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Abstract:

In order to use knowledge of the Web graph in Information Retrieval, we provide a consistent overview,

aiming firstly at global aspects of the graph such as degree distribution, and then proceed by examining
local aspects of the graph: community identification. We discuss several community models and we
implement a community identification algorithm that operates without a priori knowledge of the graph.
To elaborate on the algorithm we introduce a notational framework for graph clusters. We run the
algorithm on the Dutch domain (.NL) and from the results of this experiment we conclude that the Web
consists of several clusters that are mutually connected through a core of hubs. In addition we evaluate
the clustering quality of the algorithm, which provides a reputable basis for local community

identification.

1 INTRODUCTION

In the past decade, the World Wide Web (WWW)
has grown significantly. A recent study estimates
the total number of websites at 11,5 billion (Gulli &
Signorini, 2005) and this number is still increasing.
Since the WWW has become such an important
asset of our daily life, the Web has gained interest
in the scientific community, which resulted in
various studies concerning a wide variety of topics.
One of these areas of research examines only
structural properties of the WWW — the Web is seen
as a graph, the contents of websites are mostly
ignored. Using this approach one is able to analyse
the evolution of structures and phenomena on the
Web (Broder, et al., 2000). An interesting example
of such a phenomenon is the scale-free degree
distribution on the Web (Barabasi, Albert & Jeong,
2000), which will be explained in detail in the
following sections. In this paper we continue the
ongoing process of providing a model that
accurately describes the Web. To do so we firstly
provide a brief primer on basic graph theoretic
concepts in section 2. Thereafter the distinction
between global and local graph characteristics is
made. In section 3 we discuss the current state of
affairs concerning the Web graph globally. The
attention will be directed to the scale-free degree
distribution that has received so much attention

lately and to connected components. After this
global view we proceed with local aspects of the
Web graph in section 4 where the emerging of
graph communities and modularity is discussed.
The question we consider here is: ‘How is the Web
graph organised on a local scale?’. To answer this
question we review several community models.
Subsequently we go into great detail about an
algorithm that can identify communities without a
priori knowledge of the graph, based on local
modularity, which can be seen as a measure of the
disconnectedness of clusters in relation to the rest of
the graph (Clauset, 2005). To explain the algorithm
we introduce a framework for describing local
graph  phenomena. We then proceed by
implementing this algorithm on the Web. The
results of this experiment with our community
identification implementation are provided in
section 5. Section 6 concludes the paper and
provides suggestions for further research.

2 PRIMER ON GRAPH THEORY

Before we proceed with modelling the Web graph,
we cover some of the basics of graph theory.

We abstract from the content of websites and
regard only their connectivity. An interesting side
effect of this approach is that the Web can be



compared to totally different networks — like the
metabolic system. We define the Web graph as an
ordered pair G = (V,A). The set V contains the
websites, which we will refer to as nodes or vertices
veV and the set A contains the directed
hyperlinks, ordered pairs (i, j) € A € V2, which we
will refer to as arcs. We assume the graph contains
no point-cycles.

A can be viewed as a binary relation over V. The
notation A(x,y) means that an arc from x to y
exists. In a directed graph, this relation is
asymmetric, so in general A(x,y) «» A(y,x). In
addition the predicate A(x,Y) is used, indicating the
vertices in the set Y < V that x points to:

A(x,Y) £ {y € Y]A(x, )}

The symbol £ is used as ‘is defined as’. Secondly
we introduce A(X,y), the nodes in the set X €V
that point to y:

AX,y) 2 {x € X|A(x, )}

Of special interested is the set of all nodes that
connect to a specific vertex; its neighbourhood. In a
directed graph two types of neighbourhoods exist:
the set that points to a node and the set that are
pointed to by a node:

Ay (x) 2 AWV, x) and A, (x) 2 A(x,V)

The complete neighbourhood of x is then simply
A(x) = A U Aoy,

Later on we will also use sets of arcs instead of
nodes. More specifically, we want to know all arcs
fromXtoY:

arcs(X,Y) 2 {(x,y) EAlx e XAy €Y}

It is sometimes desirable to view a directed
graph as undirected, i.e. we make no distinction
between a source and a destination vertex: G =
(V,E). The arcs in an undirected graph are edges.
For an undirected graph the above predicates are
defined analogously: The notation E (x,y) indicates
that x and y are connected. This relation is
symmetric, i.e. E(x,y) & E(y,x). The predicate
E(x,Y) provides all the nodes in Y € V that are
connected to x:

E(x,Y)2{y €Y|E(x,y)}

The neighbourhood of x in an undirected graph is
given by

E(x) 2 E(x,V)

We also define a predicate for all edges between
two sets:

edges(X,Y) 2 {(x,y) EE|lx€e XAy €Y}

In addition there is the notion of a path between two
vertices x and y if they are neighbours in one or
more steps:

path(x,y) £ A(x,y) v 3,[A(x, z) Apath(z,y)]

And in an undirected graph there can exist a chain
of edges between two nodes x and y:

chain(x,y) 2 E(x,y) V 3,[E(x, z) A chain(z,y)]

These predicates will play an important role in our
community identification algorithm, to which we
will return later.

3 GLOBAL STRUCTURE OF
THE WEB GRAPH

When trying to find the connectivity structure of a
large graph, in particular the WWW, we use a
process called crawling. The crawler starts at a
given seed vertex v, € V (or a seed set of vertices)
and proceeds to add all neighbours A,,; (vy) to its
crawl frontier. This is then repeated in a breadth-
first search process for each vertex in the frontier,
adding all new vertices and arcs to the stored graph,
until no new vertices to explore remain. Crawlers
are often used by search engines, which in addition
to storing the graph structure, index the documents
based on their contents and structure.

By using such a crawl, Broder et al. (2000) have
observed that if the Web is seen as undirected,
about 10% of the vertices have no chain to any of
the nodes in the other 90%, which form a connected
component and as a consequence, not all vertices
can be reached from the chosen seed of a crawl. It
gets more interesting when directionality is taken
into account. One can distinguish four different
graph connectivity subsets: A strongly connected
component (SCC), which is defined as a subset S of
a directed graph G, such that any node in S has a
path to all other nodes in S and S is not a subset of



any larger such set:
sccS) 2 {xev| V,[yeSs e path(x,y)]}

The SCC forms the central CORE of the web
graph. The next two parts are referred to as IN and
OUT, which respectively label the subset of nodes
that have a path to a node in the central core, but
cannot be reached from it, and the subset that has a
path from a node in the central core, but cannot
return to it:

IN(I,S) £ {x € V—SCC(S) | Yyesces)lpath(x, y)1}
And
OUT(0,5) £ {x € V —SCC(S) | Yyescc(s)path(y, )1}

Finally there is the collection of sub graphs that
cannot reach, and cannot be reached from, the SCC,
but that are connected to either the IN or OUT
component. These sets are called the TENDRILS of
the World Wide Web. The CORE is the largest
component with roughly 27% of the vertices,
followed by the IN and OUT components that both
consist of 21% of the graph. The TENDRILS make
up for 22%, which means that 9% of the web graph
is disconnected from the rest of the graph (which
could also be considered as a fifth component). In
Figure 1 the structure of the WWW, which Broder
et al. refer to as the ‘bow-tie’, is visualized.
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Figure 1: The bow-tie visualisation of the Web graph.

