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Abstract: In order to use knowledge of the Web graph in Information Retrieval, we provide a consistent overview, 

aiming firstly at global aspects of the graph such as degree distribution, and then proceed by examining 

local aspects of the graph: community identification. We discuss several community models and we 

implement a community identification algorithm that operates without a priori knowledge of the graph. 

To elaborate on the algorithm we introduce a notational framework for graph clusters. We run the 

algorithm on the Dutch domain (.NL) and from the results of this experiment we conclude that the Web 

consists of several clusters that are mutually connected through a core of hubs. In addition we evaluate 

the clustering quality of the algorithm, which provides a reputable basis for local community 

identification. 

1 INTRODUCTION 

In the past decade, the World Wide Web (WWW) 

has grown significantly. A recent study estimates 

the total number of websites at 11,5 billion (Gulli & 

Signorini, 2005) and this number is still increasing. 

Since the WWW has become such an important 

asset of our daily life, the Web has gained interest 

in the scientific community, which resulted in 

various studies concerning a wide variety of topics. 

One of these areas of research examines only 

structural properties of the WWW – the Web is seen 

as a graph, the contents of websites are mostly 

ignored. Using this approach one is able to analyse 

the evolution of structures and phenomena on the 

Web (Broder, et al., 2000). An interesting example 

of such a phenomenon is the scale-free degree 

distribution on the Web (Barabási, Albert & Jeong, 

2000), which will be explained in detail in the 

following sections. In this paper we continue the 

ongoing process of providing a model that 

accurately describes the Web. To do so we firstly 

provide a brief primer on basic graph theoretic 

concepts in section 2. Thereafter the distinction 

between global and local graph characteristics is 

made. In section 3 we discuss the current state of 

affairs concerning the Web graph globally. The 

attention will be directed to the scale-free degree 

distribution that has received so much attention 

lately and to connected components. After this 

global view we proceed with local aspects of the 

Web graph in section 4 where the emerging of 

graph communities and modularity is discussed. 

The question we consider here is: ‘How is the Web 

graph organised on a local scale?’. To answer this 

question we review several community models. 

Subsequently we go into great detail about an 

algorithm that can identify communities without a 

priori knowledge of the graph, based on local 

modularity, which can be seen as a measure of the 

disconnectedness of clusters in relation to the rest of 

the graph (Clauset, 2005). To explain the algorithm 

we introduce a framework for describing local 

graph phenomena. We then proceed by 

implementing this algorithm on the Web. The 

results of this experiment with our community 

identification implementation are provided in 

section 5. Section 6 concludes the paper and 

provides suggestions for further research. 

2 PRIMER ON GRAPH THEORY 

Before we proceed with modelling the Web graph, 

we cover some of the basics of graph theory.  

We abstract from the content of websites and 

regard only their connectivity. An interesting side 

effect of this approach is that the Web can be 
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compared to totally different networks – like the 

metabolic system. We define the Web graph as an 

ordered pair 𝐺 = (𝑉, 𝐴). The set 𝑉 contains the 

websites, which we will refer to as nodes or vertices 

𝑣 ∈ 𝑉 and the set 𝐴 contains the directed 

hyperlinks, ordered pairs (𝑖, 𝑗) ∈ 𝐴 ⊆ 𝑉2, which we 

will refer to as arcs. We assume the graph contains 

no point-cycles. 

𝐴 can be viewed as a binary relation over 𝑉. The 

notation 𝐴(𝑥, 𝑦) means that an arc from 𝑥 to 𝑦 

exists. In a directed graph, this relation is 

asymmetric, so in general 𝐴(𝑥, 𝑦) ↮ 𝐴(𝑦, 𝑥). In 

addition the predicate 𝐴(𝑥, 𝑌) is used, indicating the 

vertices in the set 𝑌 ⊆ 𝑉 that 𝑥 points to:  

 

𝐴(𝑥, 𝑌) ≜  𝑦 ∈ 𝑌 𝐴(𝑥, 𝑦)  
 

The symbol ≜ is used as ‘is defined as’. Secondly 

we introduce 𝐴(𝑋, 𝑦), the nodes in the set 𝑋 ⊆ 𝑉 

that point to 𝑦:  

 

𝐴(𝑋, 𝑦) ≜  𝑥 ∈ 𝑋 𝐴(𝑥, 𝑦)  
 

Of special interested is the set of all nodes that 

connect to a specific vertex; its neighbourhood. In a 

directed graph two types of neighbourhoods exist: 

the set that points to a node and the set that are 

pointed to by a node:  

 

𝐴𝑖𝑛  𝑥 ≜ 𝐴(𝑉, 𝑥) and 𝐴𝑜𝑢𝑡  𝑥 ≜ 𝐴(𝑥, 𝑉) 

 

The complete neighbourhood of 𝑥 is then simply 

 

𝐴 𝑥 = 𝐴𝑖𝑛 ∪ 𝐴𝑜𝑢𝑡  

 

Later on we will also use sets of arcs instead of 

nodes. More specifically, we want to know all arcs 

from 𝑋 to 𝑌: 

 

𝑎𝑟𝑐𝑠(𝑋, 𝑌) ≜  (𝑥, 𝑦) ∈ 𝐴 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌  
 

It is sometimes desirable to view a directed 

graph as undirected, i.e. we make no distinction 

between a source and a destination vertex: 𝐺 =
(𝑉, 𝐸). The arcs in an undirected graph are edges. 

For an undirected graph the above predicates are 

defined analogously: The notation 𝐸(𝑥, 𝑦) indicates 

that 𝑥 and 𝑦 are connected. This relation is 

symmetric, i.e. 𝐸 𝑥, 𝑦 ↔ 𝐸 𝑦, 𝑥 . The predicate 

𝐸(𝑥, 𝑌) provides all the nodes in 𝑌 ⊆ 𝑉 that are 

connected to 𝑥:  

 

𝐸(𝑥, 𝑌) ≜  𝑦 ∈ 𝑌 𝐸(𝑥, 𝑦)  
 

The neighbourhood of 𝑥 in an undirected graph is 

given by  

 

𝐸 𝑥 ≜ 𝐸(𝑥, 𝑉) 

 

We also define a predicate for all edges between 

two sets: 

 

𝑒𝑑𝑔𝑒𝑠(𝑋, 𝑌) ≜  (𝑥, 𝑦) ∈ 𝐸 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌  
 

In addition there is the notion of a path between two 

vertices 𝑥 and 𝑦 if they are neighbours in one or 

more steps:  

 

𝑝𝑎𝑡ℎ 𝑥, 𝑦 ≜ 𝐴(𝑥, 𝑦) ∨ ∃𝑧 𝐴(𝑥, 𝑧) ∧ 𝑝𝑎𝑡ℎ(𝑧, 𝑦)  
 

And in an undirected graph there can exist a chain 

of edges between two nodes 𝑥 and 𝑦:  

 

𝑐ℎ𝑎𝑖𝑛 𝑥, 𝑦 ≜ 𝐸(𝑥, 𝑦) ∨ ∃𝑧 𝐸(𝑥, 𝑧) ∧ 𝑐ℎ𝑎𝑖𝑛(𝑧, 𝑦)  
 

These predicates will play an important role in our 

community identification algorithm, to which we 

will return later. 

3 GLOBAL STRUCTURE OF 

THE WEB GRAPH 

When trying to find the connectivity structure of a 

large graph, in particular the WWW, we use a 

process called crawling. The crawler starts at a 

given seed vertex 𝑣0 ∈ 𝑉 (or a seed set of vertices) 

and proceeds to add all neighbours 𝐴𝑜𝑢𝑡 (𝑣0) to its 

crawl frontier. This is then repeated in a breadth-

first search process for each vertex in the frontier, 

adding all new vertices and arcs to the stored graph, 

until no new vertices to explore remain. Crawlers 

are often used by search engines, which in addition 

to storing the graph structure, index the documents 

based on their contents and structure.  

By using such a crawl, Broder et al. (2000) have 

observed that if the Web is seen as undirected, 

about 10% of the vertices have no chain to any of 

the nodes in the other 90%, which form a connected 

component and as a consequence, not all vertices 

can be reached from the chosen seed of a crawl. It 

gets more interesting when directionality is taken 

into account. One can distinguish four different 

graph connectivity subsets: A strongly connected 

component (SCC), which is defined as a subset 𝑆 of 

a directed graph 𝐺, such that any node in 𝑆 has a 

path to all other nodes in 𝑆 and 𝑆 is not a subset of 
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any larger such set:   

 

𝑆𝐶𝐶(𝑆) ≜  𝑥 ∈ 𝑉   ∀𝑦  𝑦 ∈ 𝑆 ↔ 𝑝𝑎𝑡ℎ(𝑥, 𝑦)   

 

The SCC forms the central CORE of the web 

graph. The next two parts are referred to as IN and 

OUT, which respectively label the subset of nodes 

that have a path to a node in the central core, but 

cannot be reached from it, and the subset that has a 

path from a node in the central core, but cannot 

return to it:   

 

𝐼𝑁(𝐼, 𝑆) ≜  𝑥 ∈ 𝑉 − 𝑆𝐶𝐶(𝑆)   ∀𝑦∈𝑆𝐶𝐶(𝑆) 𝑝𝑎𝑡ℎ 𝑥, 𝑦    

 

And 

 

𝑂𝑈𝑇(𝑂, 𝑆) ≜  𝑥 ∈ 𝑉 − 𝑆𝐶𝐶 𝑆    ∀𝑦∈𝑆𝐶𝐶(𝑆) 𝑝𝑎𝑡ℎ 𝑦, 𝑥    

 

Finally there is the collection of sub graphs that 

cannot reach, and cannot be reached from, the SCC, 

but that are connected to either the IN or OUT 

component. These sets are called the TENDRILS of 

the World Wide Web. The CORE is the largest 

component with roughly 27% of the vertices, 

followed by the IN and OUT components that both 

consist of 21% of the graph. The TENDRILS make 

up for 22%, which means that 9% of the web graph 

is disconnected from the rest of the graph (which 

could also be considered as a fifth component). In 

Figure 1 the structure of the WWW, which Broder 

et al. refer to as the ‘bow-tie’, is visualized.   

