
SPACE-EFFICIENT ROUTING TABLES FOR ALMOST ALL

NETWORKS AND THE INCOMPRESSIBILITY METHOD∗

HARRY BUHRMAN† , JAAP-HENK HOEPMAN‡ , AND PAUL VITÁNYI†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1414–1432

Abstract. We use the incompressibility method based on Kolmogorov complexity to determine
the total number of bits of routing information for almost all network topologies. In most models
for routing, for almost all labeled graphs, Θ(n2) bits are necessary and sufficient for shortest path
routing. By “almost all graphs” we mean the Kolmogorov random graphs which constitute a fraction
of 1− 1/nc of all graphs on n nodes, where c > 0 is an arbitrary fixed constant. There is a model for
which the average case lower bound rises to Ω(n2 logn) and another model where the average case
upper bound drops to O(n log2 n). This clearly exposes the sensitivity of such bounds to the model
under consideration. If paths have to be short, but need not be shortest (if the stretch factor may
be larger than 1), then much less space is needed on average, even in the more demanding models.
Full-information routing requires Θ(n3) bits on average. For worst-case static networks we prove an
Ω(n2 logn) lower bound for shortest path routing and all stretch factors < 2 in some networks where
free relabeling is not allowed.

Key words. computer networks, routing algorithms, compact routing tables, Kolmogorov
complexity, incompressibility method, random graphs, average-case complexity, space complexity

AMS subject classifications. 68M10, 68Q25, 68Q30, 68R10, 90B12

PII. S0097539796308485

1. Introduction. In very large communication networks, like the global tele-
phone network or the Internet connecting the world’s computers, the message volume
being routed creates bottlenecks, degrading performance. We analyze a tiny part of
this issue by determining the optimal space to represent routing schemes in commu-
nication networks for almost all static network topologies. The results also give the
average space cost over all network topologies.

A universal routing strategy for static communication networks will, for every
network, generate a routing scheme for that particular network. Such a routing scheme
comprises a local routing function for every node in the network. The routing function
of node u returns for every destination v 6= u, an edge incident to u on a path from
u to v. This way, a routing scheme describes a path, called a route, between every
pair of nodes u, v in the network. The stretch factor of a routing scheme equals
the maximum ratio between the length of a route it produces and the shortest path
between the endpoints of that route.

It is easy to see that we can do shortest path routing by entering a routing table
in each node u, which for each destination node v indicates to what adjacent node w
a message to v should be routed first. If u has degree d, it requires a table of at most
n log d bits,1 and the overall number of bits in all local routing tables never exceeds
n2 log n.

∗Received by the editors August 20, 1996; accepted for publication (in revised form) June 26,
1997; published electronically April 20, 1999. A preliminary version of this work was presented at
the 15th ACM Conference on Principles Distribut. Comput., Philadelphia, PA, 1996. This research
was partially supported by the European Union through NeuroCOLT ESPRIT Working Group 8556
and by NWO through NFI project ALADDIN NF 62-376.

http://www.siam.org/journals/sicomp/28-4/30848.html
†CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands (buhrman@cwi.nl, paulv@cwi.nl).
‡Department of Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The

Netherlands (hoepman@cs.utwente.nl).
1Throughout, “log” denotes the binary logarithm.

1414

SPACE-EFFICIENT ROUTING TABLES 1415

The stretch factor of a routing strategy equals the maximal stretch factor attained
by any of the routing schemes it generates. If the stretch factor of a routing strategy
equals 1, it is called a shortest path routing strategy because then it generates for every
graph a routing scheme that will route a message between arbitrary u and v over a
shortest path between u and v.

In a full-information shortest path routing scheme, the routing function in u must,
for each destination v, return all edges incident to u on shortest paths from u to v.
These schemes allow alternative, shortest paths to be taken whenever an outgoing
link is down.

We consider point to point communication networks on n nodes described by an
undirected graph G. The nodes of the graph initially have unique labels taken from
a set {1, . . . ,m} for some m > n. Edges incident to a node v with degree d(v) are
connected to ports, with fixed labels 1, . . . , d(v), by a so-called port assignment. This
labeling corresponds to the minimal local knowledge a node needs to route: (a) a
unique identity to determine whether it is the destination of an incoming message,
(b) the guarantee that each of its neighbors can be reached over a link connected to
exactly one of its ports, and (c) the guarantee that it can distinguish these ports.

1.1. Cost measures for routing tables. The space requirements of a routing
scheme are measured as the sum over all nodes of the number of bits needed on each
node to encode its routing function. If the nodes are not labeled with {1, . . . , n}—the
minimal set of labels—we have to add to the space requirement, for each node, the
number of bits needed to encode its label. Otherwise, the bits needed to represent
the routing function could be appended to the original identity yielding a large label
that is not charged for but does contain all necessary information to route.

The cost of representing a routing function at a particular node depends on the
amount of (uncharged) information initially there. Moreover, if we are allowed to
relabel the graph and change its port assignment before generating a routing scheme
for it, the resulting routing functions may be simpler and easier to encode. On a
chain, for example, the routing function is much less complicated if we can relabel
the graph and number the nodes in increasing order along the chain. We list these
assumptions below and argue that each of them is reasonable for certain systems. We
start with the options IA, IB, and II for the amount of information initially available
at a node:

I. Nodes do not initially know the labels of their neighbors and use ports to
distinguish the incident edges. This models the basic system without prior
knowledge.
IA. The assignment of ports to edges is fixed and cannot be altered. This

assumption is reasonable for systems running several jobs where the
optimal port assignment for routing may actually be bad for those other
jobs.

IB. The assignment of ports to edges is free and can be altered before
computing the routing scheme (as long as neighboring nodes remain
neighbors after reassignment). Port reassignment is justifiable as a local
action that usually can be performed without informing other nodes.

II. Nodes know the labels of their neighbors and over which edge to reach them.
This information is free. Or, to put it another way, an incident edge carries
the same label as the node to which it connects. This model is concerned only
with the additional cost of routing messages beyond the immediate neighbors
and applies to systems where the neighbors are already known for various

1416 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

other reasons.2

Orthogonal to that, the following three options regarding the labels of the nodes are
distinguished:

α Nodes cannot be relabeled. For large scale distributed systems, relabeling
requires global coordination that may be undesirable or simply impossible.

β Nodes may be relabeled before computing the routing scheme, but the range
of the labels must remain 1, . . . , n. This model allows a bad distribution of
labels to be avoided.

γ Nodes may be given arbitrary labels before computing the routing scheme,
but the number of bits used to store the node’s label is added to the space re-
quirements of a node. Destinations are given using the new, complex labels.3

This model allows us to store additional routing information, e.g., topological
information, in the label of a node. This sort of network may be appropri-
ate for centrally designed interconnected networks for multiprocessors and
communication networks. A common example of architecture of this type is
the binary n-cube network, where the 2n nodes are labeled with elements of
{0, 1}n such that there is an edge between each pair of nodes iff their labels
differ in exactly one bit position. In this case one can shortest path route
using only the labels by successively traversing edges corresponding to flip-
ping successive bits in the positions where source node and destination node
differ.

These two orthogonal sets of assumptions, IA, IB, or II and α, β, or γ, define the nine
different models we will consider in this paper. We remark that the lower bounds for
models without relabeling are less surprising and easier to prove than the bounds for
the other models.

