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Abstract. We describe the design and implementation of efficient sig-
nature and key-exchange schemes for the AVR ATmega and ARM Cor-
tex M0 microcontrollers, targeting the 128-bit security level. Our algo-
rithms are based on an efficient Montgomery ladder scalar multiplication
on the Kummer surface of Gaudry and Schost’s genus-2 hyperelliptic
curve, combined with the Jacobian point recovery technique of Chung,
Costello, and Smith. Our results are the first to show the feasibility of
software-only hyperelliptic cryptography on constrained platforms, and
represent a significant improvement on the elliptic-curve state-of-the-art
for both key exchange and signatures on these architectures. Notably, our
key-exchange scalar-multiplication software runs in under 9520k cycles
on the ATmega and under 2640k cycles on the Cortex M0, improving on
the current speed records by 32% and 75% respectively.
Keywords. Hyperelliptic curve cryptography, Kummer surface, AVR
ATmega, ARM Cortex M0.

1 Introduction

The current state of the art in asymmetric cryptography, not only on micro-
controllers, is elliptic-curve cryptography; the most widely accepted reasonable
security is the 128-bit security level. All current speed records for 128-bit se-
cure key exchange and signatures on microcontrollers are held—until now—by
elliptic-curve-based schemes. Outside the world of microcontrollers, it is well
known that genus-2 hyperelliptic curves and their Kummer surfaces present an
attractive alternative to elliptic curves [1, 2]. For example, at Asiacrypt 2014
Bernstein, Chuengsatiansup, Lange and Schwabe [3] presented speed records
for timing-attack-protected 128-bit-secure scalar multiplication on a range of
architectures with Kummer-based software. These speed records are currently
only being surpassed by the elliptic-curve-based FourQ software by Costello and
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Longa [4] presented at Asiacrypt 2015, which makes heavy use of efficiently
computable endomorphisms (i.e., of additional structure of the underlying ellip-
tic curve). The Kummer-based speed records in [3] were achieved by exploiting
the computational power of vector units of recent “large” processors such as Intel
Sandy Bridge, Ivy Bridge, and Haswell, or the ARM Cortex-A8. Surprisingly,
very little attention has been given to Kummer surfaces on embedded proces-
sors. Indeed, this is the first work showing the feasibility of software-only imple-
mentations of hyperelliptic-curve based crypto on constrained platforms. There
have been some investigations of binary hyperelliptic curves targeting the much
lower 80-bit security level, but those are actually examples of software-hardware
co-design showing that using hardware acceleration for field operations was nec-
essary to get reasonable performance figures (see eg. [5] and [6]).

In this paper we investigate the potential of genus-2 hyperelliptic curves for
both key exchange and signatures on the “classical” 8-bit AVR ATmega architec-
ture, and the more modern 32-bit ARM Cortex-M0 processor. The former has
the most previous results to compare to, while ARM is becoming more relevant
in real-world applications. We show that not only are hyperelliptic curves com-
petitive, they clearly outperform state-of-the art elliptic-curve schemes in terms
of speed and size. For example, our variable-basepoint scalar multiplication on
a 127-bit Kummer surface is 31% faster on AVR and 26% faster on the M0 than
the recently presented speed records for Curve25519 software by Düll, Haase,
Hinterwälder, Hutter, Paar, Sánchez, and Schwabe [7]; our implementation is
also smaller, and requires less RAM.

We use a recent result by Chung, Costello, and Smith [8] to also set new speed
records for 128-bit secure signatures. Specifically, we present a new signature
scheme based on fast Kummer surface arithmetic. It is inspired by the EdDSA
construction by Bernstein, Duif, Lange, Schwabe, and Yang [9]. On the ATmega,
it produces shorter signatures, achieves higher speeds and needs less RAM than
the Ed25519 implementation presented in [10].

ATmega Cortex M0
Cycles Stack bytes Cycles Stack bytes

keygen 10 206 181 812 2 774 087 1 056

sign 10 404 033 926 2 865 351 1 360

verify 16 240 510 992 4 453 978 1 432

dh_exchange 9 739 059 429 2 644 604 584

Table 1. Cycle counts and stack usage in bytes of all functions related to the signature
and key exchange schemes, for the AVR ATmega and ARMCortex M0 microcontrollers.

Our routines handling secret data are constant-time, and are thus naturally
resistant to timing attacks. These algorithms are built around the Montgomery
ladder, which improves resistance against simple-power-analysis (SPA) attacks.
Resistance to DPA attacks can easily be added to the implementation by ran-
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domizing the scalar and/or Jacobian points. Re-randomizing the latter after each
ladder step would also guarantee resistance against horizontal types of attacks.

Source code. We place all of the software described in this paper into the public
domain, to maximize the reuseability of our results. The software is available at
http://www.cs.ru.nl/~jrenes/.

2 High-level overview

We begin by describing the details of our signature and Diffie–Hellman schemes,
explaining the choices we made in their design. Concrete implementation details
appear in §3 and §4 below. Experimental results and comparisons follow in §5.

2.1 Signatures

Our signature scheme, defined at the end of this section, adheres closely to the
proposal of [8, §8], which in turn is a type of Schnorr signature [11]. There are
however some differences and trade-offs, which we discuss below.

Group structure. We build the signature scheme on top of the group structure
from the Jacobian JC(Fq) of a genus-2 hyperelliptic curve C. More specifically, C
is the Gaudry–Schost curve over the prime field Fq with q = 2127 − 1 (cf. §3.2).
The Jacobian is a group of order #JC(Fq) = 24N , where

N = 2250 − 0x334D69820C75294D2C27FC9F9A154FF47730B4B840C05BD

is a 250-bit prime. For more details on the Jacobian and its elements, see §3.3.

Hash function. We may use any hash function H with a 128-bit security level.
For our purposes, H(M) = SHAKE128(M, 512) suffices [12]. While SHAKE128 has
variable-length output, we only use the 512-bit output implementation.

Encoding. At the highest level, we operate on points Q in JC(Fq). To minimize
communication costs, we compress the usual 508-bit representation of Q into a
256-bit encoding Q (see §3.3). (This notation is the same as in [9].)

