
AI and Side-channel analysis:
An overview

IACR School on Applied Cryptography
February 2, 2023

Lejla Batina

Institute for Computing and Information Sciences

Radboud University

lejla@cs.ru.nl

1

Outline

Intro to side-channel analysis

Side-channel Analysis (SCA) Attacks

SCA Countermeasures

Leakage evaluation

Profiling attacks

SCA and AI

Deep-learning in SCA

Part 1. Data preparation

Part 2. Build the Machine

Part 3. Use the Machine

Screen Gleaning

Location-based leakage

2

About me

I 2001: PDEng in engineering, Mathematics for Industry

I 3 years with semiconductor industry as a cryptographer

I 2005: PhD from KU Leuven on hardware impl. of Public-key cryptosystems

I 2006-2009: PostDoc at KU Leuven

I 2009- : Digital Security group at Radboud University, full prof. since 2017

I CESCA lab: 10+ PostDocs/PhD students working on:

• Physical attacks on embedded systems

• Secure cryptographic implementations

• FPGA security

• AI and security

• Lightweight cryptography

• Leakage simulators

3

Intro to side-channel analysis

Known challenge: embedded crypto devices

4

Implementation attacks

5

Relevance

November 13, 2019

May 28, 2020

October 3, 2019

January 7, 2021

6

Side-channel Analysis (SCA) Attacks

Greybox/Whitebox scenario

Cryptographic Device CiphertextPlaintext

Leakage

Greybox = SCA adversary in the wild:

I Crypto is implemented on a real device such as a microcontroller, FPGA, ASIC

I Adversary can measure and process physical quantities in the device’s vicinity

I Adversary’s goal: secret key or plaintext recovery by observing

plaintext/ciphertext pairs and a side channel

Whitebox = Security evaluator:

I Algorithms and implementation details are (partially) known

I Adversary’s goal: secret key or plaintext recovery by observing

plaintext/ciphertext pairs while trying all known attacks, including profiling

7

Power side-channel: Modeling the leakage

I The Hamming distance model counts the number of 0→ 1 and 1→ 0 transitions

I Example 1: Assume a hardware register R storing the result of an AES round.

The register initially contains value v0 and gets overwritten with value v1

I The power consumption because of the register transition v0 → v1 is related to

the number of bit flips that occurred

I Thus it can be modeled as HammingDistance(v0, v1) = HammingWeight(v0 ⊕ v1)

8

Power side-channel: Modeling the leakage

I Example 2: In a microcontroller, assume register A with value v0 and an assembly

instruction that moves the contents of register A to register B

mov rB, rA

I In general-purpose processors the instruction will transfer value v0 from register A

to B via the CPU, using the bus

I Often the bus is a very leaky component and also precharged to all bits to zeros

(or all to 1) i.e. busInitialValue

I The power consumption of the assembly instruction can be modeled as

HammingDistance(busInitialValue,v0) = HammingWeight(v0 ⊕ 0) = HW(v0)

9

Differential Power Analysis (DPA)

I The most popular side-channel attack

I Aims at recovering the secret key by using a large number of power

measurements (traces)

I Nowadays often combined/replaced with a leakage evaluation methodology such

as TVLA

10

Typical setup for power side-channel analysis

11

Typical setup for power side-channel analysis

12

Typical setup for electromagnetic analysis

13

SCA Countermeasures

Main idea

Goal: break the link between the actual data and power consumption

I Masking: power consumption remains dependent on the data on which

computation is performed but not the actual data

I Hiding: power consumption is independent of the intermediate values and of the

operations

14

Masking

Boolean masking: a dth-order (Boolean) masking scheme splits an internal sensitive

value v into d + 1 shares (v0, v1, ..., vd), as follows:

v = v0 ⊕ v1 ⊕ · · · ⊕ vd

Probing-secure scheme. We refer to a scheme that uses certain families of shares as

d−probing-secure iff any set of at most d intermediate variables is independent from

the sensitive values.

Consequently, the leakage of up to d values does not disclose any information to the

attacker.

15

Masking with 2 shares

I X = X1 ⊕ X2

I The leakage L(X) = HW (X1,X2) depends on two variables.

I It does not reveal info on the value of X when a DPA is performed, in theory

Masking in practice: unintended interactions between values in the processor cause

leakage in 1st order (caused often by transitional effects and glitches).

If a program that processes a secret value X contains two consecutive instructions

(the first uses X1 and the second uses X2), then the transitional effect of changing the

contents of the bus leaks the Hamming distance between X1 and X2.

16

Leakage evaluation

Independent Leakage Assumption (ILA) [RSVKF11]

Independent computations give rise to independent leakage.

Practically: The underlying assumption of this model is that the adversary can only

observe a single intermediate value with every probe used.

As a consequence: All masks (shares) need to be processed independently

Physical side-effects when implementing masking, such as glitches and distance-based

leakages, violate ILA in practice.

