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Preliminaries

The first part of this course is on Why3

m Main sessions: thursdays, 8:30 HGO0.068

m Tutorial hour: next wednesday, 10:30 MERC |1 00.28
Slot will not always be used - check announcements!

Useful if you remember something from:

m Mathematical Structures
m Assertion and Argumentation
m Semantics and Correctness

m Functional Programming



Practicalities

Reference materials
Why3 Tutorial by J.C. Filliatre:

why3.1lri.fr/vtsa-18/notes-why3.pdf

Manual:
why3.1lri.fr/manual .pdf

Exercises: see Brightspace

m Important you do these!
m Work in pairs!
m Deadline: tuesday 12:00

Help? Contact: m. schoolderman@cs.ru.nl


why3.lri.fr/vtsa-18/notes-why3.pdf
why3.lri.fr/manual.pdf
m.schoolderman@cs.ru.nl

Motivation
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Formal verification

Validation
Writing the correct program

m Are informal requirements captured in a specification?

Verification
Writing the program correctly

m Does the program match the specification?

Formal verification
The art of using rigorous, mathematical techniques for verification

m Prove that a program matches a formal specification!
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The dawn of computing science

1948 Manchester Baby: first programmable computer
1949 Early program proof by Turing for computing 7!
.. “crickets™ ...
1967 Floyd: “Assigning Meanings to Programs”
1969 Hoare logic (Axiomatic semantics)
1975 Dijkstra: weakest preconditions
... fast forward ...

2019 Formal verification seldomly used
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Critical software bugs

Testing shows the presence, not the absence of bugs - Dijkstra

1996 Ariane 5: uncaught runtime exception

1999 NASA: confused imperial and metric system
2008 Debian OpenSSL: RNG seeded with well-known data
2009 Toyota “unintended acceleration: stack overflow
2014 Apple SSL: goto fail

2014 HeartBleed: buffer overflow

2014 ShellShock: Incorrect input processing
(undetected for 25 years)

More stories:
http://www.cs.tau.ac.il/~nachumd/horror.html


http://www.cs.tau.ac.il/~nachumd/horror.html

Bugs in the Java |DK

2006 “Nearly All Binary Searches and Mergesorts are
Broken” - Joshua Bloch:"

int mid = (low+high)/2
int midVal = a[mid]

Thttps://ai.googleblog. com/2006/06/

extra-extra-read-all-about-it-nearly.html


https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

Bugs in the Java |DK

2006 “Nearly All Binary Searches and Mergesorts are
Broken” - Joshua Bloch:"

int mid = (low+high)/2
int midVal = a[mid]

Will cause overflow if 1ow+high> 231!

Thttps://ai.googleblog. com/2006/06/

extra-extra-read-all-about-it-nearly.html


https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

Bugs in the Java |DK

2006 “Nearly All Binary Searches and Mergesorts are
Broken” - Joshua Bloch:"

int mid = (low+high)/2
int midVal = a[mid]

Will cause overflow if Low+high> 23! Fixing this in C:

int mid = low + (high—low)/2

Thttps://ai.googleblog. com/2006/06/

extra-extra-read-all-about-it-nearly.html


https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
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What can we do about this?

Proofs can show the absence of (certain) bugs.

The Bad News
Formal proofs are hard, tedious, time-consuming, and error-prone.

The Good News
Major advances in computional power and artificial intelligence

m Interactive theorem provers: Coq, PVS, Isabelle/HOL
m Fully automated provers: 73, CVC4, E, Alt-Ergo, ...



Another reason to use machine intelligence

Do you trust your own proofs?

Do you trust other people's proofs?


https://eprint.iacr.org/2018/1040.pdf

Another reason to use machine intelligence

Do you trust your own proofs?

Do you trust other people's proofs?