1.2. Outline. We determine the optimum space used to represent shortest path
routing schemes on almost all labeled graphs, namely, the Kolmogorov random graphs
with randomness deficiency at most c log n, which constitute a fraction of at least
1− 1/nc of all graphs for every fixed constant c > 0. These bounds straightforwardly
imply the same bounds for the average case over all graphs, provided we choose c ≥ 3.
For an overview of the results, refer to Table 1.1.4

We prove that for almost all graphs, Ω(n2) bits are necessary to represent the
routing scheme, if relabeling is not allowed and nodes know their neighbors (II ∧
α) or nodes do not know their neighbors (IA ∨ IB).5 Partially matching this lower
bound, we show that O(n2) bits are sufficient to represent the routing scheme if the

2We do not consider models that give neighbors for free and, at the same time, allow free
port assignment. Given a labeling of the edges by the nodes to which they connect, the actual
port assignment doesn’t matter at all and can in fact be used to represent d(v) log d(v) bits of the
routing function. Namely, each assignment of ports corresponds to a permutation of the ranks of the
neighbors—the neighbors at port i move to position i. There are d(v)! such permutations.

3In this model it is assumed that a routing function cannot tell valid from invalid labels and that
a routing function always receives a valid destination label as input. Requiring otherwise makes the
problem harder.

4In this table, arrows indicate that the bound for that particular model follows from the bound
found by tracing the arrow. In particular, the average-case lower bound for model IA ∧ β is the
same as the IA ∧ γ bound found by tracing →. The reader may have guessed that a ? marks an
open question.

5We write A ∨ B to indicate that the results hold under model A or model B. Similarly, we
write A ∧ B to indicate the result holds only if the conditions of both model A and model B hold
simultaneously. If only one of the two “dimensions” is mentioned, the other may be taken arbitrarily
(i.e., IA is shorthand for (IA ∧ α) ∨ (IA ∧ β) ∨ (IA ∧ γ)).

SPACE-EFFICIENT ROUTING TABLES 1417

Table 1.1

Size of shortest path routing schemes, overview of results. The results presented in this paper are
quoted with exact constants and asymptotically (with the lower order of magnitude terms suppressed).
This table contains only results on shortest path routing, not the other results in this paper.

No relabeling Permutation Free relabeling
(α) (β) (γ)

Worst case—lower bounds
Port assignment free (IB) → Ω(n2 logn) [5] n2/32 [Thm 4.2]

Neighbors known (II) (n2/9) logn [Thm 4.4] Ω(n2) [4] Ω(n7/6) [10]

Average case—upper bounds
Port assignment fixed (IA) (n2/2) logn [Thm 3.6] ← ←

Port assignment free (IB) 3n2 [Thm 3.1] ← ←

Neighbors known (II) 3n2 [Thm 3.1] ← 6n log2 n [Thm 3.2]

Average case—lower bounds
Port assignment fixed (IA) (n2/2) logn [Thm 4.3] → n2/32 [Thm 4.2]
Port assignment free (IB) n2/2 [Thm 4.1] → n2/32 [Thm 4.2]
Neighbors known (II) n2/2 [Thm 4.1] ? ?

port assignment may be changed or if nodes do know their neighbors (IB ∨ II). In
contrast, for almost all graphs, the lower bound rises to asymptotically (n2/2) log n
bits if both relabeling and changing the port assignment are not allowed (IA ∧ α),
and this number of bits is also sufficient for almost all graphs. And, again for almost
all graphs, the upper bound drops to O(n log2 n) bits if nodes know the labels of their
neighbors and nodes may be arbitrarily relabeled (II ∧ γ).

Full-information shortest path routing schemes are shown to require, on almost
all graphs, asymptotically n3/4 bits to be stored if relabeling is not allowed (α), and
this number of bits is also shown to be sufficient for almost all graphs. (The obvious
upper bound for all graphs is n3 bits.)

For stretch factors larger than 1 we obtain the following results. When nodes
know their neighbors (II), for almost all graphs, routing schemes achieving stretch
factors s with 1 < s < 2 can be stored using a total of O(n log n) bits.6 Similarly, for
almost all graphs in the same models (II), O(n log log n) bits are sufficient for routing
with stretch factor ≥ 2. Finally, for stretch factors ≥ 6 log n on almost all graphs
again in the same model (II), the routing scheme occupies only O(n) bits.

For worst-case static networks we prove, by construction of explicit graphs, an
Ω(n2 log n) lower bound on the total size of any routing scheme with stretch factor
< 2 if nodes may not be relabeled (α).

The novel incompressibility technique based on Kolmogorov complexity [9] has
already been applied in many areas but not so much in a distributed setting. A
methodological contribution of this paper is to show how to apply the incompressibility
method to obtain results in distributed computing for almost all objects concerned,
rather than for the worst-case object. This hinges on our use of Kolmogorov random
graphs in a fixed family of graphs. Our results also hold averaged over all objects
concerned.

Independent recent work [8, 7] applies Kolmogorov complexity to obtain related
worst-case results mentioned in the next section. They show, for example, that for
each n there exist graphs on n nodes which may not be relabeled (α) that require in
the worst case Ω(n3) bits to store a full-information shortest path routing scheme.

6For Kolmogorov random graphs which have diameter 2 by Lemma 2.6, routing schemes with
s = 1.5 are the only ones possible in this range.

1418 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

We prove for the same model that for almost all graphs, full-information routing n3/4
bits in total is necessary and sufficient (asymptotically).

1.3. Related work. Previous upper and lower bounds on the total number of
bits necessary and sufficient to store the routing scheme in worst-case static commu-
nication networks are due to Peleg and Upfal [10] and Fraigniaud and Gavoille [4].

In [10] it was shown that for any stretch factor s ≥ 1, the total number of bits
required to store the routing scheme for some n-node graph is at least Ω(n1+1/(2s+4))
and that there exist routing schemes for all n-node graphs, with stretch factor s =
12k+3, using O(k3n1+1/k log n) bits in total. For example, with stretch factor s = 15
we have k = 1 and their method guarantees O(n2 log n) bits to store the routing
scheme. The lower bound is shown in the model where nodes may be arbitrarily
relabeled and where nodes know their neighbors (II ∧ γ). Free port assignment in
conjunction with a model where the neighbors are known (II), however, cannot be
allowed. Otherwise, each node would gain n log n bits to store the routing function
(see footnote 2).

Fraigniaud and Gavoille [4] showed that for stretch factors s < 2 there are routing
schemes that require a total of Ω(n2) bits to be stored in the worst case if nodes may
be relabeled by permutation (β). This was improved for shortest path routing by
Gavoille and Pérennès [5], who showed that for each d ≤ n there are shortest path
routing schemes that require a total of Ω(n2 log d) bits to be stored in the worst case
for some graphs with maximal degree d if nodes may be relabeled by permutation and
the port assignment may be changed (IB ∧ β). This last result is clearly optimal for
the worst case both for general networks (d = Θ(n)) and bounded degree networks
(d < n). In [7] it was shown that for each d ≥ 3 there are networks for which any
routing scheme with stretch factor < 2 requires a total of Ω(n2/ log2 n) bits.

Interval routing on a graph G = (V,E), V = {1, . . . , n}, is a routing strategy
where for each node i, for each incident edge e of i, a (possibly empty) set of pairs
of node labels represents disjoint intervals with wraparound. Each pair indicates the
initial edge on a shortest path from i to any node in the interval, and for each node
j 6= i there is such a pair. We are allowed to permute the labels of graph G to optimize
the interval setting.