17

Test Vector Leakage Assessment (TVLA)

I Leakage assessment of a device is very important for the semiconductor and the

security evaluation industries

I Number of attacks to check the device’s resistance against keeps on growing

I Various attackers’ models possible but security evaluation often goes for the

strongest adversary

I It is using Welch’s t-test to differentiate between two sets of measurements, one

with fixed inputs and the other with random inputs

I Far from perfect, false positive and negatives are possible

I Leakage from combining multiple points is not detected

18

What we learned so far

I Side-channel attacks are a threat to all implementations of cryptography

I The adversaries vary in capabilities and assumed knowledge of the target

I The SCA attacker needs to define: sensitive variable, leakage model and SCA

distinguisher

I Countermeasures should be implemented considering a realistic adversary and

cost-win tradeoffs

I Now we will learn about new type attacks, so-called profiling attacks assuming a

very powerful adversary

19

Profiling attacks

Types of attacks/analyses and attacker models

I Simple Power Analysis (SPA): one or a few measurements e.g. when attacking

1-time keys

I Differential power analysis (DPA): multiple measurements available with the same

key e.g. of unprotected implementations using “long-term” keys

I Higher order attacks: multiple measurements - for protected implementations

I Profiled attacks: training i.e. profiling with many measurements and just 1

measurement (or several) for key recovery

I Advanced attacks: using AI, theoretical cryptanalysis, combination of attacks etc.

I Fault analysis: using Fault Injection (FI) techniques to force computation errors

20

Template motivation example

+ S-box Layer ...

update

in y

k

I Key k is refreshed before every encryption

I Does classical DPA work?

I No! It requires a constant key

I We typically rely on several assumptions (for attacks):

(1) We assume the leakage to be related to the Hamming weight (or distance)
of the manipulated data

(2) We look for leakage in the S-box output only
(3) We assume the leakage to be univariate

I Ideally we would like to extract more leakage with minimal assumptions

21

Template Attack

I Attacking a well-protected device directly is hard

I We often do not get many traces with the same secret (key)

I So, we use an unprotected device of the same model

Figure: protected device (left), unprotected device (right)

I We profile, i.e. template the unprotected device

I We use the profile to break the protected device

22

Template Attack Procedure

(1) Choose a model that describes the power consumption

(2) Profile the unprotected device to create the template (Template Building)

(3) Use the template to break the protected device (Template Matching)

The same steps are always performed.

The model can be different.

23

Noisy Communication Example

I Assume a transmitter sends a bit, 0 or 1, to a receiver

I Bit 0 is encoded as 0 Volts, bit 1 as +5 Volts

I The receiver gets a noisy signal

I The receiver must decide if the bit is 0 or 1

24

Noisy Communication Example

I The receiver measures +5.1 Volts

I Bit is probably 1

I The receiver measures -0.3 Volts

I Bit is probably 0

I The receiver measures +3.15 Volts

I Bit value 1 is more likely than bit value 0

Detection and estimation theory studies such phenomena and is able to quantify
the uncertainty in our problems.

25

Reduced Templates - Template Building

(1) Force the transmitter to send bit 0, e.g. 1000 times

(2) Measure the voltage in the receiver: 0v1,
0v2, . . . ,

0v1000

(3) Compute the mean: 0v̄ = (1/1000) ∗
∑1000

i=1
0vi

(1) Similarly, force the transmitter to send bit 1, e.g. 1000 times

(2) Measure the voltage in the receiver: 1v1,
1 v2, . . . ,

1 v1000

(3) Compute the mean: 1v̄ = (1/1000) ∗
∑1000

i=1
1vi

We have computed the templates T0 and T1.

26

Reduced Templates - Template Matching

(1) Observe a measurement v in the receiver

(2) Match v to template T0, i.e. compute score0 =| v −0 v̄ |

(3) Match v to template T1, i.e. compute score1 =| v −1 v̄ |

(4) if score0 ≥ score1 then bit=0 else bit=1

27

Reduced Templates - Formal Definition

(1) Model the voltage measurement in the receiver using a random variable V and

the bit using random variable B

(2) Create a template for the random variable T0 = (V |B = 0)

Create a template for the random variable T1 = (V |B = 1)

(3) Match a measurement v to T0 or T1 using the score function

28

Reduced Templates - Side Channels

I Side-channel analysis focuses on modeling real measurement traces

I We model a measurement as a random variable V

I A realization (or instance) of V is a measurement v , e.g. v = 5.1 Volts

I A trace consists of several (or many) measured samples e.g. values in certain

time points

I We model a trace as a vector of random variables, also called a random vector L,

where L = [L1, L2, . . . , Lno samples]

I A realization of the random vector L is a trace l e.g.

l = [0.41, 0.10, 0.12, 0.17, 0.36]

29

Reduced Templates - Template Building

I Template for key0

(1) Force the cryptographic device to encrypt n times with key K = key0

(2) Measure n traces li with K = key0

(3) The template for Tkey0
= (L|K = key0) is the mean vector

key0 l̄ = 1/n ∗
∑n

i=1
key0 li

I Template for key1

(1) Force the cryptographic device to encrypt n times with K = key1

(2) Measure n traces with K = key1

(3) The template for Tkey1
= (L|K = key1) is the mean vector

key1 l̄ = 1/n ∗
∑n

i=1
key1 li

30

Reduced Templates - Template Matching

(1) Observe a trace t

(2) Match the trace t to templates Tkey0
and Tkey1

(3) Use the matching score to decide the key used by the trace t

(4) score0 = (t−key0 l̄) ∗ (t−key0 l̄)T

score1 = (t−key1 l̄) ∗ (t−key1 l̄)T

(5) Decide key0 or key1

We examined template attacks using the reduced model

Next up is the univariate Gaussian model

31

Estimation Theory Basics

I So far we did not discuss models in detail, so how can we model data?