Public generator. The public generator can be any element P of JC(Fq) such
that [N ]P = 0. In our implementation we have made the arbitrary choice P =
(X2 + u1X + u0, v1X + v0), where

u1 = 0x7D5D9C3307E959BF27B8C76211D35E8A, u0 = 0x2703150F9C594E0CA7E8302F93079CE8,

v1 = 0x444569AF177A9C1C721736D8F288C942, v0 = 0x7F26CFB225F42417316836CFF8AEFB11.

This is the point which we use the most for scalar multiplication. Since it remains
fixed, we assume we have its decompressed representation precomputed, so as
to avoid having to perform the relatively expensive decompression operation
whenever we need a scalar multiplication; this gives a low-cost speed gain. We
further assume we have a “wrapped” representation of the projection of P to the
Kummer surface, which is used to speed up the xDBLADD function. See §4.1 for
more details on the xWRAP function.
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Public keys. In contrast to the public generator, we assume public keys are
compressed: they are communicated much more frequently, and we therefore
benefit much more from smaller keys. Moreover, we include the public key in
one of the hashes during the sign operation [13,14], computing h = H(R||Q||M)
instead of the h = H(R||M) originally suggested by Schnorr [11]. This protects
against adversaries attacking multiple public keys simultaneously.

Compressed signatures. Schnorr [11] mentions the option of compressing signa-
tures by hashing one of their two components: the hash size only needs to be
b/2 bits, where b is the key length. Following this suggestion, our signatures are
384-bit values of the form (h128||s), where h128 means the lowest 128 bits of
h = H(R||Q||M), and s is a 256-bit scalar. The most obvious upside is that sig-
natures are smaller, reducing communication overhead. Another big advantage
is that we can exploit the half-size scalar to speed up signature verification. On
the other hand, we lose the possibility of efficient batch verification.

Verification efficiency. The most costly operation in signature verification is
the two-dimensional scalar multiplication T = [s]P ⊕ [h128]Q. In [8], the authors
propose an algorithm relying on the differential addition chains presented in [15].
However, since we are using compressed signatures, we have a small scalar h128.
Unfortunately the two-dimensional algorithm in [8] cannot directly exploit this
fact, therefore not obtaining much benefit from the compressed signature. On
the other hand, we can simply compute [s]P and [h128]Q separately using the
fast scalar multiplication on the Kummer surface and finally add them together
on the Jacobian. Here [s]P is a 256-bit scalar multiplication, whereas [h128]Q is
only a 128-bit scalar multiplication. Not only do we need fewer cycles compared
to the two-dimensional routine, but we also reduce code size by reusing the
one-dimensional scalar multiplication routine.

The scheme. We now define our signature scheme, taking the above into account.

Key generation (keygen). Let d be a 256-bit secret key, and P the public
generator. Compute (d′||d′′) ← H(d) (with d′ and d′′ both 256 bits), then
Q← [16d′]P . The public key is Q.

Signing (sign). Let M be a message, d a 256-bit secret key, P the public gen-
erator, and Q a compressed public key. Compute (d′||d′′) ← H(d) (with
d′ and d′′ both 256 bits), then r ← H(d′′||M), then R ← [r]P , then h ←
H(R||Q||M), and finally s← (r − 16h128d

′) mod N . The signature is (h128||s).
Verification (verify). Let M be a message with a signature (h128||s) corre-

sponding to a public key Q, and let P be the public generator. Compute
T ← [s]P ⊕ [h128]Q, then g ← H(T ||Q||M). The signature is correct if
g128 = h128, and incorrect otherwise.

Remark 1. We note that there may be faster algorithms to compute the “one-
and-a-half-dimensional” scalar multiplication in verify, especially since we do
not have to worry about being constant-time. One option might be to adapt
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Montgomery’s PRAC [16, §3.3.1] to make use of the half-size scalar. But while
this may lead to a speed-up, it would also cause an increase in code size compared
to simply re-using the one-dimensional scalar multiplication. We have chosen not
to pursue this line, preferring the solid benefits of reduced code size instead.

2.2 Diffie-Hellman key exchange.

For key exchange it is not necessary to have a group structure; it is enough to
have a pseudo-multiplication. We can therefore carry out our the key exchange
directly on the Kummer surface KC = JC/〈±〉, gaining efficiency by not pro-
jecting from and recovering to the Jacobian JC . If Q is a point on JC , then its
image in KC is ±Q. The common representation for points in KC(Fq) is a 512-bit
4-tuple of field elements. For input points (i. e. the generator or public keys), we
prefer the 384-bit “wrapped” representation (see §3.5). This not only reduces key
size, but it also allows a speed-up in the core xDBLADD subroutine. The wrapped
representation of a point ±Q on KC is denoted by ±Q.

Key exchange (dh_exchange). Let d be a 256-bit secret key, and ±P the pub-
lic generator (respectively public key). Compute ±Q ← ±[d]P . The gener-
ated public key (respectively shared secret) is ±Q.

Remark 2. While it might be possible to reduce the key size even further to 256
bits, we would then have to pay the cost of compressing and decompressing,
and also wrapping for xDBLADD (see the discussion in [8, App. A]). We therefore
choose to keep the 384-bit representation, which is consistent with [3].

3 Building blocks: algorithms and their implementation

We begin by presenting the finite field F2127−1 in §3.1. We then define the curve
C in §3.2, before giving basic methods for the elements of JC in §3.3. We then
present the fast Kummer KC and its differential addition operations in §3.4.

3.1 The field Fq

We work over the prime finite field Fq, where q is the Mersenne prime

q := 2127 − 1 .

We let M, S, a, s, neg, and I denote the costs of multiplication, squaring, ad-
dition, subtraction, negation, and inversion in Fq. Later, we will define a special
operation for multiplying by small constants: its cost is denoted by mc.

For complete field arithmetic we implement modular reduction, addition, sub-
traction, multiplication, and inversion. We comment on some important aspects
here, giving cycle counts in Table 2.