Gavoille and Pérennès [5] show that there exist graphs for each bounded degree
d ≥ 3 such that for each interval routing scheme, each of Ω(n) edges are labeled by
Ω(n) intervals. This shows that interval routing can be worse than straightforward
coding of routing tables, which can be trivially done in O(n2 log d) bits total. (This
improves [7], showing that there exist graphs such that for each interval routing scheme
some incident edge on each of Ω(n) nodes is labeled by Ω(n) intervals and that for
each d ≥ 3 there are graphs of maximal node degree d such that for each interval
routing scheme some incident edge on each of Ω(n) nodes is labeled by Ω(n/ log n)
intervals.)

Flammini, van Leeuwen, and Marchetti-Spaccamela [3] provide history and back-
ground on the compactness (or lack thereof) of interval routing using probabilistic
proof methods. To the best of our knowledge, one of the authors of that paper, Jan
van Leeuwen, was the first to formulate explicitly the question of what exactly is the
minimal size of the routing functions, and he also recently drew our attention to this
group of problems.

2. Kolmogorov complexity. The Kolmogorov complexity [6] of x is the length
of the shortest effective description of x. That is, the Kolmogorov complexity C(x)
of a finite string x is simply the length of the shortest program, say, in Fortran

SPACE-EFFICIENT ROUTING TABLES 1419

(or in Turing machine codes) encoded in binary, which prints x without any input.
A similar definition holds conditionally in the sense that C(x|y) is the length of
the shortest binary program which computes x given y as input. It can be shown
that the Kolmogorov complexity is absolute in the sense of being independent of the
programming language up to a fixed additional constant term which depends on the
programming language but not on x. We now fix one canonical programming language
once and for all as a reference and thereby C().

For the theory and applications, see [9]. Let x, y, z ∈ N , where N denotes the nat-
ural numbers. Identify N and {0, 1}∗ according to the correspondence (0, ǫ), (1, 0), (2, 1),
(3, 00), (4, 01), Hence, the length |x| of x is the number of bits in the binary string
x. Let T1, T2, . . . be a standard enumeration of all Turing machines. Let 〈·, ·〉 be a
standard invertible effective bijection from N × N to N . This can be iterated to
〈〈·, ·〉, ·〉.

Definition 2.1. Let U be an appropriate universal Turing machine such that
U(〈〈i, p〉, y〉) = Ti(〈p, y〉) for all i and 〈p, y〉. The Kolmogorov complexity of x given
y (for free) is

C(x|y) = min{|p| : U(〈p, y〉) = x, p ∈ {0, 1}∗}.

2.1. Kolmogorov random graphs. One way to express irregularity or ran-
domness of an individual network topology is by a modern notion of randomness like
Kolmogorov complexity. A simple counting argument shows that for each y in the con-
dition and each length n, there exists at least one x of length n which is incompressible
in the sense of C(x|y) ≥ n; 50% of all x’s of length n are incompressible but for one bit
(C(x|y) ≥ n− 1), 75% of all x’s are incompressible but for two bits (C(x|y) ≥ n− 2),
and in general a fraction of 1−1/2c of all strings cannot be compressed by more than
c bits [9].

Definition 2.2. Each labeled graph G = (V,E) on n nodes V = {1, 2, . . . , n} can
be coded by a binary string E(G) of length n(n− 1)/2. We enumerate the n(n− 1)/2
possible edges (u, v) in a graph on n nodes in standard lexicographical order without
repetitions and set the ith bit in the string to 1 if the ith edge is present and to 0
otherwise. Conversely, each binary string of length n(n− 1)/2 encodes a graph on n
nodes. Hence we can identify each such graph with its corresponding binary string.

We define the high complexity graphs in a particular family G of graphs.
Definition 2.3. A labeled graph G on n nodes of a family G of graphs has

randomness deficiency at most δ(n) and is called δ(n)-random in G if it satisfies

C(E(G)|n, δ,G) ≥ log |G| − δ(n).(2.1)

In this paper G is the set of all labeled graphs on n nodes. Then, log |G| = n(n− 1)/2,
that is, precisely the length of the encoding of Definition 2.2. In what follows we just
say “δ(n)-random” with G understood.

Elementary counting shows that a fraction of at least

1 − 1/2δ(n)

of all labeled graphs on n nodes in G has that high complexity [9].

2.2. Self-delimiting binary strings. We need the notion of self-delimiting
binary strings.

Definition 2.4. We call x a proper prefix of y if there is a z such that y = xz
with |z| > 0. A set A ⊆ {0, 1}∗ is prefix-free if no element in A is the proper

1420 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

prefix of another element in A. A 1:1 function E : {0, 1}∗ → {0, 1}∗ (equivalently,
E : N → {0, 1}∗) defines a prefix-code if its range is prefix-free. A simple prefix-
code we use throughout is obtained by reserving one symbol, say 0, as a stop sign and
encoding

x̄ = 1|x|0x,

|x̄| = 2|x| + 1.

Sometimes we need the shorter prefix-code x′:

x′ = |x|x,

|x′| = |x| + 2⌈log(|x| + 1)⌉ + 1.

We call x̄ or x′ a self-delimiting version of the binary string x. We can effectively
recover both x and y unambiguously from the binary strings x̄y or x′y. For example,
if x̄y = 111011011, then x = 110 and y = 11. If x̄ȳ = 1110110101, then x = 110
and y = 1. The self-delimiting form x′ . . . y′z allows the concatenated binary sub-
descriptions to be parsed and unpacked into the individual items x, . . . , y, z; the code
x′ encodes a separation delimiter for x using 2⌈log(|x| + 1)⌉ extra bits, and so on [9].

2.3. Topological properties of Kolmogorov random graphs. High com-
plexity labeled graphs have many specific topological properties, which seems to
contradict their randomness. However, randomness is not “lawlessness” but rather
enforces strict statistical regularities, for example, to have diameter exactly 2. Note
that randomly generated graphs have diameter 2 with high probability. In another
paper [2] two of us explored the relationship between high probability properties of
random graphs and properties of individual Kolmogorov random graphs. For this
discussion it is relevant to mention that, in a precisely quantified way, every Kol-
mogorov random graph individually possesses all simple properties which hold with
high probability for randomly generated graphs.

Lemma 2.5. The degree d of every node of a δ(n)-random labeled graph on n
nodes satisfies

|d− (n− 1)/2| = O
(

√

(δ(n) + log n)n
)

.

Proof. Assume that there is a node such that the deviation of its degree d from
(n − 1)/2 is greater than k, that is, |d − (n − 1)/2| > k. From the lower bound
on C(E(G)|n, δ,G) corresponding to the assumption that G is random in G, we can
estimate an upper bound on k, as follows.

In a description of G = (V,E) given n, δ, we can indicate which edges are inci-
dent on node i by giving the index of the interconnection pattern (the characteristic
sequence of the set Vi = {j ∈ V − {i} : (i, j) ∈ E} in n− 1 bits, where the jth bit is
1 if j ∈ Vi and 0 otherwise) in the ensemble of

m =
∑

|d−(n−1)/2|>k

(

n− 1

d

)

≤ 2ne−2k2/3(n−1)(2.2)

possibilities. The last inequality follows from a general estimate of the tail probability
of the binomial distribution with sn the number of successful outcomes in n experi-
ments with probability of success p = 1

2 . Namely, by Chernoff’s bounds, in the form
used in [1, 9],

Pr(|sn − pn| > k) ≤ 2e−k2/3pn.(2.3)

SPACE-EFFICIENT ROUTING TABLES 1421

To describe G, it then suffices to modify the old code of G by prefixing it with
(i) a description of this discussion in O(1) bits;
(ii) the identity of node i in ⌈log(n + 1)⌉ bits;
(iii) the value of k in ⌈log(n+ 1)⌉ bits, possibly adding nonsignificant 0’s to pad

up to this amount;
(iv) the index of the interconnection pattern in logm bits (we know n, k, and

hence logm); followed by
(v) the old code for G with the bits in the code denoting the presence or absence

of the possible edges that are incident on node i deleted.
Clearly, given n we can reconstruct the graph G from the new description. The

total description we have achieved is an effective program of

logm + 2 log n + n(n− 1)/2 − n + O(1)

bits. This must be at least the length of the shortest effective binary program, which
is C(E(G)|n, δ,G), satisfying (2.1). Therefore,

logm ≥ n− 2 log n−O(1) − δ(n).

