signs: 2097 . Length: 52 pic 10 pts, 222 mm

Protocol 5.1. Ring-orientation program for node q.

Each table contains related steps. The first table lists the steps that try to colour
the ring alternately and to make sure that alternately coloured nodes have phase &.
The second table lists the steps responsible for forwarding the token, and the third
table lists the steps that break the symmetry in possible tokens by imposing one
direction on them.

5.2. Proof of Correctness

Throughout the proof, let (Pi) i�0 be an arbitrary fair schedule under the central
daemon, let C0 be an arbitrary initial configuration, and let E be the execution of
the protocol they induce. If n=1, the protocol is trivially correct, so in the remainder
of the proof we assume n�3. We prove correctness of the algorithm in stages. In
each stage we define a set of configurations and show that the protocol will
converge to this set, when started in a configuration from the set of the previous
stage. All sets are shown to be closed under transitions of the protocol. In the final
stage the set of configurations will contain exactly those that are oriented. To
describe the configurations in a set we use regular expressions.

Definition 5.1. A configuration matches a regular expression L if the
concatenation of the states of some chain (clockwise or anticlockwise) of length n
matches the regular expression. A regular expression L is closed under steps of the
protocol if for all configurations C that match L, C$ with C �P C$ for arbitrary
allowed P matches L as well.

In other words, a configuration matches a regular expression if we can cut the
ring between a pair of nodes and if the resulting chain, or string, of states matches
the regular expression.

Define the regular expression L1 by

L1=(O1I1)*,

O1=0 | 0+ 0&0+ | 0&0+ | 0+0& , and

I1=1 | 1+1&1+ | 1&1+ | 1+1& .

Lemma 5.2. Starting in an arbitrary configuration, we eventually reach a configura-
tion matching L1 . Furthermore, L1 is closed.

Proof. Consider 0-chains, i.e., chains of nodes coloured only with 0 that are
delimited at both ends by 1-coloured nodes. If all nodes in the ring are coloured 0,

33SELF-STABILIZING RING ORIENTATION

File: DISTL2 270717 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 2939 Signs: 1867 . Length: 52 pic 10 pts, 222 mm

only step (a) will be applicable by all nodes creating one 0-chain after the first node
takes a step. For 0-chains define the width w as

w(0+)=1.1,

w(0&)=1, and

w(01 } } } 0k)=k+p(0102)+p(0k0k&1),

where the penalty p for the endpoints of the chain is given by

1.5 if a=0& ,

p(ab)={1.6 if ab=0+ 0+ , and

0 otherwise.

1-chains and their associated penalty and width are defined similarly. It is easily
checked that all 0-chains (1-chains) K matching O1 (I1) are exactly those7 for which
w(K)�3.5. So it remains to show that for any chain K with w(K)>3.5, every
nonvoid step taken by a node on that chain will decrease its width and will not
create new chains with width greater than 3.5.

(a) Creates two 0-chains, with at least 2 0-coloured nodes less than the
original chain, whereas the maximal penalty of the new endpoint for both chains is
at most 1.6. Hence the width of both chains is less than the original.

(b) Does not change any 0-chains.

(c) Creates a 0-chain with width 1.

(d) If (d) is nonvoid, it changes 0+ with width 1.1, to 0& with width 1.

(e) Decreases the length of the chain by 1, but the endpoint may change from
000& to 0+0+ resulting in an increase of penalty of at most 0.1.

(f) If 0& in (f) is a complete 0-chain on its own, (f) changes this to chain
0+ 0& with width 3.5. Otherwise, it increases the length of the 0-chain (with
endpoint 0& and hence penalty 1.5) by 1 to a chain with endpoint 0+0& and hence
penalty 0. So the width decreases by 0.5.

(g) Decreases the penalty of the endpoint from 1.5 to 0.

(h) Decreases the penalty of the endpoint from 1.6 to 1.5.

(i), (j) Do not change any 0-chains.

This completes the proof. K

All configurations matching the regular expression L2 defined below only contain
tokens in one direction.

L2=(O2 I2)*, O2=0 | 0+0& , and I2=1 | 1+1& .

34 JAAP-HENK HOEPMAN

7 All chains of 4 or more 0s have width exceeding 4, w(0& 00)�4.5, w(0+0+)=5.2, w(0&0+)=3.5,
and w(0& 0&)=5.

File: DISTL2 270718 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 3727 Signs: 2568 . Length: 52 pic 10 pts, 222 mm

Lemma 5.3. From a configuration matching L1 , we eventually reach a configura-
tion matching L2 . Furthermore, L2 is closed.