We can represent elements of Fq as 127-bit values; but since the ATmega and
Cortex M0 work with 8- and 32-bit words, respectively, the obvious choice is to

5



represent field elements with 128 bits. That is, an element g ∈ Fq is represented
as g =

∑15
i=0 gi2

8i on the AVR ATmega platform and as g =
∑3
i=0 g

′
i2

32i on the
Cortex M0, where gi ∈ {0, . . . , 28 − 1}, g′i ∈ {0, . . . , 232 − 1}.

Working with the prime field Fq, we need integer reduction modulo q; this is
implemented as bigint_red. Reduction is very efficient because 2128 ≡ 2 mod q,
which enables us to reduce using only shifts and integer additions. Given this
reduction, we implement addition and subtraction operations for Fq (as gfe_add
and gfe_sub, respectively) in the obvious way.

The most costly operations in Fq are multiplication (gfe_mul) and squar-
ing (gfe_sqr), which are implemented as 128 × 128-bit bit integer operations
(bigint_mul and bigint_sqr) followed by a call to bigint_red. Since we are
working on the same platforms as [7] in which both of these operations are al-
ready highly optimized, we took the necessary code from those implementations:

– On the AVR ATmega: The authors of [17] implement a 3-level Karatsuba
multiplication of two 256-bit integers, representing elements f of F2255−19 as
f =

∑31
i=0 fi2

8i with fi ∈ {0, . . . , 28 − 1}. Since the first level of Karatsuba
relies on a 128 × 128-bit integer multiplication routine named MUL128, we
simply lift this function out to form a 2-level 128× 128-bit Karatsuba mul-
tiplication. Similarly, their 256 × 256-bit squaring relies on a 128 × 128-bit
routine SQR128, which we can (almost) directly use. Since the 256× 256-bit
squaring is 2-level Karatsuba, the 128×128-bit squaring is 1-level Karatsuba.

– On the ARM Cortex M0: The authors of [7] use optimized Karatsuba mul-
tiplication and squaring. Their assembly code does not use subroutines, but
fully inlines 128×128-bit multiplication and squaring. The 256×256-bit mul-
tiplication and squaring are both 3-level Karatsuba implementations. Hence,
using these, we end up with 2-level 128 × 128-bit Karatsuba multiplication
and squaring.

The function gfe_invert computes inversions in Fq as exponentiations, using
the fact that g−1 = gq−2 for all g in F×q . To do this efficiently we use an addition
chain for q − 2, doing the exponentiation in 10M+ 126S.

Finally, to speed up our Jacobian point decompression algorithms, we define
a function gfe_powminhalf which computes g 7→ g−1/2 for g in Fq (up to a
choice of sign). To do this, we note that g−1/2 = ±g−(q+1)/4 = ±g(3q−5)/4 in Fq;
this exponentiation can be done with an addition chain of length 136, using
11M+125S. We can then define a function gfe_sqrtinv, which given (x, y) and
a bit b, computes (

√
x, 1/y) as (±xyz, xyz2) where z = gfe_powminhalf(xy2),

choosing the sign so that the square root has least significant bit b. Including
the gfe_powminhalf call, this costs 15M + 126S + 1neg.

3.2 The curve C and its theta constants

We define the curve C “backwards”, starting from its (squared) theta constants

a := −11 , b := 22 , c := 19 , and d := 3 in Fq .
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AVR ATmega ARM Cortex M0 Symbolic cost

bigint_mul 1 654 410

bigint_sqr 1 171 260

bigint_red 438 71

gfe_mul 1 952 502 M
gfe_sqr 1469 353 S

gfe_mulconst 569 83 mc

gfe_add 400 62 a
gfe_sub 401 66 s

gfe_invert 169 881 46 091 I
gfe_powminhalf 169 881 46 294 11M + 125S
gfe_sqrtinv 178 041 48 593 15M + 126S + 1neg

Table 2. Cycle counts for our field implementation (including function-call overhead).

From these, we define the dual theta constants

A := a+ b+ c+ d = 33 , B := a+ b− c− d = −11 ,
C := a− b+ c− d = −17 , D := a− b− c+ d = −49 .

Observe that projectively,

(1/a : 1/b : 1/c : 1/d) = (114 : −57 : −66 : −418) ,
(1/A : 1/B : 1/C : 1/D) = (−833 : 2499 : 1617 : 561) .

Crucially, all of these constants can be represented using just 16 bits each. Since
Kummer arithmetic involves many multiplications by these constants, we im-
plement a separate 16× 128-bit multiplication function gfe_mulconst. For the
AVR ATmega, we store the constants in two 8-bit registers. For the Cortex M0,
the values fit into a halfword; this works well with the 16×16-bit multiplication.
Multiplication by any of these 16-bit constants costs mc.

Continuing, we define e/f := (1 + α)/(1− α), where α2 = CD/AB (we take
the square root with least significant bit 0), and thus

λ := ac/bd = 0x15555555555555555555555555555552 ,

µ := ce/df = 0x73E334FBB315130E05A505C31919A746 ,

ν := ae/bf = 0x552AB1B63BF799716B5806482D2D21F3 .

These are the Rosenhain invariants of the curve C, found by Gaudry and Schost [18],
which we are (finally!) ready to define as

C : Y 2 = fC(X) := X(X − 1)(X − λ)(X − µ)(X − ν) .

The curve constants are the coefficients of fC(X) =
∑5
i=0 fiX

i: so f0 = 0, f5 = 1,

f1 = 0x1EDD6EE48E0C2F16F537CD791E4A8D6E , f2 = 0x73E799E36D9FCC210C9CD1B164C39A35 ,

f3 = 0x4B9E333F48B6069CC47DC236188DF6E8 , f4 = 0x219CC3F8BB9DFE2B39AD9E9F6463E172 .
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We store the squared theta constants (a : b : c : d), along with (1/a : 1/b :
1/c : 1/d), and (1/A : 1/B : 1/C : 1/D); the Rosenhain invariants λ, µ, and ν,
together with λµ and λν; and the curve constants f1, f2, f3, and f4, for use in our
Kummer and Jacobian arithmetic functions. Obviously, none of the Rosenhain
or curve constants are small; multiplying by these costs a full M.

