Revocable Privacy

0

Privacy Seminar

Anushka, Sam & Ysbrand

Table of Contents

Definition

0

- Bytes of Freedom
- Different designs
- Technical implementation
- Ethical aspects
- Legal aspects
- Rounding up

0

<Revocable>Privacy<Revocable/>

Bytes of Freedom

Bytes of Freedom

Hello, Arthur

<name> Arthur

<age> 28

<email> arthur911@gmail.com

•••

 \Diamond

???

Conceptually

Revocable Privacy on BoF

<Revocable>Privacy<Revocable/>

Requirements:

- -No immediate revoke of privacy
- -No continuous hate speech
- Resources:
 - -Wordlist

<Rule>No more than 50 matches with the words in de wordlist within a day.</Rule>

Malicious JavaScript

Requirements:

-Immediate flag and revoke of privacy

Resources:

-Function logging

<Rule>Occurrence of "<script>"/\ JavaScript function
executed /\ call to external not-listed domain.</Rule>

Requirements:

- -The sellers should be identified
- -Clear and vague language should be spotted
- Resources:
 - -Post history of a discussion or user

<Rule>If n moderators deem the conversation as a form of drug selling, the identity of the participant is revealed.

Hacked User

Requirements:

-Hacked users should be identified

Resources:

> **-..**

- <Rule> If a user suddenly switches completely in
- interests /\ the recovery mail of the user has been changed in the last week, the privacy is revoked.</Rule>

- Threshold rules (hateful speech)
- Predicate rules (malicious JavaScript)
- Decision rules (selling drugs)
- Complex rules (hacked user)

How to implement these things on a technical level?

- Back to the Hateful Speech example
- Have: wordlist and some reports of hateful speech
- We could use threshold decryption to implement this
 - Note that this may not be the bestest of use-cases, but or the sake of staying with the example it suffices.
- We'll be using the Shamir's Secret Sharing scheme
 - Though there are other schemes that we could've used instead, like:
 - Blakley's scheme
 - Feldman's scheme (which is, in turn, based on Shamir's)
 - Secure Multiparty Computation
 - Which is more of a generic catch-all

A secret sharing algorithm.

Have:

- Some private information ('the secret')
- A group of (m) parties
- Some threshold value (the 'quorum') (n; n <= m)
 - (We'll get back to this soon!)

- The secret is divided into m 'shares'
- Each party gets a share
- On their own, a party can not reassemble the secret
 - In fact; the quorum number of shares are needed for reassembly

Some use-cases:

- Sharing a key with which a root key of sorts is encrypted
- Recovering user keys for email access
- Passphrase encryption for crypto wallets
- And, of course; Bytes of Freedom!
 - To which we'll back to in a bit. Hang tight!

The good:

- Secure
- Minimal
- Extensible
- Dynamic
- Flexible

The a-bit-less-good:

- No verifiable secret sharing
 - Feldman's -which we mentioned earlier- is a VSS scheme
- Single point of failure

How do we make and merge these shares?

MATHS!

(Well, kind of. More like "maths".)

- Say we want to 2 out of 3 shares be able to reassemble
- t = 2, n = 3
- With 2 (t) points, we can define a polynomial of degree 1 (t-1)
- Secret: 1st coefficient; remaining are random
- Find n points on the curve and give one to each holder
- To fit the polynomial, you need t out of n points; the first being the secret

As an aside: Blakley's scheme works roughly the same but with planes:

 \Diamond

There's a toy code-example on Wikipedia:

https://en.wikipedia.org/wiki/Shamir%27s_secret_sharin

g

But enough maths for now.

