

Privacy Friendly Revocation of Credentials

Thomas Luijkman Maximilian Pohl Wouter Doeland May 16, 2024

- Imagine you are running a hotel that uses smart cards for everything
- To make sure that people can only access the parts of the hotel that they are supposed to, the smart card stores access rights
- At first, you decide that all these credentials can be tied to a single identifier
 - Is this safe?
 - Why not? Can you come up with some examples of security/privacy risks using this approach?

Motivating example

- We do not *have* to keep these access rights tied to an identifier.
- What if we don't? Is this safe?
 - No! Even without identifiers, the usage of these access rights could still be traced.
- So, we need even more anonymisation. How? Fully anonymise the access rights!
 - Don't show the access right, but just some mathematical proof that you indeed have it.
 - Different usages of the access right can no longer be traced.
- Is this without problems? Still no!

Motivating example

- We have fixed the privacy issues. But now security is in jeopardy! What if...
 - A key card gets stolen?
 - A guest accidentally takes their key card with them?
 - The hotel needs to remove a guest from the hotel earlier?
 - A guest loses their privilege to only one hotel amenity?
 - Every guest loses access to the same amenity?
 - The list goes on...
- Long story short: we need a way to **revoke** the access rights of users!
 - But how? These access rights were fully anonymized!
 - This lecture will discuss ways to solve this problem.

- So, we have **users**, **issuers** and **verifiers**.
- Instead of access rights we have **anonymous credentials**.
 - When using the credential, do not show the credential but prove that you have it using zero-knowledge proofs
 - Important property: unlinkability
- How do we **revoke** these anonymous credentials?
 - Important property: unavoidability
 - Note: this is different from revocable privacy!
- Multiple factors to be considered when designing revocation schemes

Yivi Demo

Yivi Demo — Enrollment

Params Auth Headers (8) Body 🔹 Pre-rea. Tests Settings JSON V raw Issue attributes With this form, you can issue demo attributes of this credential for testing 2 "@context": "https://irma.app/ld/request/revocation/v1", 3 "type": "irma-demo.MiinOverheid.root". 4 "revocationKey": "4mt38ek2eg" Your BSN-number (BSN) 5 mvBSN1234 200 OK 26 ms 188 B Body 🗸 æ Issuance successful. The revocation key of the credential is: 4mt38ek2ea Pretty Raw Preview Visualize Text ~ ΟK 1 Issue

POST

 \sim

(4) Revocation request

https://demo.privacybydesign.foundation/bac

Send

Save as example

000

Beautify

and demonstration purposes. (Note that only demo attributes can be issued this way.)

(3) Revocation value from issuer

Yivi Demo — Login attempt

Idemix

Idemix — Recap

 \Rightarrow (A, e, v) are the signature over the message (sk, x, m_1 , ..., m_L)

Accumulators

Accumulators — Overview

• Accumulates values to a **fixed size**

 \Rightarrow easy proof of membership

- There exist different variants
 - static
 - additive
 - subtractive
 - dynamic
- while each of those can be either
 - positive
 - negative
 - universal

Accumulators — Merkle Trees [1]

Accumulators — Overview

• Accumulates transactions to a fixed size

 \Rightarrow easy proof of membership

- There exist different variants
 - static
 - additive
 - subtractive
 - dynamic
- while each of those can be either
 - positive
 - negative
 - universal

Accumulators — RSA-B

- RSA-B was first introduced by Camenisch and Lysyanskaya in 2002
- More formalized by Baldimtsi et al. in 2017
- Private key of the issuer: ${\pmb s} {\pmb k}: (p,q)$ with p,q safe prime

 $\Rightarrow \ p = 2p' + 1 \ \text{and} \ q = 2q' + 1 \ \text{with} \ p', q' \ \text{prime}$

- Public key: pk : n = pq
- The domain D are all odd, positive prime integers \boldsymbol{x}
- Operations take place in $QR_n = ((\mathbb{Z}/n\mathbb{Z})^*)^2$, i.e., the group of quadratic residues within the multiplicative integers modulo n

What is a safe prime?

What operations does a dynamic accumulator need to support?

Accumulators — RSA-B [3]

• Addition of attribute x to accumulator a:

$$w = a^{x^{-1} \mod p'q'} \mod n$$

• **Deletion** of a attribute *y* from the accumulator *a*:

$$a_{t+1} = a_t^{y^{-1} \mod p'q'} \mod n$$

• Update witness w to new accumulator

$$bx + cy = 1$$
$$w_{t+1} = w_t^c a^b \mod n$$

• Verify membership of attribute x in accumulator a

$$a \stackrel{?}{=} w^x \mod n$$
Zero knowledge Proof!

- 1 Issuer wants to revoke a credential
- **2** Delete attribute y from accumulator a_t
- **③** Distribute a_{t+1} and y to all users and verifiers
- **4** Users have to update their witness w
- **6** Verifiers should only accept most recent accumulator a_{latest}

- + Credentials can't be linked even after revocation
- + Proving and verification are O(1)
- User and verifiers must receive updates for every revocation
- Users have to update their witness for every revocation
 - \Rightarrow Doing an extended Euclidean algorithm

Verifier-Local Revocation and improvements proposed by Lueks et al.

