
Non-interactive Distributed Encryption:
A New Primitive for Revocable Privacy∗

David Galindo
University of Luxembourg

Luxembourg
david.galindo@uni.lu

Jaap-Henk Hoepman
TNO

Groningen, the Netherlands
jaap-henk.hoepman@tno.nl

Radboud University Nijmegen
Nijmegen, the Netherlands

jhh@cs.ru.nl

ABSTRACT

In this paper we introduce and instantiate a new crypto-
graphic primitive, called non-interactive distributed encryp-
tion, that allows a receiver to decrypt a ciphertext only if
a minimum number of different senders encrypt the same
plaintext. The new functionality can be seen as the dual of
the functionality provided by threshold cryptosystems. It
is shown that this primitive can be used to solve real-world
problems balancing security and privacy needs. In particu-
lar it is used to solve the canvas cutters problem (introduced
below), that might be of independent interest.

Categories and Subject Descriptors

D.4.6 [OPERATING SYSTEMS]: Security and Protec-
tion—Cryptographic controls; K.4.1 [COMPUTERS AND
SOCIETY]: Public Policy Issues—Privacy

General Terms

Algorithms, Security

Keywords

privacy, threshold cryptosystems, distributed encryption

1. INTRODUCTION
Privacy — sometimes loosely defined as the ‘right to be

let alone’ [34] — is considered a fundamental human right

∗This research is supported in part by the research program
Sentinels as project ’Revocable Privacy’ (10532). Sentinels is
being financed by Technology Foundation STW, the Nether-
lands Organization for Scientific Research (NWO), and the
Dutch Ministry of Economic Affairs. The work described
in this paper has been supported in part by the European
Commission through the ICT programme under contract
ICT-2007-216676 ECRYPT II.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’11, October 17, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1002-4/11/10 ...$10.00.

in many societies. It is “essential for freedom, democracy,
psychological well-being, individuality and creativity” [29].

Homeland security, on the other hand, is considered a po-
litical top priority. Unfortunately people see security and
privacy as conflicting requirements. It is often believed that
they are a “zero-sum” game [25], and that one cannot be
achieved without sacrificing the other. As a consequence,
given the current emphasis on homeland security, quite pri-
vacy invasive systems are being implemented today.

This paper tries to help re-balancing this situation, by
showing that systems that truly respect our privacy can
be built, while still satisfying security and law enforcement
needs.

1.1 Motivating problems
Consider the following real-life example, that was commu-

nicated to us by Dutch law enforcement. So called “canvas
cutters” are criminals that roam the parking places along
highways looking for trucks with valuable content. They
look inside these trucks by cutting their canvas. These crim-
inals distinguish themselves from other road users by the
very frequent visits of parking places along a single stretch
of highway on a single day. To identify possible canvas cut-
ters, one could set up Automatic Number Plate Recognition
(ANPR) systems at the entry of each parking place, and
search the resulting data stream for cars that enter multi-
ple parking places along the same highway on a single day.
Apart from identifying police cars (that have similar driving
patterns), this should identify canvas cutters as well. Clearly
this poses a privacy threat, as the number plate of each and
every car visiting a parking place is recorded and retained.

Another motivating example is logging access to databases.
To be able to investigate abuse transaction in a database
must be logged. Recording the identity of the person per-
forming the transaction in plaintext would be highly privacy
invasive, as it stores all use of a database for all its users.
This is disproportional if the only abuse foreseen is of peo-
ple trying to link database records across several different
databases, and if investigations will only focus on particular
transactions that happened on certain records stored by a
(not a priori fixed) subset of these logged databases.

In both cases it is desirable to protect the privacy of the
users of the system, and to design the system in such a
way that the identity of a user is only revealed if his actions
exceed a certain threshold. Readers familiar with the subject
will realise that, in a way, a generalisation of Chaum’s [14]
double spending prevention for electronic cash is required.

1.2 The need for a technical approach
It is necessary to realise that legal or regulatory attempts

to restrict access are inadequate. Rules and regulations may
change over time, allowing for more possibilities to gather in-
formation about people after the fact. Such“function creep”
occurs frequently: once the system, in principle, allows cer-
tain ways to collect data, sooner or later government offi-
cials or law enforcement will ask for an extension of powers.
Therefore, the solution must be found in limiting possibili-
ties at the outset, through technical means, in the architec-
ture and design of the system.
This line of reasoning follows the idea of“code as code”[23].

By embedding the rules, procedures and regulations into the
implementation of the system, they cannot be changed after
the fact. This guarantees that the only way to change the
rules, and to gather more information, is through a complete
redesign (and re-implementation) of the system.

1.3 Revocable privacy
In essence the idea of revocable privacy is exactly this: to

design systems in such a way that no personal information
is available unless a user violates the pre-established terms
of service. Only in that case, his personal details (and when
and how he violated the terms) are revealed to certain au-
thorised parties. We have elaborated on the concept else-
where [22], so give only the following informal definition in
this paper.

Definition 1.1 (Revocable privacy) We say that a sys-
tem implements revocable privacy if the architecture of the
system guarantees that personal data is revealed only if a
predefined rule has been violated.

An example of such a rule is that the same event happens in
at least k different locations. To implement this rule, we in-
troduce a new cryptographic primitive called non-interactive
distributed encryption, that allows a receiver to decrypt a
ciphertext only if a minimum number of different senders
encrypt the same plaintext. This corresponds to k different
senders observing the same event.

1.4 State of the art
Existing techniques can be applied to build revocable pri-

vacy systems. In fact, the basic idea of revocable privacy is
certainly not a new one: back in 1988 Chaum et al. [14] pro-
posed a scheme for off-line digital cash where double spend-
ing a coin would reveal the identity of the owner of the coin.
More recent examples are limiting the amount one can spend
at a single merchant while remaining anonymous [12], or re-
voking anonymity of users that do not pay their bill at a
merchant [10].
Similar techniques have been used to implement k-times

anonymous authentication (k-AA) schemes, that allow a
user to prove ownership of a credential anonymously, but
at most k times [32, 2, 11]. See Section 6 for a discussion on
the limitations of using k-times anonymous authentication
schemes for solving the canvas cutters problem.
The PhD thesis of Marcus Stadler [30] from 1996 on revo-

cable privacy is a first attempt to create a toolbox of cryp-
tographic primitives for revocable privacy, providing several
primitives. Fair blind signatures [31, 1] for example allow a
signer to sign a message, such that the signer cannot later
link its signature to the message it signed. In essence it

corresponds to ”blindly” signing a document. Fairness allow
the signer to recover this link (possibly revoking privacy in
this case), but only with the help of a trusted third party.
Publicly verifiable secret sharing [15] allow all parties to ver-
ify that the inputs sent by the different parties are indeed
properly distributed but without actually revealing that in-
formation (cf. [33] for an example that applies to key escrow
in communication networks).

1.5 Organization
In Section 2 we introduce our new non-interactive dis-

tributed encryption primitive and present a realization of
that primitive in Section 3. We show how that primitive
can be made forward secure in Section 4. Section 5 describes
how our primitive can be used to solve our motivating prob-
lems. We finish in Section 6 with a brief discussion of our
results, and outline our plans for further research.