Donato, Leonardi, Millozzi & Tsaparas (2005)
refined the bow-tie structure and introduced the so-
called daisy model. In this model the IN and OUT
components of the graph are jointly broken down
into several weakly connected components (defined
analogous to SCC, but for undirected graphs), that
encircle the CORE like the petals of a daisy flower.
These petals are each subsets of the IN and OUT
components from the bow-tie model (see Figure 2).

Both the bow-tie model and the daisy model
provide a general idea of how the Web is organised
on a global scale. However, they provide no insight
in how vertices tend to relate to each other. For this,
we need another concept called the degree
distribution of the graph.

Figure 2: The daisy visualisation of the Web graph.

3.1 Degree Distributions and Scale-
free Graphs

The degree distribution of the Web has received
much attention in the scientific community, because
it shows similarities to various other networks. To
explain the concept some predicates require
definition:

Let indegifx) be the in-degree of vertex x,
defined as the number of neighbours that point to
the vertex:

indegitx) 2 |A;, (%)

Similarly the out-degree of x is defined as the
number of vertices x points to:

outdeg(x) £ |Ayu ()|

Due to the absence of point-cycles, the total degree
of x, degifix), is defined as:

degifx) 2 |A(x)| = indeg(x) + outdeg(x)

If a graph is seen as undirected, the total degree
may also be written as deg(x) £ [E(x)|, since
l[AC)| = [E)I.

The degree distribution P(k) of a graph gives
the probability that a node x has exactly degree k:

P(k) 2 Prob(deg(x) = k|G)
This value is obtained by counting the number of

nodes that have degree k € K, where K is the set of
all degrees that occur in the graph, and dividing by



the total number of nodes in the graph, N = |V|:

#er deg(x) =k

P(k) = -

The directed graph degree probabilities P(k;,) and
P(k,,. ) are defined analogously.

Since the influential work by Paul Erdds and
Alfréd Rényi (Erdés & Rényi, 1960) it has been the
assumption that two nodes in a graph are connected
with random probability p, which is independent of
any other edge or node. If a node is connected to on
average z other nodes and the total number of nodes
in the graph is N, then it follows that p = = For
large N, p can be approximated by . The degree
distribution of such a graph is then:

zke™2

k!’

P =} )p -Vt =

where the second equality becomes exact in the
limit of large N (Newman, Strogatz & Watts, 2001).
The distribution will be recognized as Poisson,
which means that most of the vertices in the graph
have a degree of (a value close to) z, while vertices
with a much lower or higher degree are rare.
However, as the reader might have guessed, it turns
out that the Poisson degree distributed model
(which we will refer to as the ER-graph, after Erdds
and Rényi) does not do justice to various real-world
graphs, such as power grids, metabolic systems,
collaboration networks and food webs (see
references in Newman et al., 2001). We will now
proceed with another degree distribution that more
accurately models the Web and other networks.

3.1.1 The Scale-free Model

Barabési, Albert & Jeong (2000), Huberman &
Adamic (1999) and Faloutsos, Faloutsos &
Faloutsos (1999) experimented on Web crawls and
found that the degree distribution of the WWW
follows a power-law; that is, the probability P(k) is
proportional to k=7 (c is a normalising constant):

P(k) = ck™

Barabasi et al. (2000), Broder et al. (2000),
Kumar, Raghavan, Rajagopalan, Sivakumar,
Tomkins & Upfal (1999) and Laura, Leonardi,
Caldarelli & De Los Rios (2002) subsequently
attempted to find the value for y, which they
estimated at y =~ 2.1. In contrast to ER-graphs, this
degree distribution is heavily right-skewed, which

implies that many nodes with a low degree exist,
but the probability that a node has an extreme
degree (i.e. it is a hub) is still significant.
Furthermore, only a small amount of vertices has
degree z.

Because the degree distribution of these graphs
can be said to follow a scale-free power-law, the
type of graphs has been named ‘scale-free’ graphs
by Barabasi and Albert, but in the literature there
has been some confusion as to what graphs are
scale-free (or ‘scale-invariant’) and what are
consequences of this property. The following claims
are regularly associated with SF-graphs (Li,
Alderson, Doyle & Willinger, 2005; Keller, 2005):

m The degrees of an SF-graph are distributed
according to a power-law.

m An SF-graph can be generated by using a
stochastic process, prominently preferential
attachment (Barabasi et al. 1999).

m  SF-graphs have an extremely small diameter.
SF-graphs are self-similar.

m SF-graphs have many hubs (nodes with a
very high degree) that are supposed to ‘hold
the network together’ and are said be to be
the cause that SF-graphs are highly error-
tolerant, but vulnerable to targeted attacks.

Each of these claims will be discussed subsequently
in relation to the Web.

Typical examples for ER- and SF-graphs are
given in Figure 3.
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Figure 3: Two graphs with the same number of nodes, but
a different degree distribution. The left graph exemplifies
a scale-free graph where hubs occur relatively frequently,
the graph to the right exemplifies a more traditional
Erdés-Renyi-graph where most nodes have a close to
average degree.

3.1.2 Scale-invariance

The terms power-law distribution and scale-free
graph are used almost interchangeably since the
original publications (Barabési et al. 2000, Albert,
Jeong & Barabési, 1999), while they are actually



different (but related) concepts and should be
treated as such. The label ‘scale-free’ simply means
that this power-law is independent of N, the number
of nodes in the graph. Indeed, a power-law can
trivially be shown to be scale-invariant (Keller
2005), but scale-invariance does not demand a
power-law. In other words, graphs with empirically
confirmed power-law distributions are scale-free,
but scale-free graphs are not always distributed
according to a power-law.

Li et al. (2005) have extended the scale-free
graph theory by introducing a metric that defines if
a graph is scale-rich or scale-free. Let G be a
connected graph with a given degree sequence. The
s-metric for G is then:

s(G) =
(xy)EE

deg(x) - degitly)

The higher the value for s(G), the more scale-
free the graph. The metric can be normalized if
Smax 1S cOnsidered the maximum attainable value
for s given the degree distribution of G (but any
possible connectivity configuration): S(G) =39

Smax
with Smax = MAXgcyxv (S(V' E))

Li et al. show that as a consequence of the
Rearrangement Inequality the metric will be high
for graphs where many hubs are interconnected (i.e.
there is a ‘hub-like core’ in the graph, which is the
case in the Barabéasi-Albert model), and low if many
hubs are connected to low-degree nodes. By using
this metric they redefine scale-free graphs as graphs
with a scaling degree distribution and a high value
for S(G)1. The advantage of this definition is that its
formality makes it much less ambiguous and that
the concepts of scale-invariance and power-laws are
separated. The s-metric shows that it is possible to
construct a graph that is scale-free, without being
power-law distributed. Properties of empirically
observed graphs are therefore not necessarily a
consequence of the scale-free nature of these
networks, but are caused by different mechanisms.
In the following subsection we discuss some of the
possibilities.