Cryptanalysis of OCB2 - Inoue & Minematsu

m OCB2: authenticated encryption, ‘proven secure’ in 2004

m Broken in 20187
https://eprint.iacr.org/2018/1040.pdf


https://eprint.iacr.org/2018/1040.pdf

Some high-profile stories

AMD K5 Verification of fdiv using ACL2 (1995)
Paris Métro Driverless Ligne 14 verified using B-Method (1998)
Hyper-V Hypervisor verified using VCC and Z3 (2005)
CompCert C compiler verified using Coq (2009)
seL4 micro-kernel verified using Isabelle/HOL (2009)

Work in progress:

Project Everest Verified HTTPS stack using F*
CakeML Bootstrapping, verified compiler for ML



The state of the art
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Modern systems for program verification

m Why3 (INRIA)

Common complaint from industry:
“Give us a system that we can actually use”

Let’s see how far we get with Why3

m Recently had major updates

m Expertise present at Radboud



The Why3 Platform

specifications + programs s verification conditions

i WhyML programs i
i Why logic |
Alt-Ergo) [CVC3} [CVCA]  [E| Lz\\COqPVS]
machine intelligence proof checkers



Layers of Why3

WhyML consists of two parts:

@ A pure logic system
> Usage: theorem proving.
® A programming language

» Usage: modelling programs, intermediate language



Three ways of using Why3

@ A pure logic system
> First order logic + pure functions (no side effects)
» Proofs discharged by automatic provers
» Why3 keeps track of dependencies between proofs
> Ability to produce (potential) counter-examples



module Example

use int.Int

predicate odd (x:

function sqr (x:

lemma odd_square:

forall x: int.

end

int) = exists k: int. x

int): int = x*x

odd x —> odd (sqr x)



WhyML

@® WhyML as a programming language
» Imperative programming (while loops, mutable data)
» Function contracts: pre- and postconditions
> Algebraic data types with pattern matching
» Type inference (like Haskell, ML)
» Control-flow: break, continue, return
» Why3 generates verification conditions

17



WhyML programs

let foo (x: int): int
requires { x >= 0 }
ensures { result >= 0 }
= let z = ref 0 in
let odd = ref 1 in
let sum = ref 1 in

while !sum <= x do

z = lz + 1;
odd := lodd + 2;
sum := !sum + !odd;
done;
return !z

18



Theoretical background




Pre- and postconditions: {P} S {Q}

m Partial correctness: if P holds, and we run S, then Q holds when
it terminates.

m Note: Doesn't say S will actually terminate!

Comes with derivation rules:

| {x=42} {P[x ~ a]}x:=a{P}
I (P)Si{Q} {QIS:(R)
|

{y=43% {P}Sl;Sz{R}



Do you enjoy Hoare logic?

\ {x>01}
\ while x > 0 do
‘ x = x-1

‘ done

|

{x=01}%

20
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Do you enjoy Hoare logic?

{x>07%}

{ 1Inv %

while x > 0 do
{x>0/\ INV }

x = x-1

{ InV }
done
{ not (x> 0) /\ INV }
{x=01}
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Do you enjoy Hoare logic?

{x>07%}

{x>01%

while x > 0 do
{x>0/\x>01%
{x-1>01}
x = x-1
{x>013%
{x>01}

done

{not (x>0) /\x>07%

{x=01}

24



Some observations

Hoare logic proofs are mostly mechanical, except:

m Finding loop invariants

m Proving that one condition follows from another

And can only show partial correctness!

25



Weakest liberal precondition

A predicate wlp(S, Q), so that {wip(S,Q)} S {Q}
m Instead of deriving {P} S {Q}, just show P — wip(S, Q)

26



Weakest liberal precondition

A predicate wlp(S, Q), so that {wip(S,Q)} S {Q}
m Instead of deriving {P} S {Q}, just show P — wip(S, Q)

wlp(x:=e, Q) = Qlx - ¢]
wlp(e1;e2,Q) = wip(el, wip(e2,Q))
wlp(if b then el else e2,Q) = (b — wip(el,Q)) A (—b — wip(e2,Q))
wlp(while b do 8,Q) = INVA

Vv € SINV — (b — wip(S,INV)) A (=b — Q)

26



wlp: Computation

wlp(while...done, x = 0) = INVA
Vx.INV —(x > 0 — wip(x:=x-1,INV)) A
(=(x>0) > x=0)

{x>01%
while x > 0 do invariant x >= 0

|

|

‘ x = x-1
‘ done
|

{x=01%

27



wlp: Computation

wlp(while...done, x = 0) = x > 0A
Vx.x >0 —(x >0 — wilp(x:=x-1,x > 0))A
(=(x>0) > x=0)

