
Splitters: Objects For On-Line Partitioning?

Jaap-Henk Hoepman

Department of Computer Science, University of Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, the Netherlands

jhh@cs.kun.nl

Abstract A splitter is a concurrent asynchronous non-blocking object

that can partition a collection of contending tokens into smaller groups

with certain properties. Splitters are natural objects used to solve a wide

range of fundamental distributed computing problems, like renaming and

resource allocation. This paper proposes a general definition of splitters,

develops their theory, and investigates their implementation in shared

memory systems.

Keywords: splitters, shared objects, asynchronous communication, di-

vide & conquer.

1 Introduction

Many fundamental problems in distributed computing can be solved efficiently

using a divide and conquer strategy. For asynchronous systems, implementing a

suitable divide and conquer strategy sometimes turns out to be a hard problem.

To investigate the exact nature of this problem we are motivated to study existing

concurrent objects called splitters, that have been used to solve this problem in

the past, but never received an independent study.

A splitter is a concurrent asynchronous non-blocking object that can partition

a collection of contending tokens into smaller groups with certain properties.

Conceptually, a splitter has a single input over which it receives incoming tokens,

and two or more outputs over which tokens leave the splitter. Each token is

assigned to exactly one of the outputs, depending on the contention on the input

and the distribution of tokens at the output. The specification of the splitter

defines how this assignment takes place. By choosing the right specification,

a splitter can be used to partition processors in roughly equal sets, or even to

count the number of currently contending processors. In fact, splitters have been

used for specific purposes (either implicitly or explicitly) in several distributed

algorithms through the years, like mutual exclusion [Lam87], renaming [MA95,

AM94, BGHM95], and resource allocation [AHS94].

Because of their occurrence in a wide variety of algorithms, and their fun-

damental divide-and-conquer nature, we wish to embark on a general study of

these splitters in isolation, as a class of objects in their own right. Splitters are

a generalisation of counting networks investigated by Aspnes et al. [AHS94],

? Id: splitter.tex,v 1.5 2003/11/11 10:01:33 hoepman Exp

2 Jaap-Henk Hoepman

and encompass these as well as threshold networks, balancers and smoothing

networks. We refer to Sect. 3 for examples of how these (and other) objects can

be defined as splitters.

In this paper we report on our initial findings of our study of splitters. Our

main contribution is twofold. First of all, we have developed a general model

and notation for the description of and reasoning about splitters. This model

and notation is described in Sect. 2. Using some natural properties and axioms,

we manage to keep this general definition surprisingly simple: almost all split-

ters can be described by a series of simple inequalities bounding the output

contention from above. In Sect. 3 we give some examples of splitter definitions

corresponding to splitter like objects used in the literature.

Some of these splitters have been implemented in the read/write memory

model; others were implemented using stronger primitives like read-modify-

write. In this paper we focus on the implementation of splitters in the read/write

shared memory model. As our second contribution, we investigate the imple-

mentation of splitters in the read/write shared memory model, showing both

impossibility results and splitter constructions. We show for instance that in

a read/write memory model, splitters cannot distribute tokens over all their

outputs evenly, and that no read/write implementations of non-trivial 2-output

splitters exist. These results are presented in Sect. 4.

Finally, we summarise our conclusions and present topics for further re-

search in Sect. 5.

2 Model & Notation

A splitter is a concurrent, asynchronous, non-blocking object shared among n

processors1. Conceptually, a splitter has a single input x and one or more out-

puts y1, . . . , ym. The total number of outputs is denoted by m. Processors can

send one token at a time to the input of a splitter, after which the splitter will

assign an output over which the token leaves the splitter (within a bounded num-

ber of steps) to join the corresponding output token set. Splitters can either be

one-shot – in which case tokens stay in the output set forever – or be long-lived –

in which case tokens may leave the output set travelling back through the splitter

to the input.

The interface of a splitter consists of two operations: Enter (to enter a splitter

and obtain an output) and Release (to return back to the input), where the Release

operation is only defined for long-lived splitters. Tokens using2 splitters can be

in one of four states: idle, entering, assigned or releasing. Initially, tokens are

idle. To enter a splitter S (during which it is in the entering state), an idle token

invokes the operation y = Enter(S), returning the selected output for this token

1 Splitters can be realised both in the message passing as well as the shared memory

model. In this paper we focus on the shared memory model.
2 In the remainder of this paper we will assume that tokens are active objects, that

maintain state and executes steps by themselves. This makes notation and discussion

easier.