2. NON-INTERACTIVE DISTRIBUTED EN-

CRYPTION
Let us first describe threshold cryptosystems as a related,

but existing, primitive. A k-out-of-n threshold cryptosys-
tem [17, 27] distributes the task of non-interactively decrypt-
ing an encrypted message over a group of n users such that
the task can be successfully completed if at least 1 < k ≤ n
honest users cooperate. More specifically, there are n re-
ceivers R1, . . . , Rn that are sent encrypted content by a
sender S. Key generation produces an encryption key E and
a set of n corresponding decryption keys D1, . . . , Dn. To en-
crypt a plaintext p, a sender S uses the encryption key E
and randomness r to produce a ciphertext C = enc(E, p; r).
To decrypt an encrypted message at least k receivers are
needed to locally and non-interactively compute decryption
shares Ci = share(Di, C). A so called combiner collects
these decryption shares to produce the final plaintext p.

We initiate here the study of the dual of this primitive,
that we call non-interactive distributed encryption. In such a
scheme, a group of n senders S1, . . . , Sn, each of them hold-
ing an encryption key Ei, independently and without inter-
action encrypt messages to a combiner. We call a ciphertext
share the encryption ci = Enc(Ei, p; ri) of a plaintext p
with randomness ri produced by any sender Si. From these
ciphertext shares a plaintext p is revealed if and only if the
receiver obtains at least k ciphertext shares corresponding
to p, each created by a different sender. For ease of presen-
tation we will refer to “non-interactive distributed encryp-
tion” simply as “distributed encryption” (DE). We would
like to point out that our investigations have shown that
non-interactiveness is hard to achieve in an actual construc-
tions. Primitives with similar properties as ours, like k-times
anonymous authentication [11] and others, do exist but are
all interactive.

The fact that threshold cryptosystems (TC) and DE are
dual to each other raises the question of whether the two
primitives are simply different formulations of the same func-
tionality. But a closer looks shows that there are subtle yet
significant differences between the two primitives.

1. While threshold cryptosystems in the public key set-
ting are known to exist, it is easy to see that public-key
non-interactive distributed encryption schemes can not
be secure. In fact, let the encryption keys E1, . . . , En

be public and thus known to the combiner. In this

case a curious combiner can build ciphertext shares by
itself. This implies that if the combiner suspects that
a subset of k − r ciphertext shares contain a certain
plaintext p, then it suffices for him to build r extra
encryptions of p under different unused public keys to
test whether his guess is indeed correct. The conclu-
sion is therefore that public key distributed encryption
schemes can not attain the semantic security (see Def-
inition 2.1) that we want to achieve.

2. The combine algorithms for TC and DE are of dif-
ferent nature. The combine algorithm for TC works
under the assumption that the decryption shares are
all produced using as input the same random represen-
tation of the plaintext p, that is C = enc(E, p; r). In
sharp contrast, the combine algorithm in DE gets as
input independent random representations of the same
plaintext p, that is ci = Enc(Ei, p; ri) for random ri’s.

3. In DE there is no proper decryption algorithm and
thus no proper decryption key. It is however certainly
possible to use additional secure channels between the
senders and the combiner when applying DE in a cer-
tain context. In such cases the combiner in effect does
have a decryption key (see also section 5).

4. DE schemes actually provide a powerful functionality
that can be seen as a sort of secret sharing scheme
that, after the distribution of some setup values (the
individual encryption keys), allows n parties to com-
pute shares of arbitrary values p without interaction.
We do not know of any secret sharing scheme in the
literature enjoying this feature. Actually, the primitive
with the closest functionality that we can think of is a
non-interactive threshold pseudorandom function, for
which very few constructions are known [19, 9].

All the above suggests that it is difficult to construct a DE
scheme from a TC, and in fact we have not found any such
construction.

A Misnomer. We have to point out an unfortunate mis-
nomer regarding threshold cryptosystems. Some recent pa-
pers, e.g., [6, 16, 35], refer to threshold cryptosystems as
threshold encryption. But in fact threshold decryption (the
term is used in [3]) would have been a more appropriate
name for this primitive, given the fact that any party can
produce a valid encryption all by itself and that what is be-
ing distributed is the decryption operation. We would have
preferred to use the term threshold encryption for our new
primitive. However we have decided to use the more general
term “distributed encryption” to prevent confusion.

Related Work. A related primitive is shared encryption
for block ciphers proposed by Martin et al. [24]. In shared
encryption the receiver must succeed in decrypting the ci-
phertext if it has been produced by an authorised subset
and detect a forgery otherwise. Contrary to our approach,
Martin et al. concentrate on interactive shared encryption
schemes, which makes the problem less challenging. In fact
in their schemes interaction allows senders to sequentially
produce a ciphertext, each sender using its own key mate-
rial, in a way similar to onion-routing [13]. Therefore the
combiner only receives the final ciphertext. In our frame-
work, senders must locally and independently produce the
ciphertext shares. Moreover, in contrast to [24], we are able

to construct a scheme with constant-size ciphertexts and en-
cryption keys (cf. Section 3).

2.1 Syntax
Formally, a k-out-of-n distributed encryption scheme DE

consists of three algorithms DE = (Gen,Enc,Comb):

Gen(1ℓ, k, n) Given a security parameter 1ℓ, number of users
n and threshold parameter k, this function generates
encryption keys E1, . . . , En. Additionally it outputs
the description of plaintext and ciphertext spaces P
and C. A plaintext p is called admissible if p ∈ P;
admissible ciphertexts are defined analogously.

Enc(Ei, p) Given an encryption key Ei corresponding to
sender i and a plaintext p, this function returns a ci-
phertext share ci.

Comb(C) Given a set of ciphertext shares C = {ci1 , . . . , cik}
with cardinality k, Comb(C) either returns a plain-
text p or error.

Every distributed encryption scheme must satisfy the fol-
lowing correctness requirement.

Correctness Let E1, . . . , En be the encryption keys ob-
tained by running the key generation algorithm. Let
C = {ci1 , . . . , cik}, where cit = Enc(Eit , pit) for sender
it and plaintext pit . Then, with overwhelming proba-
bility, Comb(C) returns p iff pi1 = . . . = pik = p and
i1, . . . , ik are pairwise different.

2.2 Security definition
The communication model of distributed encryption is

summarized as follows.

1. The encryption keys E1, . . . , En are secret, meaning
that each encryption key Ei is only known to the le-
gitimate sender Si.

2. Senders produce their ciphertexts locally and indepen-
dently from other senders.

3. Only the combiner gets to see the ciphertext shares
produced by the different senders 1.

Roughly speaking, the security of a distributed encryption
scheme is defined as follows: a combiner that corrupts r
senders and learns their secret encryption keys Ei1 , . . . , Eir ,
should gain (almost) no information on any plaintext p con-
tained in a set of k − 1 − r ciphertext shares produced by
non-corrupted senders.

We proceed to give the formal security definition of a dis-
tributed encryption scheme DE. We start by stating the
access that an adversary A, that plays the role of a curious
combiner and that can corrupt a subset of senders, has to
the system:

1. We give the adversary access to an encryption oracle
OE(·, ·) that on input (i, p), where i ∈ {1, . . . , n} and
p is an admissible plaintext returns Enc(Ei, p). We
do not need to provide the adversary with access to
any decryption oracle since, as discussed before, in a
distributed encryption scheme there are no proper de-
cryption keys.

1This is trivially implemented by giving each sender Si an
individual encryption key ki, shared with the combiner, for
a semantically-secure symmetric encryption scheme.