Verifier-Local Revocation (VLR)[4]

- Introduced in 2003 by Ateniese, Song, and Tsudik
- Goal: provide efficient revocation of credentials without communicating to the end-user machine
- Add **Revocation List** (*RL*) to signature verification algorithm.
 - Contains a token for each revoked user
 - Only signatures of unrevoked users are accepted
- + Preserves privacy of unrevoked users
- + Works on smart cards
- Reveals signatures of revoked users
- Revocation check for the verifier not efficient

- Issuer: Issue Revocable Credential
 - Pick $r \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 - Issue $\mathsf{C}(r)$ to user
- User: Prove Possession of Revocation Token
 - Choose random $g \in G$
 - $\bullet \ {\rm Show} \ (g,g^r)$
- Verifier: Verify Revocation Token
 - Loop over $r_i \in RL$: if $g^{r_i} = g^r$: Fail!

VLR Problems

- Revocation check scales linearly with |RL|
- Privacy Weakness: Signature Reveal of Revoked Users
 - \blacksquare User Bob (with revocation token r) shows credentials and proves possession of their revocation token in σ
 - **2** Verifier checks with current revocation list RL: Verify $(RL, \sigma) = OK$
 - **③** Verifier does not know who signed σ as this is hidden by the algorithm. The verifier stores σ .
 - **4** Repeat steps 1-3 a couple of times.
 - **5** Later, Bobs revocation token r is added to the list of revoked credentials RL'.
 - **6** Now the verifier checks again with updated RL': **Verify** $(RL', \sigma) =$ **NOT OK**
 - **⑦** The verifier can now link the actions performed by Bob together!

- Build upon Verifier Local Revocation
- However, in the signature don't take random generator *g*, instead:
 - Split time into epochs

2 Compute for epoch ϵ and verifier V: $g_{\epsilon,V} = H(\epsilon || V)$

- Don't share r as revocation value to the verifier directly, instead:
 - Set up a revocation agent
 - **2** Revocation agent computes for epoch ϵ and verifier V: $g_{\epsilon,V} = H(\epsilon ||V)$
 - **③** Create revocation list for revoked tokens r_i, \ldots, r_j : $RL = \{g_{\epsilon V}^{r_i}, \ldots, g_{\epsilon V}^{r_j}\}$
 - **4** Share RL with verifier V for epoch ϵ
 - \bigcirc On verifying, the verifier checks if the computed revocation value is in RL

- To avoid giving the issuer too much power:
 - 1 Set up a trusted Escrow Agent EA
 - 2 EA generates revocation tokens and maps these to IDs: (ID_i, r_i)
 - Using blind-issuing, allow users to obtain a credential from the issuer containing this revocation token r, while the issuer never sees r
 - **4** The issuer stores ID_i for revocation
- The issuer can revoke a token:
 - **1** Send a request to EA with token ID_i
 - **2** EA will revoke the token r_i by sharing it with the Revocation Agent
 - **③** The Revocation Agent updates its revocation list: $RL' = \{\dots, g_{\epsilon V}^{r_i}\}$

Lueks et al. — Overview

	Accumulators	VLR	Solution by Lueks et al.
User can be offline	No	Yes	Yes
Proving complexity	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
Verifying complexity	$\mathcal{O}(1)$	$\mathcal{O}(RL)$	$\mathcal{O}(1)$
Security	+	+	+
Privacy	+	+/-	+

Conclusion

Today:

- Problem of privacy-friendly revocation of credentials
- Revocation flow in Yivi: Accumulators
- Verifier Local Revocation
- Improved version by Lueks et al.
- Comparison of revocation schemes

Future reading:

- Lapon et al. "Analysis of Revocation Strategies for Anonymous Idemix Credentials" [6]
- Lueks et al. "Fast revocation of attribute-based credentials for both users and verifiers" [5]
- IRMA Docs Revocation: https://irma.app/docs/revocation/

References i

- Ralph C. Merkle. "Protocols for Public Key Cryptosystems". In: 1980 IEEE Symposium on Security and Privacy. ISSN: 1540-7993. Apr. 1980, pp. 122–122. DOI: 10.1109/SP.1980.10006.
- [2] Jan Camenisch and Anna Lysyanskaya. "Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials". In: Advances in Cryptology — CRYPTO 2002. Ed. by Gerhard Goos et al. Vol. 2442. Series Title: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 61–76. ISBN: 978-3-540-45708-4. DOI: 10.1007/3-540-45708-9_5.

References ii

- Foteini Baldimtsi et al. "Accumulators with Applications to Anonymity-Preserving Revocation". In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P). Paris: IEEE, Apr. 2017, pp. 301–315. ISBN: 978-1-5090-5762-7. DOI: 10.1109/EuroSP.2017.13.
- [4] Giuseppe Ateniese, Dawn Song, and Gene Tsudik. "Quasi-Efficient Revocation of Group Signatures". In: *Financial Cryptography*. Ed. by Gerhard Goos et al. Vol. 2357. Series Title: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 183–197. ISBN: 978-3-540-36504-4. DOI: 10.1007/3-540-36504-4_14.
- [5] Wouter Lueks et al. "Fast revocation of attribute-based credentials for both users and verifiers". In: Computers & Security 67 (June 2017), pp. 308–323. ISSN: 01674048. DOI: 10.1016/j.cose.2016.11.018.

References iii

[6] Jorn Lapon et al. "Analysis of Revocation Strategies for Anonymous Idemix Credentials". In: Communications and Multimedia Security. Ed. by Bart De Decker et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 3–17. ISBN: 978-3-642-24712-5. DOI: 10.1007/978-3-642-24712-5_1.