Splitters: Objects For On-Line Partitioning 3

when it finishes. At this point a token becomes assigned to output y . For long-

lived splitters, an assigned token may invoke the Release(S) operation (during

which it is in the releasing state), after which it becomes idle again. A token is

contending if it is not idle.

Next we define the state of a splitter.

Definition 2.1. The state of a splitter is given by the states of all tokens that con-

tend it, and is denote by σ . For token t we write σ(t) for its state in σ (where

σ(t) = ⊥ means t is idle, σ(t) =→� means t is entering, σ(t) = i means t is

assigned to output yi, and σ(t) = �→ means t is releasing). Similarly, we write

σ(t) : v to denote the state equal to σ except that t has state v . A state is called

a steady state if all contending tokens are assigned to an output.

The state of a splitter can alternatively be expressed using the contention at

the input and the outputs of the splitter. Let z denote an input or an output of

a splitter S. For z = x ’a token at z’ means a token is contending S, while for

z = yi ’a token at z’ means a token assigned to output yi. We distinguish the

following four different contention measures.

point contention ðtz of S at time t: the number of tokens at z at time t.

maximal point contention δtz of S at time t: the maximal number of tokens at

z at any time t′ within the busy prefix of S at t.

interval contention ∆tz of S at time t: the total number of different tokens (i.e.,

not counting doubles) at z in the busy prefix of S at t (this measure is also

called interval contention in [AAF+99]).

total contention ∇tz of S at time t: the total number of tokens (counting doubles)

at z in the busy prefix of S at t.

Here, the busy prefix of S at t is defined as the time interval between t and the

last t′ ≤ t where all tokens are idle on S. Note that if the same token contends

more than once during a busy prefix, it contributes only once to the interval

contention.

We usually omit the superscript t. Note that δyi, ∆yi and ∇yi are measured

over the busy prefix of S, and not over the busy prefix of yi itself. This means

that if during the busy prefix of S only one token enters and leaves yi several

times (say three), then ∇yi = 3. See also Fig. 1, which shows a particular run

over a 2-output splitter being accessed by 4 different tokens a, b, c and d. Note

that ð ≤ δ ≤ ∆ ≤ ∇, and equality always holds for one-shot splitters.

The implementation of a splitter should be adaptive, meaning that the num-

ber steps needed to enter or release a splitter depends solely on the number of

contending tokens. Note that adaptive splitters are wait-free by default.

The behaviour of a splitter S is defined by its invariant Inv(S). Inv(S) is a

predicate over the states σ of S. We write σ î P if predicate P holds in state

σ . An implementation of a splitter S must ensure that for each state σ that can

occur during an execution over S, σ î Inv(S) holds. Because we are interested

in splitters as objects that can partition a collection of contending tokens into

smaller groups, we restrict the invariant of a splitter to be a predicate over the

4 Jaap-Henk Hoepman

entering

assigned

releasing

Legend

busy prefix

PSfrag replacements

x

y1

y2

aa

aa

b

b

c

c

d

d

t

ðt δt ∆t ∇t
y1 0 2 2 3

ðt δt ∆t ∇t
y2 1 1 2 2

ðt δt ∆t ∇t
x 3 4 4 5

Figure 1. A run over a long-lived splitter and the resulting contentions.

input and output contentions of the splitter only. In other words, for splitter

S with m outputs, Inv(S) is a predicate over input contention dx and output

contentions dyi, where the symbol d ranges over ð, δ, ∆ or ∇.

Tokens are only allowed to enter the splitter if that does not invalidate the

invariant. A typical example is an invariant that restricts the maximal number of

contending tokens to a constant. We only consider smooth long-lived splitters,

where no such restriction is placed on the release operation: a token should

always be able to release itself (see below).

2.1 Properties and axioms

Splitters satisfy the following properties, and are further defined by the following

axioms.

Clearly, the contention is always greater or equal to 0.