3.1.3 Generative Models for SF Graphs

A helpful procedure when trying to understand a
graph is constructing a new one that has the same
properties. In this regard various studies have

1 A graph with a power-law degree distribution provides
an example of a graph with high S(G).

attempted to simulate graphs that by some
mechanisms result in a scale-free power-law degree
distribution. The most widespread mechanisms
were introduced by Barabasi et al. (2000), and
accompanied their finding of the power-law in the
Web: growth and preferential attachment (PA).

The model assumes that the generation of a
graph starts with a collection of nodes: N,. At each
time step t we add a new node x to this collection
(growth). This new node forms m links to the old
nodes (m < N,). The nodes that x links to are not
determined uniformly, instead the model states that
this probability is dependent on the degree of the
nodes already present:

Prob((x,y) € E;1|(V; +x)) =

degiy) _ degily)
Yrevdegifz)  2-|E|

At time t there are N, + t nodes and mt edges. The
degree distribution that results from this model can
now be derived. Let k, (t) be the degree of node x
at time t, which we will approximate as a
continuous random variable. Then k,(t) =
E(k, (t)) is the expectation value of the degree of a
node. The growth rate of x,(t) can be determined:

dr, (t) K, (t)
dt 2t

k.(t) =D -+t
The value of the constant D can be determined by

looking at the initial condition k(t,) = m = D - /t,
soD = it Thus it follows that
0

e
t
kx(t) =m:- g

From this point we can obtain the degree
distribution P (k) as the derivative of the cumulative
probability P(k, (t) < k):

Pk (£) < k) = P(tg > ")
m2t

_1 m?t
B (NO + t) . k—Z



m?t
d(l‘(NoH)-k-Z) _em’t 1

P(k) =

dk TN +b) K3
2
So for large values of t we have P(k) = 21{13 which

predicts a value of 3 for y and in addition provides
an estimate of the constant ¢ (see 3.1.1). Barabasi et
al. suggest that the difference between this analytic
value and the one found on the Web can be
explained by additional mechanisms, such as the
rewiring of already existent edges. Nonetheless, a
power-law degree distribution is indeed obtained by
this model.

Laura, Leonardi, Millozzi, Meyer & Sibeyn
(2003) have implemented two models to generate
web-like graphs as well. The first one is called the
Evolving Network model and is essentially a
combination of growth and PA (i.e. based on the
mechanisms as given by Barabasi et al.), although
in their paper Laura et al. limit the PA to the in-
degree of the node (as opposed to total degree). The
second model is the Copying model, based on the
theory developed by Kumar et al. (1999), where
new nodes have probability a that they copy an
edge of a prototype node p, and probability 1 —
that they connect to a randomly selected other node
from the total graph. Laura et al. conclude that both
of these generative models result in graphs with
statistics similar to the Web, in particular they show
a power-law degree distribution.

Similar to the Evolving Network model,
Pennock, Flake, Lawrence, Glover & Giles (2002)
suggest the Network Growth model, in which they
combine preferential attachment with a uniform
probability distribution for the adding of new nodes.
By using this model, they are able to explain the
structure of specific subregions of the web (i.e.
university webpages or newspaper webpages) more
precisely than with PA alone.

Although the ‘growth and PA’-model is
strikingly intuitive, the Copying model and the
Network Growth model show that Li et al. were
right in their criticism: indeed there are multiple
explanations for real-world graphs with scale-free
power-law degree distributions. Even more models
and/or refinements have been proposed (see for
example Cooper & Frieze, 2003; Dorogovtsev,
Mendes & Samukhin, 2000; Pandurangan,
Raghavan, & Upfal, 2002), which means that only
more experiments can unveil what the true
underlying mechanisms for the Web graph are.

Besides the fact that multiple models can
explain the scale-invariant power-law distributions
as found on the Web, these models seem to be
incomplete. Newman (2002) shows this by looking
at graph assortativeness. In general, an assortative
graph is a network with nodes that connect to each
other because they have some similarity, while in a
disassortative graph nodes connect to each other
because they are different. In practice,
assortativeness is usually associated with node
degree. In an assortative graph, nodes with a high
degree connect to other nodes with a high degree,
and vice versa for nodes with low degree. Newman
defines the assortativity coefficient r (=1 <r < 1)
that captures the assortativeness of an entire graph
and emprically determines that the Web crawl by
Barabasi et al. (2000) is disassortative (r =
—0.065), while the growth and preferential
attachment model suggests an assortativity
coeffcient of exactly r = 0. The question remains
open what refinements of the models are required to
capture the Web.

3.1.4 Small-world Properties

A further characteristic of the Web graph is its
diameter, in social networks also referred to as the
‘degree of separation’. This concept became
widespread after a famous experiment by Milgram
in 1967, who proposed the ‘small-world’
hypothesis: everyone on the earth is connected to
everyone else through no more than six steps — the
‘six degrees of separation’.

The diameter of G can be defined as the average
shortest path between all pairs of vertices (Albert et
al. 1999), or, in case not all the nodes are
connected, the average connected shortest path
(Broder et al. 2000). We adhere to the latter
definition. Let d(x,y) be the length in vertices of
the shortest path from x to y. The average shortest
path of G is then given as:

1
diameter(G) = AT d(x,y)

(x,y)EAT

A graph is considered a small-world graph if its
expected diameter is a function of the logarithm of
N: E(diameter(G)||V| = N) = logifiN). Several
studies show that indeed the Web graph is a small-
world graph (Albert et al. 1999; Broder et al. 2000;
Bollobds & Riordan, 2002; Chung & Lu, 2002;
Cohen & Havlin, 2003). The models these studies
propose suggest diameters as small as 3.14 (Cohen
& Havlin, 2003), while the actual observed



diameters range from 16 to 21. Although the
models cannot be considered very accurate, the
Web has an extremely small diameter nonetheless.

3.1.5 Self-similarity

Self-similarity in graphs refers to the concept that
subsets display the same properties as the entire
graph; for example in the sense of degree
distribution or diameter length. In scale-free graphs,
the combination of the slow (logarithmic) increase
of the graph diameter and the power-law degree
distribution provide an indication that such a graph
cannot be self-similar. If it would be the actual case,
then a scale-invariant power-law relationship
between N and diameter(G) would be expected
(Song, Havlin & Makse, 2005). Interestingly, Song
et al. were able to reconcile the degree distribution
and diameter and by using a box-covering
technique? they found that their case study scale-
free graphs (one of which was the same web crawl
Albert et al. used in 1999) exhibited self-similarity.