Since we have estimated in (2.2) that

logm ≤ n− (2k2/3(n− 1)) log e,

it follows that k ≤
√

3
2 (δ(n) + 2 log n + O(1))(n− 1)/ log e.

Lemma 2.6. Every o(n)-random labeled graph on n nodes has diameter 2.
Proof. The only graphs with diameter 1 are the complete graphs which can be

described in O(1) bits, given n, and hence are not random. It remains to consider
G = (V,E) is an o(n)-random graph with diameter greater than 2, which contradicts
(2.1) from some n onwards.

Let i, j be a pair of nodes with distance greater than 2. Then we can describe G
by modifying the old code for G as follows:

(i) a description of this discussion in O(1) bits;
(ii) the identities of i < j in 2 logn bits;
(iii) the old code E(G) of G with all bits representing presence or absence of an

edge (j, k) between j and each k with (i, k) ∈ E deleted. We know that all the bits
representing such edges must be 0 since the existence of any such edge shows that
(i, k), (k, j) is a path of length 2 between i and j, contradicting the assumption that i
and j have distance > 2. This way we save at least n/4 bits since we save bits for as
many edges (j, k) as there are edges (i, k), that is, the degree of i, which is n/2± o(n)
by Lemma 2.5.

Since we know the identities of i and j and the nodes adjacent to i (they are in
the prefix of code E(G) where no bits have been deleted), we can reconstruct G from
this discussion and the new description, given n. Since by Lemma 2.5 the degree of i
is at least n/4, the new description of G, given n, requires at most

n(n− 1)/2 − n/4 + O(log n)

bits, which contradicts (2.1) for large n.
Lemma 2.7. Let c ≥ 0 be a fixed constant, and let G be a c log n-random labeled

graph. Then from each node i all other nodes are either directly connected to i or are
directly connected to one of the least (c + 3) log n nodes directly adjacent to i.

1422 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

Proof. Given i, let A be the set of the least (c + 3) log n nodes directly adjacent
to i. Assume by way of contradiction that there is a node k of G that is not directly
connected to a node in A

⋃

{i}. We can describe G as follows:
(i) a description of this discussion in O(1) bits;
(ii) a literal description of i in logn bits;
(iii) a literal description of the presence or absence of edges between i and the

other nodes in n− 1 bits;
(iv) a literal description of k and its incident edges in logn+n−2− (c+3) log n

bits;
(v) the encoding E(G) with the edges incident with nodes i and k deleted,

saving at least 2n− 2 bits.
Altogether the resultant description has

n(n− 1)/2 + 2 log n + 2n− 3 − (c + 3) logn− 2n + 2

bits, which contradicts the c log n-randomness of G by (2.1).
In the description we have explicitly added the adjacency pattern of node i, which

we deleted again later. This zero-sum swap is necessary to be able to unambiguously
identify the adjacency pattern of i in order to reconstruct G. Since we know the
identities of i and the nodes adjacent to i (they are the prefix where no bits have been
deleted), we can reconstruct G from this discussion and the new description, given n.

3. Upper bounds. We give methods to route messages over Kolmogorov ran-
dom graphs with compact routing schemes. Specifically, we show that in general
(on almost all graphs) one can use shortest path routing schemes occupying at most
O(n2) bits. If one can relabel the graph in advance, and if nodes know their neighbors,
shortest path routing schemes are shown to occupy only O(n log2 n) bits. Allowing
stretch factors larger than 1 reduces the space requirements—to O(n) bits for stretch
factors of O(log n).

Let G be an O(log n)-random labeled graph on n nodes. By Lemma 2.7 we know
that from each node u we can shortest path route to each other node through the least
O(log n) directly adjacent nodes of u. So we route through node v. Once the message
reaches node v, its destination is either node v or a direct neighbor of node v (which
is known in node v by assumption). Therefore, routing functions of size O(n log log n)
bits per node can be used to do shortest path routing. However, we can do better.

Theorem 3.1. Let G be an O(log n)-random labeled graph on n nodes. Assume
that the port assignment may be changed or nodes know their neighbors (IB ∨ II).
Then for shortest path routing it suffices to have local routing functions stored in 3n
bits per node. Hence the complete routing scheme is represented by 3n2 bits.

Proof. Let G be as in the statement of the theorem. By Lemma 2.7 we know
that from each node u we can route via shortest paths to each node v through the
O(log n) directly adjacent nodes of u that have the least indexes. Assume we route
through node v. Once the message has reached node v, its destination is either node
v or a direct neighbor of node v (which is known in node v by assumption).

Let A0 ⊆ V be the set of nodes in G which are not directly connected to u. Let
v1, . . . , vm be the O(log n) least indexed nodes directly adjacent to node u (Lemma 2.7)
through which we can shortest path route to all nodes in A0. For t = 1, 2 . . . , l define
At = {w ∈ A0 −

⋃t−1
s=1 As : (vt, w) ∈ E}. Let m0 = |A0|, and define mt+1 =

mt − |At+1|. Let l be the first t such that mt < n/ log log n. Then we claim that vt is
connected by an edge in E to at least 1/3 of the nodes not connected by edges in E
to nodes u, v1, . . . , vt−1.

SPACE-EFFICIENT ROUTING TABLES 1423

Claim 1. |At| > mt−1/3 for 1 ≤ t ≤ l.
Proof. Suppose, by way of contradiction, that there exists a least t ≤ l such that

||At| −mt−1/2| ≥ mt−1/6. Then we can describe G, given n, as follows:
(i) A description of this discussion in O(1) bits;
(ii) a description of nodes u, vt in 2 logn bits, padded with 0’s if necessary;
(iii) a description of the presence or absence of edges incident with nodes

u, v1, . . . , vt−1 in r = n − 1 + · · · + n − (t − 1) bits. This gives us the characteristic
sequences of A0, . . . , At−1 in V , where a characteristic sequence of A in V is a string
of |V | bits with, for each v ∈ V , the vth bit equal to 1 if v ∈ A and the vth bit equal
to 0 otherwise;

(iv) a self-delimiting description of the characteristic sequence of At in A0 −
⋃t−1

s=1 As, using Chernoff’s bound (2.3), in at most mt−1−
2
3 (1

6)2 mt−1 log e+O(logmt−1)
bits;

(v) the description E(G) with all bits corresponding to the presence or absence

of edges between vt and the nodes in A0 −
⋃t−1

s=1 As deleted, saving mt−1 bits. Fur-
thermore, we also delete all bits corresponding to the presence or absence of edges
incident with u, v1, . . . , vt−1, saving a further r bits.

This description of G uses at most

n(n− 1)/2 + O(log n) + mt−1 −
2

3

(

1

6

)2

mt−1 log e−mt−1

bits, which contradicts the O(log n)-randomness of G by (2.1), because mt−1 >
n/ log log n.