Property 2.2. For any state σ and input or output z of a splitter S, we have

ðz ≥ 0, δz ≥ 0, ∆z ≥ 0 and ∇z ≥ 0.

As already stated earlier, the four contention measures form an increasing

series.

Property 2.3. For any state σ and input or output z of a splitter S, we have

ðz ≤ δz ≤ ∆z ≤ ∇z. Equality always holds if S is one-shot.

Splitters: Objects For On-Line Partitioning 5

Proof. Follows from the fact that if a token contends at time t it also contends

at the busy prefix of t, and the fact a token never contends with itself. Equality

holds for one-shot splitters, because tokens never leave. ut

Point contention on the outputs cannot exceed contention on the input. Similarly

for total contention.

Property 2.4. For any state σ of splitter S with m outputs,
∑m
i=1 ðyi ≤ ðx and∑m

i=1∇yi ≤ ∇x, with equality holding in the steady state.

Proof. If a token is assigned to output yi at time t it is contending at time t.

For point contention we also need the fact that, no token is assigned to two

outputs simultaneously. For total contention, we use the fact that all duplicates

are counted. Equality in the steady state follows from the fact that no tokens are

unassigned in the steady state. ut

Note that this property does not hold for the interval contention (or the maximal

point contention) on the outputs. Suppose for an m output splitter, the first m

tokens are spread evenly over all outputs and stay there. Then the m + 1-th

token enters and leaves m times, which is assigned to a different output each

time. Then during this interval ∆x =m+ 1 and ∆yi = 2 so
∑m
i=1 = 2m.

For a definition of a splitter to be meaningful, it must satisfy the following

axioms. First, the initial state with no tokens contending must be a legal state.

Axiom 2.5 Let σ be the state of splitter S with all tokens idle. Then σ î Inv(S).

Second, if a token has entered, it must be able to legally obtain some output.

Axiom 2.6 For all states σ of a splitter S, if σ î Inv(S) and for some token t we

have σ(t) =→�, then there is an i with 1 ≤ i ≤m such that σ(t) : i î Inv(S).

For long-lived splitters, similar axioms govern the behaviour of the splitter when

tokens are released.

A token must always be able to release itself.

Axiom 2.7 For all states σ of a splitter S, if σ î Inv(S) and for some token t we

have σ(t) = i with 1 ≤ i ≤m, then σ(t) : �→î Inv(S).

Moreover, a releasing token must be able to leave the splitter and return to the

idle state.

Axiom 2.8 For all states σ of a splitter S, if σ î Inv(S) and for some token t we

have σ(t) = �→ then σ(t) : ⊥ î Inv(S).

We restrict our attention to smooth splitters that we define next.

6 Jaap-Henk Hoepman

Definition 2.9. A splitter S withm outputs is called smooth if its invariant Inv(S)

can be specified by a collection of m+ 1 inequalities of the form

d0x ≤ f0(σ)

diyi ≤ fi(σ) for all i, 1 ≤ i ≤m ,

where for each i with 0 ≤ i ≤m, di is any of the four contention measures ð, δ,

∆ or ∇, and each fi is a function mapping splitter states to integers.

We note that it does not make much sense to consider non-smooth splitters,

because any implementation of a splitter must be smooth anyway: if the imple-

mentation assigns any number of tokens to a particular output, then each of

these tokens can be delayed indefinitely until all other tokens appear on their

outputs, after which the delayed tokens are released one by one.

Note that circularity in the definition is not a problem, because the func-

tions together specify a predicate that is either true or false in any specific state,

depending on whether all inequalities are true or not in that state.

A few more observations about the form of the invariant can be made.

Because there is no difference in contention measures for one-shot splitters,

we always use the total contention ∇ in the description of the invariant for one-

shot splitters.

Observe that by feeding a splitter with a lot of tokens, and subsequently

releasing all tokens except those at output yi, we get ðyi = ðx. This means we

cannot even impose a condition like ðyi ≤ ðx − 1. Hence, ðx is not commonly

used in the definition of Inv(S).

Finally, note that for any constant c, if for all t we have ð ≤ c then also δ ≤ c.

But this only holds for constants. Clearly ðyi ≤ ðx does not imply δyi ≤ ðx

(although ðyi ≤ δx for all t does imply δyi ≤ δx). We conclude that also ðyi is

not commonly used in the definition of Inv(S), because its role can be taken by

δyi.