2. The adversary is allowed to corrupt r senders up to
a threshold r < k, meaning that it learns their lo-
cal state (e.g. the secret encryption keys). We need
to distinguish between static corruptions, where the
adversary must decide which senders it wants to cor-
rupt before the execution of the protocol, and adaptive
corruptions, where the adversary can corrupt players
during the execution of the protocol.

3. Finally the adversary is challenged on k − 1 − r ci-
phertext shares that were produced by non-corrupted
senders and that all correspond to the same plaintext
p.

Next we set the confidentiality goal against such an adver-
sary. We will do so by extending the classical notion of in-
distinguishability of ciphertexts [21] to our setting. Roughly
speaking, this requires that an adversary is unable to distin-
guish between encryptions of adversarially chosen plaintexts
p0 and p1.

The security notion indistinguishability against chosen-
plaintext attacks, referred to as IND, is obtained by com-
bining the above confidentiality goal and attack model.

Definition 2.1 (IND) Let us consider a k-out-of-n dis-
tributed encryption scheme DE = (Gen,Enc,Comb). We
define the following game between a challenger and an ad-
versary A:

Phase 0 (Only for static adversaries) The adversary out-
puts a set of r indexes Ic = {i1, . . . , ir} ⊂ {1, . . . , n}
and 0 ≤ r < k. An index i ∈ Ic denotes that the ad-
versary corrupts sender Si. It also outputs k − 1 − r
pairwise different indexes Inc = {ir+1, . . . , ik−1} cor-
responding to the non-corrupted senders whose cipher-
text shares are to appear in the challenge phase.

Setup The challenger runs (E1, . . . , En)← Gen(1ℓ, k, n).

Find The set of queried plaintexts Q is initialized to ∅. For
adaptive adversaries the set Ic of corrupted senders is
initialized to Ic = ∅.

The adversary can issue two types of queries:

• On encryption queries of the form enc(i, p), where
i ∈ {1, . . . , n}, i /∈ Ic, and p is an admissible
plaintext, the adversary receives Enc(Ei, p). More-
over, p is added to Q.

• (Only for adaptive adversaries) On corruption que-
ries corrupt(Itbc), where Itbc ⊂ {1, . . . , n} is a
possibly non-empty set, the challenger proceeds as
follows:

– for all i ∈ Itbc, it adds i to Ic. If |Ic| ≥ k then
the game aborts and the adversary looses.

– for all i ∈ Ic the adversary receives Ei.

The cardinality of Ic at the end of the Find phase is
denoted by r, and it holds that r < k if the game was
not aborted.

Challenge A outputs two equal-length plaintexts p0, p1 ∈ P
such that p0, p1 /∈ Q. Additionally, in the case of
adaptive adversaries, A also outputs k− 1− r indexes
Inc = {ir+1, . . . , ik−1} corresponding to the senders on

which A wants to be challenged. Naturally, it is re-
quired that none of the senders on which A wants to
be challenged have been corrupted. Next, the challenger
chooses a random bit β and returns {ci | i ∈ Inc} where
ci = Enc(Ei, pβ).

Guess The adversary A outputs a guess β′ ∈ {0, 1}. The
adversary wins the game if β = β′.

Define A’s advantage as AdvIND
DE,A(1ℓ) =

∣

∣Pr[β′ = β] −

1/2
∣

∣. A scheme DE is said to have indistinguishability of

ciphertexts (IND secure) if AdvIND
DE,A(1ℓ) is negligible for

every PPT adversary A.

Remark 2.2 The reason why we only allow A to receive
k − 1 − r ciphertext share challenges is the following. The
adversary can construct r ciphertext shares Y0 correspond-
ing to encryption of the plaintext p0 under the corrupted
keys (and similarly the set Y1 for p1). If the adversary is
given k − r ciphertext share challenges X = {ci | i ∈ Inc}
then the combined set X ∪ Yβ has size k and can trivially
be given to Comb(·) to see if it returns pβ .

3. OUR SCHEME
In this section we propose an efficient non-interactive dis-

tributed encryption scheme by combining the Boneh-Franklin
threshold identity-based encryption scheme and (symmet-
ric) authenticated encryption. We start by describing some
building blocks.

3.1 Preliminaries
In the following we recall the definitions of the Decisional

Bilinear Diffie-Hellman (BDDH) and the Decisional Diffie-
Hellman assumptions, Lagrange coefficients for polynomial
interpolation and one-time secure authenticated encryption.

Definition 3.1 (Asymmetric Pairing Groups) Let G1 =
〈g1〉 , G2 = 〈g2〉 and GT be (cyclic) groups of order q prime.
A map e : G1×G2 → GT to a group GT is called a bilinear
map, if it satisfies the following two properties:

Bilinearity: e(ga1 , g
b
2) = e(g1, g2)

ab for all integers a, b

Non-Degenerate: e(g1, g2) has order q in GT .

We assume there exists an efficient bilinear pairing instance
generator algorithm IG that on input a security parameter
1ℓ outputs the description of 〈e(·, ·),G1,G2,GT , g1, g2, q〉,
with q a ℓ-bit length prime.

Asymmetric pairing groups can be efficiently generated [4,
20]. Pairing croups exponentiations and pairing operations
can also be efficiently computed [18].

There are several flavors of the BDDH and Decisional
Diffie-Hellman assumptions over asymmetric pairings [28].
The formulations we give here are motivated by our security
reduction.

Definition 3.2 (DDH1 assumption) Let us define

Z←
(

e(·, ·),G1,G2,GT , q, g1, g2, g
a
1 , g

b
1

)

where 〈e(·, ·),G1,G2,GT , g1, g2, q〉 ← IG(1ℓ) and a, b
$

←
Z∗

q . We say that IG satisfies the Decisional Diffie-Hellman

assumption in G1 if for r
$

← Z∗
q the value

AdvDDH1
IG,A (ℓ) :=

∣

∣

∣
Pr

[

A(Z, gab1) = 1
]

−Pr [A(Z, gr1) = 1]
∣

∣

∣

is negligible in ℓ. The probabilities are computed over the
internal random coins of A, IG and the random coins of the
inputs.

Definition 3.3 (BDDH assumption) Let us define

Z←
(

e(·, ·),G1,G2,GT , q, g1, g2, g
a
1 , g

b
1, g

c
1, g

b
2, g

c
2

)

where 〈e(·, ·),G1,G2,GT , g1, g2, q〉 ← IG(1
ℓ) and a, b, c

$

←
Z∗

q . We say that IG satisfies the Decisional Bilinear Diffie-

Hellman assumption if for r
$

← Z∗
q the value

AdvBDDH
IG,A (ℓ) :=

∣

∣

∣
Pr

[

A(Z, e(g1, g2)
abc) = 1

]

−Pr [A(Z, e(g1, g2)
r) = 1]

∣

∣

∣

is negligible in ℓ. The probabilities are computed over the
internal random coins of A, IG and the random coins of the
inputs.

Definition 3.4 (Lagrange coefficients) For a key recon-
struction set I ⊆ {1, . . . , n} we define the Lagrange Co-
efficients λI

i as λI
i =

∏

t∈I\{i}
t

t−i
∈ Z∗

q . For any poly-

nomial P ∈ Zq[X] of degree at most |I| − 1 this entails
∑

i∈I P (i)λI
i = P (0).