I Probability functions have the ability to model experimental data

I The Templates are random variables that have certain probability density

functions (p.d.f.)

I Do you know some examples?

I The Poisson p.d.f. (probability density function) is often used to model Internet

traffic

I Gaussian p.d.f. can describe e.g. the weight of an adult population,

demonstrating the mean and variance observable

I Gaussian p.d.f. can also be used to model the power consumption measurements

used in side-channel analysis attacks

32

Gaussian distribution

I Every distribution includes one or more parameters

I Example: the weight of a population is “drawn from” the Gaussian distribution

with mean µ = 81 and variance σ2 = 4.5

Formally: the weight is described by the random variable X and X ∼ N (µ, σ2)

I Estimation theory describes how to determine the parameters of our model,

using our experimental data

33

Estimation Theory Basics – Dota 2

I Assume that the Gaussian distribution N (µ, σ2) is a good model for our

experiment

I Start from the experimental data:
Match No of Deaths

1 6

2 9

3 2

4 13

I Estimate the parameters µ and σ2 of the Gaussian distribution that models our
data.

34

Maximum Likelihood Estimation

I Maximum Likelihood Estimation (MLE) describes a method to estimate the

parameter(s) of a distribution.

I Assume that X ∼ fX (x ; θ), where θ is the unknown parameter

I In our example, X is the random variable describing the No. of deaths and

θ = (µ, σ)

I We have captured a random sample of size n : x1, x2, . . . , xn

I In our example, {x1, x2, x3, x4} = {6, 9, 2, 13}

35

Maximum Likelihood Estimation

I We fit our dataset into the model by estimating the distribution parameters

I µd =
∑n

i=1 xi
n

I σ2
d = 1

n−1

∑n
i=1(xi − µd)2

I The est. no. of deaths is µd = 7.5, σd = 4.03

We demonstrated template building for the univariate Gaussian model
Next, we focus on template matching for the univariate Gaussian model

36

Hypothesis Testing and Decision Theory

I In Binary Hypothesis testing we know that either event H0 or H1 is true

I Ex.1: radar detected “no airplane” or “an airplane” (military)

I Ex. 2: recognition system of an amusement park decides that the client has paid

the ticket or not (entertainment)

I Ex. 3: transmitting source sent bit = 0 or bit = 1 (telecom)

I Ex. 4: cryptographic implementation used key0 or key1 (crypto)

37

Hypothesis Testing and Decision Theory

For every experiment with H0 and H1 what are the 4 possible courses of action?

I Decide H0; H0 true (correct choice)

I Decide H0; H1 true (false negative, type II error)

I Decide H1; H0 true (false positive, type I error)

I Decide H1; H1 true (correct choice)

What are the implications of type I and type II errors for military radar,

entertainment park, telecom, crypto?

I Military: What does a false negative/positive mean for a radar?

False negative is equivalent to airspace violation, false positive results in more

work and expenses.

I Entertainment park: What does a false negative/positive mean for ticket

verification?

False negative could trigger customer anger and false positive could result in

monetary loss.

I Telecom & crypto:

False negative is actually equivalent to false positive scenario. In both cases the

bit/key is detected incorrectly.

38

Basic Definitions for Detection

In order to formalize the error notions, we introduce the concepts of the Source,

Probabilistic Transition Mechanism, Observation Space and Decision Rule

Source
Observation

Space

Decision

Rule

Prob.Trans.Mech. H0 or H1

I ”A transmission antenna sends bit 0 or 1 over the air. A receiver antenna recovers

the emitted noisy signal and tries to deduce if the transmitted bit was 0 or 1”

I Hypotheses: H0 equals transmitted bit 0, H1 equals transmitted bit 1

I Source: transmission antenna, knows if H0 or H1 is true

I Probabilistic Transition Mechanism: noise addition to the signal

I Observation Space: noisy received signal

I Decision Rule: the process that decides if bit = 0 or bit = 1

39

Bayes Criterion

bit=0 is true

bit=1 is true

decide

bit=0

decide

bit=1

type I

type II

I Assume the circle is the 2D observation space R

I The reality partitions the space in two (left circle)

I The source knows this partitioning but the receiving antenna does not

I The receiving antenna creates its own decision rule partitioning the observation

space R in two (mid circle)

I The region decide bit = 0 results in decision H0 and the region decide bit = 1

results in decision H1 (mid circle)

I Imperfect partition results in type I and type II errors (right circle)

40

Bayes Criterion

H0 is true

H1 is true

R0

R1
PM

PF

PN

PD

I Trace r, Probability density functions f (r|H0) and f (r|H1)

I P(decide H1|H0 true)= probability of false alarm PF =
∫

r∈R1
f (r|H0) dr

I P(decide H0|H1 true)= probability of miss PM=
∫

r∈R0
f (r|H1) dr

I P(decide H0|H0 true)= probability PN=
∫

r∈R0
f (r|H0) dr = 1− PF

I P(decide H1|H1 true)= probability of detection PD=
∫

r∈R1
f (r|H1) dr= 1− PM

41

Bayes Criterion

I The result/score is the Likelyhood Ratio Test, denoted as:

I Λ(r)
H1
≷
H0

1

I Λ(r) = P(r|H1)/P(r|H0) =
fR|H1

(r)

fR|H0
(r)

, i.e. the ratio of the distributions of H1 and

H0, for the observation r

42

Template Matching - Univariate Gaussian Model

I A common choice for the side-channel attack p.d.f. is the univariate Gaussian

distribution:

I P(r|H0) ∼ N (µkey0
, σkey0

)

I P(r|H1) ∼ N (µkey1
, σkey1

)

I The parameters µkey0
, σkey0

, µkey1
, σkey1

have already been estimated using the

estimation formulas discussed before

I We will check if an observation rtest matches N (µkey0
, σkey0

) or N (µkey1
, σkey1

)

I Λ(r) = N (rtest, µkey0
, σkey0

)/N (rtest, µkey1
, σkey1

)

I if Λ(r) > 1 we decide that key0 matches

I if Λ(r) < 1 we decide that key1 matches

43

Recap

I We used p.d.f.s for templates.