3 Examples

To give a feel for the class of smooth splitters, we present several splitters that

have appeared in the literature (albeit under different names) using the notation

we developed. We first consider one-shot splitters, and then present some long-

lived splitters.

3.1 One-shot splitters

Aspnes et al. [AHS94] have defined several splitter-like objects in their treatment

of counting networks, like a balancer,

∇y1 ≤

⌈
∇x

2

⌉
∧ ∇y2 ≤

⌊
∇x

2

⌋
,

Splitters: Objects For On-Line Partitioning 7

a counting network

For all i, 1 ≤ i ≤m: ∇yi ≤

⌈
∇x − i+ 1

m

⌉
,

and a k-smoothing network

For all i, 1 ≤ i ≤m: ∇yi ≤min
{
∇yj | j ≠ i

}
+ k .

Note that equality in the first two invariants above is guaranteed to hold in the

steady state due to Prop. 2.4. Our definition of the k smoothing network is atyp-

ical: the original definition states that in the steady state |∇yi−∇yj| ≤ k for all

i, j.

Analogous to the threshold networks defined by Aspnes et al. [AHS94], we

can define a threshold network for threshold w with the invariant

∇y1 ≤

⌊
∇x

w

⌋
∧ ∇y2 ≤ ∇x −

⌊
∇x

w

⌋
.

In the context of renaming, splitters have also been used extensively, like

the one shot "fast-path" renaming building block [MA95, Lam87] (where y1 cor-

responds to stop, y2 corresponds to right, and y3 corresponds to down as in

[MA95]):

∇y1 ≤ 1 ∧ ∇y2 ≤ ∇x − 1 ∧ ∇y3 ≤ ∇x − 1

3.2 Long-lived splitters

Long-lived splitters are necessary to implement long-lived renaming. Buhrman et

al. [BGHM95] used a long lived splitter in their initial phase of a fast long-lived

renaming protocol that had the following invariant

For all i, 1 ≤ i ≤ 3: δyi ≤ δx − 1 .

Other splitters are for example the long lived "fast-path" renaming building block

of Afek et al. [AAF+99]

δy1 ≤ 1 ∧ ∇y2 ≤ ∇x − 1 ∧ ∇y3 ≤ ∇x − 1 ,

and the long lived "fast-path" renaming building block of Moir et al. [MA95]

δy1 ≤ 1 ∧ δy2 ≤ δx − 1 ∧ δy3 ≤ δx − 1 .

Note that the Moir et al. splitter is more permissive than the Afek et al. splitter,

and that in fact the implementation of the Moir et al. splitter given in [MA95] can

reach the state ∆y2 = δx in the following scenario. Token 1 enters and stops,

i.e., is assigned to y1. Then token 2 enters and goes right (i.e., is assigned to y2),

and subsequently leaves. The same happens to token 3. Then δx = 2, ∆y2 = 2

but δy2 = 1.

We see that the difference between the Moir et al. splitter and the Afek et

al. splitter (as discussed in [AAF+99]) is that the former is defined using the

maximal point contention on the input, whereas the latter is defined using the

total contention.

8 Jaap-Henk Hoepman

4 Constructions and impossibility results

In this section we investigate the wait-free implementation of splitters in the

shared memory model. We start with a few impossibility results.

Splitters cannot distribute tokens over their outputs tightly (and evenly) if

they are only implemented using read/write atomicity. This is formalised in the

following theorem.

Theorem 4.1. Let S be a splitter with m > 1 outputs. Suppose for some constant

c > 1 we can select constants c1, . . . , cm such that for all states σ of S with dx = c

we have

f Si (σ) ≤ ci

and
m∑

i=1

ci < c +
m− 1

2
.

Then a read/write implementation of S does not exists

Proof. Consider the following construction for renaming c > 1 tokens, where

splitter S is used in a one-shot fashion. W.l.o.g. then dx = ∇x and dyi = ∇yi
(see Prop. 2.3).