3.3 Elements of JC, compressed and decompressed.

Our algorithms use the usual Mumford representation for elements of JC(Fq):
they correspond to pairs 〈u(X), v(X)〉, where u and v are polynomials over Fq
with u monic, deg v < deg u ≤ 2, and v(X)2 ≡ fC(X) (mod u(X)). We compute
the group operation ⊕ in JC(Fq) using a function ADD, which implements the al-
gorithm found in [19] (after a change of coordinates to meet their Assumption 1)3
at a cost of 28M + 2S + 11a + 24s + 1I.

For transmission, we compress the 508-bit Mumford representation to a 256-
bit form. Our functions compress (Algorithm 1) and decompress (Algorithm 2)
implement Stahlke’s compression technique (see [20] and [8, App. A] for details).

Algorithm 1: compress: compresses points on JC to 256-bit strings. Sym-
bolic cost: 3M + 1S + 2a + 2s. ATmega: 8 016 cycles. Cortex M0: 2 186
cycles.

Input:
〈
X2 + u1X + u0, v1X + v0

〉
= P ∈ JC .

Output: A string b0 · · · b255 of 256 bits.
1 w← 4((u1 · v0 − u0 · v1) · v1 − v20) // 3M + 1S + 2a + 2s
2 b0 ← LeastSignificantBit(v1)
3 b128 ← LeastSignificantBit(w)
4 return b0||u0||b128||u1

3.4 The Kummer surface KC

The Kummer surface of C is the quotient KC := JC/〈±1〉; points on KC corre-
spond to points on JC taken up to sign. If P is a point in JC , then we write

(xP : yP : zP : tP ) = ±P

for its image in KC . To avoid subscript explosion, we make the following conven-
tion: when points P and Q on JC are clear from the context, we write

(x⊕ : y⊕ : z⊕ : t⊕) = ±(P ⊕Q) and (x	 : y	 : z	 : t	) = ±(P 	Q) .

3 We only call ADD once in our algorithms, so for lack of space we omit its description.
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Algorithm 2: decompress: decompresses 256-bit string to a point on JC .
Symbolic cost: 46M + 255S + 17a + 12s + 6neg. ATmega: 386 524 cycles
Cortex M0: 106 013 cycles

Input: A string b0 · · · b255 of 256 bits.
Output:

〈
X2 + u1X + u0, v1X + v0

〉
= P ∈ JC .

1 U1 = b129 · · · b256 as an element of Fq
2 U0 = b1 · · · b127 as an element of Fq
3 T1 ← U2

1 // 1S
4 T2 ← U0 − T1 // 1s
5 T3 ← U0 + T2 // 1a
6 T4 ← U0 · (T3 · f4 + (U1 · f3 − 2f2)) // 3M + 1a + 2s
7 T3 ← −T3 // 1neg
8 T1 ← T3 − U0 // 1s
9 T4 ← 2(T4 + (T1 · U0 + f1) · U1) // 2M + 3a

10 T1 ← 2(T1 − U0)) // 1a + 1s
11 T5 ← ((U0 − (f3 + U1 · (U1 − f4))) · U0 + f1)

2 // 2M + 1S + 2a + 2s
12 T5 ← T2

4 − 2T5 · T1 // 1M + 1S + 1a + 1s
13 (T6,T5)← gfe_sqrtinv(T5,T1, b1) // 19M + 127S + 2neg
14 T4 ← (T5 − T4) · T6 // 1M + 1s
15 T5 ← −f4 · T2 − ((T3 − f3) · U1) + f2 + T4 // 2M + 2s + 2a + 1neg
16 T6 = gfe_powminhalf(4T6) // = 1/(2v1). 11M + 125S + 2a
17 V1 ← 2T5 · T6 // 1M + 1a
18 if b0 6= LeastSignificantBit(V1) then (V1,T6)← (−V1,−T6) // 2neg
19 T5 ← (U1 · f4 + (T2 − f3)) · U0 // 2M + 1a + 1s
20 V0 ← (U1 · T4 + T5 + f1) · T6 // 2M + 2a
21 return

〈
X2 + U1X + U0,V1X + V0

〉



The Kummer surface of this C has a “fast” model in P3 defined by

KC : E · xyzt =

(
(x2 + y2 + z2 + t2)

−F · (xt+ yz)−G · (xz + yt)−H · (xy + zt)

)2

where

F =
a2 − b2 − c2 + d2

ad− bc
, G =

a2 − b2 + c2 − d2

ac− bd
, H =

a2 + b2 − c2 − d2

ab− cd
,

and E = 4abcd (ABCD/((ad− bc)(ac− bd)(ab− cd)))2 (see eg. [21], [22], and
[23]). The identity point 〈1, 0〉 of JC maps to

±0JC = (a : b : c : d) .

Algorithm 3 (Project) maps general points from JC(Fq) into KC . The “special”
case where u is linear is treated in [8, §7.2]; this is not implemented, since Project
only operates on public generators and keys, none of which are special.

Algorithm 3: Project: JC → KC . Symbolic cost: 8M + 1S + 4mc + 7a
+ 4s. ATmega: 20 205 cycles. Cortex M0: 5 667 cycles.

Input:
〈
X2 + u1X + u0, v1X + v0

〉
= P ∈ JC .

Output: (xP : yP : zP : tP ) = ±P ∈ KC .
1 (T1,T2,T3,T4)← (µ− u0, λν − u0, ν − u0, λµ− u0) // 4s
2 T5 ← λ+ u1 // 1a
3 T7 ← u0 · ((T5 + µ) · T3) // 2M + 1a
4 T5 ← u0 · ((T5 + ν) · T1) // 2M + 1a
5 (T6,T8)← (u0 · ((µ+ u1) · T2 + T2), u0 · ((ν + u1) · T4 + T4)) // 4M + 4a
6 T1 ← v20 // 1S
7 (T5,T6,T7,T8)← (T5 − T1,T6 − T1,T7 − T1,T8 − T1) // 4s
8 return (a · T5 : b · T6 : c · T7 : d · T8) // 4mc

3.5 Pseudo-addition on KC.

While the points of KC do not form a group, we have a pseudo-addition operation
(differential addition), which computes ±(P ⊕Q) from ±P , ±Q, and ±(P 	Q).
The function xADD (Algorithm 4) implements the standard differential addition.
The special case where P = Q yields a pseudo-doubling operation.