Proof. We prove convergence and closure similar to the proof of Lemma 5.2. To
prove that the system eventually reaches a configuration matching L2 , consider a
configuration matching L1 . This configuration may fail to match L2 for two reasons.
First of all it may contain patterns like 0+ 0&0+ and 1+1&1+ , and secondly it
may contain tokens (0+0& and 1+1&) in opposite directions.

If there are tokens with opposite directions on the ring, uniquely match pairs of
opposite tokens in the following manner (the result is similar to the matching of
braces in expressions). Let K be a chain that does not contain any tokens. Then the
opposing tokens a+a& and b&b+ in the chain a+a&Kb&b+ are defined to match.
Inductively, the same holds if K contains only pairs of matching opposing tokens
and no single unmatched tokens. The distance between two matching opposing
tokens equals 1 plus the length of the intermediate chain K.

For 0-chains matching L2 define the entropy e as follows

e(0)=0,

e(0+0& 0+)=1�n,

e(0& 0+)=e(0&0+)=the distance to its matching token,

0 if it does not exist.

The entropy of 1-chains is defined similarly. The total entropy of a configuration is
defined to be the sum of the entropies of its 0 and 1 chains. Observe that configura-
tions that match L2 are exactly those for which the corresponding entropy equals 0.
The number of matching opposing tokens is at most n�4, with maximum entropy
n&3 each. Therefore the maximum entropy is bounded by n2. We consider the
effect of each step of Protocol 5.1 on the entropy.

(a), (c) Decrease the entropy from 1�n to 0 (10+0& 0+1 becomes
10+1&0+ 1; three chains with entropy 0 are created).

(b), (d) Do not change the entropy.

(e) If the token matches with an opposing token, with distance larger than 1,
this distance decreases by 1. 10+ 0&1&0 changes to 10+ 1+1&0 moving the token
one step into its direction. If the distance equals 1, then 10+0&1&1+0 changes to
10+1+1& 1+0. Thus the entropy decreases from 2 (1 for each token) to 1�n. If the
token does not match with an opposing token, then the entropy does not change.
However, for as long as there are opposing tokens, in each round one of them will
decrease its entropy. Refer also to Fig. 3 for an example.

(f) Similar to (e).

(g), (h), (i), (j) Do not apply to chains matching L2 .

This completes the proof. K

All configurations matching the regular expression L3 defined below are oriented.

L3=(O3 I3)*, O3=09 | 0+

�
0&

�
, and I3=19 | 1+

�
1&

�
.

35SELF-STABILIZING RING ORIENTATION

File: DISTL2 270719 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 3860 Signs: 3075 . Length: 52 pic 10 pts, 222 mm

Lemma 5.4. From a configuration matching L2 , we eventually reach a configura-
tion matching L3 . Furthermore, L3 is closed.

Proof. Closure is proven as in Lemma 5.3, noting that (e) and (f) do not change
the orientation. To prove that the system eventually reaches a configuration match-
ing L3 , note that because the ring has odd length, at least one token must exist, and
that for at least one token we have 0+0&10 or 1+ 1& 01. Thus the head of at least
one token can eventually take a step, moving the token one position into the direc-
tion of the token and directing the former head as well. Eventually one token must
have travelled around the ring completely, at which time the ring is oriented. K

From Lemmas 5.2, 5.3, and 5.4 we easily obtain the following theorem.

Theorem 5.5. The ring-orientation protocol stabilizes, under the central daemon,
to a configuration in which the ring is oriented, provided the length of the ring is odd.

This theorem has a curious consequence. Dijkstra [Dij82] showed that no
uniform deterministic self-stabilizing mutual exclusion protocol exists for rings of
nonprime size. Burns and Pachl [BP89] complemented this impossibility result
with a uniform self-stabilizing mutual exclusion protocol for oriented rings of prime
size, operating in the state-reading model under the central daemon. Combining the
protocol of Burns and Pachl with our second ring-orientation protocol using fair
protocol combination (cf. Section 3) proves the following theorem.

Theorem 5.6. On unoriented rings of prime size, self-stabilizing mutual exclusion
can be achieved under the central daemon using a uniform protocol. Moreover, using
the protocol of Itkis et al. [ILS95] instead, the total number of states per processor
can even be kept constant.

6. ON THE EQUIVALENCE OF SELF-STABILIZING SYSTEM MODELS

An overwhelming amount of models for distributed systems can be found in the
literature, some of which only differ on seemingly minor points. This diversity is
caused by the fact that slight alterations to a model may have a huge effect on the
(im)possibility or (in)efficiency of certain protocols.8 A major challenge is to explore
these different models and find conditions or application areas under which these
models are equivalent. In the area of self-stabilization, research in this area has already
been started by Gouda et al. [GHR90]. In this section we will show that on oriented
rings the link-register and state-reading model are equivalent. Using the results of
the previous sections, we also show that, as a consequence, the link-register model
and the state-reading are eventually equivalent on odd-length rings under the
central daemon.