 

 

Figure 1: The bow-tie visualisation of the Web graph. 

Donato, Leonardi, Millozzi & Tsaparas (2005) 

refined the bow-tie structure and introduced the so-

called daisy model. In this model the IN and OUT 

components of the graph are jointly broken down 

into several weakly connected components (defined 

analogous to SCC, but for undirected graphs), that 

encircle the CORE like the petals of a daisy flower. 

These petals are each subsets of the IN and OUT 

components from the bow-tie model (see Figure 2).  

Both the bow-tie model and the daisy model 

provide a general idea of how the Web is organised 

on a global scale. However, they provide no insight 

in how vertices tend to relate to each other. For this, 

we need another concept called the degree 

distribution of the graph.  

 

 

Figure 2: The daisy visualisation of the Web graph. 

3.1 Degree Distributions and Scale-

free Graphs 

The degree distribution of the Web has received 

much attention in the scientific community, because 

it shows similarities to various other networks. To 

explain the concept some predicates require 

definition: 

Let 𝑖𝑛𝑑𝑒𝑔⁡(𝑥) be the in-degree of vertex 𝑥, 

defined as the number of neighbours that point to 

the vertex:  

 

𝑖𝑛𝑑𝑒𝑔⁡(𝑥) ≜  𝐴𝑖𝑛 (𝑥)  
 

Similarly the out-degree of 𝑥 is defined as the 

number of vertices 𝑥 points to:  

 

𝑜𝑢𝑡𝑑𝑒𝑔(𝑥) ≜  𝐴𝑜𝑢𝑡 (𝑥)  
 

Due to the absence of point-cycles, the total degree 

of 𝑥, 𝑑𝑒𝑔⁡(𝑥), is defined as:  

 

𝑑𝑒𝑔⁡(𝑥) ≜  𝐴 𝑥  = 𝑖𝑛𝑑𝑒𝑔 𝑥 + 𝑜𝑢𝑡𝑑𝑒𝑔(𝑥) 

 

If a graph is seen as undirected, the total degree 

may also be written as 𝑑𝑒𝑔 𝑥 ≜  𝐸(𝑥) , since 

 𝐴(𝑥) =  𝐸(𝑥) . 
The degree distribution 𝑃(𝑘) of a graph gives 

the probability that a node 𝑥 has exactly degree 𝑘:

  

𝑃 𝑘 ≜ 𝑃𝑟𝑜𝑏 𝑑𝑒𝑔 𝑥 = 𝑘 𝐺  
 

This value is obtained by counting the number of 

nodes that have degree 𝑘 ∈ 𝐾, where 𝐾 is the set of 

all degrees that occur in the graph, and dividing by 
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the total number of nodes in the graph, 𝑁 =  𝑉 :
  

𝑃 𝑘 =
#𝑥∈𝑉 𝑑𝑒𝑔 𝑥 = 𝑘

𝑁
 

 

The directed graph degree probabilities 𝑃(𝑘𝑖𝑛 ) and 

𝑃(𝑘𝑜𝑢𝑡 ) are defined analogously. 

Since the influential work by Paul Erdős and 

Alfréd Rényi (Erdős & Rényi, 1960) it has been the 

assumption that two nodes in a graph are connected 

with random probability 𝑝, which is independent of 

any other edge or node. If a node is connected to on 

average 𝑧 other nodes and the total number of nodes 

in the graph is 𝑁, then it follows that 𝑝 = 𝑧

𝑁−1
. For 

large 𝑁, 𝑝 can be approximated by 𝑧

𝑁
. The degree 

distribution of such a graph is then:  

 

𝑃(𝑘) =  
𝑁

𝑘
 𝑝𝑘(1 − 𝑝)𝑁−𝑘 ≃

𝑧𝑘𝑒−𝑧

𝑘!
, 

 

where the second equality becomes exact in the 

limit of large 𝑁 (Newman, Strogatz & Watts, 2001). 

The distribution will be recognized as Poisson, 

which means that most of the vertices in the graph 

have a degree of (a value close to) 𝑧, while vertices 

with a much lower or higher degree are rare. 

However, as the reader might have guessed, it turns 

out that the Poisson degree distributed model 

(which we will refer to as the ER-graph, after Erdős 

and Rényi) does not do justice to various real-world 

graphs, such as power grids, metabolic systems, 

collaboration networks and food webs (see 

references in Newman et al., 2001). We will now 

proceed with another degree distribution that more 

accurately models the Web and other networks.  

3.1.1 The Scale-free Model 

Barabási, Albert & Jeong (2000), Huberman & 

Adamic (1999) and Faloutsos, Faloutsos & 

Faloutsos (1999) experimented on Web crawls and 

found that the degree distribution of the WWW 

follows a power-law; that is, the probability 𝑃(𝑘) is 

proportional to 𝑘−𝛾  (𝑐 is a normalising constant): 

 

𝑃(𝑘) ≅ 𝑐𝑘−𝛾  

 

Barabási et al. (2000), Broder et al. (2000), 

Kumar, Raghavan, Rajagopalan, Sivakumar, 

Tomkins & Upfal (1999) and Laura, Leonardi, 

Caldarelli & De Los Rios (2002) subsequently 

attempted to find the value for 𝛾, which they 

estimated at 𝛾 ≈ 2.1. In contrast to ER-graphs, this 

degree distribution is heavily right-skewed, which 

implies that many nodes with a low degree exist, 

but the probability that a node has an extreme 

degree (i.e. it is a hub) is still significant. 

Furthermore, only a small amount of vertices has 

degree 𝑧.  

Because the degree distribution of these graphs 

can be said to follow a scale-free power-law, the 

type of graphs has been named ‘scale-free’ graphs 

by Barabási and Albert, but in the literature there 

has been some confusion as to what graphs are 

scale-free (or ‘scale-invariant’) and what are 

consequences of this property. The following claims 

are regularly associated with SF-graphs (Li, 

Alderson, Doyle & Willinger, 2005; Keller, 2005): 

■ The degrees of an SF-graph are distributed 

according to a power-law. 

■ An SF-graph can be generated by using a 

stochastic process, prominently preferential 

attachment (Barabási et al. 1999). 

■ SF-graphs have an extremely small diameter. 

■ SF-graphs are self-similar. 

■ SF-graphs have many hubs (nodes with a 

very high degree) that are supposed to ‘hold 

the network together’ and are said be to be 

the cause that SF-graphs are highly error-

tolerant, but vulnerable to targeted attacks. 

Each of these claims will be discussed subsequently 

in relation to the Web.  

Typical examples for ER- and SF-graphs are 

given in Figure 3. 

 

 

Figure 3: Two graphs with the same number of nodes, but 

a different degree distribution. The left graph exemplifies 

a scale-free graph where hubs occur relatively frequently, 

the graph to the right exemplifies a more traditional 

Erdős-Renyí-graph where most nodes have a close to 

average degree.  

3.1.2 Scale-invariance 

The terms power-law distribution and scale-free 

graph are used almost interchangeably since the 

original publications (Barabási et al. 2000, Albert, 

Jeong & Barabási, 1999), while they are actually 



5 

 

different (but related) concepts and should be 

treated as such. The label ‘scale-free’ simply means 

that this power-law is independent of 𝑁, the number 

of nodes in the graph. Indeed, a power-law can 

trivially be shown to be scale-invariant (Keller 

2005), but scale-invariance does not demand a 

power-law. In other words, graphs with empirically 

confirmed power-law distributions are scale-free, 

but scale-free graphs are not always distributed 

according to a power-law. 

Li et al. (2005) have extended the scale-free 

graph theory by introducing a metric that defines if 

a graph is scale-rich or scale-free. Let 𝐺 be a 

connected graph with a given degree sequence. The 

𝑠-metric for 𝐺 is then:  

 

𝑠 𝐺 =  𝑑𝑒𝑔 𝑥 ∙ 𝑑𝑒𝑔⁡(𝑦)

(𝑥,𝑦)∈𝐸

 

 

The higher the value for 𝑠(𝐺), the more scale-

free the graph. The metric can be normalized if 

𝑠𝑚𝑎𝑥  is considered the maximum attainable value 

for 𝑠 given the degree distribution of 𝐺 (but any 

possible connectivity configuration): 𝑆 𝐺 =
𝑠(𝐺)

𝑠𝑚𝑎𝑥
 

with 𝑠𝑚𝑎𝑥 = 𝑚𝑎𝑥E⊆V×V (𝑠(𝑉, 𝐸)). 

