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Abstract

This paper introduces the Indian chefs process
(ICP) as a Bayesian nonparametric prior on the
joint space of infinite directed acyclic graphs
(DAGs) and orders that generalizes Indian buf-
fet processes. As our construction shows, the
proposed distribution relies on a latent Beta pro-
cess controlling both the orders and outgoing con-
nection probabilities of the nodes, and yields a
probability distribution on sparse infinite graphs.
The main advantage of the ICP over previously
proposed Bayesian nonparametric priors for DAG
structures is its greater flexibility. To the best
of our knowledge, the ICP is the first Bayesian
nonparametric model supporting every possible
DAG. We demonstrate the usefulness of the ICP
on learning the structure of deep generative sig-
moid networks as well as convolutional neural
networks.

1. Introduction
In machine learning and statistics, the directed acyclic
graph (DAG) is a common modelling choice for expressing
relationships between objects. Prime examples of DAG-
based graphical models include Bayesian networks, feed-
forward neural networks, causal networks, deep belief net-
works, dynamic Bayesian networks and hidden Markov
models, to name a few. Learning the unknown structure of
these models presents a significant learning challenge, a task
that is often avoided by fixing the structure to a large and
hopefully sufficiently expressive model. Structure learning
is a model selection problem in which ones estimates the
underlying graphical structure of the model. Over the years,
researchers have explored a great variety of approaches to
this problem (Jordan, 1998; Schmidt et al., 2007; Banerjee
& Ghosal, 2015; Kwok & Yeung, 1997; Mansinghka et al.,
2012; Mohammadi et al., 2015; Tervo et al., 2016), from fre-
quentist to Bayesian, and some using pure heuristic-based
search, but the vast majority is limited to finite parametric

models.

Bayesian nonparametric learning methods are appealing
alternatives to their parametric counterparts, because they
offer more flexibility when dealing with generative models
of unknown dimensionality (Hjort et al., 2009). Instead of
looking for specific finite-dimensional models, the idea is
rather to define probability measures on infinite-dimensional
spaces and then infer the finite subset of active dimensions
explaining the data. Over the past years, there has been
extensive work on constructing flexible Bayesian nonpara-
metric models for various types of graphical models, al-
lowing complex hidden structures to be learned from data.
For instance, (Jiang & Saxena, 2013) developed a model
for infinite latent conditional random fields while (Ickstadt
et al., 2010) proposed an infinite mixture of fully observable
finite-dimensional Bayesian networks. In the case of time
series, (Chatzis & Tsechpenakis, 2010) developed the infi-
nite hidden Markov random field model and (Doshi et al.,
2011) proposed an infinite dynamic Bayesian network with
factored hidden states. Another interesting model is the
infinite factorial dynamical model of (Valera et al., 2015)
representing the hidden dynamics of a system with infinitely
many independent hidden Markov models.

The problem of learning networks containing hidden struc-
tures with Bayesian nonparametric methods has also re-
ceived attention. The cascading Indian buffet process
(CIBP) of (Adams et al., 2010) is a Bayesian nonparamet-
ric prior over infinitely deep and infinitely broad layered
network structures. However, the CIBP does not allow con-
nections from non-adjacent layers, yielding a restricted prior
over infinite DAGs. The extended CIBP (ECIBP) is an ex-
tension of the previous model which seeks to correct this
limitation and support a larger set of DAG structures (Dal-
laire et al., 2014). However, the ECIBP has some drawbacks:
the observable nodes are confined to a unique layer placed
at the bottom of the network, which prevents learning the
order of the nodes or have observable inputs. An immediate
consequence of this is the impossibility for an observable
unit to be the parent of any hidden unit or any other ob-
servable unit, which considerably restricts the support of
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the prior over DAGs and makes their application to deep
learning very problematic.

In the context of deep learning, structure learning is often
part of the optimization. Recently, (Wen et al., 2016) pro-
posed a method that enforces the model to dynamically learn
more compact structures by imposing sparsity through regu-
larization. While sparsity is obviously an interesting prop-
erty for large DAG-based models, their method ignores the
epistemic uncertainty about the structure. Structure learning
for probabilistic graphical models can also be applied in
deep learning. For instance, (Rohekar et al., 2018) have
demonstrated that deep network structures can be learned
through the use of Bayesian network structure learning
strategies. To our knowledge, no Bayesian nonparamet-
ric structure learning methods have been applied to deep
learning models.