Definition 3.5 (Authenticated Encryption) Formally,
a symmetric authenticated encryption scheme AE consists
of three algorithms AE = (gen, enc,dec):

gen(1ℓ) Given a security parameter 1ℓ this function gener-

ates a secret key K
$

← GT (tailored to our setting).
Optionally it outputs a plaintext space PAE.

enc(K, p) Given a secret key K ∈ GT and a plaintext p,
returns a ciphertext α.

dec(K,α) Given a secret key K ∈ GT and a ciphertext α,
it returns a plaintext p (if and only if α = enc(K, p))
or an error symbol error.

Definition 3.6 (One-time secure AE) We require the AE
scheme to provide privacy and authenticity against one-time
attacks, that is, encryption keys are one-time. This is cap-
tured by the following game between a challenger and an
adversary A:

Setup The challenger runs (K,PAE)← gen(1ℓ).

Find The adversary outputs two equal-length admissible mes-
sages p0, p1 ∈ PAE.

Challenge The challenger chooses a random bit β and re-
turns α⋆ = enc(K, pβ). The adversary is allowed to
submit a single decryption query α 6= α⋆. If β = 0 the
challenger answers dec(K,α); if β = 1 the challenger
answers error.

Guess The adversary A outputs a guess β′ ∈ {0, 1}. The
adversary wins the game if β = β′.

Define A’s advantage as Advae−ot
AE,A (1ℓ) =

∣

∣Pr[β′ = β]−1/2
∣

∣.
An authenticated encryption scheme AE is called one-time
secure if Advae−ot

AE,A (1ℓ) is negligible for every PPT adversary
A.

One-time secure AE schemes can be efficiently and gener-
ically build from (one-time secure) IND-CPA symmetric en-
cryption and message authentication codes [5].

3.2 The scheme
The intuition behind it is as follows. Consider the Boneh-

Franklin (BF) identity-based encryption scheme with thresh-
old user-key generation [7] (Section 6) over asymmetric pair-
ings. The master public key consists of Γ = ge2 ∈ G2 and a
hash function H : {0, 1}∗ → G1. Let the master secret key
e ∈ Z∗

q be shared using a k-out-of-n Shamir’s secret sharing
scheme [26], resulting in shares e1, . . . , en ∈ Z∗

q . The en-
cryption keys are given as Ei = (Γ, ei) for i ∈ {1, . . . , n}. A
ciphertext share on plaintext p by sender Si consists of two
parts. The first part is obtained by encrypting plaintext
p under identity p using the IND-CPA version of Boneh-
Franklin scheme [7] (Section 4.1). The second part is pro-
duced by computing the private-key share ηi corresponding
to the identity p using the i-th share ei. Once k ciphertext
shares corresponding to pairwise different senders are avail-
able, decryption proceeds by reconstructing the private-key
η from private-key shares ηi1 , . . . , ηik , and then decrypting
the BF ciphertext with the obtained decryption key. If all
ciphertext shares correspond to the same plaintext p, then
a genuine private-key η = H(p)e ∈ G1 is obtained, and
decryption of the BF ciphertext will return the plaintext p.

Here follows the description of our scheme. Let AE =
(gen, enc,dec) be a one-time secure authenticated encryp-
tion scheme and let IG(·) be a pairing generator algorithm.
Starting from these primitives, we build a k-out-of-n dis-
tributed encryption scheme as follows:

Gen(1ℓ, k, n) First generate an asymmetric pairing, by run-
ning

〈e(·, ·),G1,G2,GT , g1, g2, q〉 ← IG(1
ℓ).

Let H : {0, 1}∗ → G1 be a hash function mapping
strings to elements in G1 (see [8] for an efficient im-
plementation of such a hash function). Generate a

master secret key e
$

← Z∗
q . Define Γ = ge2 ∈ G2 to

be the corresponding public key. Share the secret key
using Shamir’s k-out-of-n secret sharing by choosing

ǫ1, . . . , ǫk−1
$

← Z∗
q and defining the k − 1 degree poly-

nomial P(x) = e +
∑k−1

t=1 ǫt · x
t. For i ∈ {1, . . . , n}

set ei = P(i) ∈ Z∗
q and let Ei = (i,H,Γ, ei). The

space of plaintexts P is set to be PAE, where PAE ←
AE.gen(1ℓ).

Enc(Ei, p) Given an encryption key Ei and a plaintext p ∈

P, choose r
$

← Z∗
q . Now compute K ← e(H(p),Γ)r

and set

ηi = H(p)ei , γi = gr2 , αi = AE.enc(K, p)

Return ci = 〈i, ηi, γi, αi〉.

Comb(C) Parse C as {ci1 , . . . , cik}. Parse each cit ∈ C as

〈it, ηit , γit , αit〉, construct
2 I = {i1, . . . , ik} and com-

pute λI
t for all t ∈ I. Compute h←

∏

t∈I(ηt)
λI
t , then

compute K ← e(h, γi1) and return AE.dec(K,αi1).

Correctness Let E1, . . . , En be the encryption keys ob-
tained by running the key generation algorithm. Let

C = {ci1 , . . . , cik} ,

where ci = Enc(Ei, p) and i1, . . . , ik are pairwise differ-
ent. We want to see that Comb(C) = p. Indeed, let
I = {i1, . . . , ik}. Since the ciphertext shares are correctly
computed, then we have that

h =
∏

t∈I

(ηt)
λI
t =

∏

t∈I

H(p)etλ
I
t =

∏

t∈I

H(p)P(t)λI
t =

= H(p)
∑

t∈I
P(t)λI

t = H(p)P(0) = H(p)e .

By setting K ← e(H(p)e , γi1) we obtain that dec(K,αi1) =
p, since if γi1 = gr2 then e(H(p)e , gr2) = e(H(p)r, ge2) =
e(H(p),Γ)r.

Let us now see that when ci = Enc(Ei, p)i,p, with i ∈
{i1, . . . , ik} and p ∈ {p1, . . . , pk}, and the conditions p1 =
. . . = pk = p are not satisfied, then Comb(C) returns error

with overwhelming probability. Indeed, let us assume there
exists 2 ≤ j ≤ k such that p1 6= pj . Let us consider the
encryption key K′ computed when combining the shares as

K′ ← e(h, γi1) where h =
∏

t∈{1,...,k}

H(pt)
eitλit .

It is easy to see that, unless a collision occurs in H, the key
K′ is uniformly at random distributed in GT and indepen-
dently from the genuine encryption key K used to compute
ci1 . This is a consequence of H being modelled as a random
oracle, which firstly implies that collisions in H only happen
with negligible probability; secondly it implies that H(p1)
and H(pj) are independently and uniformly distributed for
p1 6= pj . It only lacks to see that dec(K′, enc(K, p1)) re-
turns error with overwhelming probability. Indeed, the one-
time security of AE (cf. Definition 3.6) implies that it is
infeasible for an adversary to come up with any valid ci-
phertext α not returned by enc(K′, ·), which proves the
correctness of the scheme.