To simplify the presentation of our algorithms, we define three operations on
points in P3. First,M : P3 × P3 → P3 multiplies corresponding coordinates:

M : ((x1 : y1 : z1 : t1), (x2 : y2 : z2 : t2)) 7−→ (x1x2 : y1y2 : z1z2 : t1t2) .
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The special case (x1 : y1 : z1 : t1) = (x2 : y2 : z2 : t2) is denoted by

S : (x : y : z : t) 7−→ (x2 : y2 : z2 : t2) .

Finally, the Hadamard transform4 is defined by

H : (x : y : z : t) 7−→ (x′ : y′ : z′ : t′) where


x′ = x+ y + z + t ,

y′ = x+ y − z − t ,
z′ = x− y + z − t ,
t′ = x− y − z + t .

Clearly M and S cost 4M and 4S, respectively. The Hadamard transform can
easily be implemented with 4a+4s. However, the additions and subtractions are
relatively cheap, making function call overhead a large factor. To minimize this
we inline the Hadamard transform, trading a bit of code size for efficiency.

Algorithm 4: xADD: Differential addition on KC . Symbolic cost: 14M +
4S+ 4mc + 12a+ 12s. ATmega: 34 774 cycles. Cortex M0: 9 598 cycles.

Input: (±P,±Q,±(P 	Q)) ∈ K3
C for some P and Q on JC .

Output: ±(P ⊕Q) ∈ KC .
1 (V1,V2)← (H(±P ),H(±Q)) // 8a + 8s
2 V1 ←M(V1,V2) // 4M
3 V1 ←M(V1, (1/A : 1/B : 1/C : 1/D)) // 4mc

4 V1 ← H(V1) // 4a + 4s
5 V1 ← S(V1) // 4S
6 (C1,C2)← (z	 · t	, x	 · y	) // 2M
7 V2 ←M((C1 : C1 : C2 : C2), (y	 : x	 : t	 : z	)) // 4M
8 returnM(V1,V2) // 4M

Lines 5 and 6 of Algorithm 4 only involve the third argument, ±(P 	 Q);
essentially, they compute the point (y	z	t	 : x	z	t	 : x	y	t	 : x	y	z	)
(which is projectively equivalent to (1/x	 : 1/y	 : 1/z	 : 1/t	), but requires
no inversions; note that this is generally not a point on KC). In practice, the
pseudoadditions used in our scalar multiplication all use a fixed third argument,
so it makes sense to precompute this “inverted” point and to scale it by x	 so
that the first coordinate is 1, thus saving 7M in each subsequent differential
addition for a one-off cost of 1I. The resulting data can be stored as the 3-tuple
(x	/y	, x	/z	, x	/t	), ignoring the trivial first coordinate: this is the wrapped
form of ±(P	Q). The function xWRAP (Algorithm 5) applies this transformation.

Algorithm 6 combines the pseudo-doubling with the differential addition,
sharing intermediate operands, to define a differential double-and-add xDBLADD.
This is the fundamental building block of the Montgomery ladder.
4 Note that (A : B : C : D) = H((a : b : c : d)) and (a : b : c : d) = H((A : B : C : D)).
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Algorithm 5: xWRAP: (x : y : z : t) 7→ (x/y, x/z, x/t). Symbolic cost: 7M
+ 1I ATmega: 182 251 cycles. Cortex M0: 49 609 cycles.

Input: (x : y : z : t) ∈ P3

Output: (x/y, x/z, x/t) ∈ F3
q.

1 V1 ← y · z // 1M
2 V2 ← x/(V1 · t) // 2M + 1I
3 V3 ← V2 · t // 1M
4 return (V3 · z,V3 · y,V1 · V2) // 3M

Algorithm 6: xDBLADD: Combined differential double-and-add. The dif-
ference point is wrapped. Symbolic cost: 7M + 12S + 12mc + 16a + 16s.
ATmega: 36 706 cycles. Cortex M0: 9 861 cycles.

Input: (±P,±Q, (x	/y	, x	/z	, x	/t	)) ∈ K2
C × Fq.

Output: (±[2]P,±(P ⊕Q)) ∈ K2
C .

1 (V1,V2)← (H(V1),H(V2)) // 8a + 8s
2 (V1,V2)← (S(V1),M(V1,V2)) // 4M+4S
3 (V1,V2)←

(
M(V1, (

1
A

: 1
B

: 1
C

: 1
D
)),M(V2, (

1
A

: 1
B

: 1
C

: 1
D
))
)

// 8mc

4 (V1,V2)← (H(V1),H(V2)) // 8a + 8s
5 (V1,V2)← (S(V1),S(V2)) // 8S
6 (V1,V2)← (M(V1, (

1
a
: 1
b
: 1
c
: 1
d
)),M(V2, (1 :

x	
y	

:
x	
z	

:
x	
t	

))) // 3M + 4mc

7 return (V1,V2)

M S mc a s neg I ATmega Cortex M0

ADD 28 2 0 11 24 0 1 228 552 62 886

Project 8 1 4 7 8 0 0 20 205 5 667

xWRAP 7 0 0 0 0 0 1 182 251 49 609

xUNWRAP 4 0 0 0 0 0 0 7 297 2 027

xADD 14 4 4 12 12 0 0 34 774 9 598

xDBLADD 7 12 12 16 16 0 0 36 706 9 861

recoverGeneral 77 8 0 19 10 3 1 318 910 88 414

fast2genPartial 11 0 0 9 0 0 0 21 339 6 110

fast2genFull 15 0 0 12 0 0 0 29 011 8 333

recoverFast 139 12 4 70 22 5 1 447 176 124 936

compress 3 1 0 2 2 0 0 8 016 2 186

decompress 46 255 0 17 12 6 0 386 524 106 013

Table 3. Operation and cycle counts of basic functions on the Kummer and Jacobian.