Earlier, Dill, Kumar, McCurley, Rajagopalan,
Sivakumar & Tomkins (2002) empirically tested the
Web for self-similarity and obtained some
interesting results. In their experimental setup, they
generated seven disjoint random subsets out of a
web crawl consisting of 60 M pages. Interestingly,
these subsets where distributed according to
(significantly close to) the same power-law degree
exponents y;,, = 2.1 and y,,, = 2.23. In addition,
the ratios of the different components (recall the
CORE, etc.) in the random subsets were consistent
with those found by Broder et al. (see Fig. 3). Dill
et al. concluded that the web is self-similar and that
this self-similarity is pervasive, i.e. it holds for
several parameters (degree distributions, component
sizes). In combination with the findings by Song et
al. these results provide a strong indication for self-
similarity in the Web. In section 5 we return to the
subject of self-similarity when we compare
communities to the Web graph.

2 The algorithm by Song et al. uses a box-covering
technique. They would create ‘boxes’ of a certain size lp
(this size corresponded to the distance nodes in these
boxes were away from each other) and cover the entire
network with Np of these boxes. Their result shows a
power-law relationship between the size of the boxes and
the number of boxes that were needed to cover the entire
graph, indicating self-similarity. For an in-depth
explanation of the algorithm we suggest Song et al.
(2005) and Song, Havlin & Makse (2006).

3.1.6 Resilience of SF Graphs

A network can suffer from two kinds of failures:
errors and attacks. The former refers to the
malfunctioning of random nodes, while the latter
refers to the removing of specific targeted nodes.
The resilience of a graph can be tested by
measuring the change in diameter after such a
failure has occurred. If the diameter increases
significantly, the nodes that have been removed
were crucial in several paths through the network. If
the diameter stays (almost) the same, then the
removed nodes apparently played only a minor role.

In real-world situations, many networks are
highly resistant against errors. For example,
downtime of a website rarely affects the
accessibility of another website, because there are
other paths available. This quality is often ascribed
to redundant graph edges, i.e. edges that serve only
as backup in case of errors, but Albert, Jeong &
Barabasi (2000) show that error-resistance occurs
only in scale-free graphs and is not a consequence
of redundant wiring, but of the power-law degree
distribution. In a Poisson-distributed graph, the
removal of any node causes the same damage to the
network as would any other node. In SF-graphs
however, many nodes can be removed without any
harm (the nodes with a low degree, through which
only a few paths run and therefore hardly affect the
diameter). On the other hand, if a hub vertex is
removed the resulting network may break apart into
several disconnected components.

Crucitti, Latora, Marchiori & Rapisarda (2003)
show that when 2% of the nodes of a scale-free
network are removed at random, the graph is still
hardly affected. If these 2% are targetted at high-
degree vertices however, the network quickly falls
apart. Since the Web is a power-law distributed, the
same rules for its resilience apply. A well-placed
attack on a couple of large news-sites for example
could severely damage the connectivity of the
graph. How such network catastrophes can be
avoided remains a hot topic in graph theory.

4 LOCAL STRUCTURE OF THE
WEB GRAPH

Now that the global structure of the Web graph has
been discussed, we turn to local phenomena: graph
communities. A community is a collection of nodes
in a graph that are somehow related. Some
examples of communities in other types of graphs
than the Web are protein-clusters that together have
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Figure 4: From left to right: the community models 1-5 (see text).

specific functions in the metabolic system, or power
grids that together provide electricity for an area.
Such community structures, or clusters as they are
sometimes called, are also meaningful in the Web.
The most obvious implementation of a web-
community would be collections of pages that share
a topic. When trying to allocate vertices to clusters
by topic, we are looking at the contents of the
vertex. However, as explained before, in this paper
we ignore vertex content and focus on the
connectivity of vertices — on structural
communities. In the following section we will
discuss several models for structural communities
as found in the available literature.

4.1 Community Models

There is a wide range of approaches to graph
communities. We list the basic idea behind some of
the more striking models (for a more complete
overview we suggest Danon, Diaz-Guilera, Duch &
Arenas (2005)) and subsequently we will proceed to
examine the community model we will adopt in this
paper in greater detail. The various models are
exemplified visually in Figure 4.

1. Gibson, Kleinberg & Raghavan (1998) define
a community as the combination of a set of
‘authorative’ vertices (indeg(x) >
outdeg(x)) and a set of hub vertices
(outdeg(x) » indeg(x)). These hubs and
authorities are connected in their model. By
this definition, the communities consist mostly
of nodes with a high degree, leaving out
affiliated but less definitive nodes.

2. Kumar, Raghavan, Rajagopalan & Tomkins
(1999) describe a community as a densely
connected bipartite subgraph (a bipartite graph
is a graph where the set of vertices can be
divided into two disjoint sets V and U such
that no edge has both end points in V or U)
containing at least one complete bipartite
subgraph. While the idea of a bipartite
subgraph would result in a very precise notion
of a community, it is quite likely that some

vertices that are related to the community,
would need to be in both partitions since they
have neighbours in both sets. According to
this model they would not be added to the
community.

3. Popescul, Flake, Lawrence, Ungar & Giles
(2000) adopt another take and view
communities as popular nodes (highest in-
degree) and all the nodes pointing to it.
Essentially the model takes a local authority
and adds its neighbourhood to the community.
Here, the problem is that the model does not
allow for multiple authorative vertices.

4. Zhou, Wen, Ma & Zang (2002) take yet
another turn and portray a community as a
collection of concentric circles of nodes. The
smallest circle contains the core of the
community, the proceeding circles each
contain affiliated pages on a ranked scale.
Affiliation is defined as linking to nodes in the
smaller concentric circle. The model by Zhou
et al. is a refinement of the previous model,
but it still excludes multiple authorative
sources.

5. Flake, Lawrence & Giles (2000) and Flake,
Lawrence, Giles & Coetzee (2002) define a
community as the collection of nodes that
have more links between them than to nodes
outside the community. It is a natural
definition and captures a strong concept. The
model aims to have authorities and hubs inside
the community and in addition the nodes that
are connected to these vertices. One could
rephrase the definition as: a community is a
collection of nodes that is separated (but not
disconnected) from the rest of the graph. The
combination of simplicity and intuitiveness
makes this model the model of choice for this
thesis.

The simplicity of the definition by Flake et al.
leaves room for two interpretations, which are
labelled the ‘strong community’ and the ‘weak
community’. They are defined as follows (Radicchi,



Castellano, Cecconi, Loreto, & Parisi, 2004): Let C
be a subset of the graph G. C is a strong community
if

strong(C) £ Vyec[lA(w, O)| > [A(v,V — O)l]
And C is a weak community if
weak(C) 2 |arcs(C,C)| > |arcs(C,V — C)|

It follows that a strong community is also a weak
community, while the reverse in general does not
hold.