Recall that l is the least integer such that ml < n/ log log n. We construct the
local routing function F (u) as follows:

(i) A table of intermediate routing node entries for all the nodes in A0 in in-

creasing order. For each node w in
⋃l

s=1 As we enter in the wth position in the table
the unary representation of the least intermediate node v with (u, v), (v, w) ∈ E fol-

lowed by a 0. For the nodes that are not in
⋃l

s=1 As we enter a 0 in their position in
the table, indicating that an entry for this node can be found in the second table. By
Claim 1, the size of this table is bounded by

n +

l
∑

s=1

1

3

(

2

3

)s−1

sn ≤ n +

∞
∑

s=1

1

3

(

2

3

)s−1

sn ≤ 4n.

(ii) A table with explicitly binary coded intermediate nodes on a shortest path
for the ordered set of the remaining destination nodes. Those nodes had a 0 entry in
the first table and there are at most ml < n/ log log n of them, namely, the nodes in

A0−
⋃l

s=1 As. Each entry consists of the code of length log logn+O(1) for the position
in increasing order of a node out of v1, . . . , vm with m = O(log n) by Lemma 2.7.
Hence this second table requires at most 2n bits.

The routing algorithm is as follows: The direct neighbors of u are known in node
u and are routed without a routing table. If we route from start node u to target
node w, which is not directly adjacent to u, then we do the following: If node w has
an entry in the first table, then route over the edge coded in unary; otherwise find an
entry for node w in the second table.

Altogether, we have |F (u)| ≤ 6n. Adding another n−1 in case the port assignment
may be chosen arbitrarily, this proves the theorem with 7n instead of 6n. Slightly

1424 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

more precise counting and choosing l such that ml is the first such quantity < n/ log n
shows |F (u)| ≤ 3n.

If we allow arbitrary labels for the nodes, then shortest path routing schemes of
O(n log2 n) bits suffice on Kolmogorov random graphs, as witnessed by the following
theorem.

Theorem 3.2. Let c ≥ 0 be a constant, and let G be a c log n-random labeled
graph on n nodes. Assume that nodes know their neighbors and that nodes may be
arbitrarily relabeled (II ∧ γ), and we allow the use of labels of (1 + (c+ 3) log n) log n
bits. Then we can shortest path route with local routing functions stored in O(1) bits
per node (hence the complete routing scheme is represented by (c+3)n log2 n+n log n+
O(n) bits).

Proof. Let c and G be as in the statement of the theorem. By Lemma 2.7 we
know that from each node u we can shortest path route to each node w through the
first (c + 3) log n directly adjacent nodes f(u) = v1, . . . , vm of u. By Lemma 2.6, G
has diameter 2. Relabel G such that the label of node u equals u followed by the
original labels of the first (c + 3) logn directly adjacent nodes f(u). This new label
occupies (1 + (c + 3) log n) log n bits. To route from source u to destination v do the
following.

If v is directly adjacent to u, we route to v in one step in our model (nodes
know their neighbors). If v is not directly adjacent to u, we consider the immediate
neighbors f(v) contained in the name of v. By Lemma 2.7, at least one of the neighbors
of u must have a label whose original label (stored in the first logn bits of its new
label) corresponds to one of the labels in f(v). Node u routes the message to any
such neighbor. This routing function can be stored in O(1) bits.

Without relabeling, routing using less than O(n2) bits is possible if we allow
stretch factors larger than 1. The next three theorems clearly show a trade-off between
the stretch factor and the size of the routing scheme.

Theorem 3.3. Let c ≥ 0 be a constant, and let G be a c log n-random labeled
graph on n nodes. Assume that nodes know their neighbors (II). For routing with
any stretch factor > 1 it suffices to have n− 1− (c+ 3) log n nodes with local routing
functions stored in at most ⌈log(n + 1)⌉ bits per node and 1 + (c+ 3) logn nodes with
local routing functions stored in 3n bits per node (hence the complete routing scheme
is represented by less than (3c+20)n log n bits). Moreover, the stretch is at most 1.5.

Proof. Let c and G be as in the statement of the theorem. By Lemma 2.7 we know
that from each node u we can shortest path route to each node w through the first
(c+3) log n directly adjacent nodes v1, . . . , vm of u. By Lemma 2.6, G has diameter 2.
Consequently, each node in V is directly adjacent to some node in B = {u, v1, . . . , vm}.
Hence it suffices to select the nodes of B as routing centers and store, in each node
w ∈ B, a shortest path routing function F (w) to all other nodes occupying 3n bits
(the same routing function as constructed in the proof of Theorem 3.1 if the neighbors
are known). Nodes v ∈ V − B route any destination unequal to their own label to
some fixed directly adjacent node w ∈ B. Then |F (v)| ≤ ⌈log(n + 1)⌉ + O(1), and
this gives the bit count in the theorem.

To route from an originating node v to a target node w, the following steps are
taken. If w is directly adjacent to v, we route to w in one step in our model. If w is not
directly adjacent to v, then we first route in one step from v to its directly connected
node in B and then via a shortest path to w. Altogether, this takes either two or three
steps, whereas the shortest path has length 2. Hence the stretch factor is at most 1.5,
which for graphs of diameter 2 (i.e., all c log n-random graphs by Lemma 2.6) is the

SPACE-EFFICIENT ROUTING TABLES 1425

only possibility between stretch factors 1 and 2. This proves the theorem.

Theorem 3.4. Let c ≥ 0 be a constant, and let G be a c log n-random labeled
graph on n nodes. Assume that the nodes know their neighbors (II). For routing with
stretch factor 2 it suffices to have n− 1 nodes with local routing functions stored in at
most log log n bits per node and one node with its local routing function stored in 3n
bits (hence the complete routing scheme is represented by n log log n + 3n bits).

Proof. Let c and G be as in the statement of the theorem. By Lemma 2.6, G has
diameter 2. Therefore the following routing scheme has stretch factor 2: Let node 1
store a shortest path routing function. All other nodes store only a shortest path to
node 1. To route from an originating node v to a target node w, the following steps
are taken: If w is an immediate neighbor of v, we route to w in one step in our model.
If not, we first route the message to node 1 in at most two steps and then from node
1 through a node v to node w in, again, two steps. Because node 1 stores a shortest
path routing function, either v = w or w is a direct neighbor of v.

Node 1 can store a shortest path routing function in at most 3n bits using the
same construction as used in the proof of Theorem 3.1 (if the neighbors are known).
The immediate neighbors of 1 route either to 1 or directly to the destination of the
message. For these nodes, the routing function occupies O(1) bits. For nodes v at
distance 2 of node 1 we use Lemma 2.7, which tells us that we can shortest path
route to node 1 through the first (c + 3) log n directly adjacent nodes of v. Hence,
to represent this edge takes log log n + log(c + 3) bits, and hence the local routing
function F (v) occupies at most log log n + O(1) bits.

Theorem 3.5. Let c ≥ 0 be a constant, and let G be a c log n-random labeled
graph on n nodes. Assume that nodes know their neighbors (II). For routing with
stretch factor (c+3) log n it suffices to have local routing functions stored in O(1) bits
per node (hence the complete routing scheme is represented by O(n) bits).

Proof. Let c and G be as in the statement of the theorem. From Lemma 2.7
we know that from each node u we can shortest path route to each node v through
the first (c + 3) log n directly adjacent nodes of u. By Lemma 2.6, G has diameter
2. So the local routing function—representable in O(1) bits—is to route directly to
the target node if it is a directly adjacent node, otherwise simply traverse the first
(c + 3) log n incident edges of the starting node and look in each of the visited nodes
to see whether the target node is a directly adjacent node. If so, the message is
forwarded to that node, otherwise it is returned to the starting node in order to try
the next node. Hence each message for a destination at distance 2 traverses at most
2(c + 3) log n edges.