What do we mean by equivalence between models? Several definitions seem to be
appropriate (cf. [GHR90, LV93]). Intuitively two models are equivalent if they are
of equal strength: whatever is possible in one model is also possible in the other,
and vice versa. We adopt the following formal definitions.

36 JAAP-HENK HOEPMAN

8 As exemplified by the large body of literature on how to reach agreement in the presence of faults.

File: DISTL2 270720 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 3791 Signs: 3101 . Length: 52 pic 10 pts, 222 mm

Definition 6.1. Protocol P1 simulates protocol P2 if there exists a recursive
mapping + such that for all executions E1 of P1 , +(E1) is an execution of P2 .
Protocol P1 eventually simulates protocol P2 if there exists a mapping + such that
for all executions E1 of P1 , a suffix of +(E1) is an execution of P2 . Protocols P1 and
P2 are (eventually) equivalent if both (eventually) simulate each other. System
model M1 (eventually) simulates system model M2 if for all deterministic protocols
P2 on M2 there exists a deterministic protocol P1 on M1 that (eventually) simulates
P2 . System models M1 and M2 are (eventually) equivalent if both (eventually)
simulate each other.

We choose to show simulation of M2 by M1 by giving a general method to
convert a protocol in M2 to a simulating protocol in M1 and describing the
mapping + from executions in M1 to M2 . As in the definition, both models are
equivalent if we can show that both simulate each other.

Theorem 6.2. Let G=(V, E) be an undirected graph, where each node p # V
labels its edges pq # E with labp(q). Suppose there exists a function f such that for all
pq # E we have labp(q)=f (labq(p)), and suppose that for all pq, qr # E with pq{pr
we have labp(q){labp(r). Then on G, the state-reading model and the link-register
model are equivalent.

Proof. Consider an arbitrary node q in G. A protocol in the state-reading model
is easily transformed into an equivalent protocol in the link-register model, by
changing all writes to Rq into writes of the same value to all registers Rqp with
qp # E and changing all reads from Rp , for some qp # E, to reads from Rpq . Initially,
for all qp # E, the contents of Rqp should equal the contents of Rq . Then + maps all
executions in the link-register model to executions in the state-reading model by
mapping the contents of Rqp for all qp # E (that by construction always hold the
same value) to the contents of Rq .

A protocol in the link-register model is transformed into an equivalent protocol
in the state-reading model as follows. Split, in the state-reading model, the register
Rq into as many fields Rq . to[}] as there are edges qp # E. Replace a write to Rqp

by a write of the same value to Rq . to[labq(p)]. Change reads from Rqp to reads
from Rq . to[f (labp(q))]. Then + maps all executions in the state-reading model to
executions in the link-register model by mapping the contents of Rq . to[labq(p)] to
the contents of Rqp . The result of applying + is indeed an execution in the link
register model because (i) if qp{qr then labq(p){labq(r) so no write is overwritten
by a wrong write, and (ii) labp(q)=f (labq(p)) so a value read from Rqp equals
Rq . to[f (labp(q))]=Rq . to[labq(p)] which equals the value written by a write
to Rqp . K

Oriented rings and also cliques and hypercubes with sense of direction have a
labelling as in the above theorem. From the self-stabilizing ring-orientation protocol
presented in the previous section, we easily obtain the following corollary.

Corollary 6.3. For odd-length rings, the link-register and state-reading model
are eventually equivalent under the central daemon.

37SELF-STABILIZING RING ORIENTATION

File: DISTL2 270721 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 5380 Signs: 2910 . Length: 52 pic 10 pts, 222 mm

Simply combine the simulation in the proof of Theorem 6.2 with the ring-orienta-
tion protocol for the state-reading model. Note that the simulation of the state-reading
protocol by the link-register protocol ensures that the contents of Rqp and Rqr are
equal. A transient error may disturb this invariant, but equality will be re-established
as soon as q takes its first step after the error.

Observe that the ring-orientation protocol for the state-reading model requires a
central daemon, so Corollary 6.3 only holds under the central daemon. A similar
corollary cannot be obtained for odd-length rings under the distributed daemon,
because Israeli and Jalfon already showed that no ring in the state-reading model
can be oriented deterministically under the distributed daemon.

7. CONCLUSIONS AND FURTHER RESEARCH

We have shown that there exist uniform deterministic self-stabilizing ring-orienta-
tion protocols using only a constant number of states per node for odd-length rings,
both in the link-register model under the distributed daemon and in the state-reading
model under the central daemon. Further research might be directed at deriving similar
protocols for other graphs with a regular structure, such as cliques or hypercubes.