Let the c tokens enter S. The conditions of the theorem guarantee that no

more than ci tokens leave the splitter over output yi. Run at each output yi a

renaming algorithm (e.g., [AF00]) that renames the at most ci incoming tokens to

at most 2ci−1 names. We must use distinct name-sets for each different output

of the splitter. This is possible because f Si (σ) is bounded a priori by ci.

Then the total number of names assigned to the c incoming tokens is no

larger than
m∑

i=1

(2ci − 1) = 2

m∑

i=1

ci −m

Herlihy and Shavit [HS93] showed that wait-free renaming of c processes to less

than 2c−1 names cannot be implemented using read/write atomicity. So this is

the case if 2
∑m
i=1 ci −m < 2c − 1. ut

Moreover, a splitter implemented using only reads and writes cannot parti-

tion a set of tokens into two non-empty sets.

Theorem 4.2. Define M = {1, . . . ,m}. Let S be a splitter with m > 1 outputs.

Suppose there exists an index set I ⊂ M such that for all states σ of S with dx > 0

we have ∑

i∈I

fi(σ) < max(2, dx) and
∑

i∈M−I

fi(σ) < dx .

Then a read/write implementation of S does not exist.

Splitters: Objects For On-Line Partitioning 9

Door

{

looseloose

win

{

{

{

loose

PSfrag replacements

x
y1

y2

a

b

c

d

t
ðt δt ∆t ∇t

y1 0 2 2 3

ðt δt ∆t ∇t
y2 1 1 2 2

ðt δt ∆t ∇t
x 3 4 4 5

S1 Sk−1

II

M − IM − I

Figure 2. Construction used in the proof of Th. 4.2.

Proof. We show that if both properties hold, we can build a test-and-set object of

which we know no read/write implementations exist [LAA87, Her91]. The con-

struction is sketched in Fig. 2. Again, splitter S is used in a one-shot fashion.

W.l.o.g. then dx = ∇x and dyi = ∇yi (see Prop. 2.3).

Let there be k > 1 processors for which we wish to implement a test-and-set

object. The processors first have to pass through a "door" implemented using

a single multi-writer shared variable DOOR, initially open. To pass through the

door, processors execute the following protocol.

if DOOR = closed

then return leave

else DOOR ← closed

return pass

Only processors that pass enter the following setup of splitters, each with their

own token. Note that at most k tokens enter, and that at least one processor

finds the door open and enters with a token.

Let some index set I satisfy the conditions of the theorem. Connect k − 1

copies of the splitter S as follows. Tokens leaving splitter Si on an output yi
with i ∈ I enter splitter Si+1. Tokens leaving splitter Si on another output (with

i ∉ I) loose the test-and-set immediately. Tokens leaving splitter Sk−1 on output

yi with i ∈ I win the test-and-set.

By the properties of the splitter, simple induction shows that at least one

token and at most k− i tokens leave splitter Si on an output yi with i ∈ I (and

hence enter splitter Si+1). Hence at splitter Sk−1 there is exactly one token leaving

splitter Sk on output yi with i ∈ I and winning the test-and-set.

This only leaves us to show that any processor loosing does not strictly pre-

cede the eventual winner [Hoe99, AGTV92]. This is guaranteed by the door placed

before the first splitter: it is easy to see that no processor strictly precedes (in

accessing the door) any processor that passes the door. ut

A splitter is trivially implemented unless∆yi < ∆x for all its outputs when∆x >
1. The following corollary is a direct consequence of Th. 4.2, and completes the

characterisation of the read/write implementability of splitters with 2 outputs.

10 Jaap-Henk Hoepman

Corollary 4.3. No non-trivial splitters with 2 outputs have a read/write imple-

mentation.

Next, we investigate read/write implementations of splitters with 3 outputs.

Given Th. 4.2, the best we can hope for is a splitter like

∇y1 ≤ f1(σ)

∧ ∇y2 ≤ ∇x − f1(σ)

∧ ∇y3 ≤ ∇x − f1(σ)

where f1(σ) ≤
1
2∇x.

Theorem 4.4. Splitter S defined by

δyi ≤
2

3
δx, for 1 ≤ i ≤ 3.

has a read/write implementation.

Proof. Use any optimal long-lived renaming algorithm (like [AF00]) to rename

the δx incoming tokens to 2δx − 1 names. Map a token with name i to output

y(i mod 3)+1. Then δyi ≤
2
3δx.