Strictly speaking we do not use routing tables at all. We use the fact that a
message can go back and forth several times to a node. The header of the message can
code some extra information as a tag “failed.” In this case it is possible to describe
an O(1) bit size routing function which allows one to extract the destination from
the header without knowing about logn, for example, by the use of self-delimiting
encoding.

Theorem 3.6. Let G be an O(log n)-random labeled graph on n nodes. Assume
that nodes do not know their neighbors and relabeling and changing the port assignment
are not allowed (IA ∧ α). Then for shortest path routing it suffices that each local
routing function uses (n/2) log n(1 + o(1)) bits (hence the complete routing scheme
uses at most (n2/2) log n(1 + o(1)) bits to be stored).

Proof. At each node we can give the neighbors by the positions of the 1’s in a
binary string of length n − 1. Since each node has at most n/2 + o(n) neighbors by

1426 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

Lemma 2.5, a permutation of port assignments to neighbors can have Kolmogorov
complexity at most (n/2) log n(1+o(1)) [9]. This permutation π describes part of the
local routing function by determining, for each direct neighbor, the port through which
to route messages for that neighbor. If G is O(log n)-random, then by Theorem 3.1
we require only O(n) bits of additional routing information in each node. Namely,
because the assignment of ports (outgoing edges) to direct neighbors is known by
permutation π, we can use an additional routing table in 3n bits per node to route to
the remaining nonneighbor nodes as described in the proof of Theorem 3.1. In total
this gives (n2/2) log n(1 + o(1)) bits.

Our last theorem of this section determines the upper bounds for full-information
shortest path routing schemes on Kolmogorov random graphs.

Theorem 3.7. For full-information shortest path routing on o(n)-random labeled
graphs on n nodes where relabeling is not allowed (α), the local routing function oc-
cupies at most n2/4 + o(n2) bits for every node (hence the complete routing scheme
takes at most n3/4 + o(n3) bits to be stored).

Proof. Since for o(n)-random labeled graphs on n the node degree of every node
is n/2 + o(n) by Lemma 2.5, we can describe in each source node the appropriate
outgoing edges (ports) for each destination node by the 1’s in a binary string of
length n/2 + o(n). For each source node it suffices to store at most n/2 + o(n) such
binary strings corresponding to the nonneighboring destination nodes. In each node
we can give the neighbors by the positions of the 1’s in a binary string of length n−1.
Moreover, in each node we can give the permutation of port assignments to neighbors
in (n/2) log n(1 + o(1)) bits. This leads to a total of at most (n2/4)(1 + o(1)) bits per
node and hence to (n3/4)(1 + o(1)) bits to store the overall routing scheme.

4. Lower bounds. The first two theorems of this section together show that
Ω(n2) bits are indeed necessary to route on Kolmogorov random graphs in all mod-
els we consider, except for the models where nodes know their neighbors and label
permutation or relabeling is allowed (II ∧ β or II ∧ γ). Hence the upper bound in
Theorem 3.1 is tight up to order of magnitude.

Theorem 4.1. For shortest path routing in o(n)-random labeled graphs where
relabeling is not allowed and nodes know their neighbors (II ∧ α), each local routing
function must be stored in at least n/2−o(n) bits per node (hence the complete routing
scheme requires at least n2/2 − o(n2) bits to be stored).

Proof. Let G be an o(n)-random graph. Let F (u) be the local routing function
of node u of G, and let |F (u)| be the number of bits used to store F (u). Let E(G)
be the standard encoding of G in n(n − 1)/2 bits as in Definition 2.2. We now give
another way to describe G using some local routing function F (u):

(i) a description of this discussion in O(1) bits;
(ii) a description of u in exactly logn bits, padded with 0’s if necessary;
(iii) a description of the presence or absence of edges between u and the other

nodes in V in n− 1 bits;
(iv) a self-delimiting description of F (u) in |F (u)| + 2 log |F (u)| bits;
(v) the code E(G) with all bits deleted corresponding to edges (v, w) ∈ E for each

v and w such that F (u) routes messages to w through the least intermediary node v.
This saves at least n/2−o(n) bits since there are at least n/2−o(n) nodes w such that
(u,w) /∈ E by Lemma 2.5, and since the diameter of G is 2 by Lemma 2.6, there is a
shortest path (u, v), (v, w) for some v. Furthermore, we delete all bits corresponding
to the presence or absence of edges between u and the other nodes in V , saving another
n − 1 bits. This corresponds to the n − 1 bits for edges connected to u, which we

SPACE-EFFICIENT ROUTING TABLES 1427

added in one connected block (item (iii)) above.
In the description, we have explicitly added the adjacency pattern of node u,

which we deleted elsewhere. This zero-sum swap is necessary to be able to unam-
biguously identify the adjacency pattern of u in order to reconstruct G given n, as
follows. Reconstruct the bits corresponding to the deleted edges using u and F (u)
and subsequently insert them in the appropriate positions of the remnants of E(G).
We can do so because these positions can be simply reconstructed in increasing order.
In total this new description has

n(n− 1)/2 + O(1) + O(log n) + |F (u)| − n/2 + o(n)

bits, which must be at least n(n− 1)/2 − o(n) by (2.1). Hence, |F (u)| ≥ n/2 − o(n),
which proves the theorem.

Theorem 4.2. Let G be an o(n)-random labeled graph on n nodes. Assume
that the neighbors are not known (IA ∨ IB) but relabeling is allowed (γ). Then for
shortest path routing the complete routing scheme requires at least n2/32− o(n2) bits
to be stored.

Proof. In the proof of this theorem we need the following combinatorial result.
Claim 2. Let k and n be arbitrary natural numbers such that 1 ≤ k ≤ n. Let xi

for 1 ≤ i ≤ k be natural numbers such that xi ≥ 1. If
∑k

i=1 xi = n, then

k
∑

i=1

⌈log xi⌉ ≤ n− k.

Proof. The proof is by induction on k. If k = 1, then x1 = n, and clearly
⌈log n⌉ ≤ n − 1 if n ≥ 1. Supposing the claim holds for k and arbitrary n and

xi, we now prove it for k′ = k + 1, n, and arbitrary xi. Let
∑k′

i=1 xi = n. Then
∑k

i=1 xi = n− xk′ . Now

k′

∑

i=1

⌈log xi⌉ =

k
∑

i=1

⌈log xi⌉ + ⌈log xk′⌉.

By the induction hypothesis the first term on the right-hand side is less than or equal
to n− xk′ − k, so

k′

∑

i=1

⌈log xi⌉ ≤ n− xk′ − k + ⌈log xk′⌉ = n− k′ + ⌈log xk′⌉ + 1 − xk′ .

Clearly ⌈log xk′⌉ + 1 ≤ xk′ if xk′ ≥ 1, which proves the claim.
Recall that in model γ each router must be able to output its own label. Using

the routing scheme we can enumerate the labels of all nodes. If we cannot enumerate
the labels of all nodes using less than n2/32 bits of information, then the routing
scheme requires at least that many bits of information and we are done. So assume
we can (this includes models α and β, where the labels are not charged for, but can
be described using logn bits). Let G be an o(n)-random graph.