I We build the templates by estimating the parameters of the p.d.f.s

I We demonstrated template matching for the univariate Gaussian model

Next step would be to extend template building and matching for the multivariate
Gaussian model.

44

Multivariate Gaussian Distribution

45

Multivariate Gaussian Model

I Build templates with a multivariate Gaussian distribution

I Perform estimation (templates building) and detection (template matching) in

this context

I The joint distribution of several samples in the trace will make us distinguish key0

and key1 more effectively

46

Multivariate Gaussian Model - POIs

I Not all samples contain sensitive information (CPA assignments)

I We refer to the key-dependent sample points as Points of Interest (POIs)

I Usually heuristics are used to find them

I Difference of Means heuristic:

• Assuming 2 keys (key0, key1) use the traces with key0 to compute µkey0
and

the traces with key1 to compute µkey1
(∀ sample)

• We get 2 vectors: [µsample0
key0

. . . µsamplet
key0

] for key0 and vector

[µsample0
key1

. . . µsamplet
key1

] for key1 where t + 1 = # samples

• Find the m samples with the highest µkey0
− µkey1

, where m is the choice of

the evaluator

I Sum of Square Differences (SOSD): Find m samples with the highest

(µkey0
− µkey1

)2

I Standard Deviation: Find the m samples with the highest σ

I Correlation Power Analysis: Best points according to Pearson corr. coeff.

I Principal Component Analysis (PCA)

47

Multivariate Gaussian Model - Estimation

Multivariate Gaussian p.d.f. for m POIs:

f (l1, l2, . . . , lm) = 1√
(2π)m∗det(Σ)

exp[− 1
2

((l− µ)T Σ−1(l− µ))]

I The leakage vector of random variables L ∼ N (µ,Σ)

I We need to estimate two parameters: the mean vector µ and the covariance

matrix Σ

48

Template Building

Multivariate Gaussian p.d.f. for m POIs:

f (l1, l2, . . . , lm) = 1√
(2π)m∗det(Σ)

exp[− 1
2

((l− µ)T ∗ Σ−1(l− µ))]

I For all n traces li encrypting with key0:

Mean vector: µkey0
= 1/n ∗

∑n
i=1

key0 li

Covariance matrix: Σkey0
= cov(T),T = (l1, . . . , ln)T

I Do the same for all key candidates key1, key2, . . .

I The template for keyi is (µkeyi
,Σkeyi), for i = 0, . . . , no keys − 1

49

Template Matching

Multivariate Gaussian p.d.f. for m POIs:
f (l1, l2, . . . , lm) = 1√

(2π)m∗det(Σ)
exp[− 1

2
((lattack − µ)T Σ−1(lattack − µ))]

I Observe a trace lattack

I Match the trace lattack to the templates for key0 and key1

I Multivariate Likelyhood Ratio Test:

I Λ(lattack) = 1
2
∗ (lattack − µkey0

)T ∗ inv(Σkey0
) ∗ (lattack − µkey0

)− 1
2
∗ (lattack −

µkey1
)T ∗ inv(Σkey1

) ∗ (lattack − µkey1
)

I γ = 1
2
∗ log(det(Σkey1

))− 1
2
∗ log(det(Σkey0

))

I Λ(t)
H1
≷
H0

γ

50

Final recap on Profiling attacks

I We saw three models for template attacks: Reduced model, Univariate Gaussian,

Multivariate Gaussian

I The two phases in profiling are:

• Template Building

• Template Matching

I Profiling attacks are actually a sort of supervised learning

I As a consequence, machine and deep learning are commonly used in side-channel

attacks (more in the next lecture)

51

Literature

I Harry van Trees: Detection, Estimation and Modulation Theory.

I Steven M. Kay: Fundamentals of Statistical Signal Processing, Volume I and II.

I R.Larsen, M.Marx: Introduction to Mathematical Statistics.

I Suresh Chari, Josyula R. Rao, Pankaj Rohatgi: Template Attacks. CHES 2002:

pp. 13-28.

I Cedric Archambeau, Eric Peeters, Franois-Xavier Standaert, Jean-Jacques

Quisquater: Template Attacks in Principal Subspaces. CHES 2006: pp. 1–14

[Easy-to-use formulas for template construction]

I Choudary and Kuhn: Efficient, Portable Template Attacks. IEEE TIFS 2018.

I L. Batina, M. Djukanovic, A. Heuser and S. Picek: It Started with Templates:

The Future of Profiling in Side-Channel Analysis.