This paper introduces the Indian chefs process (ICP), a
new Bayesian nonparametric prior for general DAG-based
structure learning, which can equally be applied to perform
Bayesian inference in probabilistic graphical models and
deep learning. The proposed distribution has a support con-
taining all possible DAGs, admits hidden and observable
units, is layerless and enforces sparsity. We present its con-
struction in Section 2 and describe a learning method based
on Markov chain Monte Carlo in Section 3. In Section 4,
we use the ICP as a prior in two Bayesian structure learning
experiments: in the first, we compute the posterior distribu-
tion on the structure and parameters of a deep generative
sigmoid networks and in the second we perform structure
learning in convolutional neural networks.

2. Bayesian nonparametric directed acylic
graphs

In this section, we construct the probability distribution over
DAGs and orders by adopting the methodology followed
by (Griffiths & Ghahramani, 2006). We first define a dis-
tribution over finite-dimensional structures, while the final
distribution is obtained by evaluating it as the structure size
grows to infinity.

LetG = (V,Z) be a DAG where V = {1, . . . ,K} is the set
of nodes and Z ∈ {0, 1}K×K is the adjacency matrix. We
introduce an ordering θ on the nodes so that the direction of
an edge is determined by comparing the order value of each
node. A connection Zki = 1 is only allowed when θk > θi,
meaning that higher order nodes are parents and lower order
nodes are children. Notice that this constraint is stronger
than acyclicity since all (Z,θ) combinations respecting the
order value constraint are guaranteed to be acyclic, but an
acyclic graph can violate the ordering constraint.

We assume that both the adjacency matrix Z and the order-
ing θ are random variables and develop a Bayesian frame-

work reflecting our uncertainty. Accordingly, we assign
a popularity parameter πk and an order value θk, called
reputation, to every node k in G based on the following
model:

θk ∼ U(0, 1) (1)

πk | α, γ, φ,K ∼ Beta
(αγ
K

+ φI(k ∈ O), α− αγ

K

)
(2)

Zki | πk, θk, θi ∼ Bernoulli (πkI(θk > θi)) . (3)

Here, I denotes the indicator function, U(a, b) denotes the
uniform distribution on interval [a, b] and O ⊆ V is the set
of observed nodes. In this model, the popularities reflected
by π control the outgoing connection probability of the
nodes, while respecting the total order imposed by θ. More-
over, the Beta prior parametrization in Eq. (2) is motivated
by the Beta process construction of (Paisley, 2010), where
Eq. (1) becomes the base distribution, and is convenient
when evaluating the limit in Section 2.1. Also, α and γ
correspond to the usual parameters defining a Beta Process
and the purpose of the new parameter φ is to control the
popularity of the observable nodes and ensure a non-zero
connection probability when required.

Under this model, the conditional probability of the adja-
cency matrix Z given the popularities π = {πk}Kk=1 and
order values θ = {θk}Kk=1 is:

p(Z | π,θ) =
K∏
k=1

K∏
i=1

p(Zki | πk, θk, θi) . (4)

The adjacency matrix Z may contain connections for nodes
that are not of interest, i.e. nodes that are not ancestors of
any observable nodes. Formally, we define A ⊆ V as the
set of active nodes, which contains all observable nodes O
and the ones having a directed path ending at an observable
node.

When solely considering connections from A to A, i.e. the
adjacency submatrix ZAA of the A-induced subgraph of G,
Eq. (4) simplifies to:

p(ZAA | π,a,θ) =
∏
k∈A

πmk

k (1− πk)ak−mk , (5)

where mk =
∑
i∈A Zki denotes the number of out-

going connections from node k to any active nodes,
ak =

∑
j∈A I(θj < θk) denotes the number of active nodes

having an order value strictly lower than θk and a =
{ak}Kk=1. At this point, we marginalize out the popular-
ity vector π in Eq. (5) with respect to the prior, by using the
conjugacy of the Beta and Binomial distributions, and we
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get:

p(ZAA | α, γ,φ,a,θ) =∏
k∈H

[αγK ]mk [α− αγ
K ]ak−mk

αak
(6)

∏
k∈O

[αγK + φ]mk [α− αγ
K ]ak−mk

[α+ φ]ak
,

where xn = x(x + 1) · · · (x + n − 1) is the Pochhammer
symbol denoting the rising factorial and H = A \O is the
set of active hidden nodes.