We have also shown that the link-register model and the state-reading model are
eventually equivalent on odd-length rings under the central daemon, showing that
a self-stabilizing protocol designed for the one model can be transformed to an
equivalent, self-stabilizing protocol for the other model. We are unaware of similar
theorems exploring the relation between the central daemon and the distributed
daemon.

ACKNOWLEDGMENTS

The author thanks Marina Papatriantafilou and Philippas Tsigas for the discussions on this problem
while they were visiting the CWI in Amsterdam. The anonymous referees are gratefully acknowledged
for the valuable suggestions that helped improve the paper.

Received July 5, 1995; final manuscript received October 23, 1997

REFERENCES

[ASW88] Attiya, H., Snir, M., and Warmuth, M. K. (1988), Computing on an anonymous ring, J. Assoc.
Comput. Mach. 35(4), 845�875.

[Bur87] Burns, J. E. (1987), Self-stabilizing rings without demons, Tech. Rep. GIT-ICS-87�36, School
of Information and Computer Science, Georgia Institute of Technology, Atlanta, Georgia.

[BGM93] Burns, J. E., Gouda, M. G., and Miller, R. E. (1993), Stabilization and pseudo-stabilization,
Distrib. Comput. 7(1), 35�42.

[BP89] Burns, J. E., and Pachl, J. (1989), Uniform self-stabilizing rings, ACM Trans. Program.
Languages Systems 11(2), 330�344.

[Dij74] Dijkstra, E. W. (1974), Self-stabilizing systems in spite of distributed control, Comm. Assoc.
Comput. Mach. 17(11), 643�644.

[Dij82] Dijkstra, E. W. (1982), Self-stabilization in spite of distributed control, in ``Selected Writings
on Computing: A Personal Perspective,'' pp. 41�46, Springer-Verlag, New York.

38 JAAP-HENK HOEPMAN

File: DISTL2 270722 . By:CV . Date:03:06:98 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 6239 Signs: 2216 . Length: 52 pic 10 pts, 222 mm

[DIM93] Dolev, S., Israeli, A., and Moran, S. (1993), Self-stabilization of dynamic systems assuming
only read�write atomicity, Distrib. Comput. 7(1), 3�16.

[GHR90] Gouda, M. G., Howell, R. R., and Rosier, L. E. (1990), The instability of self-stabilization,
Acta Inform. 27(8), 697�724.

[Her90] Herman, T. (1990), Probabilistic self-stabilization, Inform. Process. Lett. 35(35), 63�67.

[Hoe94] Hoepman, J.-H. (1994), Uniform deterministic self-stabilizing ring-orientation on odd-length
rings, in ``8th Int. Workshop on Distributed Algorithms, Terschelling, The Netherlands''
(G. Tel and P. M. B. Vita� nyi, Eds.), Lecture Notes in Computer Science, Vol. 857,
pp. 265�279, Springer-Verlag, Berlin�New York.

[IJ93] Israeli, A., and Jalfon, M. (1993), Uniform self-stabilizing ring orientation, Inform. and
Comput. 104(2), 175�196.

[ILS95] Itkis, G., Lin, C., and Simon, J. (1995), Deterministic, constant space, self-stabilizing leader
election on uniform rings, in ``9th Int. Workshop on Distributed Algorithms, Le Mont-
Saint-Michel, France'' (J.-M. He� lary and M. Raynal, Eds.), Lecture Notes in Computer
Science, Vol. 972, pp. 288�302, Springer-Verlag, Berlin�New York.

[LV93] Lynch, N. A., and Vaandrager, F. W. (1993), Forward and backward simulations, Part I:
Untimed systems, Tech. Rep. CS-R9313, Stichting Mathematisch Centrum (CWI),
Amsterdam.

[San84] Santoro, N. (1984), Sense of direction, topological awareness and communication complexity,
ACM SIGACT News 16(2), 50�56.

[SP87] Syrotiuk, V., and Pachl, J. (1987), A distributed ring orientation algorithm, in ``2nd Int.
Workshop on Distributed Algorithms, Amsterdam, The Netherlands'' (J. van Leeuwen,
Ed.), Lecture Notes in Computer Science, Vol. 312, pp. 332�336, Springer-Verlag, Berlin�New
York.

[Tel94] Tel, G. (1994), ``Introduction to Distributed Algorithms,'' Cambridge Univ. Press, Cambridge,
UK.

[TH95] Tsai, M.-S., and Huang, S.-T. (1995), Self-stabilizing ring orientation protocols, in ``2nd
Workshop on Self-Stabilizing Systems, Las Vegas, NV,'' Dept. of Comp. Science, University
of Nevada, Las Vegas, Box 454019 Las Vegas, NV 89154-4019, pp. 16.1�16.14.

� � � � � � � � � �

39SELF-STABILIZING RING ORIENTATION