52

SCA and AI

AI for Side-channel Analysis (SCA): Why

I Machine learning for SCA was a natural direction:

• PCA to assist profiling/template attacks (dimensionality reduction)

• PCA for pre-processing measurement traces

• Machine Learning (ML)-based SCA distingushers

I Deep learning in SCA:

• neural nets for profiling attacks

• defeating countermeasures (e.g. skip the alignment phase)

• leakage assessment/simulators

• TEMPEST-like techniques e.g. screen gleaning

• location-based SCA

53

AI for SCA: When

Figure: Deep learning papers and datasets.

S. Picek, G. Perin, L. Mariot, L. Wu and L. Batina, SoK: Deep Learning-based

Physical Side-channel Analysis, https://eprint.iacr.org/2021/1092, accepted at

ACM Computing Surveys, 2022.

54

https://eprint.iacr.org/2021/1092

Deep-learning in SCA

Universal approximation theorem

Any neural networks aims to find a function f (x) = y , which can maps input x to

output y ;

Universal Approximation Theorem:1a well-guided and engineered deep neural network

can approximate any arbitrary complex and continuous f among the input variable x

and the output variable y .

I “Prodigy” of machine learning algorithms, powered by the availability of cheap

large scale computational resources;

I Good performance in reducing the feature engineering step in SCA (signal

processing, feature reduction, etc.)

I From 2017, certification bodies mandate the application of deep learning in side

channel analysis;

1Kurt Hornik, Maxwell Tinchcombe, Halbert White Multilayer Feedforward Networks are Universal Approximators

Neural Networks. Vol. 2. Pergamon Press. pp. 353–366,(1989).

55

Applications for machine learning

I Supervised learning: the machine learns with a supervisor, for every example we

tell the machine what the correct answer is;

I Unsupervised learning: the machine discovers hidden patterns in the data;

training is done on unlabelled data;

I Prediction: the machine predicts the future, based on past events;

I Supervised learning is the most common application of machine learning for side

channel analysis.

56

A simple classification machine

Problem: we want to create a machine which can distinguish between apples and

oranges.

I We need to describe to the machine the concept of oranges and apples.

I Features are measurable properties which describe the objects we want to classify.

I Choosing the correct features is crucial for the performance of any machine

learning algorithm.

57

A simple classification machine

Problem: we want to create a machine which can distinguish between apples and

oranges.

We will describe every orange and apple in terms of the level of colour (e.g. ratio of

red vs. orange) and C-vitamin which we measured in each fruit.

58

A simple classification machine

The labelled dataset, D, will look like this (simplified example):

I The effort of creating a labelled dataset should not be underestimated

I Before creating your own dataset, check for a publicly available dataset

59

Workflow deep learning

Machine is a function f (x , θ) = y , where x is the input, y are the labels and θ are

parameters 2 of the machine;

2the coefficients (weights and bias) of the model, optimized during training

60

Workflow machine learning

61

Steps in preparing data for SCA evalution

(1) Acquisition, collecting traces for profiling a model from a given target;

(2) Labelling, the process of annotating the side-channel traces with a label. The

label is determined by the choice of the target intermediate and leakage model.

(3) Splitting, the data is split into training and testing sets.

62

Public datasets

Available datasets for side-channel analysis. Saves the acquisition of the traces,

labelling is performed for each attack.

I Few datasets for hardware implementations, existing datasets built with fixed

keys;

Source for the table: Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu and Lejla Batina,

SoK: Deep Learning-based Physical Side-channel Analysis, 2021;

63

Data preparation for SCA

Example (labelling):

I The target algorithm is an AES-128 encryption function;

I The target intermediate (v) is byte 0 of the S-box out operation in round 1;

I The leakage model function (L) of choice is the Hamming Weight;

64

Data preparation for SCA

For each trace in D we calculate the associated label, according to the chosen target

intermediate v and desired leakage model L.

65

Data preparation for SCA

Next, we place each labelled trace in the corresponding bucket.

66

Splitting the data

Once the dataset D has been labelled, we need to split it into three subsets:

I Training set, Dtrain, is the set of examples used to fit θ.

I Validation set, Dval , provides an unbiased evaluation of the model (this data has

not been seen) and it is used to tune the hyper-parameters of the machine3;

I Testing set, Dtest , is a set of examples used to assess the machine performance;

I Split the training data into Dtrain and Dval , the ratio is typically 80% training and

20% validation, but can vary;

We know that the following holds for the three subsets:

I Dtrain ∪ Dval ∪ Dtest = D

I Dtrain ∩ Dval ∩ Dtest = ∅

3hyper-parameters are set manually and not updated during training

67

Data preparation for SCA

A visual overview of how data is split:

I Over-fitting an undesired phenomena, when the performance of the model on the

training data is very good, while the performance on testing data is poor;

I Cross-validation the process of splitting the training data repeatedly into training

and validation sets for more reliable results, which avoid over-fitting;

I Under-fitting when the model does not produce accurate results on the training

data;

68

The Portability Problem

The Portability Problem: the ability to transfer an attack performed on one device to

a different device.

I Single-device model, the training and the testing set are collected from the same

device:

• (+) Very popular in academia;

• (+) Represents the best case for an attacker (least amount of noise);

• (+) Easy to setup - requires only one device;

• (-) It is not very realistic;

I Cross-device model, attacker has access to a device with unknown variations to

the one he is attacking. Several flavours:

• identical devices, different physical instances;

• homogeneous devices, same chip different configurations;

• heterogeneous devices, same chip, different manufacturers4;

4different implementation for the Instruction Set Architecture (ISA)

69

A simple MLP architecture

A simple multilayer perceptron (MLP) neural network architecture, which contains a

series of layers formed of connected neurons. The strength of the connection between

two neurons is determined by the associated weight.