Claim 3. Given the labels of all nodes, we can describe the interconnection pattern
of a node u using the local routing function of node u plus an additional n/2 + o(n)
bits.

1428 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

Proof. Apply the local routing function to each of the labels of the nodes in turn
(these are given by assumption). This will return for each edge a list of destinations
reached over that edge. To describe the interconnection pattern, it remains to encode
for each edge which of the destinations reached is actually its immediate neighbor. If
edge i routes xi destinations, this will cost ⌈log xi⌉ bits. By Lemma 2.5 the degree

of a node in G is at least n/2 − o(n). Then in total,
∑n/2−o(n)

i=1 ⌈log xi⌉ bits will be
sufficient; separations need not be encoded because they can be determined using the
knowledge of all xi’s. Using Claim 2 finishes the proof.

Now we show that there are n/2 nodes in G whose local routing function requires
at least n/8 − 3 log n bits to describe (which implies the theorem).

Assume, by way of contradiction, that there are n/2 nodes in G whose local
routing function requires at most n/8−3 log n bits to describe. Then we can describe
G as follows:

(i) a description of this discussion in O(1) bits;
(ii) the enumeration of all labels in at most n2/32 (by assumption);
(iii) a description of the n/2 nodes in this enumeration in at most n bits;
(iv) the interconnection patterns of these n/2 nodes in n/8 − 3 log n plus n/2 +

o(n) bits each (by assumption and using Claim 3); this amounts to n/2(5n/8 −
3 log n) + o(n2) bits in total with separations encoded in another n log n bits;

(v) the interconnection patterns of the remaining n/2 nodes only among them-
selves using the standard encoding, in 1/2(n/2)2 bits.

This description altogether uses

O(1) + n2/32 + n + n/2(5n/8 − 3 log n)

+ o(n2) + n log n + 1/2(n/2)2

= n2/2 − n2/32 + n + o(n2) − n/2 log n

bits, contradicting the o(n)-randomness of G by (2.1). We conclude that on at least
n/2 nodes, a total of n2/16 − o(n2) bits are used to store the routing scheme.

If neither relabeling nor changing the port assignment is allowed, the next the-
orem implies that for shortest path routing on almost all such “static” graphs one
cannot do better than storing part of the routing tables literally, in (n2/2) log n bits.
Note that it is known [5] that there are worst-case graphs (even in models where
relabeling is allowed) such that n2 log n−O(n2) bits are required to store the routing
scheme, and this matches the trivial upper bound for all graphs exactly. But in our
Theorem 4.3 we show that in a certain restricted model for almost all graphs asymp-
totically (n2/2) log n bits are required and by Theorem 3.6 that many bits are also
sufficient.

Theorem 4.3. Let G be an o(n)-random labeled graph on n nodes. Assume that
nodes do not know their neighbors and relabeling and changing the port assignment
are not allowed (IA ∧ α). Then for shortest path routing each local routing function
must be stored in at least (n/2) log n−O(n) bits per node (hence the complete routing
scheme requires at least (n2/2) log n−O(n2) bits to be stored).

Proof. If the graph cannot be relabeled and the port assignment cannot be
changed, the adversary can set the port assignment of each node to correspond to a
permutation of the destination nodes. Since each node has at least n/2− o(n) neigh-
bors by Lemma 2.5, such a permutation can have Kolmogorov complexity as high as
(n/2) log n−O(n) [9]. Because the neighbors are not known, the local routing function
must determine, for each neighbor node, the port through which to route messages
for that neighbor node. Hence the local routing function completely describes the

SPACE-EFFICIENT ROUTING TABLES 1429

v3k−1

vk

v1

v2k+1 vk+1

v2k+2

v2k

v3k

vk+2

v2k+3

vk+3

v2k−1

Fig. 4.1. Graph Gk.

permutation, given the neighbors, and thus it must occupy at least (n/2) log n−O(n)
bits per node.

Note that in this model (IA ∧ α) we can trivially find by the same method a lower
bound of n2 log n − O(n2) bits for specific graphs like the complete graph and this
matches exactly the trivial upper bound in the worst case. However, Theorem 4.3
shows that for this model for almost all labeled graphs asymptotically 50% of this
number of bits of total routing information is both necessary and sufficient.

Even if stretch factors between 1 and 2 are allowed, the next theorem shows that
Ω(n2 log n) bits are necessary to represent the routing scheme in the worst case.

Theorem 4.4. For routing with stretch factor < 2 in labeled graphs where relabel-
ing is not allowed (α), there exist graphs on n nodes (almost (n/3)! such graphs) where
the local routing function must be stored in at least (n/3) log n−O(n) bits per node at
n/3 nodes (hence the complete routing scheme requires at least (n2/9) log n − O(n2)
bits to be stored).

Proof. Consider the graph Gk with n = 3k nodes depicted in Figure 4.1. Each
node vi in vk+1, . . . , v2k is connected to vi+k and to each of the nodes v1, . . . , vk. Fix a
labeling of the nodes v1, . . . , v2k with labels from {1, . . . , 2k}. Then any labeling of the
nodes v2k+1, . . . , v3k with labels from {2k + 1, . . . , 3k} corresponds to a permutation
of {2k + 1, . . . , 3k} and vice versa.

Clearly, for any two nodes vi and vj with 1 ≤ i ≤ k and 2k + 1 ≤ j ≤ 3k, the
shortest path from vi to vj passes through node vj−k and has length 2, whereas any
other path from vi to vj has length at least 4. Hence any routing function on Gk with
stretch factor < 2 routes such vj from vi over the edge (vi, vj−k). Then at each of
the k nodes v1, . . . , vk the local routing functions corresponding to any two labelings
of the nodes v2k+1, . . . , v3k are different. Hence each representation of a local routing
function at the k nodes vi, 1 ≤ i ≤ k, corresponds one-to-one to a permutation
of {2k + 1, . . . , 3k}. So given such a local routing function, we can reconstruct the
permutation (by collecting the response of the local routing function for each of the
nodes k + 1, . . . , 3k and grouping all pairs reached over the same edge). The number
of such permutations is k!. A fraction of at least 1− 1/2k of such permutations π has
Kolmogorov complexity C(π) = k log k − O(k) [9]. Because π can be reconstructed
given any of the k local routing functions, these k local routing functions must each
have Kolmogorov complexity k log k − O(k), too. This proves the theorem for n a
multiple of 3. For n = 3k − 1 or n = 3k − 2 we can use Gk, dropping vk and vk−1.

1430 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

Note that the proof requires only that there be no relabeling; apart from that the
direct neighbors of a node may be known and ports may be reassigned.

By the above calculation there are at least (1 − 1/2n/3)(n/3)! labeled graphs on
n nodes for which the theorem holds.

Our last theorem shows that for full-information shortest path routing schemes
on Kolmogorov random graphs one cannot do better than the trivial upper bound.

Theorem 4.5. For full-information shortest path routing on o(n)-random labeled
graphs on n nodes where relabeling is not allowed (α), the local routing function oc-
cupies at least n2/4 − o(n2) bits for every node (hence the complete routing scheme
requires at least n3/4 − o(n3) bits to be stored).