4 Scalar multiplication

All of our cryptographic routines are built around scalar multiplication in JC and
pseudo-scalar multiplication in KC . We implement pseudo-scalar multiplication
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using the classic Montgomery ladder in §4.1. In §4.2, we extend this to full scalar
multiplication on JC using the point recovery technique proposed in [8].

4.1 Pseudomultiplication on KC

Since [m](	P ) = 	[m]P for all m and P , we have a pseudo-scalar multiplication
operation (m,±P ) 7−→ ±[m]P on KC , which we compute using Algorithm 7
(the Montgomery ladder), implemented as crypto_scalarmult. The loop of
Algorithm 7 maintains the following invariant: at the end of iteration i we have

(V1, V2) = (±[k]P,±[k + 1]P ) where k =
∑β−1
j=i mj2

β−1−i .

Hence, at the end we return ±[m]P , and also ±[m+ 1]P as a (free) byproduct.
We suppose we have a constant-time conditional swap routine CSWAP(b, (V1, V2)),
which returns (V1, V2) if b = 0 and (V2, V1) if b = 1. This makes the execution of
Algorithm 7 uniform and constant-time, and thus suitable for use with secret m.

Algorithm 7: crypto_scalarmult: Montgomery ladder on KC . Uniform
and constant-time: may be used for secret scalars. The point is wrapped.
Symbolic cost: (4+7β)M+12βS+12βmc+16βa+16βs, where β = scalar
bitlength. ATmega: 9 513 536 cycles. Cortex: 2 633 662 cycles.

Input: (m =
∑β−1
i=0 mi2

i, (xP /yP , xP /zP , xP /tP )) ∈ [0, 2β)× F3
q for ±P in KC .

Output: (±[m]P,±[m+ 1]P ) ∈ K2
C .

1 V1 ← (a : b : c : d)
2 V2 ← xUNWRAP(xP /yP , xP /zP , xP /tP ) // = ±P. 4M
3 for i = 250 down to 0 do // 7βM + 12βS + 12βmc + 16βa + 16βs
4 (V1,V2)← CSWAP(mi, (V1,V2))
5 (V1,V2)← xDBLADD(V1,V2, (xP /yP , xP /zP , xP /tP ))
6 (V1,V2)← CSWAP(mi, (V1,V2))

7 return (V1,V2)

Our implementation of crypto_scalarmult assumes that its input Kum-
mer point ±P is wrapped. This follows the approach of [3]. Indeed, many calls
to crypto_scalarmult involve Kummer points that are stored or transmitted
in wrapped form. However, crypto_scalarmult does require the unwrapped
point internally—if only to initialize one variable. We therefore define a function
xUNWRAP (Algorithm 8) to invert the xWRAP transformation at a cost of only 4M.

4.2 Point recovery from KC to JC

Point recovery means efficiently computing [m]P on JC given ±[m]P on KC
and some additional information. In our case, the additional information is the
base point P and the second output of the Montgomery ladder, ±[m + 1]P .
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Algorithm 8: xUNWRAP: (x/y, x/z, x/t) 7→ (x : y : z : t). Symbolic cost:
4M. ATmega: 7 297 cycles. Cortex: 2 027 cycles.

Input: (u, v, w) ∈ F3
q s.t. u = xP /yP , v = xP /zP , w = xP /tP for ±P ∈ KC

Output: (xP : yP : zP : tP ) ∈ P3

1 (T1,T2,T3)← (v · w, u · w, u · v) // 3M
2 return (T3 · w : T1 : T2 : T3) // 1M

Algorithm 9: Recover: From KC to JC . Symbolic cost: 139M + 12S +
4mc + 70a + 22s + 3neg + 1I. ATmega: 447 176 cycles. Cortex: 124 936
cycles.

Input: (P,±P,±Q,±(P ⊕Q)) ∈ JC ×K3
C for some P,Q in JC .

Output: Q ∈ JC .
1 gP← fast2genPartial(±P ) // 11M + 9a
2 gQ← fast2genFull(±Q) // 15M + 12a
3 gS← fast2genPartial(±(P ⊕Q)) // 11M + 9a
4 xD← xADD(±P,±Q,±(P ⊕Q)) // 14M + 4S + 4m_c + 12a + 12s
5 gD← fast2genPartial(xD) // 11M + 9a
6 return recoverGeneral(P, gP, gQ, gS, gD) // 77M+8S+19a+10s+3neg+1I

Algorithm 9 (Recover) implements the point recovery described in [8]. This is
the genus-2 analogue of the elliptic-curve methods in [24], [25], and [26].

We refer the reader to [8] for technical details on this method, but there is
one important mathematical detail that we should mention (since it is reflected
in the structure of our code): point recovery is more natural starting from the
general Flynn model K̃C of the Kummer, because it is more closely related to the
Mumford model for JC . Algorithm 9 therefore proceeds in two steps: first Algo-
rithms 10 (fast2genFull) and 11 (fast2genPartial) map the problem into K̃C ,
and then we recover from K̃C to JC using Algorithm 12 (recoverGeneral).

Since the general Kummer K̃C only appears briefly in our recovery procedure
(we never use its relatively slow arithmetic operations), we will not investigate
it in detail here—but the curious reader may refer to [27] for the general theory.
For our purposes, it suffices to recall that K̃C is, like KC , embedded in P3; and the
isomorphism KC → K̃C is defined (in eg. [8, §7.4]) by the linear transformation

(xP : yP : zP : tP ) 7−→ (x̃P : ỹP : z̃P : t̃P ) := (xP : yP : zP : tP )L ,

where L is (any scalar multiple of) the matrix
a−1(ν − λ) a−1(µν − λ) a−1λν(µ− 1) a−1λν(µν − λ)
b−1(µ− 1) b−1(µν − λ) b−1µ(ν − λ) b−1µ(µν − λ)
c−1(λ− µ) c−1(λ− µν) c−1λµ(1− ν) c−1λµ(λ− µν)
d−1(1− ν) d−1(λ− µν) d−1ν(λ− µ) d−1ν(λ− µν)

 ,
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which we precompute and store. If ±P is a point on KC , then ±̃P denotes its
image on K̃C ; we compute ±̃P using Algorithm 10 (fast2genFull).