Remark 3.7 Let us briefly discuss why the assumption
that DDH1 is hard is needed for the IND security proof. If
an adversary A queries OE(i, p) for i ∈ {1, . . . , n} and p an
admissible plaintext, it will get back a ciphertext share of the
form (H(p)ei , gr2 , enc(K, p)). Let p0 6= p1 6= p be the plain-
texts on which A wants to be challenged. Now the challenge

ciphertext will have the form
(

H(pβ)
ei , gr

′

2 , enc(Kβ , pβ)
)

for β
$

← {0, 1}, r′
$

← Zq. Then A can verify whether a
guess β′ ∈ {0, 1} is correct by using a DDH1 solver (whose
existence is guaranteed if the DDH1 assumption is not sat-
isfied) on input (H(p), H(pβ′), H(p)ei , H(pβ)

ei). In effect,
let us write g1 := H(p), ga1 := H(pβ′), b := ei. Then

H(pβ)
ei = gab1 iff β = β′.

Result 3.8 Let A be an adversary in the static corruptions
scenario against the IND security of the above k-out of-n DE

2The index i is part of ci to be able to explicitly reconstruct
I and thus compute λI

i given a set C.

scheme. Assume H is modeled as a random oracle and that
A makes at most qH queries. Then there exist algorithms
B1,B2,B3 such that

AdvIND
DE,A(1ℓ) ≤ qH

2

(

k−1)
(

AdvBDH
IG,B2

(1ℓ) +AdvDDH1
IG,B1

(1ℓ)
)

+

qH
2
Advae−ot

AE,B3
(1ℓ)

Proof. We provide a game-based proof of the previous
lemma. We will make use of the following simple “Difference
Lemma”.

Lemma 3.9 Let Y1,Y2, B be events defined in some prob-
ability distribution, and suppose that Y1 ∧ ¬B ⇔ Y2 ∧ ¬B.
Then |Pr[Y1]− Pr[Y2]| ≤ Pr[B].

The proof of the Result 3.8 is obtained by considering
subsequent games, Game 0 to Game 6. These games are
produced by a simulator and are obtained successively from
slight modifications of the previous game. It starts with
Game 0, which is the original IND game. In every game the
simulators’ output bit β′ will be well-defined. For 0 ≤ i ≤ 6
we define the event

Xi : The simulator outputs β′ = β in Game i.

In Game 0 we let the simulator output the same value for
β′ as output by the IND adversary A. Then, since in Game
0 the simulator exactly plays the IND security experiment
with adversary A, we have |Pr[X0]− 1/2| = AdvIND

DE,A(1ℓ).

Let qH be an upper bound on the number of pairwise
different queries to the random oracle H made by the ad-
versary. Let qE be the number of adversarial encryption
queries. Let us assume without loss of generality that {1, . . . , r}
is the set of corrupted senders, {r, . . . , k−1} the set of send-
ers’ indexes on which the adversary wants to be challenged
and {k, . . . , n} the set of honest senders. Let

(

e(·, ·),G,GT , q, g1, g2, g
a
1 , g

b
1, g

c
1, g

b
2, g

c
2, T

)

be the input of the BDDH problem, where T ← e(g, g)abc

or T
$

← GT .

Game 1 (Change generation of encryption keys) In this
game we change the generation of the initial encryption keys
E1, . . . , En by using the input of the BDDH problem as fol-
lows:

1. (Defining e1, . . . , ek−1) Pick e1, . . . , ek−1
$

← Zq. Let
P ∈ Zq[X] of degree k − 1 be the unique polynomial
implicitly defined by P(0) = b and P(i) = ei for 1 ≤
i ≤ k − 1. The simulator computes hi = gei1 for 1 ≤
i ≤ k − 1. Note that the simulator does not explicitly
know P since it does not know b.

2. (Implicitly defining ek, . . . , en) Next, for every index
i, t such that k ≤ i ≤ n, 0 ≤ t ≤ k − 1 the simulator
computes the Lagrange Coefficients

λi
t ←

∏

m∈{0,...,k−1}\{t}

i−m

t−m
∈ Z∗

q

satisfying that

ei = P(i) =

k−1
∑

t=0

λi
tP(t) (1)

Notice that the simulator does not know the values
ei for i = k, . . . , n. However, it can compute an im-
plicit representation thereof by means of Equation 1.

Namely hi = gei1 can be computed as hi = (gb1)
λi

0 ·

h
λi

1

1 · · ·h
λi

k−1

k−1 for i = k, . . . , n.

3. (Defining Γ) Let Γ be g
P(0)
2 = gb2.

It can be seen that e1, . . . , en follow the same distribution
as in the real game and thus Pr[X0] = Pr[X1].

Game 2 (Answering H queries) A list Hlist with entries of
the form N× P ×G1 × Zq is created to answer adversarial
queries to the random oracle H.

The simulator starts by choosing j⋆
$

← {1, . . . , qH}. At
each new query p ∈ P made by the adversary the simulator
proceeds as follows:

1. If there exists an entry of the form 〈·, p, A, ·〉 in Hlist

it answers H(p) = A.

2. Otherwise, let j be the greatest index appearing in
Hlist. We distinguish two cases:

(a) j = j⋆ − 1. In this case, the simulator adds
〈j⋆, p, ga1 , 1〉 to Hlist and answers H(p) = ga1 .

(b) j 6= j⋆ − 1. The simulator chooses λ
$

← Z∗
q , adds

〈j + 1, p, gλ1 , λ〉 to Hlist and answers H(p) = gλ1 .

This modification does not change the distribution of H’s
output and thus Pr[X1] = Pr[X2].

Game 3 (Answering challenge ciphertexts set) Let p0, p1 be
the plaintexts output by the adversary. Let 〈j0, p0, A0, λ0〉
and 〈j1, p1, A1, λ1〉 be the entries corresponding to plaintexts
p0, p1 in Hlist. The simulator proceeds as follows:

1. If j0, j1 6= j⋆ the simulator aborts the game and out-

puts β′ $

← {0, 1} as its guess to the BDDH problem.

2. Otherwise let jβ̄ for β̄ ∈ {0, 1} be such that H(pβ̄) =
ga1 . For i ∈ {r, . . . , k − 1} the challenge ciphertext
shares ci = 〈i, ηi, γi, αi〉 are computed as

ηi = (ga1)
ei , γi = (gc2)

ri , αi = enc(Ki, p)

with Ki ← e(g, g)abcri for ri
$

← Z∗
q .

Then Pr[X3] = 2Pr[X2]/qH .

Game 4 (Answering non-challenge encryption queries) In
this game we proceed to modify how encryption queries of
the form enc(i, p), where i ∈ {r + 1, . . . , n} are simulated.
Let 〈j, p, A, λ〉 be the entry corresponding to plaintext p in
Hlist. Clearly j 6= j⋆, since the simulator did not abort
at Game 3, and the IND game restricts enc(·, ·) queries to
plaintexts p 6= p0, p1. The simulator proceeds as follows:
we have that H(p) = gλ1 for known λ ∈ Z∗

q , and therefore
ci = 〈i, ηi, γi, αi〉, where

ηi = hλ
i , γi = gri2 , αi = enc(K, p)

withK ← e(H(p),Γ)ri for ri
$

← Z∗
q is a correct encryption

answer.

We conclude Pr[X4] = Pr[X3].

Game 5 (Embedding BDDH challenge) The simulator sets
the encryption keys to be random in the challenge ciphertext
set. That is, for i ∈ {r, . . . , k − 1} the component αi in the
challenge ciphertext shares ci = 〈i, ηi, γi, αi〉 is changed to

αi = enc(Ki, p), with Ki ← T ri , ri
$

← Z∗
q , T

$

← GT .