Li et al. show that as a consequence of the 

Rearrangement Inequality the metric will be high 

for graphs where many hubs are interconnected (i.e. 

there is a ‘hub-like core’ in the graph, which is the 

case in the Barabási-Albert model), and low if many 

hubs are connected to low-degree nodes. By using 

this metric they redefine scale-free graphs as graphs 

with a scaling degree distribution and a high value 

for 𝑆(𝐺)1. The advantage of this definition is that its 

formality makes it much less ambiguous and that 

the concepts of scale-invariance and power-laws are 

separated. The 𝑠-metric shows that it is possible to 

construct a graph that is scale-free, without being 

power-law distributed. Properties of empirically 

observed graphs are therefore not necessarily a 

consequence of the scale-free nature of these 

networks, but are caused by different mechanisms. 

In the following subsection we discuss some of the 

possibilities. 

3.1.3 Generative Models for SF Graphs 

A helpful procedure when trying to understand a 

graph is constructing a new one that has the same 

properties. In this regard various studies have 

                                                           
1 A graph with a power-law degree distribution provides 

an example of a graph with high 𝑆(𝐺). 

attempted to simulate graphs that by some 

mechanisms result in a scale-free power-law degree 

distribution. The most widespread mechanisms 

were introduced by Barabási et al. (2000), and 

accompanied their finding of the power-law in the 

Web: growth and preferential attachment (PA).  

The model assumes that the generation of a 

graph starts with a collection of nodes: 𝑁0. At each 

time step 𝑡 we add a new node 𝑥 to this collection 

(growth). This new node forms 𝑚 links to the old 

nodes (𝑚 ≤ 𝑁0). The nodes that 𝑥 links to are not 

determined uniformly, instead the model states that 

this probability is dependent on the degree of the 

nodes already present:  

 

𝑃𝑟𝑜𝑏  𝑥, 𝑦 ∈ 𝐸𝑡+1  𝑉𝑡 + 𝑥  = 

 
𝑑𝑒𝑔⁡(𝑦)

 𝑑𝑒𝑔⁡(𝑧)𝑧∈𝑉

=
𝑑𝑒𝑔⁡(𝑦)

2 ∙  𝐸 
 

 

At time 𝑡 there are 𝑁0 + 𝑡 nodes and 𝑚𝑡 edges. The 

degree distribution that results from this model can 

now be derived. Let 𝑘𝑥(𝑡) be the degree of node 𝑥 

at time 𝑡, which we will approximate as a 

continuous random variable. Then 𝜅𝑥 𝑡 =
ℰ(𝑘𝑥 𝑡 ) is the expectation value of the degree of a 

node. The growth rate of 𝜅𝑥 𝑡  can be determined: 

 
𝑑𝜅𝑥 𝑡 

𝑑𝑡
=

𝜅𝑥 𝑡 

2𝑡
 

 

𝑘𝑥 𝑡 = 𝐷 ∙  𝑡 
 

The value of the constant 𝐷 can be determined by 

looking at the initial condition 𝑘 𝑡0 = 𝑚 = 𝐷 ∙  𝑡, 

so 𝐷 =
𝑚

 𝑡0
. Thus it follows that 

 

𝑘𝑥 𝑡 = 𝑚 ∙  
𝑡

𝑡0

 

 

From this point we can obtain the degree 

distribution 𝑃(𝑘) as the derivative of the cumulative 

probability 𝑃(𝑘𝑥 𝑡 < 𝑘): 

 

𝑃 𝑘𝑥 𝑡 < 𝑘 = 𝑃(𝑡0 >
𝑚2𝑡

𝑘2 ) 

 

= 1 −  𝑃(𝑡0 ≤
𝑚2𝑡

𝑘2 ) 

 

= 1 −
𝑚2𝑡

 𝑁0 + 𝑡 ∙ 𝑘−2
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𝑃 𝑘 =
𝑑  1 −

𝑚2𝑡
 𝑁0 + 𝑡 ∙ 𝑘−2 

𝑑𝑘
=

2𝑚2𝑡

(𝑁0 + 𝑡)
∙

1

𝑘3
 

 

So for large values of 𝑡 we have 𝑃 𝑘 =
2𝑚2

𝑘3 , which 

predicts a value of 3 for 𝛾 and in addition provides 

an estimate of the constant 𝑐 (see 3.1.1). Barabási et 

al. suggest that the difference between this analytic 

value and the one found on the Web can be 

explained by additional mechanisms, such as the 

rewiring of already existent edges. Nonetheless, a 

power-law degree distribution is indeed obtained by 

this model. 

Laura, Leonardi, Millozzi, Meyer & Sibeyn 

(2003) have implemented two models to generate 

web-like graphs as well. The first one is called the 

Evolving Network model and is essentially a 

combination of growth and PA (i.e. based on the 

mechanisms as given by Barabási et al.), although 

in their paper Laura et al. limit the PA to the in-

degree of the node (as opposed to total degree). The 

second model is the Copying model, based on the 

theory developed by Kumar et al. (1999), where 

new nodes have probability 𝛼 that they copy an 

edge of a prototype node 𝑝, and probability 1 − 𝛼 

that they connect to a randomly selected other node 

from the total graph. Laura et al. conclude that both 

of these generative models result in graphs with 

statistics similar to the Web, in particular they show 

a power-law degree distribution. 

Similar to the Evolving Network model, 

Pennock, Flake, Lawrence, Glover & Giles (2002) 

suggest the Network Growth model, in which they 

combine preferential attachment with a uniform 

probability distribution for the adding of new nodes. 

By using this model, they are able to explain the 

structure of specific subregions of the web (i.e. 

university webpages or newspaper webpages) more 

precisely than with PA alone. 

Although the ‘growth and PA’-model is 

strikingly intuitive, the Copying model and the 

Network Growth model show that Li et al. were 

right in their criticism: indeed there are multiple 

explanations for real-world graphs with scale-free 

power-law degree distributions. Even more models 

and/or refinements have been proposed (see for 

example Cooper & Frieze, 2003; Dorogovtsev, 

Mendes & Samukhin, 2000; Pandurangan, 

Raghavan, & Upfal, 2002), which means that only 

more experiments can unveil what the true 

underlying mechanisms for the Web graph are. 

Besides the fact that multiple models can 

explain the scale-invariant power-law distributions 

as found on the Web, these models seem to be 

incomplete. Newman (2002) shows this by looking 

at graph assortativeness. In general, an assortative 

graph is a network with nodes that connect to each 

other because they have some similarity, while in a 

disassortative graph nodes connect to each other 

because they are different. In practice, 

assortativeness is usually associated with node 

degree. In an assortative graph, nodes with a high 

degree connect to other nodes with a high degree, 

and vice versa for nodes with low degree. Newman 

defines the assortativity coefficient 𝑟 (−1 ≤ 𝑟 ≤ 1) 

that captures the assortativeness of an entire graph 

and emprically determines that the Web crawl by 

Barabási et al. (2000) is disassortative (𝑟 =
−0.065), while the growth and preferential 

attachment model suggests an assortativity 

coeffcient of exactly 𝑟 = 0. The question remains 

open what refinements of the models are required to 

capture the Web. 

3.1.4 Small-world Properties 

A further characteristic of the Web graph is its 

diameter, in social networks also referred to as the 

‘degree of separation’. This concept became 

widespread after a famous experiment by Milgram 

in 1967, who proposed the ‘small-world’ 

hypothesis: everyone on the earth is connected to 

everyone else through no more than six steps – the 

‘six degrees of separation’.  

The diameter of 𝐺 can be defined as the average 

shortest path between all pairs of vertices (Albert et 

al. 1999), or, in case not all the nodes are 

connected, the average connected shortest path 

(Broder et al. 2000). We adhere to the latter 

definition. Let 𝑑(𝑥, 𝑦) be the length in vertices of 

the shortest path from 𝑥 to 𝑦. The average shortest 

path of 𝐺 is then given as:  

 

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 =
1

 𝐴+ 
 𝑑(𝑥, 𝑦)

(𝑥,𝑦)∈𝐴+

 

 

A graph is considered a small-world graph if its 

expected diameter is a function of the logarithm of 

𝑁: ℰ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺   𝑉 = 𝑁 = log⁡(𝑁). Several 

studies show that indeed the Web graph is a small-

world graph (Albert et al. 1999; Broder et al. 2000; 

Bollobás & Riordan, 2002; Chung & Lu, 2002; 

Cohen & Havlin, 2003). The models these studies 

propose suggest diameters as small as 3.14 (Cohen 

& Havlin, 2003), while the actual observed 
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diameters range from 16 to 21. Although the 

models cannot be considered very accurate, the 

Web has an extremely small diameter nonetheless. 