From section 3.1.1 it follows that the Web graph
contains a significant large amount of hub-vertices,
i.e. vertices with a high out-degree. According to
the strong community definition, if such a hub is a
member of the community, over half of its
neighbours must be within the community. Such a
condition is too restrictive for a useful community
model, since this would make it near impossible to
include hubs in communities. For example,
websites from wikis or major news agencies tend to
be hubs and could therefore not be included in a
community, unless more than half of the websites
they are connected with are in the community as
well. The weak definition makes it possible that
these nodes are added into the community. The
community definition that will be used in the
remainder of this paper is therefore adjusted into the
second alternative, that of a weak community. The
following section elaborates on how such
communities can be found in a graph.

4.2 Graph Modularity

As there are many different community models, it
makes sense that there exist multiple
implementations of community identification
algorithms accompanying these models. This is also
the case for identification algorithms that
specifically follow the definition by Flake et al. The
implementations differ on terms of result,
complexity and on whether they operate on the
global graph or automate locally. Newman &
Girvan (2004) have proposed a mechanism that can
evaluate identification results that has become
widely accepted. Given a community identification
result consisting of n disjoint communities, we can
define an n X n matrix e where each element e;;
corresponds to the fraction of all links pointing
from community C; to community C;:

1

= m|arcs(Cl-,Cj)|

ejj

If the network does not show signs of
community structure, or if the division of
communities was chosen at random instead of by
using an adequate algorithm, the expected value of
the number of intercommunity links can be
approximated, since this is the probability that a
link begins in C;: % multiplied by the probability
that a link ends in G (also ): . Since we know
the real value of e; (all links within the community)
we can calculate the summed difference between
the current community partitioning and uniform
partitioning, the modularity measure

QUG € - CI6) = ) (ew = 1).

i

Note that the modularity is a characteristic for
the entire graph.

In the extreme case that n communities within a
network have been identified, with no links between
them, Q will have the value 1 — 1/n , which tends
to 1 for large values of n (Danon 2005), indicating
a clear non-random community structure. If this
value tends to 0, the community decomposition was
unsuccessful. According to Newman and Girvan,
the value of Q typically ranges between 0.3 and 0.7
for networks with strong communities, with higher
values being rare.

Since finding a high modularity implies that
many of the communities accord to at least the
definition of a weak community, the modularity
itself could be the basis for a community
identification algorithm. The algorithm would have
to find the maximum Q({Cy,C, ...,C,}|G) for all
possible divisions of the network, which would
result in optimal communities. Unfortunately, this
process would be very costly in terms of complexity
and require an exponential amount of time. For
networks with more than say twenty nodes, this is
already beyond any practical application, let alone
for Web applications such as search engines, so this
option can quickly be put aside. Newman (2004)
suggests to iteratively calculate the difference in
modularity when two communities are joined
together. That is, starting with a matrix where each
element contains a single node, for each possible
combination of two communities we calculate how
the modularity of the clustering changes:

AQ £ Q({C1,C2,C5, ..., G 1) — QUG + €3, G5, ..., Cyq})



The contribution in modularity by C; and ¢; initially
was:

(€ 6)) = (eu —2) + (& —2)

But after these communities are combined the
contribution is:

o({ci+6}) = ({66 ) + (ey = =) + (o1 — )
Therefore the difference in modularity when two
communities are joined together is:
1
-)

This calculation can be done in constant time,
resulting in a total complexity for the algorithm of
0(n?) for sparse graphs. The algorithm provides
clear community structures and would be useful for
our experiment, were it not for the fact that it
presupposes that the total graph is known and
stored. In practice, the total (size of the) Web is not
known and efficient calculation on a graph of this
magnitude is infeasible. Therefore a community
identification algorithm is needed that can operate
locally, i.e. without a priori knowledge of the Web
graph. An algorithm that functions on a local scale
is proposed by Clauset (2005). It keeps a
complexity of 0(k?) where k is a user-given upper
bound for the number of vertices to be processed.
The algorithm is inspired on modularity as used by
Newman, and introduces a new measure R, that of
local modularity. The algorithm and its underlying
model will be explained in the next sections.

socci+ ) = ey~ %) - (o

4.3 Local Modularity

Instead of dividing a graph into several
communities, as the global approach in the previous
section suggests, it is in practical applications more
useful to find the community that surrounds a given
vertex. This way the algorithm does not have to
process the entire graph, but only a subset (for
example in ranking retrieved websites based on
their ~community membership). The local
modularity measure as introduced by Clauset
(2005) works according to this concept. We will
explain the algorithm and the framework it is built
on subsequently.

A cluster is a group of nodes from the entire
population: ¢ <V, C # @ of which we know all
link structure (only outbound links on the Web).
The cluster is usually not isolated; there are some
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connections between outsiders and the cluster
nodes. These outsiders are referred to as the
universe U of the community:

UC)2{ueVv—-C|A(C,u) # 0}

Not all of the nodes in C have to be connected to
U. In fact, a tight community would actually have
only a few members that exchange links with
outsiders, while most nodes connect only to other
community members. The vertices that do connect
to U are said to be in the boundary B of C (see also
Figure 5):

B(C) 2{beC|A,U) = ¢}

Analogously to global modularity as given by
Newman & Girvan, we are interested to what
degree the cluster is isolated from these outsiders.
This can be expressed by looking at the sharpness
of the boundary in relation to the universe, i.e. the
number of links from the boundary to the cluster
versus the number of links to the entire network. By
examining the number of links of the boundary
instead of the total cluster, clusters of different sizes
can be compared better. The achieved fraction is the
local modularity R(C) of a graph subset C, defined
as 0 when B = @ and when B # @:

B |arcs(B(C), C)|

R(©) = larcs(B(C), V)|

M

The local modularity measure is a characteristic
of a subgraph that shows how much a cluster is
separated from the rest of the graph. If for example
R = 0.9 and |C| < |G|, we have a subgraph that is
only thinly connected to the rest of G. Such a cluster
is a community, if its local modularity measure
exceeds a given threshold d:

community(C) 2 R(C) > d

In this paper it is assumed that d = % since this is
the threshold at which the weak community
definition as given in section 4.1 is true.



Figure 5: The local modularity model. The blob to the left
is the cluster, the sub-blob is its boundary, connected to
the blob to the right: its universe. In this situation,
R(C) = 2/e.

4.3.1 Community Identification Algorithm

Because local modularity does not require
knowledge of the entire graph, we can find
communities with maximum local modularity from
a single seed vertex v,. The basic idea is simple: for
each neighbour of the cluster (i.e. its universe) we
evaluate which vertex would increase the
modularity the most if it was added to the cluster.

Table 1: The local modularity algorithm.

C :=g;
Vo= Vs
repeat
C := C+v;
v := argmax{R(C+u) |u€U (C) }
until |C| = k or R =d

We can continue this greedy algorithm indefinitely
if we allow the maximum increase to be negative:
i.e. if no vertex would increase the modularity, we
add the node that provides the least decrease. The
algorithm is described in pseudo code in Table 1.

The stop condition of the algorithm is arbitrary.
Either the algorithm processes k nodes, or the
process continues until a given local modularity
threshold 0 < d <1 is reached. We return to this
criterion in section 4.5 where we examine actual
clusters. Before that we continue with the analysis
of the algorithm.