The set of active nodes A contains all observable nodes as
well as their ancestors, which means there exists a part of
the graph G that is disconnected from A. Let us denote
by I = V \ A the set of inactive nodes. Considering that
the A-induced subgraph is effectively maximal, then this
subgraph must be properly isolated by some envelope of
no-connections ZIA containing only zeros. The joint proba-
bility of submatrices ZAA and ZIA is:

p(ZAA,ZIA | α, γ, φ,a,θ) =

p(ZAA | α, γ, φ,a,θ) ·
∏
k∈I

[α− αγ
K ]ak

αak
(7)

where the number of negative Bernoulli trials ak depends
on θk itself and θA. Notice that since the submatrices ZAI
and ZII contain uninteresting and unobserved binary events,
they are trivially marginalized out of p(Z).

One way to simplify Eq. (7) is to marginalize out the order
values θI of the inactive nodes with respect to (1). To
do so, we first sort the active node orders ascendingly in
vector θ̃A and augment it with the extrema θ̃0 = 0 and
θ̃K++1 = 1, where we introduce K+ = |A| to denote
the number of active nodes. We slightly abuse notation
here since these extrema do not refer to any nodes and are
only used to compute interval lengths. This provides us
with all relevant interval boundaries, including the absolute
boundaries implied by Eq. (1). We refer to the jth smallest
value of this vector as θ̃j . Based on the previous notation,
the probability for an inactive node to lie between two active
nodes is simply θ̃j+1 − θ̃j . Using this notation, we have the
following marginal probability:

p(Z̃AA, ZIA, θ̃A | α, γ, φ) =

(K −D)K
+−D

K+!

K+∑
j=0

(θ̃j+1 − θ̃j)
[α(1− γ

K )]j

αj

K−

∏
k∈H

[αγK ]mk [α− αγ
K ]ak−mk

αak
(8)

∏
k∈O

[αγK + φ]mk [α− αγ
K ]ak−mk

[α+ φ]ak
,

where K− = |I| denotes the number of inactive nodes,
xn = x(x−1) . . . (x−n+1) symbolizes the falling factorial
and Z̃AA is a reordering of the adjacency matrix according
to θ̃A. The latter is used because, due to the exchangeability
of our model, the joint probability on both the adjacency
matrix and active order values can cause problems regard-
ing the index k of the nodes. By using this many-to-one
transformation, we obtain a probability distribution on an
equivalence class of DAGs that is analog to the lof function
used by (Griffiths & Ghahramani, 2006). The number of per-
mutations mapping to this sorted representation is accounted
for by the normalization constant (K −D)K

+−D(K+!)−1.

2.1. From Finite to Infinite DAGs

An elegant way to construct Bayesian nonparametric models
is to consider the infinite limit of finite parametric Bayesian
models (Orbanz & Teh, 2010). Following this idea, we re-
visit the model of Section 2 so thatG now contains infinitely
many nodes. To this end, we evaluate the limit as K →∞
of Eq. (8), yielding the following probability distribution:

p(Z̃AA, ZIA, θ̃A|α, γ, φ,O) =

1

K+!
exp

−αγ K+∑
j=1

(θ̃j+1 − θ̃j)
[
ψ(α+ j)− ψ(α)

]
∏
k∈H

αγ
(mk − 1)!

(α+ ak −mk)mk

∏
k∈O

φmkαak−mk

[α+ φ]ak
, (9)

where ψ is the digamma function. Eq. (9) is the proposed
marginal probability distribution on the joint space of infi-
nite DAGs and continuous orders.

2.2. The Indian Chefs Process

Now that we have the marginal probability distribution (9),
we want to draw random active subgraphs from it. This sec-
tion introduces the Indian chefs process (ICP), a stochastic
process serving this purpose. In the ICP metaphor, chefs
draw inspiration from other chefs, based on their popular-
ity and reputation, to create the menu of their respective
restaurant. This creates inspiration maps representable with
directed acyclic graphs. ICP defines two types of chefs: 1)
star chefs (corresponding to observable variables) which are
introduced iteratively and 2) regular chefs (corresponding
to hidden variables) which appear only when another chef
selects them as a source of inspiration.