3.1.5 Self-similarity 

Self-similarity in graphs refers to the concept that 

subsets display the same properties as the entire 

graph; for example in the sense of degree 

distribution or diameter length. In scale-free graphs, 

the combination of the slow (logarithmic) increase 

of the graph diameter and the power-law degree 

distribution provide an indication that such a graph 

cannot be self-similar. If it would be the actual case, 

then a scale-invariant power-law relationship 

between 𝑁 and 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝐺) would be expected 

(Song, Havlin & Makse, 2005). Interestingly, Song 

et al. were able to reconcile the degree distribution 

and diameter and by using a box-covering 

technique
2
 they found that their case study scale-

free graphs (one of which was the same web crawl 

Albert et al. used in 1999) exhibited self-similarity. 

Earlier, Dill, Kumar, McCurley, Rajagopalan, 

Sivakumar & Tomkins (2002) empirically tested the 

Web for self-similarity and obtained some 

interesting results. In their experimental setup, they 

generated seven disjoint random subsets out of a 

web crawl consisting of 60 M pages. Interestingly, 

these subsets where distributed according to 

(significantly close to) the same power-law degree 

exponents 𝛾𝑖𝑛 = 2.1 and 𝛾𝑜𝑢𝑡 = 2.23. In addition, 

the ratios of the different components (recall the 

CORE, etc.) in the random subsets were consistent 

with those found by Broder et al. (see Fig. 3). Dill 

et al. concluded that the web is self-similar and that 

this self-similarity is pervasive, i.e. it holds for 

several parameters (degree distributions, component 

sizes). In combination with the findings by Song et 

al. these results provide a strong indication for self-

similarity in the Web. In section 5 we return to the 

subject of self-similarity when we compare 

communities to the Web graph. 

                                                           
2 The algorithm by Song et al. uses a box-covering 

technique. They would create ‘boxes’ of a certain size 𝑙𝐵 

(this size corresponded to the distance nodes in these 

boxes were away from each other) and cover the entire 

network with 𝑁𝐵 of these boxes. Their result shows a 

power-law relationship between the size of the boxes and 

the number of boxes that were needed to cover the entire 

graph, indicating self-similarity. For an in-depth 

explanation of the algorithm we suggest Song et al. 

(2005) and Song, Havlin & Makse (2006). 

3.1.6 Resilience of SF Graphs 

A network can suffer from two kinds of failures: 

errors and attacks. The former refers to the 

malfunctioning of random nodes, while the latter 

refers to the removing of specific targeted nodes. 

The resilience of a graph can be tested by 

measuring the change in diameter after such a 

failure has occurred. If the diameter increases 

significantly, the nodes that have been removed 

were crucial in several paths through the network. If 

the diameter stays (almost) the same, then the 

removed nodes apparently played only a minor role. 

In real-world situations, many networks are 

highly resistant against errors. For example, 

downtime of a website rarely affects the 

accessibility of another website, because there are 

other paths available. This quality is often ascribed 

to redundant graph edges, i.e. edges that serve only 

as backup in case of errors, but Albert, Jeong & 

Barabási (2000) show that error-resistance occurs 

only in scale-free graphs and is not a consequence 

of redundant wiring, but of the power-law degree 

distribution. In a Poisson-distributed graph, the 

removal of any node causes the same damage to the 

network as would any other node. In SF-graphs 

however, many nodes can be removed without any 

harm (the nodes with a low degree, through which 

only a few paths run and therefore hardly affect the 

diameter). On the other hand, if a hub vertex is 

removed the resulting network may break apart into 

several disconnected components.  

Crucitti, Latora, Marchiori & Rapisarda (2003) 

show that when 2% of the nodes of a scale-free 

network are removed at random, the graph is still 

hardly affected. If these 2% are targetted at high-

degree vertices however, the network quickly falls 

apart. Since the Web is a power-law distributed, the 

same rules for its resilience apply. A well-placed 

attack on a couple of large news-sites for example 

could severely damage the connectivity of the 

graph. How such network catastrophes can be 

avoided remains a hot topic in graph theory.  

4 LOCAL STRUCTURE OF THE 

WEB GRAPH 

Now that the global structure of the Web graph has 

been discussed, we turn to local phenomena: graph 

communities. A community is a collection of nodes 

in a graph that are somehow related. Some 

examples of communities in other types of graphs 

than the Web are protein-clusters that together have 
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specific functions in the metabolic system, or power 

grids that together provide electricity for an area. 

Such community structures, or clusters as they are 

sometimes called, are also meaningful in the Web. 

The most obvious implementation of a web-

community would be collections of pages that share 

a topic. When trying to allocate vertices to clusters 

by topic, we are looking at the contents of the 

vertex. However, as explained before, in this paper 

we ignore vertex content and focus on the 

connectivity of vertices – on structural 

communities. In the following section we will 

discuss several models for structural communities 

as found in the available literature. 

4.1 Community Models 

There is a wide range of approaches to graph 

communities. We list the basic idea behind some of 

the more striking models (for a more complete 

overview we suggest Danon, Diaz-Guilera, Duch & 

Arenas (2005)) and subsequently we will proceed to 

examine the community model we will adopt in this 

paper in greater detail. The various models are 

exemplified visually in Figure 4.  

1. Gibson, Kleinberg & Raghavan (1998) define 

a community as the combination of a set of 

‘authorative’ vertices (𝑖𝑛𝑑𝑒𝑔(𝑥) ≫
𝑜𝑢𝑡𝑑𝑒𝑔(𝑥)) and a set of hub vertices 

(𝑜𝑢𝑡𝑑𝑒𝑔(𝑥) ≫ 𝑖𝑛𝑑𝑒𝑔(𝑥)). These hubs and 

authorities are connected in their model. By 

this definition, the communities consist mostly 

of nodes with a high degree, leaving out 

affiliated but less definitive nodes. 

2. Kumar, Raghavan, Rajagopalan & Tomkins 

(1999) describe a community as a densely 

connected bipartite subgraph (a bipartite graph 

is a graph where the set of vertices  can be 

divided into two disjoint sets 𝑉 and 𝑈 such 

that no edge has both end points in 𝑉 or 𝑈) 

containing at least one complete bipartite 

subgraph. While the idea of a bipartite 

subgraph would result in a very precise notion 

of a community, it is quite likely that some 

vertices that are related to the community, 

would need to be in both partitions since they 

have neighbours in both sets. According to 

this model they would not be added to the 

community.  

3. Popescul, Flake, Lawrence, Ungar & Giles 

(2000) adopt another take and view 

communities as popular nodes (highest in-

degree) and all the nodes pointing to it. 

Essentially the model takes a local authority 

and adds its neighbourhood to the community. 

Here, the problem is that the model does not 

allow for multiple authorative vertices. 

4. Zhou, Wen, Ma & Zang (2002) take yet 

another turn and portray a community as a 

collection of concentric circles of nodes. The 

smallest circle contains the core of the 

community, the proceeding circles each 

contain affiliated pages on a ranked scale. 

Affiliation is defined as linking to nodes in the 

smaller concentric circle. The model by Zhou 

et al. is a refinement of the previous model, 

but it still excludes multiple authorative 

sources. 

5. Flake, Lawrence & Giles (2000) and Flake, 

Lawrence, Giles & Coetzee (2002) define a 

community as the collection of nodes that 

have more links between them than to nodes 

outside the community. It is a natural 

definition and captures a strong concept. The 

model aims to have authorities and hubs inside 

the community and in addition the nodes that 

are connected to these vertices. One could 

rephrase the definition as: a community is a 

collection of nodes that is separated (but not 

disconnected) from the rest of the graph. The 

combination of simplicity and intuitiveness 

makes this model the model of choice for this 

thesis. 

The simplicity of the definition by Flake et al. 

leaves room for two interpretations, which are 

labelled the ‘strong community’ and the ‘weak 

community’. They are defined as follows (Radicchi, 

 

Figure 4: From left to right: the community models 1-5 (see text). 
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Castellano, Cecconi, Loreto, & Parisi, 2004): Let 𝐶 

be a subset of the graph 𝐺. 𝐶 is a strong community 

if  

  

𝑠𝑡𝑟𝑜𝑛𝑔(𝐶) ≜ ∀𝑣∈𝐶  𝐴(𝑣, 𝐶) >  𝐴(𝑣, 𝑉 − 𝐶)   
 

And 𝐶 is a weak community if  

 

𝑤𝑒𝑎𝑘(𝐶) ≜  𝑎𝑟𝑐𝑠(𝐶, 𝐶) >  𝑎𝑟𝑐𝑠(𝐶, 𝑉 − 𝐶)  
 

It follows that a strong community is also a weak 

community, while the reverse in general does not 

hold.  

From section 3.1.1 it follows that the Web graph 

contains a significant large amount of hub-vertices, 

i.e. vertices with a high out-degree. According to 

the strong community definition, if such a hub is a 

member of the community, over half of its 

neighbours must be within the community. Such a 

condition is too restrictive for a useful community 

model, since this would make it near impossible to 

include hubs in communities. For example, 

websites from wikis or major news agencies tend to 

be hubs and could therefore not be included in a 

community, unless more than half of the websites 

they are connected with are in the community as 

well. The weak definition makes it possible that 

these nodes are added into the community. The 

community definition that will be used in the 

remainder of this paper is therefore adjusted into the 

second alternative, that of a weak community. The 

following section elaborates on how such 

communities can be found in a graph. 