I During training the value of the weights and biases are adjusted;

I In SCA, we use relatively small networks and simple arch.: MLP and CNN5;

5Convolutional Neural Network

70

A simple MLP architecture

A simple multilayer perceptron (MLP) neural network architecture, which contains a

series of layers formed of connected neurons. The strength of the connection between

two neurons is determined by the associated weight.

SCA-context:

I # nodes in the input layer = # of samples in a trace;

I # nodes in the output layer = # the number of labels (a.k.a. classes);

I We only need to make decisions about the hidden layer;

71

Mechanics of training

I Forward propagation an algorithm which transforms the input data into output

data using the model ’s current state;

I Backward propagation an algorithm which adjusts the parameters of the network

(weights and bias) to reduce error rates and improve prediction.

I An epoch is one full pass through the training data.

72

Forward propagation example

Example: a simple MLP with three layers. Each layers has two nodes. The network

has been initialized with random weights.

73

Forward propagation example

Example: a simple MLP with three layers. Each layers has two nodes. The network

has been initialized with random weights.

If we give the MLP the input [2, 8], what is the output?

74

Forward propagation example

Example: a simple MLP with three layers. Each layers has two nodes. The network

has been initialized with random weights.

If we give the MLP the input [2, 8], what is the output?

(1) we compute the value of the orange node, as follows:

75

Forward propagation example

Example: a simple MLP with three layers. Each layers has two nodes. The network

has been initialized with random weights.

If we give the MLP the input [2, 8], what is the output?

(1) we compute the value of the orange node, nlj as follows: nlj =
∑

i wi ∗ nl−1
i + bi ,

where:

• l = represents current layer;

• nlj = represents node j in layer l ;

• wi = represents the weight connecting nl−1
i to nlj

• bi = bias (optional)

76

Forward propagation example

Example: a simple MLP with three layers. Each layers has two nodes. The network

has been initialized with random weights.

If we give the MLP the input [2, 8], what is the output?

(1) we compute the value of the orange node, the result is 14;

(2) we compute the value of the blue node, same as above;

77

Forward propagation example

Example: a simple MLP with three layers. Each layers has two nodes. The network

has been initialized with random weights.

If we give the MLP the input [2, 8], what is the output?

(1) we compute the value of the orange node, the result is 14;

(2) we compute the value of the blue node, the same way;

78

Forward propagation example

Example: a simple MLP with three layers. Each layers has two nodes. The network

has been initialized with random weights.

If we give the MLP the input [2, 8], what is the output?

(1) we compute the value of the orange node, the result is 14;

(2) we compute the value of the blue node, the same way;

79

Forward propagation example

Example: a simple MLP with three layers. Each layers has two nodes. The network

has been initialized with random weights.

If we give the MLP the input [2, 8], what is the output?

(1) we compute the value of the orange node, the result is 14;

(2) we compute the value of the blue node, the result is 2;

(3) we compute the value of the two output nodes, and we obtain the result 28 and

18 respectively;

Answer: if we give the network the input [2, 8], the output is [28, 18].

Question: Do you see any limitations for our machine? What type of problems can

such a machine solve?
80

Activation functions

Question: How can we make the machine solve non-linear problems?

Answer: make use of activation functions. Example of common activation functions:

81

Solving non-linear problems

Forward propagation with activation functions:

We compute the value of node nlj as follows: nlj = σ(
∑

i wi ∗ nl−1
i + bi), where:

I σ is the activation function;

• (SCA) common activation functions for hidden layers: tanh, relu, selu;

• (SCA) for the output layer, we use softmax activation as we are dealing

with a multi-class classification problem;

I l = represents current layer;

I nlj = represents node j in layer l ;

I wi = represents the weight connecting nl−1
i to nlj

I bi = bias (optional)

82

Model Selection

An example of a simple MLP architecture used for side-channel analysis:

Source: Guilherme Perin, Lichao Wu, Stjepan Picek, AISY – Deep Learning-based

Framework for Side-channel Analysis, 2021; https://eprint.iacr.org/2021/357

83

https://eprint.iacr.org/2021/357

Cost functions

Cost function is a measure of how well the network did in predicting the labels of the

input value (x1, x2, x3, .., xn).

I Mean Square Error(MSE): C(ŷ , y) = 1
c

c∑
i=1

(ŷi − yi)
2

I Categorical Cross-Entropy (CE): C(ŷ , y) = −
c∑

i=1
yi log(ŷi), use this for SCA;

I Custom cost-functions for SCA exist, e.g. ranking loss, cross-entropy ration, etc;

84

How does a machine ”learn”?

I Optimizer iterative algorithm which minimize the cost function, updates the

parameters θ in response to the output of the cost function (e.g. Adaptive

Moment Estimation (ADAM))

I Learning rate hyper-parameter which determines the step size at each iteration

while moving toward a minimum of the cost function.

I Metrics recorded after each epoch, shows the performance of the model during

training;

85

Example code

Source: Guilherme Perin, Lichao Wu, Stjepan Picek, AISY – Deep Learning-based Framework for

Side-channel Analysis, 2021;for an overview on a DNN framework for SCA;

86

Computing a score function

The test set Dtest with Q traces, where x j ∈ Dtest is a trace. The number of classes is

denoted with m. 6

The result of the DNN evaluation is a matrix of size m × Q, where p(j , cm) is the

probability of classifying trace x j with label cm.