Clearly, an adversary distinguishing Game 4 and Game 5
implies a distinguisher for the BDDH problem, and thus we
can claim there exists an adversary B1 such that |Pr[X5]−
Pr[X4]| ≤ (k − 1− r)AdvBDDH

IG,B1
(ℓ) ≤ (k − 1)AdvBDDH

IG,B1
(ℓ).

Game 6 (Embedding the DDH1 challenge) To ensure chal-
lenge ciphertexts do not leak unnecessary information the
simulator proceeds to the final modification. Let pβ be such
that H(pβ) = ga1 . The simulator proceeds as follows. For
i ∈ {r, . . . , k − 1} the component ηi in the challenge cipher-
text shares ci = 〈i, ηi, γi, αi〉 is modified such that

ηi = (gs1)
ei , γi = (gc2)

ri , αi = enc(K, p)

for s
$

← Z∗
q . With this change we ensure that the com-

ponents ηi, γi, αi are independently distributed (recall that

Ki
$

← GT and ri
$

← Z∗
q). An adversary A distinguish-

ing between Game 5 and Game 6 implies a distinguisher
for the DDH1 problem. We can conclude then the exis-
tence of an adversary B2 such that |Pr[X6] − Pr[X5]| ≤
(k − 1− r)AdvDDH1

IG,B2
(ℓ) ≤ (k − 1)AdvDDH1

IG,B2
(ℓ).

Now, since in every ciphertext share ci the corresponding
components are independently distributed from each other,
we conclude there exists an adversary B3 such that |Pr[X6]−
1/2| = Advae−ot

AE,B3
(1ℓ).

Finally, collecting all intermediate probabilities we obtain
the targeted result.

4. DISTRIBUTED ENCRYPTION WITH FOR-

WARD SECURITY
Plain distributed encryption does not fulfil the forward

privacy property inherent to revocable privacy, namely, that
no redesign of the system should allow the release of pre-
viously gathered information if the latter falls outside the
data release rule (in our case that less than a threshold of
k ciphertext shares are in possession of the combiner). A
typical scenario is found when the relevant authorities, that
in principle set up a data collection system with privacy-
preserving guarantees, change their mind and seize senders
to reveal their secret encryption keys. In this case secrecy
in plain distributed encryption is not guaranteed anymore,
since indistinguishability of ciphertext shares holds when the
combiner (e.g. the authority) knows up to k − 1 secret en-
cryption keys.

Our approach to mitigate the damage caused by a po-
tential system redesign is to use a key-evolving distributed
encryption scheme. In a key-evolving scheme, the opera-
tion time of the scheme is divided into stages, and at each
new stage the encryption keys are changed, while keys cor-
responding to the previous period are deleted. Such a key-
evolving distributed encryption scheme is said to have for-
ward security if, when the adversary breaks in and learns
the secret keys corresponding to the current stage, then this
adversary can not abuse any data collected in the past.

4.1 Definition
Formally, a k-out-of-n key-evolving distributed encryption

scheme with lifetime divided into s stages consists of four
algorithms KDE = (Gen,UpdKey,Enc,Comb):

Gen(1ℓ, k, n, s) Given a security parameter 1ℓ, number of
users n, threshold parameter k and life span consisting
on s stages, this function generates initial encryption
keys E1,1, . . . , E1,n belonging respectively to senders
S1, . . . , Sn. Additionally it outputs the description of
plaintext and ciphertext spaces P and C. A plaintext
p is called admissible if p ∈ P; admissible ciphertexts
are defined analogously.

UpdKey(Eσ−1,i) The key Eσ,i at any stage σ is obtained
from the key Eσ−1,i at the previous stage. After the
key Eσ,i has been built, the key Eσ−1,i is deleted.
Aborts if the current stage equals s.

Enc(Eσ,i, p) Given an encryption key Eσ,i corresponding
to sender i at stage σ and a plaintext p, this function
returns a ciphertext share cσ,i.

Comb(C) Given a set C = {cσ1,i1 , . . . , cσk,ik} consisting of
k ciphertext shares, Comb(C) either returns a plain-
text p or error.

Every key-evolving distributed encryption scheme must sat-
isfy the following correctness requirement.

Correctness Let Eσ,1, . . . , Eσ,n be the encryption keys at
any stage σ ∈ {1, . . . , s}, obtained by successively run-
ning the corresponding key generation and update al-
gorithms. Let C = {cσ1,i1 , . . . , cσk,ik}, where cσt,it =
Enc(Eσt,it , pt) for some sender it, stage σt and plain-
text pt. Then Comb(C) returns p with overwhelming
probability if and only if p1 = . . . = pk = p, as well
as σ1 = . . . = σk = σ, while i1, . . . , ik are pairwise
different (and returns error otherwise).

4.2 Security definition
Roughly speaking, the security of a key-evolving distrib-

uted encryption scheme is defined as follows: a combiner
who at stage σ breaks in and obtains the whole collection of
current secret encryption keys Eσ,1, . . . , Eσ,n, should learn
(almost) no information on any plaintext p contained in a
set of k − r − 1 ciphertext shares, such that these cipher-
text shares were produced at a stage σ⋆ < σ in which the
combiner had only corrupted up to r senders.
We now describe the formal security definition for KDE

schemes, called forward security, and referred to as FSIND.
It is obtained by extending the IND security notion to the
key-evolving setting.

Definition 4.1 (FSIND) Let us consider a (k, n, s)-KDE =
(Gen,UpdKey,Enc,Comb) key-evolving distributed en-
cryption scheme. Let us define the following game between
a challenger and an adversary A:

Phase 0 (Only for static adversaries) The adversary out-
puts a set of r pairs Ic = {(σ1, i1), . . . , (σr, ir)}, where
(σt, it) are such that σt ∈ {1, . . . , s} and it ∈ {1, . . . , n}
and 0 ≤ r < k. A pair (σt, it) ∈ Ic denotes that the ad-
versary corrupts sender Sit at stage σt. In this case the

adversary receives Eσt,it as soon as σt is entered. It
also outputs a stage number σ⋆ and k− 1− r pairwise
different indexes Inc = {ir+1, . . . , ik−1}, that respec-
tively correspond to the stage number and senders on
which the adversary will be challenged.

Setup The challenger runs (E1,1, . . . , E1,n)←Gen(1ℓ, k, n, s).

Find The set of queried plaintexts Qσ′ is initialised to ∅ for
all stages σ′ ∈ {1, . . . , s}.. For adaptive adversaries
the set Ic of corrupted senders is initialized to Ic = ∅.
The current stage number σ is initialized to σ ← 1.

The adversary can issue three types of queries:

• On encryption queries of the form enc(i, p), where
i ∈ {1, . . . , n}, (t, i) /∈ Ic for any t ≤ σ, and p
is an admissible plaintext, the adversary receives
Enc(Eσ,i, p), where σ is the current stage; p is
added to Qσ.

• On next-stage queries next(), the challenger up-
dates the current stage as σ ← σ+ 1 and updates
the encryption keys as Eσ,i ← UpdKey(Eσ−1,i)
for i ∈ {1, . . . , n}.

• (Only for adaptive adversaries) On queries of the
form corrupt(Itbc), where Itbc ⊂ {1, . . . , n} is a
possibly non-empty set, the challenger proceeds as
follows.