Algorithm 10: fast2genFull: The map KC → K̃C . Symbolic cost: 15M+
12a. ATmega: 29 011 cycles. Cortex: 8 333 cycles.

Input: ±P ∈ KC
Output: ±̃P ∈ K̃C .

1 x̃P ← xP + (L12/L11)yP + (L13/L11)zP + (L14/L11)tP // 3M+ 3a
2 ỹP ← (L21/L11)xP + (L22/L11)yP + (L23/L11)zP + (L24/L11)tP // 4M+ 3a
3 z̃P ← (L31/L11)xP + (L32/L11)yP + (L33/L11)zP + (L34/L11)tP // 4M+ 3a
4 t̃P ← (L41/L11)xP + (L42/L11)yP + (L43/L11)zP + (L44/L11)tP // 4M+ 3a
5 return (x̃P : ỹP : z̃P : t̃P )

Sometimes we only require the first three coordinates of ±̃P . Algorithm 11
(fast2genPartial) saves 4M+ 3a per point by not computing t̃P .

Algorithm 11: fast2genPartial: The map KC → P2. Symbolic cost:
11M+ 9a. ATmega: 21 339 cycles. Cortex: 8 333 cycles.

Input: ±P ∈ KC .
Output: (x̃P : ỹP : z̃P ) ∈ P2

1 x̃P ← xP + (L12/L11)yP + (L13/L11)zP + (L14/L11)tP // 3M+ 3a
2 ỹP ← (L21/L11)xP + (L22/L11)yP + (L23/L11)zP + (L24/L11)tP // 4M+ 3a
3 z̃P ← (L31/L11)xP + (L32/L11)yP + (L33/L11)zP + (L34/L11)tP // 4M+ 3a
4 return (x̃P : ỹP : z̃P )

4.3 Full scalar multiplication on JC

We now combine our pseudo-scalar multiplication function crypto_scalarmult
with the point-recovery function Recover to define a full scalar multiplication
function jacobian_scalarmult (Algorithm 13) on JC .

Remark 3. jacobian_scalarmult takes not only a scalar m and a Jacobian
point P in its Mumford representation, but also the wrapped form of ±P as an
auxiliary argument: that is, we assume that xP ← Project(P ) and xWRAP(xP)
have already been carried out. This saves redundant Project and xWRAP calls
when operating on fixed base points, as is often the case in our protocols. Nev-
ertheless, jacobian_scalarmult could easily be converted to a “pure” Jacobian
scalar multiplication function (with no auxiliary input) by inserting appropriate
Project and xWRAP calls at the start, and removing the xUNWRAP call at Line 2,
increasing the total cost by 11M + 1S + 4mc + 7a + 8s + 1I.
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Algorithm 12: recoverGeneral: From K̃C to JC . Symbolic cost: 77M+
8S+19a+10s+3neg+1I. ATmega: 318 910 cycles. Cortex: 88 414 cycles.

Input: (P, ±̃P , ±̃Q, ˜±(P⊕Q), ˜±(P	Q)) ∈ JC × K̃4
C for some P and Q in JC .

The values of t̃P , t̃⊕, and t̃	 are not required.
Output: Q ∈ JC .

1 (Z1,Z2)← (ỹP · x̃Q − x̃Q · ỹP , x̃P · z̃Q − z̃P · x̃Q) // 4M+2s
2 T1← Z1 · z̃P // 1M
3 mZ3← Z2 · ỹP + T1 // 1M + 1a
4 D← Z22 · x̃P + mZ3 · Z1 // 2M + 1S + 1a
5 T2← Z1 · Z2 // 1M
6 T3← x̃P · x̃Q // 1M
7 E← T3 · (T3 · (f2 · Z22 − f1 · T2) + t̃Q · D) // 5M + 1S + 1a + 1s
8 E← E + mZ3 · x̃2Q · (f3 · Z2 · x̃P + f4 ·mZ3) // 5M + 1S + 2a
9 E← E + mZ3 · x̃Q · (mZ3 · ỹQ − Z2 · x̃P · z̃Q) // 5M + 1a + 1s

10 X1← x̃P · (Z2 · v1(P )− Z1 · v0(P )) // 3M + 1s
11 T4← Z1 · ỹP + Z2 · x̃P // 2M + 1a
12 X2← T1 · v1(P ) + T4 · v0(P ) // 2M + 1a
13 C5← Z12 − T4 · x̃Q // 1M + 1S + 1s
14 C6← T1 · x̃Q + T2 // 1M + 1a
15 T5← z̃⊕ · x̃	 − x̃⊕ · z̃	 // 2M + 1s
16 X3← X1 · T5− X2 · (x̃⊕ · ỹ	 − ỹ⊕ · x̃	) // 4M + 2s
17 (X5,X6)← (X3 · C5,X3 · C6) // 2M
18 X4← T3 · (X1 · (z̃⊕ · ỹ	 − ỹ⊕ · z̃	) + T5 · X2) // 5M + 1a + 1s
19 (X7,X8)← (X5 + Z1 · X4,X6 + Z2 · Z4) // 2M + 2a
20 T6← x̃⊕ · x̃	 // 1M
21 E← −T6 · T3 · (E · x̃2P + (X1 · T3)2) // 5M + 2S + 1a + 1neg
22 (X9,X10)← (E · X7,E · X8) // 2M
23 F← X2 · (x̃⊕ · ỹ	 + ỹ⊕ · x̃	) + X1 · (z̃⊕ · x̃	 + x̃⊕ · z̃	) // 6M + 3a
24 F← X1 · F + 2(X22 · T6) // 2M + 1S + 2a
25 F← −2(F · D · T6 · T3 · T32 · x̃P ) // 5M + 1S + 1a + 1neg
26 (U1,U0)← (−F · ỹQ,F · z̃Q) // 2M + 1neg
27 Fi← 1/(F · x̃Q) // 1M + 1I
28 (u′1, u

′
0, v
′
1, v
′
0)← (Fi · U1,Fi · U0,Fi · X9,Fi · X10) // 4M

29 return
〈
X2 + u′1X + u′0, v

′
1X + v′0

〉
Algorithm 13: jacobian_scalarmult: Scalar multiplication on JC , using
the Montgomery ladder on KC and recovery to JC . Assumes wrapped pro-
jected point as auxiliary input. Symbolic cost: (7β+143)M+(12β+12)S+
(12β + 4)mc + (70 + 16β)a + (22 + 16β)s + 3neg + I. ATmega: 9 968 127
cycles. Cortex: 2 709 401 cycles.