4.2 Graph Modularity 

As there are many different community models, it 

makes sense that there exist multiple 

implementations of community identification 

algorithms accompanying these models. This is also 

the case for identification algorithms that 

specifically follow the definition by Flake et al. The 

implementations differ on terms of result, 

complexity and on whether they operate on the 

global graph or automate locally. Newman & 

Girvan (2004) have proposed a mechanism that can 

evaluate identification results that has become 

widely accepted. Given a community identification 

result consisting of 𝑛 disjoint communities, we can 

define an 𝑛 × 𝑛 matrix 𝑒 where each element 𝑒𝑖𝑗  

corresponds to the fraction of all links pointing 

from community 𝐶𝑖  to community 𝐶𝑗 :   

 

𝑒𝑖𝑗 =
1

 𝐴 
 𝑎𝑟𝑐𝑠(𝐶𝑖 , 𝐶𝑗 )  

 

If the network does not show signs of 

community structure, or if the division of 

communities was chosen at random instead of by 

using an adequate algorithm, the expected value of 

the number of intercommunity links can be 

approximated, since this is the probability that a 

link begins in 𝐶𝑖 : 
1

𝑛
, multiplied by the probability 

that a link ends in 𝐶𝑗   (also 1

𝑛
): 1

𝑛2. Since we know 

the real value of 𝑒𝑖𝑖  (all links within the community) 

we can calculate the summed difference between 

the current community partitioning and uniform 

partitioning, the modularity measure  

 

𝑄  𝐶1, 𝐶2 … , 𝐶𝑛   𝐺 =   𝑒𝑖𝑖 −
1

𝑛2 .

𝑖

 

 

Note that the modularity is a characteristic for 

the entire graph.  

In the extreme case that 𝑛 communities within a 

network have been identified, with no links between 

them, 𝑄 will have the value 1 − 1/𝑛 , which tends 

to 1 for large values of 𝑛 (Danon 2005), indicating 

a clear non-random community structure. If this 

value tends to 0, the community decomposition was 

unsuccessful. According to Newman and Girvan, 

the value of 𝑄 typically ranges between 0.3 and 0.7 

for networks with strong communities, with higher 

values being rare.  

Since finding a high modularity implies that 

many of the communities accord to at least the 

definition of a weak community, the modularity 

itself could be the basis for a community 

identification algorithm. The algorithm would have 

to find the maximum 𝑄  𝐶1, 𝐶2 … , 𝐶𝑛   𝐺  for all 

possible divisions of the network, which would 

result in optimal communities. Unfortunately, this 

process would be very costly in terms of complexity 

and require an exponential amount of time. For 

networks with more than say twenty nodes, this is 

already beyond any practical application, let alone 

for Web applications such as search engines, so this 

option can quickly be put aside. Newman (2004) 

suggests to iteratively calculate the difference in 

modularity when two communities are joined 

together. That is, starting with a matrix where each 

element contains a single node, for each possible 

combination of two communities we calculate how 

the modularity of the clustering changes:  

 
∆𝑄 ≜ 𝑄  𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑛  − 𝑄  𝐶1 + 𝐶2, 𝐶3, … , 𝐶𝑛−1   
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The contribution in modularity by 𝐶𝑖  and 𝐶𝑗  initially 

was: 

 

𝑄  𝐶𝑖 , 𝐶𝑗   =  𝑒𝑖𝑖 −
1

𝑛2 +  𝑒𝑗𝑗 −
1

𝑛2  

 

But after these communities are combined the 

contribution is: 

 

𝑄  𝐶𝑖 + 𝐶𝑗   = 𝑄  𝐶𝑖 , 𝐶𝑗   +  𝑒𝑖𝑗 −
1

𝑛2 +  𝑒𝑗𝑖 −
1

𝑛2  

Therefore the difference in modularity when two 

communities are joined together is:  

 

∆𝑄( 𝐶𝑖 + 𝐶𝑗 ) =  𝑒𝑖𝑗 −
1

𝑛2 −  𝑒𝑗𝑖 −
1

𝑛2  

 

This calculation can be done in constant time, 

resulting in a total complexity for the algorithm of 

𝑂(𝑛2) for sparse graphs. The algorithm provides 

clear community structures and would be useful for 

our experiment, were it not for the fact that it 

presupposes that the total graph is known and 

stored. In practice, the total (size of the) Web is not 

known and efficient calculation on a graph of this 

magnitude is infeasible. Therefore a community 

identification algorithm is needed that can operate 

locally, i.e. without a priori knowledge of the Web 

graph. An algorithm that functions on a local scale 

is proposed by Clauset (2005). It keeps a 

complexity of 𝑂(𝑘2) where 𝑘 is a user-given upper 

bound for the number of vertices to be processed. 

The algorithm is inspired on modularity as used by 

Newman, and introduces a new measure 𝑅, that of 

local modularity. The algorithm and its underlying 

model will be explained in the next sections. 

4.3 Local Modularity 

Instead of dividing a graph into several 

communities, as the global approach in the previous 

section suggests, it is in practical applications more 

useful to find the community that surrounds a given 

vertex. This way the algorithm does not have to 

process the entire graph, but only a subset (for 

example in ranking retrieved websites based on 

their community membership). The local 

modularity measure as introduced by Clauset 

(2005) works according to this concept. We will 

explain the algorithm and the framework it is built 

on subsequently.  

A cluster is a group of nodes from the entire 

population: 𝐶 ⊆ 𝑉, 𝐶 ≠ ∅ of which we know all 

link structure (only outbound links on the Web). 

The cluster is usually not isolated; there are some 

connections between outsiders and the cluster 

nodes. These outsiders are referred to as the 

universe 𝑈 of the community:  

 

𝑈 𝐶 ≜  𝑢 ∈ 𝑉 − 𝐶   𝐴 𝐶, 𝑢 ≠ ∅  
 

Not all of the nodes in 𝐶 have to be connected to 

𝑈. In fact, a tight community would actually have 

only a few members that exchange links with 

outsiders, while most nodes connect only to other 

community members. The vertices that do connect 

to 𝑈 are said to be in the boundary 𝐵 of 𝐶 (see also 

Figure 5):  

 

𝐵 𝐶 ≜  𝑏 ∈ 𝐶   𝐴 𝑏, 𝑈 ≠ ∅  
 

Analogously to global modularity as given by 

Newman & Girvan, we are interested to what 

degree the cluster is isolated from these outsiders. 

This can be expressed by looking at the sharpness 

of the boundary in relation to the universe, i.e. the 

number of links from the boundary to the cluster 

versus the number of links to the entire network. By 

examining the number of links of the boundary 

instead of the total cluster, clusters of different sizes 

can be compared better. The achieved fraction is the 

local modularity 𝑅(𝐶) of a graph subset 𝐶, defined 

as 0 when 𝐵 = ∅ and when 𝐵 ≠ ∅: 

 

 
𝑅 𝐶 =

 𝑎𝑟𝑐𝑠(𝐵 𝐶 , 𝐶) 

 𝑎𝑟𝑐𝑠(𝐵 𝐶 , 𝑉) 
 (1) 

 

The local modularity measure is a characteristic 

of a subgraph that shows how much a cluster is 

separated from the rest of the graph. If for example 

𝑅 = 0.9 and  𝐶 ≪  𝐺 , we have a subgraph that is 

only thinly connected to the rest of 𝐺. Such a cluster 

is a community, if its local modularity measure 

exceeds a given threshold 𝑑:  

 

𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦(𝐶) ≜ 𝑅(𝐶) ≥ 𝑑 

 

In this paper it is assumed that 𝑑 = 1

2
, since this is 

the threshold at which the weak community 

definition as given in section 4.1 is true.  
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Figure 5: The local modularity model. The blob to the left 

is the cluster, the sub-blob is its boundary, connected to 

the blob to the right: its universe. In this situation, 

𝑅(𝐶) = 2 6 . 

4.3.1 Community Identification Algorithm 

Because local modularity does not require 

knowledge of the entire graph, we can find 

communities with maximum local modularity from 

a single seed vertex 𝑣0. The basic idea is simple: for 

each neighbour of the cluster (i.e. its universe) we 

evaluate which vertex would increase the 

modularity the most if it was added to the cluster. 

We can continue this greedy algorithm indefinitely 

if we allow the maximum increase to be negative: 

i.e. if no vertex would increase the modularity, we 

add the node that provides the least decrease. The 

algorithm is described in pseudo code in Table 1. 

The stop condition of the algorithm is arbitrary. 

Either the algorithm processes 𝑘 nodes, or the 

process continues until a given local modularity 

threshold 0 < 𝑑 ≤ 1 is reached. We return to this 

criterion in section 4.5 where we examine actual 

clusters. Before that we continue with the analysis 

of the algorithm. 