In a read-modify-write setting, any reasonable splitter can be implemented.

Theorem 4.5. Let S be a splitter satisfying the axioms in Sect. 2.1 shared with

n processors. This splitter can be implemented using a single n processor read-

modify-write register.

Proof. Observe that the state of a splitter as given in Def. 2.1, is a set of token

states. We let the read-modify-write register store this set of states (in the most

general case the size of the register must be unbounded).

Initially, we let the register denote the empty set. Observe, that by Ax. 2.5,

this initialisation of the register is proper.

An entering token reads the register and selects any output yi of his choice

that satisfies Inv(S) (such an output always exist by the Ax. 2.6). A leaving token

reads the register and changes its own state to idle and writes it back. This is

also a correct action, due to Ax. 2.7 and Ax. 2.8. ut

5 Conclusions and further research

We have presented a general definition of splitters as a concurrent asynchron-

ous non-blocking object that can partition a collection of contending tokens into

smaller groups. This general definition turns out to be surprisingly simple: al-

most all splitters can be described by a series of simple inequalities bounding

the output contention from above.

Splitters: Objects For On-Line Partitioning 11

Any splitter can be constructed using read-modify-write registers. For the

case where only read/write registers can be used, we have presented some con-

structions and some impossibility results. These results can be extended. In par-

ticular, there are still gaps between our upper and lower bounds. Moreover, it

is an interesting question to give characterisations of splitters in terms of their

place in Herlihy’s hierarchy [Her91].

Also, we would like to investigate the construction of larger splitters from

smaller ones, similar to the way balancers are used to construct counting net-

works [AHS94].

References

[AAF+99] Afek, Y., Attiya, H., Fouren, A., Stupp, G., and Touitou, D. Long-lived

renaming made adaptive. In 18th PODC (Atlanta, GA, USA, 1999), ACM Press,

pp. 91–103.

[AGTV92] Afek, Y., Gafni, E., Tromp, J., and Vitányi, P. M. B. Wait-free test-and-set.

In 6th WDAG (Haifa, Israel, 1992), A. Segall and S. Zaks (Eds.), LNCS 647,

Springer-Verlag, pp. 85–94.

[AM94] Anderson, J. H., and Moir, M. Using k-exclusion to implement resilient,

scalable shared objects. In 13th PODC (Los Angeles, CA, USA, 1994), ACM

Press, pp. 141–150.

[AHS94] Aspnes, J., Herlihy, M., and Shavit, N. Counting networks. J. ACM 41, 5

(1994), 1020–1048.

[AF00] Attiya, H., and Fouren, A. Polynomial and adaptive long-lived (2k − 1)-

renaming. In 14th DISC (Toledo, Spain, 2000), M. Herlihy (Ed.), LNCS 1914,

Springer, pp. 149–163.

[BGHM95] Buhrman, H., Garay, J. A., Hoepman, J.-H., and Moir, M. Long-lived re-

naming made fast. In 14th PODC (Ottawa, Ont., Canada, 1995), ACM Press,

pp. 194–203.

[Her91] Herlihy, M. P. Wait-free synchronization. ACM Trans. Prog. Lang. & Syst.

13, 1 (1991), 124–149.

[HS93] Herlihy, M. P., and Shavit, N. The asynchronous computability theorem

for t-resilient tasks. In 25th STOC (San Diego, CA, USA, 1993), ACM Press,

pp. 111–120.

[Hoe99] Hoepman, J.-H. Long-lived test-and-set using bounded space. Tech. rep., Uni-

versity of Twente, 1999. www.cs.kun.nl/˜jhh/publications/test-and-set.ps.

[Lam87] Lamport, L. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst.

5, 1 (1987), 1–11.

[LAA87] Loui, M. C., and Abu-Amara, H. H. Memory requirements for agreement

among unreliable asynchronous processes. In Advances in Computing Re-

search, F. P. Preparata (Ed.), vol. 4. JAI Press, Greenwich, CT, 1987, pp. 163–

183.

[MA95] Moir, M., and Anderson, J. H. Wait-free algorithms for fast, long-lived

renaming. Science of Computer Programming 25, 1 (1995), 1–39.