The ICP starts with an empty inspiration map as its initial
state. The infinitely many chefs can be thought of as lying
on a unit interval of reputations. Every chef has a fraction
of the infinitely many chefs above him and this fraction is
determined by the chef’s own reputation.

The general procedure at iteration t is to introduce a new star
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chef, denoted i, within a fully specified map of inspiration
representing the connections of the previously processed
chefs. The very first step is to draw a reputation value from
θi ∼ U(0, 1) to determine the position of the star chef in the
reputation interval. Once chef i is added, sampling the new
inspiration connections is done in three steps.

Backward proposal Step one consists in proposing star
chef i as an inspiration to all the ai chefs having a lower
reputation than chef i. To this end, we can first sample the
total number of inspiration connections with:

qi ∼ Binomial
(
ai,

φ

α+ φ

)
, (10)

and then uniformly pick one of the
(
ai
qi

)
possible configura-

tions of inspiration connections.

Selecting existing chefs In step two, chef i considers any
already introduced chefs of higher reputation. The proba-
bility for candidate chef k to become an inspiration for i
is:

Zki ∼ Bernoulli
(

mk + φI(k ∈ star chefs)
α+ ak − 1 + φI(k ∈ star chefs)

)
,

(11)
where ak includes the currently processed chef i.

Selecting new chefs The third step allows chef i to con-
sider completely new regular chefs as inspirations in every
single interval above i. The number of new regular chefs
Knew
j to add in the jth reputation interval above i follows

probability distribution:

Knew
j ∼ Poisson

(
(θ̃j+1 − θ̃j)αγ
α+ aj − 1

)
, (12)

where the new regular chefs are independently assigned a
random reputation drawn from U(θ̃j , θ̃j+1). The regular
chefs introduced during this step will be processed one by
one using step two and three. Once all newly introduced
regular chefs have been processed, the next iteration t+ 1
can begin with step one, a step reserved to star chefs only.

2.3. Some properties of the distribution

To better understand the effect of the hyperparameters on
the graph properties, we performed an empirical study of
some relations between the hyperparameters, the expected
number of active nodes E[K+|α, γ] and the expected num-
ber of active edges E[E+|α, γ], where E+ is the number
of elements in ZAA. Figure 1(a) depicts level curves of
E[K+|α, γ] for the case of only 1 observable placed at
θk = 0. The figure shows that several combinations of α
and γ leads to the same expected number of active nodes.

Notice that fixing one hyperparameter, either α or γ, and
selecting the expected number of nodes, one can retrieve the
second hyperparameter that matches the relationship. We
used this fact in the construction of Figure 1(b) where the
unshown parameter γ could be calculated. In Figure 1(b),
we illustrate the effect of α on E[E+|α, γ] which essentially
shows that smaller values of α increase the graph density.

When using Bayesian nonparametric models, we are actu-
ally assuming that the generative model of the data is infinite-
dimensional and that only a finite subset of the parameters
are involved in producing a finite set of data. The effective
number of parameters explaining the data corresponds to
the model complexity and usually scales logarithmically
with respect to the sample size. Unlike most Bayesian non-
parametric models, the ICP prior scales according to the
number of observed nodes added to the network. In Figure 1,
we show how the expected number of active hidden nodes
increases as function of the number of observable nodes.

2.4. Connection to the Indian Buffet Process

There exists a close connection between the Indian Chefs
Process (ICP) and the Indian Buffet Process (IBP). In fact,
our model can be seen as a generalization of the IBP. Firstly,
all realizations of the IBP receive a positive probability un-
der the ICP. Secondly, the two-parameter IBP (Griffiths &
Ghahramani, 2011) is recovered, at least conceptually, when
altering the prior on order values (see Eq. (1)) so that all
observed nodes are set to reputation θ = 0 and all hidden
nodes are set to reputation θ = 1. This way, connections
are prohibited between hidden nodes and between observ-
able nodes, while hidden-to-observable connections are still
permitted.

3. Structure Learning
In this section, we present a Markov chain Monte Carlo
(MCMC) algorithm approximating the exact ICP prior distri-
bution with samples. We propose a reversible jump MCMC
algorithm producing random walks on Eq. (9) (Green &
Hastie, 2009). This algorithm works in three phases: the
first resamples graph connections without adding or remov-
ing any nodes, the second phase is a birth-death process on
nodes and the third one only involves the order.