– for all i ∈ Itbc, it adds (σ, i), where σ is the
current stage, to Ic. If |Ic| > k − 1 then the
game aborts and the adversary looses.

– for all pairs (σ, i) ∈ Ic where σ is the current
stage, the adversary receives Eσ,i.

The cardinality of Ic at the end of the Find phase is
denoted by r, and it holds that that r ≤ k − 1.

Challenge In the case of adaptive adversaries, A outputs
a challenge stage number σ⋆ < σ and k−1− r indexes
Inc = {ir+1, . . . , ik−1} corresponding to the senders on
which A wants to be challenged.

A outputs two equal-length plaintexts p0, p1 ∈ P where
pi /∈ Qσ⋆ . For each i ∈ Inc we require that (t, i) /∈ Ic
for all t ∈ {1, . . . , σ⋆}. Finally the challenger chooses

β
$

← {0, 1} and returns

{cσ∗,i | i ∈ Inc} and {Eσ,1, . . . , Eσ,n} ,

where cσ∗,i = Enc(Eσ∗,i, pβ) for i ∈ Inc.

Guess The adversary A outputs a guess β′ ∈ {0, 1}. The
adversary wins the game if β = β′.

Define A’s advantage as AdvFSIND
KDE,A(1ℓ) =

∣

∣Pr[β′ = β] −

1/2
∣

∣. A scheme KDE is called forward-secure (FSIND se-

cure) if AdvFSIND
KDE,A(1ℓ) is negligible for every PPT adversary

A.

4.3 Construction
A FSIND secure KDE scheme can be obtained by ap-

plying a generic transformation that consists of building s
independent copies of the IND secure DE scheme from Sec-
tion 3.2. The resulting scheme is described below. We omit
here the statement of its security theorem due to the lack
of space. We briefly mention that security is based on the

same assumptions as the plain DE scheme; the tightness of
the security reduction is degrading linearly on the number
of stages s.
At each stage σ each user i uses a separate key, which is

stored as the head of a list of keys Eσ,i. Initially user i owns
the list E1,i of s keys. When progressing to the next stage,
the head of this list is removed. The list functions head(),
tail() and cons() are defined as usual. () denotes the empty
list.

Gen(1ℓ, k, n, s) First generate an asymmetric pairing, by
running

〈e(·, ·),G1,G2,GT , g1, g2, q〉 ← IG(1
ℓ).

For all i, let Es+1,i = (), the empty list. Recursively
define Eσ,i for σ from s to 1 as follows. For each
stage, generate n fresh secret keys (E1, . . . , En) :=
DE.Gen(1ℓ, k, n). For all i, set Eσ,i = cons(Ei, Eσ+1,i).
Note that although the pairing function remains con-
stant, the hash function H used in each of the stages
is different. The space of plaintexts P is set to be that
of AE. Return (E1,1, . . . , E1,n).

UpdKey(Eσ−1,i) Set Eσ,i := tail(Eσ−1,i). After the key
Eσ,i has been built, the key Eσ−1,i is erased.

Enc(Eσ,i, p) Return DE.Enc(head(Eσ,i), p).

Comb(C) Return DE.Comb(C).

5. APPLYING DISTRIBUTED ENCRYPTION
Let us return to the motivating problems described in Sec-

tion 1.1, and see how distributed encryption can help solve
these problems.
To solve the database logging problem in a privacy friendly

way, one can use distributed encryption as follows. Each of
the n databases acts as a sender, and each database has its
own distributed encryption key E1,i. Initial keys are gener-
ated usingGen(1ℓ, k, n, s), for a suitably chosen threshold k.
To create a log entry for a particular transaction, database i
encrypts the identity of the user u using his own encryption
key and stores the resulting ciphertext share Enc(Eσ,i, u)
in the transaction log for the record involved. Let Li(r)
be the transaction log for record r in database i. In order
to determine who was involved in transactions concerning
records ri1 , . . . , rik from k different databases i1, . . . , ik, the
combiner tries all possible combinations of ciphertext shares
from the k logging sets Li1(ri1), . . . , Lik (rik). With at most
ℓ entries in each of these sets, the total time complexity
of this operation equals ℓk. If particular records are only
accessed by relatively few users, this complexity is manage-
able.
To solve the canvas cutter problem in a privacy friendly

way, one could choose to retain the data coming from a single
ANPR system for only a couple of hours. But this is only a
procedural measure, which is not good enough (as discussed
in section 1.2). A straightforward application of the dis-
tributed encryption scheme KDE introduced above however
allows us to solve the canvas cutters more thoroughly.
Each of the n ANPR systems i acts as a sender, using

the distributed encryption scheme with its own key. Initial
keys are generated using Gen(1ℓ, k, n, s). Keys are updated
in the obvious manner at the start of a new stage. Each

number plate p recorded by an ANPR i is encrypted im-
mediately (and not stored locally) and sent3 as ciphertext
share Enc(Eσ,i, p) to a central server using a secure chan-
nel that guarantees authenticity and confidentiality of the
messages4.

The server stores, for each stage σ and for each ANPR
node i, the list Ci,σ of ciphertext shares sent by ANPR node
i during stage σ. In order to find a set of k encryptions of
the same number plate during stage σ, all combinations of
taking k elements, one from each list Ci,σ, need to be tried.
Each of the possible combinations C is passed to Comb(C).
Let each list contain m entries. Then the associated time
complexity becomes mk

(

n

k

)

(because we can choose k-out-of-
n different list combinations, and within each combination
of k lists we can take mk different samples).

Clearly, this is a highly inefficient solution. We are cur-
rently investigating different approaches to reduce the time
complexity considerably.

6. CONCLUSIONS
We have shown that techniques to implement revocable

privacy exist, and introduced non-interactive (forward se-
cure) distributed encryption as a new element of this tool-
box.

However, these techniques are only applicable in specific
cases and henceforth more general techniques need to be de-
veloped. These are investigated in the Revocable Privacy
project, of which the present paper is a first result. Progress
will be reported through the website www.revocable-privacy.
org. We note that the underlying design principles to achieve
revocable privacy can already be used, using either general
trusted third parties techniques or special purpose mech-
anisms. Another purpose of our work is to raise a more
general awareness of this possibility.

We leave as an open problem the construction of a non-
interactive distributed encryption scheme not resorting to
the random oracle heuristic or not based on identity-based
encryption.

Also, more efficient solutions to the canvas cutters prob-
lem are needed. This may be possible by moving to a richer
setting. For example, if two way communication between
the car and the ANPR system is allowed (for instance using
a system embedded in the number plate of the car), then k-
times anonymous authentication [11] may be applied. Each
day, a car receives one such credential, and when visiting a
parking place the ANPR requests an anonymous authenti-
cation using that credential. This solves a slightly different
problem, because if one uses n-times anonymous authentica-
tion then the number plate of a car that visits the same park-
ing space n times will be revealed (whereas for distributed
encryption this car should have visited n different parking
spaces). Moreover, immediate applicability of such a sys-
tem is limited, since widespread embedding of cryptography
in the cars seems currently unrealistic. Further research is
necessary to explore these issues.

3Of course, this could also be implemented in store-and-
forward kind of setup, where the ANPR nodes do store the
encrypted shares for a while until they are being collected
to be forwarded to the central server.
4Note that the definition of a distributed encryption scheme
allows anyone to act as a combiner. Confidentiality of the
messages is therefore required to ensure that only the server
can act as combiner.