To calculate which vertex u € U is the best
candidate (i.e. it has the highest AR(C) of all
candidates in U) we could simulate the adding of
each vertex and calculate R(C) by using (1). In
most situations this is inefficient. A better solution
is to derive the difference in modularity for each
vertex: AR(C,u):

AR(C,u) = R(C +u) — R(C) @)
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In order to use this equation, we need to know
how arcs(B(C),C) and arcs(B(C),V) change
when u is added to the cluster, which depends on
how B(C) changes. To analyse this we start with
nodes from the boundary that had u as their
exclusive neighbour in the universe. These will not
be in B(C + u):

D(C,u) ={b € B(C)|A(b,V - C) = {u}
For these nodes the following property holds:
Lemma 1:
x€D(C,u) » A(x,V) = A(x,C) +u

There can now be two distinct situations:
1. u will not become a boundary member of

C+u,ie. AwV—-C)=0or
2. u will become a boundary member of
C+u,ie. Alw,V—-0C) #0.

Situation 1: u ¢ B(C + u):
B(C +u) = B(C) — D(C,u)
From this we derive that

arcs(B(C +w),C +u) = arcs(B(C),C) + arcs(B(C),u) —
arcs(D(C,u),V)

And

arcs(B(C 4+ w),V) = arcs(B(C),V) — arcs(D(C,u),V)

Situation 2: u € B(C + u):
B(C+u)=B({)—-D({C,u)+u

We derive that

arcs(B(C + u),C +u) = arcs(B(C),C) + arcs(B(C),u) —
arcs(D(C,w),V) + arcs(u, C)

And

arcs(B(C + u),V) = arcs(B(C),V) — arcs(D(C,uw),V) +
arcs(u,V)

Both situations are illustrated with hypothetical
examples, also visualised in Figure 6.

Example situation 1:



1,2,3,4,5}

{
{21, (24,34),3,5)}
{1,2,3}

4
A
C

The universe and boundary of this cluster are
therefore

B(C) =1{2,3}
U(C) =1{4,5}

If we consider the adding of node 4 to the cluster,
then

D(C+4)=1{2}

B(C +4)=B(C)—-D(C,4) ={3}
By using the above formulae, we derive that
arcs(B(C+4),C+4)={R1D}+{(3B4)} -
{2D}={B4}

Figure 6: In the diagram on the left, node 4 has no arcs to
V — C, therefore it is not in B(C + 4). In the diagram on
the right the node does have an arc to a node in V —C,
therefore node 4 is in B(C + 4). See text for a detailed
analysis.

And
arcs(B(C +4),V) ={(2,1),(2,4),(3,4),(3,5)} —
{21,249} ={(3B4),35)}

The change in modularity that the addition of node
4 causes, is:

R 1 1 1 1
ARCD =1GD,65) 4 2 44
Example situation 2:
V={1,2345}
A={(21),(24,(34),3)5), 45}
C={1,273}

The universe and boundary of this cluster are
therefore
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B(C) =1{2,3}
U(C) =1{4,5}

If we consider the adding of node 4 to the cluster,
then

D(C +4) = {2}
B(C +4) = B(C) = D(C,4) = {3,4}

By using the above formulae again, we derive that
arcs(B(C +4),C+4) =
{34}

And
arcs(B(C +4),V) ={(2,1),(2,4),(3,4),(3,5)} —
{20,201+ {45} ={B4),(3)5),(45)}

The change in modularity that the addition of node
4 causes, is:

RED)! 11
ARG = 3, o), ol 43

1_
4712

These trivial examples show the working of the
algorithm, but obviously it is intended to be applied
to real-world graphs. The next section discusses the
local modularity model and algorithm in relation to
the Web.

5 EXPERIMENTAL RESULTS

By running the community identification algorithm
as presented in the previous section, we acquire
knowledge about the structure of the Web. Most
prominently, if a large percentage of the identified
clusters have a high local modularity value, then
this indicates that the Web is modular in structure,
i.e. several components are connected through hubs,
but have little to no mutual connections. If on the
other hand most of the clusters have only a low
value of R(C), then the web is much more
interconnected. In addition, if many communities
are identified, then these clusters are likely to be
valuable for information retrieval purposes. The
underlying assumption is that these clusters exhibit
their high local modularity value because their
nodes somehow relate to each other. We return to
the cluster hypothesis in section 5.3; for now we
proceed by elaborating on our experimental setup.
Our community identification algorithm was
implemented in Microsoft C#. The main routine is
globally given in Table 1. Instead of running the
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Figure 7: The modularity progression for 30 random seed
vertices.

algorithm on the Web in real time, we decide to use
a Web crawl, because slow responding Web servers
would delay the batch process greatly. It should be
noted that no meta-information about the crawl is
used in the implementation of the algorithm and the
experiment is entirely repeatable real-time. We
restricted the crawl dataset to unique second-level
domains on the Dutch top-level domain® .NL (+ 1.5
million nodes), obtained in April 2007. We defined
an arc to exist between two nodes A and B if these
domains had at least one hyperlink from domain A
to domain B; the actual number of links is not taken
into account®.

Our experiment is divided into two parts. In the
first part clusters were initialised with a random
node v,. Seed vertices with an out-degree of 0 were
excluded. The second part uses the same crawl, but
instead of random v, we pick specific second-level
domains, so we can evaluate the relations between
the seed node and the other nodes in the achieved
cluster manually. We return to these results in 5.3.

The results from the first set are shown in Figure
7. The chart shows that for 25 out of 30 clusters, the
local modularity exceeds the 0.5 barrier before
|C] = 50. Furthermore, 25 out of 30 clusters
consistently reach R(C) = 0.8 before |C| = 100.

From this part of our experiment, a few of the
clusters show behaviour that differs remarkably
from others. The blue line in Figure 7 for example
(the line corresponding to the lowest modularity
value after |C| = 150) corresponds to an extremely
high average degree of 14.5, as opposed to + 4.3 in

® In the URL ‘www.foo.bar’, ‘bar’ is the top-level domain
and ‘foo’ the second level domain.

* This way we prevent certain recurring hubs to be added
in every cluster, like www.google.com, as many websites
have a google search option on each of their pages.
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Figure 8: The average modularity progression for 30
random seed vertices.

the entire graph. Other anomalies are clusters that
are strongly isolated from the rest of the graph. At
|C| £ 75 their only neighbour in U is a hub with a
high degree. As soon as this hub is added to the
cluster, it greatly decreases the modularity score.
When the surroundings of this hub are added to the
clusters one by one, the modularity slowly increases
again. This shows that the community that was
identified before this hub was added, was a
component of the community that is identified when
|C| approaches 500.