The algorithm itself uses the notion of singleton and orphan
nodes. A node is a singleton when it only has a unique
active child. Thus, removing its unique connection would
disconnect the node from the active subgraph. Moreover, a
node is said to be an orphan if it does not have any parents.

Within model moves on adjacency matrix: We begin
by uniformly selecting a node i from the active subgraph.
Here, the set of parents to consider for i comprises all non-
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Figure 1. Empirical study of hyperpameters. Figure (a) shows the expected number of active nodes as a function of α and γ. Figure (b)
shows that once we know the expected K+ from α and γ, we can find the expected number of connections. Figure (c) shows the influence
of α (with γ = 1) on the complexity (number of hidden nodes) as function of the number of observable nodes.

singleton active nodes having an order value greater than θi.
This set includes both current parents and candidate parents.
Then, for each parent k, we Gibbs sample the connections
using the following conditional probability:

p(Z̃ki = 1|Z̃¬kiAA ,θA) =
m¬ik + φI(k ∈ O)

α+ ak − 1 + φI(k ∈ O)
, (13)

where m¬ik is the number of outgoing connections of node k
excluding connections going to node i and Z̃¬kiAA has element
ki removed. Also, all connections not respecting the order
are prohibited and therefore have an occurrence probability
of 0, along with (trans-dimentional) singleton parent moves.

Trans-dimensional moves on adjacency matrix: We be-
gin with a random uniform selection of node i in the active
subgraph and, with equal probability, propose either a birth
or a death move.

In the birth case, we activate node k by connecting it to
node i. Its order θk is determined by uniformly selecting an
insertion interval above θi. Assuming node i is also the ith

element in θ̃A, we have ni = K+− i+1 possible intervals,
including zero-length intervals. Let us assume that j and
j + 1 are the two nodes between which k is to be inserted.
Then, we obtain the candidate order value of the new node
by sampling θk ∼ U(θ̃j , θ̃j+1). The Metropolis-Hastings
acceptance ratio here is:

abirth = min

{
1,
p(Z̃ ′A′A′ , Z

′
I′A′ , θ̃

′
A′ | α, γ, φ,O)

p(Z̃AA, ZIA, θ̃A | α, γ, φ,O)

· (θ̃j+1 − θ̃j)(ni + 1)K+

K∗i + 1

}
,

(14)

where K∗i is the number of singleton-orphan parents of i
and ni =

∑
j∈A I(θj > θi) is the number of active nodes

above i.

In the death case, we uniformly select one of the K∗i
singleton-orphan parents of i if K∗i > 0 and simply do noth-

ing in case there exists no such node. Let k be the parent
to disconnect and consequently deactivate. The Metropolis-
Hastings acceptance ratio for this move is:

adeath = min

{
1,
p(Z̃ ′A′A′ , Z

′
I′A′ , θ̃

′
A′ | α, γ, φ,O)

p(Z̃AA, ZIA, θ̃A | α, γ, φ,O)

· K∗i
(θ̃j+1 − θ̃j)(K+ − 1)ni

}
.

(15)

If accepted, node k is removed from the active subgraph.

Moves on order values: We re-sample the order value of
randomly picked node i. This operation is done by finding
the lowest order valued parent of i along with its highest
order valued children, which we respectively denote l and
h. Next, the candidate order value is sampled according
to θi ∼ U(θl, θh) and accepted with Metropolis-Hasting
acceptance ratio:

aorder = min

{
1,
p(Z̃AA, ZIA, θ̃

′
A | α, γ, φ,O)

p(Z̃AA, ZIA, θ̃A | α, γ, φ,O)

}
,

(16)
which proposes a new total order θ respecting the partial
order imposed by the rest of the DAG.

4. Experiments
The ICP distribution (9) can be used as a prior to learn the
structure of any DAG-based model involving hidden units.
In particular, one can introduce a priori knowledge about
the structure by fixing the order values of some observed
units. Feedforward neural networks, for instance, can be
modelled by imposing θk = 1 for all input units and θk = 0
for the output units. On the other hand, generative models
can be designed by placing all observed units at θk = 0,
preventing interconnections between them and forcing the
above generative units to explain the data. In Section 4.1, we
use the ICP as a prior to learn the structures of a generative
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neural network by approximating the full posterior for 9
datasets. In Section 4.2, we use the ICP to learn the structure
of a convolutional neural network (CNN) in a Bayesian
learning framework.