To calculate which vertex 𝑢 ∈ 𝑈 is the best 

candidate (i.e. it has the highest ∆𝑅(𝐶) of all 

candidates in 𝑈) we could simulate the adding of 

each vertex and calculate 𝑅(𝐶) by using (1). In 

most situations this is inefficient. A better solution 

is to derive the difference in modularity for each 

vertex: ∆𝑅 𝐶, 𝑢 :  
 

 ∆𝑅 𝐶, 𝑢 = 𝑅(𝐶 + 𝑢) − 𝑅(𝐶) (2) 

 

In order to use this equation, we need to know 

how 𝑎𝑟𝑐𝑠 𝐵 𝐶 , 𝐶  and 𝑎𝑟𝑐𝑠 𝐵 𝐶 , 𝑉  change 

when 𝑢 is added to the cluster, which depends on 

how 𝐵(𝐶) changes. To analyse this we start with 

nodes from the boundary that had 𝑢 as their 

exclusive neighbour in the universe. These will not 

be in 𝐵(𝐶 + 𝑢): 

 

𝐷 𝐶, 𝑢 =  𝑏 ∈ 𝐵(𝐶) 𝐴 𝑏, 𝑉 − 𝐶 =  𝑢   
 

For these nodes the following property holds: 

 

Lemma 1:  

 

𝑥 ∈ 𝐷 𝐶, 𝑢 → 𝐴 𝑥, 𝑉 = 𝐴 𝑥, 𝐶 + 𝑢 
 

There can now be two distinct situations:  

1. 𝑢 will not become a boundary member of 

𝐶 + 𝑢, i.e. 𝐴 𝑢, 𝑉 − 𝐶 = ∅ or 

2. 𝑢 will become a boundary member of 

𝐶 + 𝑢, i.e. 𝐴(𝑢, 𝑉 − 𝐶) ≠ ∅. 

Situation 1: 𝑢 ∉ 𝐵 𝐶 + 𝑢 :  

 

𝐵 𝐶 + 𝑢 = 𝐵 𝐶 − 𝐷(𝐶, 𝑢) 

 

From this we derive that  

 
𝑎𝑟𝑐𝑠(𝐵 𝐶 + 𝑢 , 𝐶 + 𝑢) = 𝑎𝑟𝑐𝑠 𝐵 𝐶 ,𝐶 + 𝑎𝑟𝑐𝑠 𝐵 𝐶 , 𝑢 −
𝑎𝑟𝑐𝑠(𝐷 𝐶, 𝑢 , 𝑉)  

 

And  

 
𝑎𝑟𝑐𝑠 𝐵 𝐶 + 𝑢 , 𝑉 = 𝑎𝑟𝑐𝑠 𝐵 𝐶 , 𝑉 − 𝑎𝑟𝑐𝑠 𝐷 𝐶, 𝑢 , 𝑉  
 

Situation 2: 𝑢 ∈ 𝐵(𝐶 + 𝑢): 

 

𝐵 𝐶 + 𝑢 = 𝐵 𝐶 − 𝐷 𝐶, 𝑢 + 𝑢 
 

We derive that  

 
𝑎𝑟𝑐𝑠(𝐵 𝐶 + 𝑢 , 𝐶 + 𝑢) = 𝑎𝑟𝑐𝑠 𝐵 𝐶 ,𝐶 + 𝑎𝑟𝑐𝑠 𝐵 𝐶 , 𝑢 −
 𝑎𝑟𝑐𝑠 𝐷 𝐶, 𝑢 , 𝑉 + 𝑎𝑟𝑐𝑠(𝑢, 𝐶)  

 

And  

 
𝑎𝑟𝑐𝑠(𝐵 𝐶 + 𝑢 , 𝑉) = 𝑎𝑟𝑐𝑠 𝐵 𝐶 , 𝑉 − 𝑎𝑟𝑐𝑠 𝐷 𝐶, 𝑢 , 𝑉 +
𝑎𝑟𝑐𝑠(𝑢, 𝑉)  

 

Both situations are illustrated with hypothetical 

examples, also visualised in Figure 6.  

 

Example situation 1: 

 

Table 1: The local modularity algorithm. 

C := Ø; 

v := v0; 

repeat 

 C := C+v; 

 v := argmax{R(C+u)|u∈U(C)} 
until |C| = k or R = d  
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 𝑉 =  1, 2, 3, 4, 5   

 𝐴 =   2,1 ,  2,4 ,  3,4 ,  3,5    

 𝐶 =  1, 2, 3   

 

The universe and boundary of this cluster are 

therefore 

 

 𝐵(𝐶) =  2, 3   

 𝑈(𝐶) =  4, 5   

 

If we consider the adding of node 4 to the cluster, 

then 

 

 𝐷(𝐶 + 4) =  2  
 𝐵 𝐶 + 4 = 𝐵 𝐶 − 𝐷 𝐶, 4 =  3  
By using the above formulae, we derive that 

𝑎𝑟𝑐𝑠 𝐵 𝐶 + 4 , 𝐶 + 4 =   2,1  +   3,4  −
  2,1  =   3,4   
 

 

Figure 6: In the diagram on the left, node 4 has no arcs to 

𝑉 − 𝐶, therefore it is not in 𝐵(𝐶 + 4). In the diagram on 

the right the node does have an arc to a node in 𝑉 − 𝐶, 

therefore node 4 is in 𝐵(𝐶 + 4). See text for a detailed 

analysis. 

And 

𝑎𝑟𝑐𝑠 𝐵 𝐶 + 4 , 𝑉 =   2,1 ,  2,4 ,  3,4 ,  3,5  −
  2,1 ,  2,4  =   3,4 ,  3,5   
 

The change in modularity that the addition of node 

4 causes, is: 

 

∆𝑅 𝐶, 4 =
   3,4   

   3,4 ,  3,5   
−

1

4
=

1

2
−

1

4
=

1

4
 

 

Example situation 2: 

 

 𝑉 =  1, 2, 3, 4, 5  
 𝐴 =   2,1 ,  2,4 ,  3,4 ,  3,5 ,  4,5   
 𝐶 =  1, 2, 3  
 

The universe and boundary of this cluster are 

therefore 

 

 𝐵(𝐶) =  2, 3   

 𝑈(𝐶) =  4, 5   

 

If we consider the adding of node 4 to the cluster, 

then 

 

 𝐷(𝐶 + 4) =  2  
 𝐵 𝐶 + 4 = 𝐵 𝐶 − 𝐷 𝐶, 4 =  3,4  

 

By using the above formulae again, we derive that 

𝑎𝑟𝑐𝑠 𝐵 𝐶 + 4 , 𝐶 + 4 =
  2,1  +   2,4 ,  3,4  −   2,1 ,  2,4  +    =
  3,4   
 

And 

𝑎𝑟𝑐𝑠 𝐵 𝐶 + 4 , 𝑉 =   2,1 ,  2,4 ,  3,4 ,  3,5  −
  2,1 ,  2,4  +   4,5  =   3,4 ,  3,5 ,  4,5   
 

The change in modularity that the addition of node 

4 causes, is: 

 

∆𝑅 𝐶, 4 =
   3,4   

   3,4 ,  3,5 ,  4,5   
−

1

4
=

1

3
−

1

4
=

1
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These trivial examples show the working of the 

algorithm, but obviously it is intended to be applied 

to real-world graphs. The next section discusses the 

local modularity model and algorithm in relation to 

the Web. 

5 EXPERIMENTAL RESULTS 

By running the community identification algorithm 

as presented in the previous section, we acquire 

knowledge about the structure of the Web. Most 

prominently, if a large percentage of the identified 

clusters have a high local modularity value, then 

this indicates that the Web is modular in structure, 

i.e. several components are connected through hubs, 

but have little to no mutual connections. If on the 

other hand most of the clusters have only a low 

value of 𝑅(𝐶), then the web is much more 

interconnected. In addition, if many communities 

are identified, then these clusters are likely to be 

valuable for information retrieval purposes. The 

underlying assumption is that these clusters exhibit 

their high local modularity value because their 

nodes somehow relate to each other. We return to 

the cluster hypothesis in section 5.3; for now we 

proceed by elaborating on our experimental setup. 

Our community identification algorithm was 

implemented in Microsoft C#. The main routine is 

globally given in Table 1. Instead of running the 
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algorithm on the Web in real time, we decide to use 

a Web crawl, because slow responding Web servers 

would delay the batch process greatly. It should be 

noted that no meta-information about the crawl is 

used in the implementation of the algorithm and the 

experiment is entirely repeatable real-time. We 

restricted the crawl dataset to unique second-level 

domains on the Dutch top-level domain
3
 .NL (± 1.5 

million nodes), obtained in April 2007. We defined 

an arc to exist between two nodes A and B if these 

domains had at least one hyperlink from domain A 

to domain B; the actual number of links is not taken 

into account
4
. 

Our experiment is divided into two parts. In the 

first part clusters were initialised with a random 

node 𝑣0. Seed vertices with an out-degree of 0 were 

excluded. The second part uses the same crawl, but 

instead of random 𝑣0 we pick specific second-level 

domains, so we can evaluate the relations between 

the seed node and the other nodes in the achieved 

cluster manually. We return to these results in 5.3. 

The results from the first set are shown in Figure 

7. The chart shows that for 25 out of 30 clusters, the 

local modularity exceeds the 0.5 barrier before 

 𝐶 = 50. Furthermore, 25 out of 30 clusters 

consistently reach 𝑅 𝐶 = 0.8 before  𝐶 = 100.  