Besides a few explainable anomalies, the
clusters all show a remarkable similar pattern. The
modularity score skyrockets when the algorithm
starts, varying in the range 0.6 < R(C) < 0.9
before the clusters contain more than 100 nodes. At
this point, the R(C) is quite stable in the range
0.7 < R(C) < 0.9. These findings are made more
clear in the chart that plots the average modularity
progression, as given in Figure 8. It is noteworthy
that in this experiment the average local modularity
can be accurately approximated by a logarithmic
function: R(C) = cIn(|C]) + d, where ¢ and d are
constants with respective values 0.116 and 0.127 in
this fit. The coefficient of determination R?
between this formula and the average empirical data
is 0.953, indicating a relationship between the size
of the cluster and its modularity value. This
relationship can be explained by looking at the
equations for AR(C + u) (the derivative of R(C)) in
the previous section. In situation 1, some
rearranging of the terms in (2) provides:

arcs(B(C),u) + (R —1) -arcs(D(C,u),V)
arcs(B(C),V) —arcs(D(C,u),V)

AR(C +u) =

B(C) is a function of C, and 1 < |B(C)| <|C|.
When |C| and |B(C)| are large enough, the above



equation is determined by |arcs(B(C),V)|, which
is independent of u:

larcs(B(C), V)| = Z outdeg(c)

c€B(C)

So in situation 1, AR(C +u) can indeed be
approximated by & where d is a constant
determined by the relation between B(C) and C and
the average degree in the cluster. The same line of
reasoning, mutatis mutandis, is applied to situation

2.

arcs(B(C),u) + (R—1) xarcs(D(C,u),V)

AR(C +uw) = arcs(B(C),V) —arcs(D(C,u),V)
Again, this equation is determined by
|arcs(B(C),V)| when the cluster and its boundary
are large enough, so AR(C+u) can be
approximated by IZ_I'

5.1 Pruning

The community identification algorithm is greedy
and therefore some nodes will be added to the
clusters that should in hindsight better be left out.
We introduce a pruning module to run after the
identification process is completed (i.e. the
community size has reached its limit or a
modularity threshold is reached) to remove nodes
from B(C) that negatively influence the modularity
of the cluster. This procedure is described in Table
2.

Table 2: Pruning.

repeat
v := argmax{R(C-u) |u€B(C) -vg}
C = C-v;

until R(C-v) < R(C) or |B(C)|=1

The details of the working of the procedure are
analogous to those of the original algorithm and are
omitted.

By pruning clusters the modularity value
increases (or in the worst case scenario, stays the
same). We reran the community identification
algorithm on the same 30 seed vertices as before,
but after the cluster size reached 100 nodes we
applied the pruning algorithm. This time our
community size threshold was 100, so we could see
how pruning affects the anomalies as discussed in
the previous section.
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The average modularity value at |C| = 100 was
R(C) = 0.661, much lower than after pruning was
applied, which resulted in an average local
modularity of 0.756. The difference between these
values shows that it is possible to construct clusters
on the Web graph with even higher modularity. The
clusters that benefited the most from pruning were
those that showed the anomalies in Figure 7, since
the hub that greatly decreased the modularity was
removed by pruning.

Since pruning removes nodes from B(C), the
boundary of the clusters shrinks as more and more
nodes are removed. On average the boundary of a
cluster of 100 nodes consists of 21.65 nodes. After
pruning, this value is more than halved to 10.69,
with an average cluster size of 89.04. So in
conclusion, the original algorithm with the pruning
module combined result in clusters which are
connected to the rest of the Web by only 12% of
their nodes and by following an arc from one of
these nodes, the average chance to ‘exit’ the cluster
(i.e. follow an arc to a node outside C) is 1 —
R(C) = 0.244. The following sub section discusses
the relation between these findings and the Web
graph model.

5.2 Relation Between Local and Global
Web Graph Phenomena

None of the clusters reached a local modularity
value of 1 except in trivial situations where |C| = 2
(excluded in Figure 7). With the bow-tie model in
mind we expected a significant part of the clusters
to reach a modularity of 1 before 500 nodes were
accumulated, which would correspond to the OUT-
component or an outward TENDRIL. The lack of
this event seems to indicate that the bow-tie model
is too crude. In the daisy model the IN- and OUT-
components are split up into several smaller
components, that allow for some overlap. This is
more in line with our experience, where clusters of
nodes are connected to other nodes through their
boundary. The smaller the boundary and the higher
the modularity of the cluster, the more isolated the
petal of the daisy flower model. Boundary nodes
that occur in various clusters can be said to be in the
CORE of the model. These nodes are usually mega-
hubs that provide services as Web statistics or link
portals; websites with little actual content of their
own. Pruning removes these nodes from the
clusters, leaving only the petals.

Earlier we examined the degree distribution of
the Web in detail and discussed the scale-free
power-law that is often associated with the Web and



other real-world graphs. We also examined how our
identified clusters are distributed, and compared the
degree distribution plots from the clusters combined
and the total graph. The average degree on the .NL-
crawl is 4.25, while the clusters together provide an
average degree of 3.29, significantly lower.
Although the average degree in the clusters is
lower, both the clusters as well as the total .NL-
crawl show the by now familiar power-law degree
distribution. The respective parameters for these
distributions are y,,;; = 1.34 and y jyseers = 1.89,
a further confirmation that the clustering algorithm
excludes mega-hubs. These distributions indicate
that the clusters themselves are scale-free as well.
However, to fully understand the relation between
scale-free graph characteristics and the local
clusters, more research is required.

5.3 The Cluster Hypothesis

As a derivative of Van Rijsbergen’s cluster
hypothesis (Van Rijsbergen, 1979), we assume that
closely associated nodes have a semantically
meaningful common ground. For the local
modularity algorithm this implies that clusters with
a high modularity score contain websites that have
some relation to the other nodes and v,. To test this
we ran a second batch of community identification
processes, but instead of randomly selecting a seed
node v, we chose specific websites that enabled us
to evaluate the obtained clusters. The results of
three of such clusters are shown in Table 3. The
modularity score of 0.5 (the rightmost column) is
significant, as can be seen when it is compared to

Table 3: Nodes in clusters with R(C) > 0.5. Blank descriptions belong to websites that were inaccessible.

v, | Website outdeg(x) | Description R(C +v,)
0 overheid.nl 18 Dutch Government Services 0.0

1 minocw.nl 4 Ministry of Education, Culture and Science 0.091
2 postbus51.nl 0 Government Information Desk 0.182
3 regering.nl 0 Dutch Government 0.273
4 bedrijvenloket.nl 2 Government Services for Businesses 0.333
5 e-overheid.nl 0 Electronic Government Services 0.375
6 info-wmao.nl 0 Information on the Act of Social Support 0.417
7 minvws.nl 6 Ministry of Traffic and Water management 0.467
8 kiesbeter.nl 0 Health Care Counseling 0.500
Worst case modularity 0.267

v, | Website outdeg(x) | Description R(C +v,)
0 ru.nl 39 Radboud University Nijmegen 0.0