4.1. Bayesian nonparametric generative sigmoid
network

The network used in this section is the Nonlinear Gaussian
Belief Network (NLGBN) (Frey, 1997), which is basically
a generative sigmoid network. In this model, the output of
a unit ui depends on a weighted sum of its parents, where
Wki represents the weight of parent unit uk, Zki indicates
whether uk is a parent of ui and bi is a bias. The weighted
sum is then corrupted by a zero mean Gaussian noise of
precision ρi, so that ai ∼ N (bi +

∑
k ZkiWkiuk, 1/ρi).

The noisy preactivation ai is then passed through a sig-
moid nonlinearity, producing the output value ui. It turns
out that the density function of this random output ui can
be represented in closed-form, a property used to form
the likelihood function given the data. An ICP prior is
placed on the structure represented by Z along with pri-
ors γ ∼ Gamma(0.5, 0.5), 1/α ∼ Gamma(0.5, 0.5) and
φ ∼ Gamma(0.5, 0.5). To complete the prior on parame-
ters, we specify ρk ∼ Gamma(0.5, 0.5), bk ∼ N (0, 1) and
Wki ∼ N (0, 1).

The inference is done with MCMC where structure operators
are given in Section 3 and we refer to (Adams et al., 2010)
for the parameter and activation operators. The Markov
chain explores the space of structures by creating and de-
stroying edge and nodes, which means that posterior sam-
ples are of varying size and shape, while remaining infinitely
layered due to θk ∈ [0, 1]. We also simulate the random
activations uk and add them into the chain state.

This experiment aims at reproducing the generative process
of synthetic data sources. In the learning phase, we simu-
late the posterior distribution conditioned on 2000 training
points. Fantasy data from the posterior are generated by first
sampling a model from set of posterior network samples
and then one point is generated from the selected model.
Figure 2 shows 2000 test samples from the true distribu-
tion along with the samples generated from the posterior
accounting for the model uncertainty.

Next, we compare the ICP (with observables at θk = 0)
against other Bayesian nonparametric approaches: The Cas-
cading Indian Buffet Process (Adams et al., 2010) and the
Extended CIBP (Dallaire et al., 2014). The inference for
these models was done with an MCMC algorithm similar
to the one used for the ICP and we used similar priors for
the parameters to ensure a fair comparison. The compar-
ison metric used in this experiments is the Hellinger dis-
tance (HD), a function quantifying the similarity between
two probability densities. Table 1 shows the HDs between

fantasy datasets generated and ground truth.

4.2. Bayesian nonparametric convolutional neural
networks

So far, we introduced the ICP as a prior on the space of
directed acyclic graphs. In this section we will use this
formalism in order to construct a prior on the space of con-
volutional neural architectures. The fundamental building
blocks of (2D) convolutional networks are tensors T whose
entries encode the presence of local features in the input
image. A convolutional neural network can be described as
a sequence of convolution operators acting on these tensors
followed by entry-wise nonlinearity f .

In our nonparametric model, a convolutional network is
constructed from a directed acyclic graph. Each node of the
graph represents a tensor T (i). The entries of this tensor are
given by

T (i) = ReLu

 ∑
k∈Parents(i)

W (ki) ? T (k)

 , (17)

whereW (ki) is a tensor of convolutional weights and ? is the
discrete convolution operator. In most hand-crafted architec-
tures, the spatial dimensions of the tensor are course-grained
as the depth increases while the number of channels (each
representing a local feature of the input) increases. In the
ICP, the depth of a node i is represented by its popularity θi.
In order to encode the change of shape in the nonparametric
prior, we set the number of channels to be a function of θ:

Nc(θ) = 2bNbins(1−θ))c +N0 , (18)

whereNbins is the number of different possible tensor shapes
and N0 is the number of channels of the lowest layers. Sim-
ilarly, the number of pixels is given by:

Np(θ) = 2−bNbins(1−θ))cM , (19)

where M is the number of pixels in the original image. The
shape of the weight tensors W (ki) is determined by the
shape of parent and child tensor.

In a classification problem, the nonparametric convolutional
network is connected to the data through two observed
nodes. The input node X stores the input images and we
set θX = 1. On the other hand, for the output node we set
θY = 0, and have it receive input through fully connected
layers:

Y = SoftMax

 ∑
k∈Parents(Y )

∑
a,b,c

V (k)
a T

(k)
abc

 , (20)

where V (k) is a tensor of weights.
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Figure 2. Resulting fantasy data generated from the posterior on 3 toy datasets.