From this part of our experiment, a few of the 

clusters show behaviour that differs remarkably 

from others. The blue line in Figure 7 for example 

(the line corresponding to the lowest modularity 

value after  𝐶 = 150) corresponds to an extremely 

high average degree of 14.5, as opposed to ± 4.3 in 

                                                           
3 In the URL ‘www.foo.bar’, ‘bar’ is the top-level domain 

and ‘foo’ the second level domain. 
4 This way we prevent certain recurring hubs to be added 

in every cluster, like www.google.com, as many websites 

have a google search option on each of their pages. 

the entire graph. Other anomalies are clusters that 

are strongly isolated from the rest of the graph. At 

 𝐶 ± 75 their only neighbour in 𝑈 is a hub with a 

high degree. As soon as this hub is added to the 

cluster, it greatly decreases the modularity score. 

When the surroundings of this hub are added to the 

clusters one by one, the modularity slowly increases 

again. This shows that the community that was 

identified before this hub was added, was a 

component of the community that is identified when 
 𝐶  approaches 500. 

Besides a few explainable anomalies, the 

clusters all show a remarkable similar pattern. The 

modularity score skyrockets when the algorithm 

starts, varying in the range 0.6 < 𝑅 𝐶 < 0.9 

before the clusters contain more than 100 nodes. At 

this point, the 𝑅(𝐶) is quite stable in the range 

0.7 < 𝑅 𝐶 < 0.9. These findings are made more 

clear in the chart that plots the average modularity 

progression, as given in Figure 8. It is noteworthy 

that in this experiment the average local modularity 

can be accurately approximated by a logarithmic 

function: 𝑅 𝐶 ≅ 𝑐 ln  𝐶  + 𝑑, where c and d are 

constants with respective values 0.116 and 0.127 in 

this fit. The coefficient of determination 𝑅2 

between this formula and the average empirical data 

is 0.953, indicating a relationship between the size 

of the cluster and its modularity value. This 

relationship can be explained by looking at the 

equations for ∆𝑅(𝐶 + 𝑢) (the derivative of 𝑅(𝐶)) in 

the previous section. In situation 1, some 

rearranging of the terms in (2) provides: 

 

∆𝑅(𝐶 + 𝑢) =
𝑎𝑟𝑐𝑠 𝐵 𝐶 , 𝑢 + (𝑅 − 1) ∙ 𝑎𝑟𝑐𝑠(𝐷 𝐶, 𝑢 , 𝑉)

𝑎𝑟𝑐𝑠 𝐵 𝐶 , 𝑉 − 𝑎𝑟𝑐𝑠(𝐷 𝐶, 𝑢 , 𝑉)
 

 

𝐵(𝐶) is a function of 𝐶, and 1 ≤  𝐵(𝐶) ≤  𝐶 . 
When  𝐶  and  𝐵(𝐶)  are large enough, the above 

 

 

 

Figure 7: The modularity progression for 30 random seed 

vertices. 

 Figure 8: The average modularity progression for 30 

random seed vertices. 
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equation is determined by  𝑎𝑟𝑐𝑠(𝐵 𝐶 , 𝑉) , which 

is independent of 𝑢:  

  

 𝑎𝑟𝑐𝑠(𝐵 𝐶 , 𝑉) =  𝑜𝑢𝑡𝑑𝑒𝑔(𝑐)

𝑐∈𝐵(𝐶)

 

 

So in situation 1, ∆𝑅(𝐶 + 𝑢) can indeed be 

approximated by 𝑑
 𝐶 

 where 𝑑 is a constant 

determined by the relation between 𝐵 𝐶  and 𝐶 and 

the average degree in the cluster. The same line of 

reasoning, mutatis mutandis, is applied to situation 

2: 

 

∆𝑅(𝐶 + 𝑢) =
𝑎𝑟𝑐𝑠 𝐵 𝐶 , 𝑢 + (𝑅 − 1) ∗ 𝑎𝑟𝑐𝑠(𝐷 𝐶, 𝑢 , 𝑉)

𝑎𝑟𝑐𝑠 𝐵 𝐶 , 𝑉 − 𝑎𝑟𝑐𝑠(𝐷 𝐶, 𝑢 , 𝑉)
 

 

Again, this equation is determined by 
 𝑎𝑟𝑐𝑠(𝐵 𝐶 , 𝑉)  when the cluster and its boundary 

are large enough, so ∆𝑅(𝐶 + 𝑢) can be 

approximated by 
𝑑

 𝐶 
. 

5.1 Pruning 

The community identification algorithm is greedy 

and therefore some nodes will be added to the 

clusters that should in hindsight better be left out. 

We introduce a pruning module to run after the 

identification process is completed (i.e. the 

community size has reached its limit or a 

modularity threshold is reached) to remove nodes 

from 𝐵(𝐶) that negatively influence the modularity 

of the cluster. This procedure is described in Table 

2. 

 
The details of the working of the procedure are 

analogous to those of the original algorithm and are 

omitted. 

By pruning clusters the modularity value 

increases (or in the worst case scenario, stays the 

same). We reran the community identification 

algorithm on the same 30 seed vertices as before, 

but after the cluster size reached 100 nodes we 

applied the pruning algorithm. This time our 

community size threshold was 100, so we could see 

how pruning affects the anomalies as discussed in 

the previous section. 

The average modularity value at  𝐶 = 100 was 

𝑅 𝐶 = 0.661, much lower than after pruning was 

applied, which resulted in an average local 

modularity of 0.756. The difference between these 

values shows that it is possible to construct clusters 

on the Web graph with even higher modularity. The 

clusters that benefited the most from pruning were 

those that showed the anomalies in Figure 7, since 

the hub that greatly decreased the modularity was 

removed by pruning. 

Since pruning removes nodes from 𝐵(𝐶), the 

boundary of the clusters shrinks as more and more 

nodes are removed. On average the boundary of a 

cluster of 100 nodes consists of 21.65 nodes. After 

pruning, this value is more than halved to 10.69, 

with an average cluster size of 89.04. So in 

conclusion, the original algorithm with the pruning 

module combined result in clusters which are 

connected to the rest of the Web by only 12% of 

their nodes and by following an arc from one of 

these nodes, the average chance to ‘exit’ the cluster 

(i.e. follow an arc to a node outside 𝐶) is 1 −
𝑅 𝐶 = 0.244. The following sub section discusses 

the relation between these findings and the Web 

graph model. 

5.2 Relation Between Local and Global 

Web Graph Phenomena 

None of the clusters reached a local modularity 

value of 1 except in trivial situations where  𝐶 = 2 

(excluded in Figure 7). With the bow-tie model in 

mind we expected a significant part of the clusters 

to reach a modularity of 1 before 500 nodes were 

accumulated, which would correspond to the OUT-

component or an outward TENDRIL. The lack of 

this event seems to indicate that the bow-tie model 

is too crude. In the daisy model the IN- and OUT-

components are split up into several smaller 

components, that allow for some overlap. This is 

more in line with our experience, where clusters of 

nodes are connected to other nodes through their 

boundary. The smaller the boundary and the higher 

the modularity of the cluster, the more isolated the 

petal of the daisy flower model. Boundary nodes 

that occur in various clusters can be said to be in the 

CORE of the model. These nodes are usually mega-

hubs that provide services as Web statistics or link 

portals; websites with little actual content of their 

own. Pruning removes these nodes from the 

clusters, leaving only the petals. 

Earlier we examined the degree distribution of 

the Web in detail and discussed the scale-free 

power-law that is often associated with the Web and 

Table 2: Pruning. 

repeat 

 v := argmax{R(C-u)|u∈B(C)-v0} 
 C := C-v; 

until R(C-v) ≤ R(C) or |B(C)|=1  
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other real-world graphs. We also examined how our 

identified clusters are distributed, and compared the 

degree distribution plots from the clusters combined 

and the total graph. The average degree on the .NL-

crawl is 4.25, while the clusters together provide an 

average degree of 3.29, significantly lower. 

Although the average degree in the clusters is 

lower, both the clusters as well as the total .NL-

crawl show the by now familiar power-law degree 

distribution. The respective parameters for these 

distributions are 𝛾𝑡𝑜𝑡𝑎𝑙 = 1.34 and 𝛾𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 1.89, 

a further confirmation that the clustering algorithm 

excludes mega-hubs. These distributions indicate 

that the clusters themselves are scale-free as well. 

However, to fully understand the relation between 

scale-free graph characteristics and the local 

clusters, more research is required.  

5.3 The Cluster Hypothesis 

As a derivative of Van Rijsbergen’s cluster 

hypothesis (Van Rijsbergen, 1979), we assume that 

closely associated nodes have a semantically 

meaningful common ground. For the local 

modularity algorithm this implies that clusters with 

a high modularity score contain websites that have 

some relation to the other nodes and 𝑣0. To test this 

we ran a second batch of community identification 

processes, but instead of randomly selecting a seed 

node 𝑣0 we chose specific websites that enabled us 

to evaluate the obtained clusters. The results of 

three of such clusters are shown in Table 3. The 

modularity score of 0.5 (the rightmost column) is 

significant, as can be seen when it is compared to 

Table 3: Nodes in clusters with 𝑅 𝐶 ≥ 0.5. Blank descriptions belong to websites that were inaccessible. 