The score function for class ci given Q traces in the test set is calculated as:

s(ci ,Q) =
Q∑
j=1

log p(x j , ci)

6which matches the number of possible values for the target intermediate.

87

Open problems

I What is an optimal network?

• optimize attack: extract the key with as little traces as possible?

• optimize training effort: reuse a network which was trained on one dataset to

attack another;

I Explainable AI or what are the features which caused the decision of the DNN:

• is an attack is NOT successful, why is this the case, i.e. the implementation

is strong enough or the model is not effective?

• is an attack is successful, what is the cause of a leak, i.e. how to improve

the implementation?

I Can DNN successfully attack hardware implementations?

I Can DNN successfully attack high-order crypto implementations?

I What is the best metric to evaluate the performance of a DNN used for SCA?

I Can SCA attacks be successful in an unsupervised scenario?

88

Screen Gleaning

TEMPEST: Cause and History

Oscillating electric currents create EM radiation in the RF range and those signal drive

the video display of various screens.

I Bell Labs noted this vulnerability for teleprinter communications during World

War II producing 75% of the plaintext being processed from a distance of 24m

I Van Eck phreaking: In 1985 published the first unclassified analysis of the security

risks of emanations from computer monitors using just 15$ equipment+TV set

I Van Eck phreaking was used to successfully compromise ballot secrecy for

electronic voting in Brazil

I NSA published TEMPEST Fundamentals in 1982 referring to spying on systems

through leaking emanations, including radio or el. signals, sounds and vibrations

I TEMPEST covers both methods to spy and to shield equipment against such

spying

89

Motivation and Outcomes

Motivation:

I TEMPEST attack is known for a long time but no methodology has been

established to evaluate it on mobile devices

I Using TEMPEST the adversaries can reconstruct the images displayed through

leaking emanations

In this work we:

I Introduce Screen Gleaning, a new electromagnetic TEMPEST attack targeting

mobile phones

I Demonstrate the attack and its portability to different targets using machine

learning

I Provide a testbed and parameterized attacker model for further research

90

Screen gleaning (Theory)

91

Screen gleaning (Practise)

The signal we observe is, in most cases, not interpretable to the human eye.

92

Attacker model: Motivating story and assumptions

Alice keeps her phone on a stack of magazines on her desk (face

down) to block the visual line of sight to the screen. Eve has

hidden an antenna under the top magazine to read the security

code via electromagnetic emanations of the phone.

I The set of symbols displayed on the phone is finite and known (digits 0-9)

I The attacker has access to a profiling device that is “similar” to the target device

I The attacker can collect electromagnetic traces from the target device

(representing the image displayed on the screen)

93

Attacker model: setup

I The target emits EM signal intercepted by an antenna connected to a

software-defined radio (SDR)

I The leaked information is collected and reconstructed as a gray-scale image

(emage)

I From emage, the 6-digit security code is cropped and fed into a CNN classifier for

recognition

94

Screen gleaning setup

95

The security code

Use of authentication code like to extract all digits.

I display code

I sample leakage

I analyze the leakage

I interpret the results

96

Security code results

Figure: Confusion matrix of the inter-session accuracy of the security.

Digits 0 1 2 3 4 5 6 7 8 9 All

Acc. (%) 87.2 86.8 97.4 75.8 99.1 97.4 95.1 93.1 82.5 86.1 89.8

Table: Accuracy with respect to different digits (0-9) and overall accuracy in our security code attack.

6 digits ≥ 5 digits ≥ 4 digits

Acc. (%) 50.5 89.5 99.0

Table: Accuracy of predicting partial security code correctly.

97

Security code results

I Attack on different phones of the same model
E.g., cross-device accuracy of 61.5%, where the classifier is trained and tested on two distinct

iPhone 6.

I Attack on different phone of different model
E.g., accuracy of 74.0% on Huawei Honor 6X.

I Attack at a greater distance (through a magazine)
E.g., accuracy of 65.8% on Huawei Honor 6X through 200 pages.

Z. Liu, Niels Samwel, L. Weissbart, Z. Zhao, D. Lauret, L. Batina, M. Larson, Screen

Gleaning: A Screen Reading TEMPEST Attack on Mobile Devices Exploiting an

Electromagnetic Side Channel, NDSS 2021.

98

Conclusions

I Screen gleaning is a new TEMPEST attack that uses an antenna and SDR to

capture an electromagnetic side channel, i.e., emanations leaking from a mobile

phone

I We demonstrated the effectiveness of it on three different phones with an

example of the recovery of a security code

I We introduced 5-dimension attacker model that can be extended further

I We proposed a testbed providing a standard setup in which screen gleaning can

be tested further with different attacker models

99

Further reading

I Jon Krohn, Deep Learning Illustrated - A visual, interactive guide to artificial

intelligence, Addison-Wesley, 2020; provides a beginner friendly introduction to

deep learning;

I Houssem Maghrebi and Thibault Portigliatti and Emmanuel Prouff, Breaking

Cryptographic Implementations Using Deep Learning Techniques, SPACE 2016;

https://eprint.iacr.org/2016/921

I Source: Guilherme Perin, Lichao Wu, Stjepan Picek, AISY–Deep Learning-based

Framework for Side-channel Analysis, 2021; an overview on a DNN framework for

SCA; https://eprint.iacr.org/2021/357

I Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu and Lejla Batina, SoK:

Deep Learning-based Physical Side-channel Analysis, 2021; an overview of the

developments and remaining challenges when using DNNs for SCA;

https://eprint.iacr.org/2021/1092

100

https://eprint.iacr.org/2016/921
https://eprint.iacr.org/2021/357
https://eprint.iacr.org/2021/1092

Conclusions

I Screen gleaning is a new TEMPEST attack that uses an antenna and SDR to

capture an electromagnetic side channel, i.e., emanations leaking from a mobile

phone

I We demonstrated the effectiveness of it on three different phones with an

example of the recovery of a security code

I We introduced 5-dimension attacker model that can be extended further

I We proposed a testbed providing a standard setup in which screen gleaning can

be tested further with different attacker models

101

Location-based leakage

Motivation

I Registers, memory or other storage units exhibit identifiable and

data-independent leakage when accessed

I Exploits dependence between the secret key and the location of the activated

component

Algorithm 1: Montgomery ladder

Input: P, k = (kx−1, kx−2, ..., k0)2

Output: Q = k · P
R0 ← P

R1 ← 2 · P
for i = x − 2 downto 0 do

b = 1− ki
Rb = R0 + R1

Rki = 2 · Rki

end for

return R0

102

Location-based leakage revisited

I Distinguishing the activity of small regions

I Exploiting the spatial dependencies of crypto algorithms

I Different than localized and address leakages

I Forward Neural Networks classifiers exploiting location-based side-channel on the

SRAM of a ARM Cortex-M4

I 2 SRAM regions of 128 bytes each can be distinguished with 100% success rate

and 256 SRAM byte-regions with 32% success rate

103

Adversarial model

I Implementation of a key-dependent crypto operation

I Adversary aims to infer which part of the table is active

I Location leakage that is caused by switching circuitry and is observable via EM

emissions on the die surface

104

Experimental setup

Figure: Modified Pinata ARM STM32F417IG device.

Figure: Decapsulated Pinata with Langer microprobe on top.

105

Setup details

I Decapsulated Piñata with ARM

Cortex-M4 in 90 nm technology

I ICR HH 100-27 Langer microprobe

d = 100µm

I Rectangular grid of 300 × 300

measurement spots

I Sampling rate of 1 Gs/sec resulting in

170k samples

I Near-field probe with positioning

accuracy of 50 µm

I Sequential accesses to a cont. region

of 16 KBytes in the SRAM using

ARM assembly

Figure: ARM Cortex-M4 after removal of the plastic layer.

106

Experiment

Figure: Distinguishing two 8 KByte regions of the SRAM. Yellow

region = stronger leakage from class 1, blue = stronger from class 2.
Figure: Red rectangle shows the location where the highest

differences were observed.

107

Parameters

Parameter Description Unit Our example

S chip surface area u2 ≤ 6 mm2 (whole chip)

O probe area u2 0.03 mm2

G scan grid dimension – 300

A component areas vector with 1D entries –

P component positions vector with 2D entries –

108

Location Leakage Model

Figure: Vectors p1, p2 show the position of two components whose

areas (a1, a2) are solid black-line rectangles.

109

Location-based attacks: CNNs

I Popular pre-trained networks Convolution Neural Network classifier – 2 regions,

128 bytes each

I Single-trace attacks improved compared to templates

I All 5 CNNs were trained in 2 ways

110

Location-based Attacks: MLPs validation vs attack

I Custom Multi Layer Perceptrons in Riscure Inspector

I Single-trace attacks improve further

I Even smaller regions could be attacked

Left: validation accuracy for 2, 4, 8, 16, 32, 64, 128, and 256 partitions vs random guess.

Right: The attack success rates for the test traces for 2, 4, 8, 16, 32, 64, 128, and 256 partitions;

the exact accuracy values are 96%, 91%, 90%, 88%, 83%, 75%, 57%, and 32%, respectively

111

Summary on location-based SCA

I Location-based leakages could reveal secret keys, even for SCA protected

implementations

I Even simple spatial model to capture location-based leakages can be effective

I Successful location-based attacks demonstrated on a modern ARM Cortex-M4

using standard template attacks and deep learning

I Attacks apply to PKC and AES implementations

112

Lessons learned

I Deep learning can be useful for some (exotic) use cases of SCA but we should not

use a cannon to kill a fly

I AI-assisted SCA attacks could be more powerful e.g. in the presence of

countermeasures, noise etc.

I But, in many SCA evaluations “classical” techniques could be more efficient

I Screen gleaning takeaway: DL is often used for image recognition, which can

have relevant implications for privacy: discrimination vs generalization scenario

I The role of AI in leakage detection and assessment should be investigated in detail

113

The end

Thank you for your attention!

https://cescalab.cs.ru.nl/

114

https://cescalab.cs.ru.nl/

115

116

The end

Thank you for your attention!

https://cescalab.cs.ru.nl/

117

https://cescalab.cs.ru.nl/

	Intro to side-channel analysis
	Side-channel Analysis (SCA) Attacks
	SCA Countermeasures
	Leakage evaluation
	Profiling attacks
	SCA and AI
	Deep-learning in SCA
	Part 1. Data preparation
	Part 2. Build the Machine
	Part 3. Use the Machine

	Screen Gleaning
	Location-based leakage