Input: (m,P, (xP /yP , xP /zP , xP /tP )) ∈ [0, 2β)× JC
Output: [m]P ∈ JC

1 (X0,X1)← crypto_scalarmult(m, (xP /yP , xP /zP , xP /tP ))
// (7β + 4)M+12βS+12βmc+16βa+16βs

2 xP← xUNWRAP((xP /yP , xP /zP , xP /tP )) // 4M
3 return Recover(P, xP,X0,X1) // 139M+12S+4mc+70a+22s+3neg+1I



5 Results and comparison

The high-level cryptographic functions for our signature scheme are named
keygen, sign and verify. Their implementations contain no surprises: they
do exactly what was specified in §2.1, calling the lower-level functions described
in §3 and §4 as required. Our Diffie-Hellman key generation and key exchange
use only the function dh_exchange, which implements exactly what we specified
in §2.2: one call to crypto_scalarmult plus a call to xWRAP to convert to the
correct 384-bit representation. Table 1 (in the introduction) presents the cycle
counts and stack usage for all of our high-level functions.

Code and compilation. For our experiments, we compiled our AVR ATmega code
with avr-gcc -O2, and our ARM Cortex M0 code with clang -O2 (the opti-
mization levels -O3, -O1, and -Os gave fairly similar results). The total program
size is 20 242 bytes for the AVR ATmega, and 19 606 bytes for the ARM Cor-
tex M0. This consists of the full signature and key-exchange code, including the
reference implementation of the hash function SHAKE128 with 512-bit output.5

Basis for comparison. As we believe ours to be the first genus-2 hyperelliptic
curve implementation on both the AVR ATmega and the ARM Cortex M0 ar-
chitectures, we can only compare with elliptic curve-based alternatives at the
same 128-bit security level: notably [29], [30], [31], and [7]. This comparison is
not superficial: the key exchange in [29], [30], and [7] uses the highly efficient x-
only arithmetic on Montgomery elliptic curves, while [31] uses similar techniques
for Weierstrass elliptic curves, and x-only arithmetic is the exact elliptic-curve
analogue of Kummer surface arithmetic. To provide full scalar multiplication in
a group, [31] appends y-coordinate recovery to its x-only arithmetic (using the
approach of [26]); again, this is the elliptic-curve analogue of our methods.

Results for ARM Cortex M0. As we see in Table 4, genus-2 techniques give great
results for Diffie–Hellman key exchange on the ARM Cortex M0 architecture.
Compared with the current fastest implementation [7], we reduce the number
of clock cycles by about 27%, while roughly halving code size and stack space.
For signatures, the state-of-the-art is [31]: here we reduce the cycle count for
the underlying scalar multiplications by a very impressive 75%, at the cost of an
increase in code size and stack usage.

Results for AVR ATmega. Looking at Table 5, on the AVR ATmega architecture
we reduce the cycle count for Diffie–Hellman by about 32% compared with the
current record [7], again roughly halving the code size, and reducing stack usage
by about 80%. The cycle count for Jacobian scalar multiplication (for signatures)
is reduced by 71% compared with [31], while increasing the stack usage by 25%.

5 We used the reference C implementation for the Cortex M0, and the assembly imple-
mentation for AVR; both are available from [28]. The only change required is to the
padding, which must take domain separation into account according to [12, p.28].
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Implementation Object Clock cycles Code size Stack
S,DH Wenger et al. [31] NIST P-256 ≈ 10 730 000 7 168 bytes 540 bytes

DH Düll et al. [7] Curve25519 3 589 850 7 900 bytes 548 bytes
DH This work KC 2 633 662 ≈ 4 328 bytes 248 bytes

S This work JC 2 709 401 ≈ 9 874 bytes 968 bytes

Table 4. Comparison of scalar multiplication routines on the ARM Cortex M0 archi-
tecture at the 128-bit security level. S denotes signature-compatible full scalar multi-
plication; DH denotes Diffie–Hellman pseudo-scalar multiplication.

Implementation Object Cycles Code size Stack
DH Liu et al. [29] 256-bit curve ≈ 21 078 200 14 700 bytes∗ 556 bytes

S,DH Wenger et al. [31] NIST P-256 ≈ 34 930 000 16 112 bytes 590 bytes
DH Hutter, Schwabe [30] Curve25519 22 791 579 n/a† 677 bytes
DH Düll et al. [7] Curve25519 13 900 397 17 710 bytes 494 bytes
DH This work KC 9 513 536 ≈ 9 490 bytes 99 bytes

S This work JC 9 968 127 ≈ 16 516 bytes 735 bytes

Table 5. Comparison of scalar multiplication routines on the AVR ATmega architec-
ture at the 128-bit security level. S denotes signature-compatible full scalar multipli-
cation; DH denotes Diffie–Hellman pseudo-scalar multiplication. The implementation
marked ∗ also contains a fixed-basepoint scalar multiplication routine, whereas the im-
plementation marked † does not report code size for the separated scalar multiplication.

Finally we can compare to the current fastest full signature implementa-
tion [10], shown in Table 6. We almost halve the number of cycles, while reducing
stack usage by a decent margin (code size is not reported in [10]).

Implementation Object Function Cycles Stack

Nascimento et al. [10] Ed25519 sig. gen. 19 047 706 1 473 bytes
Nascimento et al. [10] Ed25519 sig. ver. 30 776 942 1 226 bytes
This work JC sign 10 404 033 926 bytes
This work JC verify 16 240 510 992 bytes

Table 6. Comparison of signature schemes on the AVR ATmega architecture at the
128-bit security level.
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