𝒗𝒙 Website 𝒐𝒖𝒕𝒅𝒆𝒈(𝒙) Description 𝑹(𝑪 + 𝒗𝒙) 

0 overheid.nl 18 Dutch Government Services 0.0 

1 minocw.nl 4 Ministry of Education, Culture and Science 0.091 

2 postbus51.nl 0 Government Information Desk 0.182 

3 regering.nl 0 Dutch Government 0.273 

4 bedrijvenloket.nl 2 Government Services for Businesses 0.333 

5 e-overheid.nl 0 Electronic Government Services 0.375 

6 info-wmo.nl 0 Information on the Act of Social Support 0.417 

7 minvws.nl 6 Ministry of Traffic and Water management 0.467 

8 kiesbeter.nl 0 Health Care Counseling 0.500 

Worst case modularity 0.267 

𝒗𝒙 Website 𝒐𝒖𝒕𝒅𝒆𝒈(𝒙) Description 𝑹(𝑪 + 𝒗𝒙) 

0 ru.nl 39 Radboud University Nijmegen 0.0 

1 stw.nl 7 Technology and Science Foundation 0.043 

2 sentinels.nl 4 Dutch Security Research Program 0.080 

3 nwo.nl 0 Dutch Organisation for Scientific Research 0.120 

4 ictregie.nl 0 Developments in ICT-research 0.140 

5 wisweb.nl 0 Mathematical Applications for High School 0.160 

6 snnonline.nl 0  0.180 

7 beevee.nl 1 Biology Students Union 0.200 

8 nanoned.nl 0 Nanotechnology Network 0.220 

9 fom.nl 0 Fundamental Matter Research 0.240 

10 gx.nl 0 Website Content Management 0.260 

11 wisfaq.nl 0 Mathematical Q&A for High School 0.280 

12 wetland-ecology.nl 1 Master Class on Climate Change 0.300 

13 embedded-systems.nl 0 Program of STW 0.320 

14 minez.nl 0 Ministry of Economy 0.340 

15 kizz.nl 0 Administrational Student Services for RU 0.360 

16 betabedrijvenbeurs.nl 0 Science and Business Fair 0.380 

17 marie-curie.nl 0 Astrophysics Student Union 0.400 

18 nedstat.nl 0 Web Statistics 0.420 

19 azn.nl 0  0.440 

20 astron.nl 0 Dutch Astronomy Foundation 0.460 

21 bioinformatics.nl 0 Bioinformatics Web Portal 0.480 

22 jacquard.nl 0 Software Engineering Research Program 0.500 

Worst case modularity 0.423 
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the worst-case local modularity: 

 

𝑅𝑤𝑜𝑟𝑠𝑡  𝑐𝑎𝑠𝑒  𝐶 =
 𝐶 

 𝑜𝑢𝑡𝑑𝑒𝑔(𝑐)𝑐∈𝐶

 

 

This value is shown below the cluster’s content. 

The difference between this value and the actual 

value of the cluster (0.5) shows that the websites are 

indeed associated in a graph-theoretical way and 

inspection of the contents of the clusters shows that 

the clusters indeed contain related websites. In fact, 

of the 51 listed vertices (54 are listed in Table 3, but 

we exclude the seed vertices since they are 

obviously related to themselves), only 8 show no 

relation to the other vertices of the cluster. These 

have been listed in italics and they include websites 

that were unavailable for inspection. 

From the three examples it stands out that each 

of them was seeded with a hub vertex. This was 

done because these websites might be meaningful to 

the reader, so the contents of the rest of the cluster 

can be judged. However, starting with a hub vertex 

is not a necessity. For example, what happens when 

instead of seeding with ru.nl, we initiate the 

clustering with stw.nl, sentinels.nl or beevee.nl is 

the following. In the first two situations, the seed 

vertices have a decent degree and will not be 

inclined to include a hub vertex. They will grow a 

small community and eventually add ru.nl to their 

cluster, after which the cluster grows similar to the 

second cluster in Table 3. The difference is that the 

first few nodes are tightly related to the seed vertex, 

while the nodes after ru.nl has been added are less 

related. In the situation of beevee.nl, the only 

neighbour of this node is ru.nl, so this hub will be 

added right away. This makes the algorithm stable 

under variations of the seed vertex, providing our 

threshold 𝑘 is large enough. 

6 CONCLUSIONS AND 

SUGGESTIONS FOR 

FURTHER RESEARCH 

In this paper we discussed the current state of 

affairs of the Web graph. Ample attention has been 

given to aspects of the Web that concern the graph 

as a whole. In particular we examined the scale-free 

power-law degree distribution that is typical for the 

Web and we provided a precise and consequent 

notation for its associated equations. The degree 

Table 3: Continued. 

𝒗𝒙 Website 𝒐𝒖𝒕𝒅𝒆𝒈(𝒙) Description 𝑹(𝑪 + 𝒗𝒙) 

0 bnn.nl 33 TV-Network 0.0 

1 omroep.nl 4 National channel 0.054 

2 vara.nl 6 TV-Network 0.093 

3 vpro.nl 2 TV-Network 0.133 

4 nederland3.nl 6 TV-Channel 0.157 

5 uitzendinggemist.nl 22 Missed transmissions 0.178 

6 nederland2.nl 0 TV-Channel 0.205 

7 novatv.nl 18 Programme on news 0.231 

8 nederlandkiest.nl 5 Mirror of nos.nl 0.260 

9 nos.nl 6 National channel union 0.284 

10 nederland4.nl 0 Online channel 0.314 

11 nederland1.nl 0 TV-Channel 0.333 

12 publiekeomroep.nl 16 Mirror of omroep.nl 0.356 

13 zapp.nl 0 omroep.nl youth division 0.381 

14 cinema.nl 0 Movie-related news 0.407 

15 funx.nl 2 Radio- and TV-channel 0.424 

16 radio2.nl 2 Radio channel 0.433 

17 nps.nl 4 Dutch TV-Programme foundation 0.443 

18 llink.nl 2 TV-Network 0.452 

19 ingeborgdouwecentrum.nl 0  0.460 

20 korrelatie.nl 0 Mental and social support foundation 0.468 

21 esthervanderheiden.nl 0 Music teacher / conductor 0.476 

22 vakantietaal.nl 0 Language courses 0.484 

23 dogsincluded.nl 0 Information about travelling with dogs 0.492 

24 avro.nl 0 TV-Network 0.500 

Worst case modularity 0.195 
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distribution and the models of connected 

components give an indication as to how the Web is 

organised on a global scale, but provide little 

information about small components of the graph. 

To investigate these local aspects, we discussed 

several community models and the concepts 

modularity and its cousin local modularity. Local 

modularity is seen as a measure for the 

disconnectedness of a cluster and the rest of the 

graph. We implemented a clustering algorithm 

based on local modularity, which benefits from 

being able to be employed on a large and dynamic 

graph such as the WWW, without having a priori 

knowledge of this network.  

To explain the community identification 

algorithm we introduced a notational framework 

that can easily be used in other algorithms or graph 

theoretical concepts. Application of the local 

community identification algorithm on the Dutch 

.NL-domain shows that the Web graph consists of 

various components that have only a few 

connections to the rest of the graph, by one or more 

hub vertices. We found that on average a cluster 

obtained by our algorithm has a modularity of ± 

0.65 when the cluster contains 50-100 vertices, only 

to increase when more nodes are added, staying 

consistently at ± 0.8 after the cluster has 

accumulated 300 vertices. Furthermore, pruning 

increases the modularity value of these clusters, 

showing that by enhancing the algorithm clusters 

can be identified that are even more separated from 

the rest of the graph. These results indicate that 

vertices that are not extremely large hubs, are likely 

to be part of a cluster of the Web graph that is fairly 

disconnected from the rest, which corresponds 

globally to the daisy model. Once again, the 

importance of hub vertices in the Web graph is 

stressed. Interesting further research should 

examine these in greater detail, as they are valuable 

for IR-purposes as well as in understanding graph 

resilience.  

Besides increased knowledge about the structure 

of the Web graph, we have also evaluated the 

contents of communities. We preliminarily tested 

three identified clusters to the Van Rijsbergen 

cluster hypothesis and we confirmed that by using 

this algorithm, clusters with a modularity ≥ 0.5 

(these have more links from their boundary to the 

cluster than from their boundary to external nodes) 

contain semantically related websites. However, in 

order to fully validate the clustering qualities of our 

algorithm, further work is required. We propose to 

investigate if cluster membership can be used in 

page ranking in search engines and also to evaluate 

the relation between vertices in clusters using more 

conventional IR-methods such as document 

similarity.   

Finally, we are looking forward to alternative 

concepts that can be construed using the framework 

we used in this paper. A first suggestion might be to 

look at the status of clusters, as opposed to their 

disconnectedness, by a new measure:  

 

𝑅′ 𝐶 =
𝑎𝑟𝑐𝑠(𝐶, 𝐵 𝐶 )

𝑎𝑟𝑐𝑠(𝑉, 𝐵 𝐶 )
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