1 stw.nl 7 Technology and Science Foundation 0.043
2 sentinels.nl 4 Dutch Security Research Program 0.080
3 nwo.nl 0 Dutch Organisation for Scientific Research 0.120
4 ictregie.nl 0 Developments in ICT-research 0.140
5 wisweb.nl 0 Mathematical Applications for High School 0.160
6 snnonline.nl 0 0.180
7 beevee.nl 1 Biology Students Union 0.200
8 nanoned.nl 0 Nanotechnology Network 0.220
9 | fom.nl 0 Fundamental Matter Research 0.240
10 | gx.nl 0 Website Content Management 0.260
11 | wisfaqg.nl 0 Mathematical Q&A for High School 0.280
12 | wetland-ecology.nl 1 Master Class on Climate Change 0.300
13 | embedded-systems.nl 0 Program of STW 0.320
14 | minez.nl 0 Ministry of Economy 0.340
15 | kizz.nl 0 Administrational Student Services for RU 0.360
16 | betabedrijvenbeurs.nl 0 Science and Business Fair 0.380
17 | marie-curie.nl 0 Astrophysics Student Union 0.400
18 | nedstat.nl 0 Web Statistics 0.420
19 | azn.nl 0 0.440
20 | astron.nl 0 Dutch Astronomy Foundation 0.460
21 | bioinformatics.nl 0 Bioinformatics Web Portal 0.480
22 | jacquard.nl 0 Software Engineering Research Program 0.500
Worst case modularity 0.423
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the worst-case local modularity:

ICI

Ryorst case (C) = Y outdeg (©)
cE

This value is shown below the cluster’s content.
The difference between this value and the actual
value of the cluster (0.5) shows that the websites are
indeed associated in a graph-theoretical way and
inspection of the contents of the clusters shows that
the clusters indeed contain related websites. In fact,
of the 51 listed vertices (54 are listed in Table 3, but
we exclude the seed vertices since they are
obviously related to themselves), only 8 show no
relation to the other vertices of the cluster. These
have been listed in italics and they include websites
that were unavailable for inspection.

From the three examples it stands out that each
of them was seeded with a hub vertex. This was
done because these websites might be meaningful to
the reader, so the contents of the rest of the cluster
can be judged. However, starting with a hub vertex
is not a necessity. For example, what happens when
instead of seeding with ru.nl, we initiate the
clustering with stw.nl, sentinels.nl or beevee.nl is
the following. In the first two situations, the seed

Table 3: Continued.

vertices have a decent degree and will not be
inclined to include a hub vertex. They will grow a
small community and eventually add ru.nl to their
cluster, after which the cluster grows similar to the
second cluster in Table 3. The difference is that the
first few nodes are tightly related to the seed vertex,
while the nodes after ru.nl has been added are less
related. In the situation of beevee.nl, the only
neighbour of this node is ru.nl, so this hub will be
added right away. This makes the algorithm stable
under variations of the seed vertex, providing our
threshold k is large enough.

6 CONCLUSIONS AND
SUGGESTIONS FOR
FURTHER RESEARCH

In this paper we discussed the current state of
affairs of the Web graph. Ample attention has been
given to aspects of the Web that concern the graph
as a whole. In particular we examined the scale-free
power-law degree distribution that is typical for the
Web and we provided a precise and consequent
notation for its associated equations. The degree

v, | Website outdeg(x) | Description R(C +v,)
0 bnn.nl 33 TV-Network 0.0
1 omroep.nl 4 National channel 0.054
2 vara.nl 6 TV-Network 0.093
3 vpro.nl 2 TV-Network 0.133
4 nederland3.nl 6 TV-Channel 0.157
5 uitzendinggemist.nl 22 Missed transmissions 0.178
6 nederland2.nl 0 TV-Channel 0.205
7 novatv.nl 18 Programme on news 0.231
8 nederlandkiest.nl 5 Mirror of nos.nl 0.260
9 nos.nl 6 National channel union 0.284
10 | nederland4.nl 0 Online channel 0.314
11 | nederlandl.nl 0 TV-Channel 0.333
12 | publiekeomroep.nl 16 Mirror of omroep.nl 0.356
13 | zapp.nl 0 omroep.nl youth division 0.381
14 | cinema.nl 0 Movie-related news 0.407
15 | funx.nl 2 Radio- and TV-channel 0.424
16 | radio2.nl 2 Radio channel 0.433
17 | nps.nl 4 Dutch TV-Programme foundation 0.443
18 | llink.nl 2 TV-Network 0.452
19 | ingeborgdouwecentrum.nl | 0 0.460
20 | korrelatie.nl 0 Mental and social support foundation 0.468
21 | esthervanderheiden.nl 0 Music teacher / conductor 0.476
22 | vakantietaal.nl 0 Language courses 0.484
23 | dogsincluded.nl 0 Information about travelling with dogs 0.492
24 | avro.nl 0 TV-Network 0.500
Worst case modularity 0.195
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distribution and the models of connected
components give an indication as to how the Web is
organised on a global scale, but provide little
information about small components of the graph.
To investigate these local aspects, we discussed
several community models and the concepts
modularity and its cousin local modularity. Local
modularity is seen as a measure for the
disconnectedness of a cluster and the rest of the
graph. We implemented a clustering algorithm
based on local modularity, which benefits from
being able to be employed on a large and dynamic
graph such as the WWW, without having a priori
knowledge of this network.

To explain the community identification
algorithm we introduced a notational framework
that can easily be used in other algorithms or graph
theoretical concepts. Application of the local
community identification algorithm on the Dutch
.NL-domain shows that the Web graph consists of
various components that have only a few
connections to the rest of the graph, by one or more
hub vertices. We found that on average a cluster
obtained by our algorithm has a modularity of *
0.65 when the cluster contains 50-100 vertices, only
to increase when more nodes are added, staying
consistently at + 0.8 after the cluster has
accumulated 300 vertices. Furthermore, pruning
increases the modularity value of these clusters,
showing that by enhancing the algorithm clusters
can be identified that are even more separated from
the rest of the graph. These results indicate that
vertices that are not extremely large hubs, are likely
to be part of a cluster of the Web graph that is fairly
disconnected from the rest, which corresponds
globally to the daisy model. Once again, the
importance of hub vertices in the Web graph is
stressed. Interesting further research should
examine these in greater detail, as they are valuable
for IR-purposes as well as in understanding graph
resilience.

Besides increased knowledge about the structure
of the Web graph, we have also evaluated the
contents of communities. We preliminarily tested
three identified clusters to the Van Rijsbergen
cluster hypothesis and we confirmed that by using
this algorithm, clusters with a modularity > 0.5
(these have more links from their boundary to the
cluster than from their boundary to external nodes)
contain semantically related websites. However, in
order to fully validate the clustering qualities of our
algorithm, further work is required. We propose to
investigate if cluster membership can be used in
page ranking in search engines and also to evaluate
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the relation between vertices in clusters using more
conventional IR-methods such as document
similarity.

Finally, we are looking forward to alternative
concepts that can be construed using the framework
we used in this paper. A first suggestion might be to
look at the status of clusters, as opposed to their
disconnectedness, by a new measure:

) _ares(C,B(0))
RO = arcs(V,B(C))
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