Proof. Let G be a graph on nodes {1, 2, . . . , n} satisfying (2.1) with δ(n) = o(n).
Then we know that G satisfies Lemmas 2.5 and 2.6. Let F (u) be the local routing
function of node u of G, and let |F (u)| be the number of bits used to encode F (u).
Let E(G) be the standard encoding of G in n(n− 1)/2 bits as in Definition 2.2. We
now give another way to describe G using some local routing function F (u):

(i) a description of this discussion in O(1) bits;
(ii) a description of u in logn bits (if it is less, pad the description with 0’s);
(iii) a description of the presence or absence of edges between u and the other

nodes in V in n− 1 bits;
(iv) a description of F (u) in |F (u)|+O(log |F (u)|) bits (the logarithmic term to

make the description self-delimiting);
(v) the code E(G) with all bits deleted corresponding to the presence or absence

of edges between each w and v such that v is a neighbor of u and w is not a neighbor
of u. Since there are at least n/2 − o(n) nodes w such that (u,w) /∈ E and at least
n/2−o(n) nodes v such that (u, v) ∈ E, by Lemma 2.5, this saves at least (n/2−o(n))2

bits.
From this description we can reconstruct G, given n, by reconstructing the bits

corresponding to the deleted edges from u and F (u) and subsequently inserting them
in the appropriate positions to reconstruct E(G). We can do so because F (u) repre-
sents a full-information routing scheme implying that (v, w) ∈ E iff (u, v) is among
the edges used to route from u to w. In total this new description has

n(n− 1)/2 + O(log n) + |F (u)| − n2/4 + o(n2)

bits, which must be at least n(n − 1)/2 − o(n) by (2.1). We conclude that |F (u)| =
n2/4 − o(n2), which proves the theorem.

Note that the proof requires only that there be no relabeling; apart from that the
direct neighbors of a node may be known and ports may be reassigned.

5. Average case. What about the average cost, taken over all labeled graphs of
n nodes, of representing a routing scheme for graphs over n nodes? The results above
concerned precise overwhelmingly large fractions of the set of all labeled graphs. The
numerical values of randomness deficiencies and bit costs involved show that these
results are actually considerably stronger than the corresponding average case results
which are straightforward.

Definition 5.1. For each labeled graph G, let TS(G) be the minimal total number
of bits used to store a routing scheme of type S (where S indicates shortest path
routing, full-information routing, and the like). The average minimal total number
of bits to store a routing scheme for S-routing over labeled graphs on n nodes is
∑

TS(G)/2n(n−1)/2 with the sum taken over all graphs G on nodes {1, 2, . . . , n}. (That
is, the uniform average over all the labeled graphs on n nodes.)

SPACE-EFFICIENT ROUTING TABLES 1431

The results on Kolmogorov random graphs above have the following corollaries.
The set of (3 log n)-random graphs constitutes a fraction of at least (1− 1/n3) of the
set of all graphs on n nodes. The trivial upper bound on the minimal total number
of bits for all routing functions together is O(n2 log n) for shortest path routing on
all graphs on n nodes (or O(n3) for full-information shortest path routing). Simple
computation shows that the average total number of bits to store the routing scheme
for graphs of n nodes is (asymptotically and ignoring lower order of magnitude terms
as in Table 1.1) as follows:

1. ≤ 3n2 for shortest path routing in model IB ∨ II (Theorem 3.1);
2. ≤ 6n log2 n for shortest path routing in model II ∧ γ, where the average is

taken over the initially labeled graphs on n nodes with labels in {1, 2, . . . , n} before
they were relabeled with new and longer labels giving routing information (Theo-
rem 3.2);

3. ≤ 38n log n for routing with any stretch factor s for 1 < s < 2 in model II
(Theorem 3.3);

4. ≤ n log log n for routing with stretch factor 2 in model II (Theorem 3.4);
5. O(n) for routing with stretch factor 6 logn in model II (Theorem 3.5 with

c = 3);
6. ≥ n2/2 for shortest path routing in model α (Theorem 4.1);
7. ≥ n2/32 for shortest path routing in model IA and IB (under all relabeling

conventions, Theorem 4.2);
8. = (n2/2) log n for shortest path routing in model IA ∧ α (Theorems 3.6 and

4.3);
9. = n3/4 for full-information shortest path routing in model α (Theorems 3.7

and 4.5).

6. Conclusion. The space requirements for compact routing for almost all la-
beled graphs on n nodes, and hence for the average case of all graphs on n nodes,
are conclusively determined in this paper. We introduce a novel application of the
incompressibility method. The next question arising in compact routing is the follow-
ing: For practical purposes the class of all graphs is too broad in that most graphs
have high node degree (around n/2). Such high node degrees are unrealistic in real
communication networks for large n. So the question that arises is: How do we ex-
tend the current treatment to almost all graphs on n nodes of maximal node degree
d, where d ranges from O(1) to n? Clearly, for shortest path routing O(n2 log d) bits
suffice, and [5] showed that for each d < n there are shortest path routing schemes
that require a total of Ω(n2 log d) bits to be stored in the worst case for some graphs
with maximal degree d, where we allow that nodes are relabeled by permutation and
the port assignment may be changed (IB ∧ β). This does not hold for average routing,
since by our Theorem 3.1 O(n2) bits suffice for d = Θ(n). (Trivially, O(n2) bits suffice
for routing in every graph with d = O(1).) We believe it may be possible to show
by an extension of our method that Θ(n2) bits (independent of d) are necessary and
sufficient for shortest path routing in almost all graphs of maximum node degree d,
provided d grows unboundedly with n.

Another research direction is to resolve the questions addressed in this paper for
Kolmogorov random unlabeled graphs, in particular with respect to the free relabeling
model (insofar as they do not follow a fortiori from the results presented here).

Acknowledgments. We thank Jan van Leeuwen, Evangelos Kranakis, and Danny
Krizanc for helpful discussions and the anonymous referees for comments and
corrections.

1432 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

REFERENCES

[1] L.G. Valiant and D. Angluin, Fast probabilistic algorithms for Hamiltonian circuits and
matchings, J. Comput. System Sci., 18 (1979), pp. 155–193.

[2] H.M. Buhrman, M. Li, J. Tromp, and P.M.B. Vitányi, Kolmogorov random graphs and the
incompressibility method, SIAM J. Comput., to appear.

[3] M. Flammini, J. van Leeuwen, and A. Marchetti-Spaccamela, The complexity of interval
routing on random graphs, in Proceedings 20th International Symposium on Mathematical
Foundations of Computer Science, Lecture Notes in Comput. Sci. 969, Springer-Verlag,
Heidelberg, 1995, pp. 37–49.

[4] P. Fraigniaud and C. Gavoille, Memory requirement for universal routing schemes, in Pro-
ceedings 14th Annual ACM Symposium on Principles of Distributed Computing, ACM
Press, New York, 1995, pp. 223–230.

[5] C. Gavoille and S. Pérennès, Memory requirements for routing in distributed networks, in
Proceedings 15th Annual ACM Symposium on Principles of Distributed Computing, ACM
Press, New York, 1996, pp. 125–133.

[6] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Problems
Inform. Transmission, 1 (1965), pp. 1–7.

[7] E. Kranakis and D. Krizanc, Lower bounds for compact routing schemes, in Proceedings
Thirteenth Symposium on Theoretical Aspects in Computer Science, Lecture Notes in
Comput. Sci. 1046, Springer-Verlag, Heidelberg, 1996, pp. 529–540.

[8] E. Kranakis, D. Krizanc, and J. Urrutia, Compact routing and shortest path information,
in Proceedings Second International Colloquium on Structural Information and Commu-
nication Complexity, vol. 2, Carleton University Press, Ottawa, 1996, pp. 101–112.

[9] M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications,
2nd ed., Springer-Verlag, New York, 1997.

[10] D. Peleg and E. Upfal, A trade-off between space and efficiency for routing tables, J. ACM,
36 (1989), pp. 510–530.