Bytes of Freedom

Upon registration:

- Personal information is encrypted ('the secret')
 - Things like email address or phone number
 - In this context we call these 'revocable attributes'
- The secret is divided into shares

Hateful Speech

Upon posting on the forums:

- The message is checked against the wordlist
- For each match, a share is released
- With enough shares released, the moderators can reconstruct the personal information of the user

- Back to another example: Selling Drugs
- Some very bad actors; how to ban?
- Recall: users have a private key; not a user+pass
 - They use the private key to generate a random token each time they login
- For this we can use a thing called "blacklistable anonymous credentials"

Time for another intermezzo!

Intermezzo: Blacklistable Anonymous Credentials

A system for allowing anonymous logins, whilst maintaining the ability to ban users.

- Have:
 - A service (like, say, a forum)
 - And sometimes: a separate verifier
 - Some users who want to use the service anonymously
 - Providers of the service who might want to ban users

Intermezzo: Blacklistable Anonymous Credentials

- Service initializes backlist to an empty list
- Users get their private key during registration

- Multiple possible implementations
- We'll be using NTAC:
 Non-Transferable Anonymous Credentials

In this system:

- Keys can not be linked back to users
- Keys are meant to not be transferred to another user

Intermezzo: Blacklistable Anonymous Credentials

Upon logging in:

- User submits their key to the verifier
- The verifier compares the key against all tokens on the blacklist
 - More on this soon
- •••

- •••
- If none of the tokens on the blacklist belong to the user they get a new token to login with on the service
- Otherwise, they don't

Note that the token that they get can not be linked to the other tokens generated by the same key, without the key.

Intermezzo: Blacklistable Anonymous Credentials

The service can ban/blacklist a user by simply adding their current token to the blacklist and revoking their current session.

Getting back to the verifier:

- One way would be to append a salted hash of the key to the token
 - So basically {random value,hash of(private key|random value)}
- However; zero-knowledge proofs are used in the paper
 - But I'm not smart enough to be able to explain those. Sorry!

The good:

- Tokens can be removed from blacklist
 - Useful for temporary bans
- Allows for banning a user after they've been put on the list x times

Intermezzo: Blacklistable Anonymous Credentials

The a-bit-less-good:

 Time complexity, mainly. Logging in is linear to the number of tokens on the blacklist.

Bytes of Freedom

The same as in the generic, non-BoF, example. ;-)

- Threshold decryption
 - Which is a subcategory of "distributed decryption"
- Blacklistable anonymous credentials
- But also so much we haven't been able to discuss:
 - N-times anonymous encryption
 - Group signatures with distributed management
 - Secure multi-party computation

(Maybe when we have a bit of time left)

- Moderator
- > Eve
- Secret services

Ethical Issues

- Misuse of anonymity
- Accountability
- Privacy violation
- Decision-making

Ethical Aspects

- False Positives
- False Accusations

False Positives

When a system or algorithm mistakenly classifies or categorizes a behaviour as a risk.

False Positives

- Imperfect algorithm
- 2. Incomplete information
- 3. complexity of data analysis

- 1 Accidental wiretap
- 2 Misclassification of activities
- 3. False alarms

False Accusations

claims or allegations made against individual which can incorrect or baseless

the consequences an individual can face as a result of

incorrect/unjust claims

False Accusations

- Personal information
- 2. Reputation
- 3. Legal remedies
- 4. Accountability

- Cyber bullying
- Sexual misconduct
- Child abuse

Legal frameworks that enforce revocable right

- Short-lived laws
- Data privacy laws

Short-lived laws

- Escrowed Encryption Standard Initiative
- EU Data Retention Directive

Data Privacy Laws

- 1 GDPR
- 2. California Consumer and Privacy Act

Privacy vs Revocable Privacy

Advantages

Disadvantages

- control
- flexibility
- time limited access
- transparency

- complexity
- limited scope
- potential for abuse
- inconvenience

0

Rounding Up

 \Diamond

- 1. Definition
- 2. Different designs
- 3. Technical implementation
- 4. Ethical aspects
- 5. Legal aspects

Other Places for Revocable Privacy

//?

Apple's CSAM detection

Discussion