7. REFERENCES
[1] Masayuki Abe and Miyako Ohkubo. Provably secure

fair blind signatures with tight revocation. In Colin
Boyd, editor, ASIACRYPT, LNCS 2248, pages
583–602. Springer, 2001.

[2] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size
dynamic -taa. In Roberto De Prisco and Moti Yung,
editors, SCN, LNCS 4116, pages 111–125. Springer,
2006.

[3] Joonsang Baek and Yuliang Zheng. Identity-based
threshold decryption. In Feng Bao, Robert H. Deng,
and Jianying Zhou, editors, Public Key Cryptography,
volume 2947 of Lecture Notes in Computer Science,
pages 262–276. Springer, 2004.

[4] Paulo S. L. M. Barreto and Michael Naehrig.
Pairing-friendly elliptic curves of prime order. In Bart
Preneel and Stafford E. Tavares, editors, Selected
Areas in Cryptography, volume 3897 of Lecture Notes
in Computer Science, pages 319–331. Springer, 2005.

[5] Mihir Bellare and Chanathip Namprempre.
Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. J.
Cryptology, 21(4):469–491, 2008.

[6] Dan Boneh, Xavier Boyen, and Shai Halevi. Chosen
ciphertext secure public key threshold encryption
without random oracles. In David Pointcheval, editor,
CT-RSA, volume 3860 of Lecture Notes in Computer
Science, pages 226–243. Springer, 2006.

[7] Dan Boneh and Matthew K. Franklin. Identity-based
encryption from the weil pairing. SIAM J. Comput.,
32(3):586–615, 2003.

[8] Eric Brier, Jean-Sébastien Coron, Thomas Icart,
David Madore, Hugues Randriam, and Mehdi
Tibouchi. Efficient indifferentiable hashing into
ordinary elliptic curves. In Tal Rabin, editor,
CRYPTO, volume 6223 of Lecture Notes in Computer
Science, pages 237–254. Springer, 2010.

[9] Christian Cachin, Klaus Kursawe, and Victor Shoup.
Random oracles in constantinople: Practical
asynchronous byzantine agreement using
cryptography. J. Cryptology, 18(3):219–246, 2005.

[10] Jan Camenisch, Thomas Groß, and Thomas S.
Heydt-Benjamin. Rethinking accountable privacy
supporting services: extended abstract. In Elisa
Bertino and Kenji Takahashi, editors, Digital Identity
Management, pages 1–8. ACM, 2008.

[11] Jan Camenisch, Susan Hohenberger, Markulf
Kohlweiss, Anna Lysyanskaya, and Mira Meyerovich.
How to win the clonewars: efficient periodic n-times
anonymous authentication. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati,
editors, ACM Conference on Computer and
Communications Security, pages 201–210. ACM, 2006.

[12] Jan Camenisch, Susan Hohenberger, and Anna
Lysyanskaya. Balancing accountability and privacy
using e-cash (extended abstract). In Roberto De
Prisco and Moti Yung, editors, SCN, LNCS 4116,
pages 141–155. Springer, 2006.

[13] David Chaum. Untraceable electronic mail, return
adresses, and digital pseudonyms. Comm. ACM,
24(2):84–88, 1981.

[14] David Chaum, Amos Fiat, and Moni Naor.

Untraceable electronic cash. In Shafi Goldwasser,
editor, CRYPTO, LNCS 403, pages 319–327. Springer,
1988.

[15] Benny Chor, Shafi Goldwasser, Silvio Micali, and
Baruch Awerbuch. Verifiable secret sharing and
achieving simultaneity in the presence of faults
(extended abstract). In FOCS, pages 383–395. IEEE,
1985.

[16] Cécile Delerablée and David Pointcheval. Dynamic
threshold public-key encryption. In David Wagner,
editor, CRYPTO, volume 5157 of Lecture Notes in
Computer Science, pages 317–334. Springer, 2008.

[17] Yvo Desmedt and Yair Frankel. Threshold
cryptosystems. In Gilles Brassard, editor, CRYPTO,
volume 435 of Lecture Notes in Computer Science,
pages 307–315. Springer, 1989.

[18] Augusto Jun Devegili, Michael Scott, and Ricardo
Dahab. Implementing cryptographic pairings over
barreto-naehrig curves. In Tsuyoshi Takagi, Tatsuaki
Okamoto, Eiji Okamoto, and Takeshi Okamoto,
editors, Pairing, volume 4575 of Lecture Notes in
Computer Science, pages 197–207. Springer, 2007.

[19] Yevgeniy Dodis. Efficient construction of (distributed)
verifiable random functions. In Yvo Desmedt, editor,
Public Key Cryptography, volume 2567 of Lecture
Notes in Computer Science, pages 1–17. Springer,
2003.

[20] C. C. F. Pereira Geovandro, Marcos A. Simpĺıcio Jr.,
Michael Naehrig, and Paulo S. L. M. Barreto. A family
of implementation-friendly bn elliptic curves. Journal
of Systems and Software, 84(8):1319–1326, 2011.

[21] Shafi Goldwasser and Silvio Micali. Probabilistic
encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

[22] Jaap-Henk Hoepman. Revocable privacy. ENISA
Quarterly Review, 5(2):16–17, June 2009.

[23] Lawrence Lessig. Code and other laws of cyberspace.
Basic Books, 1999.

[24] Keith M. Martin, Reihaneh Safavi-Naini, Huaxiong
Wang, and Peter R. Wild. Distributing the encryption
and decryption of a block cipher. Des. Codes
Cryptography, 36(3):263–287, 2005.

[25] Bruce Schneier. What our top spy doesn’t get:
Security and privacy aren’t opposites. Wired, January
2008.

[26] Adi Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[27] Victor Shoup and Rosario Gennaro. Securing
threshold cryptosystems against chosen ciphertext
attack. In EUROCRYPT, pages 1–16, 1998.

[28] Nigel P. Smart and Frederik Vercauteren. On
computable isomorphisms in efficient asymmetric
pairing-based systems. Discrete Applied Mathematics,
155(4):538–547, 2007.

[29] Daniel J. Solove. Understanding Privacy. Harvard
University Press, 2008.

[30] Markus Stadler. Cryptographic Protocols for Revocable
Privacy. PhD thesis, Swiss Federal Institute of
Technology, Zürich, 1996.

[31] Markus Stadler, Jean-Marc Piveteau, and Jan

Camenisch. Fair blind signatures. In EUROCRYPT,
pages 209–219, 1995.

[32] Isamu Teranishi and Kazue Sako. k-times anonymous
authentication with a constant proving cost. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal
Malkin, editors, Public Key Cryptography, volume
3958 of Lecture Notes in Computer Science, pages
525–542. Springer, 2006.

[33] Eric R. Verheul and Henk C. A. van Tilborg. Binding
ElGamal: A fraud-detectable alternative to key-escrow
proposals. In EUROCRYPT, pages 119–133, 1997.

[34] Samuel D. Warren and Louis D. Brandeis. The right
to privacy [The implicit Made Explicit]. Harvard Law
Review, IV(5):193–220, December 15 1890.

[35] Hoeteck Wee. Threshold and revocation cryptosystems
via extractable hash proofs. In Kenneth G. Paterson,
editor, EUROCRYPT, volume 6632 of Lecture Notes
in Computer Science, pages 589–609. Springer, 2011.