Table 1. Hellinger distance between the fantasy data from posterior models and the test set. Dimensionality of the data is given in
parentheses. The baseline shows the distance between the training and test sets, representing the best achievable distance since the two
come from the true source.

DATA SET RING (2) TWO MOONS (2) PINWHEEL (2) GEYSER (2) IRIS (4) YEAST (8) ABALONE (9) CLOUD (10) WINE (12)

ICP 0.0402 0.0342 0.0547 0.0734 0.2666 0.3817 0.1379 0.1495 0.3629
CIBP 0.0493 0.0469 0.0692 0.1246 0.2667 0.4056 0.1502 0.1713 0.4079

ECIBP 0.0419 0.0450 0.0685 0.1171 0.2632 0.3840 0.1470 0.1501 0.3855

BASELINE 0.0312 0.0138 0.0436 0.0234 0.1930 0.3059 0.1079 0.1299 0.3387

Note that, when computing the acceptance ratios in Eqs. (14-
16), we now need to add the model evidence log p(y | G,X)
for the proposal graph and current graph to the numerators
and denominators, respectively. In this paper, we use a point
estimate of the log model evidence:

p(y | G, x) ≈ p(y | G, {Ŵ (ki)}, x) , (21)

where Ŵ (jk) are the parameters of the network optimized
using Adam (α=0.1, β1=0.9, β2=0.999, eps=1e-08, η=1.0)
(Kingma & Ba, 2014).

We performed architecture sampling on the MNIST dataset.
For computational reasons, we restricted the dataset to the
first three classes (1, 2 and 3). We sampled the DAGs using
the MCMC sampler introduced in Section 3 with prior pa-
rameters α = 1, γ = 20 and φ = 5. For each sampled DAG,
we trained the induced convolutional architecture until con-
vergence (540 iterations, batch size equal to 100). The num-
ber of bins in the partition of the range of the popularity was
five and the number of channels of the first convolutional
layer was four. We ran 15 independent Markov chains in
order to sample from multiple modes. Each chain consisted
of 300 accepted samples. After sampling, all chains were
merged, resulting in a total of 4500 sampled architectures.

Figure 3A shows accuracy and descriptive statistics of the
sampled convolutional architectures. In all these statistics,
we only considered nodes that receive input from the input
node (directly or indirectly) as the remaining nodes do not
contribute to the forward pass of the network. The network
width is quantified as the total number of directed paths
between input and output nodes, while depth is quantified
as the maximal directed path length. The sampler reaches
a wide range of different architectures, whose number of
layers range from three to fifteen, and whose average degree
range from one to four. Some examples of architectures are

shown in Figure 3C. Interestingly, the correlation between
the number of nodes, degree, width and depth and accuracy
is very low. Most likely, this is due to the simple nature of
the MNIST task. The ensemble accuracy (0.95), obtained
by averaging the label probabilities over all samples, is
higher that the average accuracy (0.91), but lower that the
maximum accuracy (0.99). Figure 3B shows the histograms
of mean, standard deviation, minimum and maximum of the
popularity values in the networks.

5. Conclusion and Future Work
This paper introduced the Indian chefs process (ICP) as a
Bayesian nonparametric distribution on the joint space of in-
finite directed acyclic graphs and orders. The model allows
for a novel way of learning the structure of deep learning
models. As a proof of concept, we have demonstrated how
the ICP can be used to learn the architecture of convolutional
deep networks trained on the MNIST data set. However.
for more realistic applications, several efficiency improve-
ments are required. Firstly, the inference procedure over
the model parameters could be performed using stochastic
Hamiltonian MCMC (Ma et al., 2015). This removes the
need to fully train the network for every sampled DAG. An-
other possible improvement is to add deep learning-specific
sampling moves. For example, it is possible to include an
increase-depth move that replaces a connection with a path
comprised by two connections and a latent node. Future
applications of the ICP may extend beyond deep learning
architectures. For example, the ICP may serve as a basis for
nonparametric causal inference, where a DAG structure is
learned when the exact number of relevant variables is not
known a priori, or when certain relevant input variables are
not observed (Mohan et al., 2013).
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