{x>01%
while x > 0 do invariant x >= 0

|

|

‘ x = x-1
‘ done
|

{x=01%

28



wlp: Computation

wlp(while...done, x = 0) = x > 0A
Vxx>0—=(x>0—>x—1>0)A
(=(x>0) - x=0)

{x>01%

while x > 0 do invariant x >= 0
x = x-1

done

{x=01%

29



wlp: Computation

This is the verification condition:

x > 0 — wip(while ...done, x = 0)

30



wlp: Computation

This is the verification condition:

x>0 —x>0A
Vxx>0—(x>0—>x—1>0)A(~(x>0) -x=0)
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wlp: Computation

This is the verification condition:

x>0 —x>0A
Vxx>0—(x>0—>x—1>0)A(~(x>0) -x=0)

This is what Why3 will do for you:

m Why3 computes (more or less) exactly this.

m Why3 will also do this proof for you.

30



What do we want to prove?

Partial correctness {P} S {Q}
Termination Prove that S terminates.

Total correctness Partial correctness + termination

31



What do we want to prove?

Partial correctness {P} S {Q}
Termination Prove that S terminates.

Total correctness Partial correctness + termination

Partial correctness on its own can be weak.

while not sorted a do

tmp := al[0]; a[0] := al[1]; al1] := tmp;
done
{ sorted a }

31



Proving termination

To prove termination of while loops, find some quantity that:

m Gets smaller every iteration

m Never becomes negative

32



Proving termination

To prove termination of while loops, find some quantity that:

m Gets smaller every iteration

m Never becomes negative

We call this the variant.

{x>07% “ “

while x > 0 do . . i i
invariant x >= 0 § % ‘”””“”I'lﬁl‘“ Illl'lllllm fiii
variant x . \ h % % 8
x := x-1 ﬁ "“Hmluu T T uulu‘

done ‘ 3

{x=01%

32



Practical matters: the Why3 toolbox




Programming in WhyML

If you can program, you can program in WhyML!
m Programs can be run directly (why3 execute)
Built-in types: bool, int, real

m Data is immutable by default

m Mutable data can be stored in references: ref int
WhyML has annotations for:

m Function contracts: requires, ensures
m While loops: invariant, variant

m Assertions: assert

38



WhyML programs

let foo (x: int): int

requires { ... }
ensures { ... }
= let z: ref int = ref 0 in

let odd: ref int = ref 1 in
let sum: ref int = ref 1 in

while !sum <= x do

invariant { ... }

variant { ... }

z = lz + 1;

odd := lodd + 2;

assert { ... };

sum := !sum + !odd;
done;

return !z

34



Logical language

Pure WhyML expressions + first order logic

Quick syntax guide:
XAy x/\y
xVy x\/y
-y not x
X —=Yy X=>y
X4y x<->y

Vx € T[P(x)] forall x:t. p x
Jx € T[P(x)] exists x:t. p X

35



Logic vs. Code

Pure logic: Program code:

let double (x: int): int =

2%x

function double (x: int): int =

2%x

let divides (d n: int): bool =
d=0&& n =0l mdnd-=0

predicate divides (d n: int) =

exists q: int. n = g*xd

36



Logic vs. Code

@ Logical expressions can only be used in annotations

Pure logic: Program code:

let double (x: int): int =

2%x

function double (x: int): int =

2%x

let divides (d n: int): bool =
d=0&& n=0 ||l mdnd-=0

predicate divides (d n: int) =

exists q: int. n = g*d

36



Logic vs. Code

@ Logical expressions can only be used in annotations

@ To reason about programs, you generally need contracts

Pure logic:

function double (x: int): int

2%x

predicate divides (d n: int) =

exists q: int. n = g*xd

Program code:

let double (x: int): int
ensures { result = 2*x }

= 2¥x

let divides (d n: int): bool
ensures { result <->
exists q: int. n = gqxd }
=d=0&& n=0 ||l mdnd-=0

37



Logic vs. Code

Often we can avoid repeating ourselves:

Usable in both logical formulas and programs:

let function double (x: int): int =

2%X

ensures { result <-> exists q: int. n = g*d }

|
|
|
‘ let predicate divides (d n: int)
|
| =d=0&n=01llmdnd=0

38



Why3 IDE

Proving programs is done in the Why3 IDE (why3 ide)

m Has a program view and a logical view
m Allows editing the program
m Access provers with right click

m Logical formulas can be manipulated

> Strategies: automated splitting & proving
» Transformations: fine-grained control

m State can be saved and returned to later

39



Let's do something!




let foo (x:
let z =ref O
let odd = ref 1

let sum = ref 1

while !sum <= x

z = lz +1;

odd := lodd +

sum := !sum +
done;

return 'z

int):

What does this compute?

int
in
in
in
do

2;
lodd;
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let foo (x: int):
let z = ref
let odd = ref
let sum = ref
while !sum <=
z = lz +1;
odd := lodd +
sum := !sum +
done;

return 'z

What does this compute?

int
in

in

do

2;
lodd;



while !sum <=

What does this compute?

int
in

in

do

2;
lodd;

~N 01w



What does this compute?

let foo (x: int):
= let z =ref O
let odd = ref 1
let sum = ref 1

while !sum <= x

z = lz +1;
odd := lodd +
sum := !sum +
done;
return 'z

) lz lodd !sum

int

) 0 1 1

in

m 1 3 4

in 2 5 9

do 3 7 16
4 9 25

28
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What does this compute?

let foo (x: int):
= let z =ref O
let odd = ref 1
let sum = ref 1

while !sum <= x

z = lz +1;
odd := lodd +
sum := !sum +
done;
return 'z

) lz lodd !sum

int

) 0 1 1

in

Sim 1 3 4

in 2 5 9

do 3 7 16
4 9 25

2 5 11 36

lodd;
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What does this compute?

let foo (x: int):
= let z =ref O
let odd = ref 1
let sum = ref 1

while !sum <= x

z = lz +1;
odd := lodd +
sum := !sum +
done;
return 'z

) lz lodd !sum

int

. 0 1 1

in

in 1 3 4

in 2 5 9

do 3 7 16
4 9 25

2 5 11 36

todd; 6 13 49
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What does this compute?

let foo (x: int):
= let z =ref O
let odd = ref 1
let sum = ref 1

while !sum <= x

z = lz +1;
odd := lodd +
sum := !sum +
done;
return 'z

) lz lodd !sum

int

. 0 1 1

in

in 1 3 4

in 2 5 9

do 3 7 16
4 9 25

2 5 11 36

todd; 6 13 49
7 15 64

40



Demo!

41



How to find good invariants?

Find a property that generalizes initial and end condition.

assert { !i = 0 };
let j = ref 9 in
while !i < 10 do

invariant { ... }
i =11+ 1;
ji=1j-1;

done

assert { !i = 9 };

)



How to find good invariants?

Find a property that generalizes initial and end condition.

assert { !i = 0 };
let j = ref 9 in
while !i < 10 do

invariant { !i + !j =9 }

i =11+ 1;
jo=13 -1
done

assert { !i = 9 };

43



Conclusion




Why3 is a platform for automating total correctness proofs

Uses powerful SMT solvers to do tedious proofs

WhyML: Logical formulas + Program code
m Functions: specify contracts

while loops: specify invariants and variants

44



Final comment

Step 1: Frustration

Why3 Interactive Proof Session

Eile

Tools

Status Theories/Goals

Q00000000000 000000000

View Help
fturing.miw
TuringFac
+ L] vcfac [VC for fac]
v J§ split_vc
» [ 0[loop invariant init]
» 1 [loop invariant init]
» L] 2 [postcondition]
» L] 3 [loop invariant init]
3 4 [loop invariant init]
» L/ 5[loop invariantinit]
» L] 6 [loop variant decrease]
» L/ 7[loop invariant preservation]
- 8 [loop invariant preservation]

Z34.7.1 (noBV)

L/ 9loop variant decrease]

L./ 10[loop invariant preservation]
_/ 11 [loop invariant preservation]
L] 12 [loop invariant preservation]
13 [loop variant decrease]

14 [loop invariant preservation]
L/ 15 [loop invariant preservation]
L] 16 [unreachable point]

Time

5.00

Task | ..fturing.mlw
SLaxion nE ;U= (UL ¥ UZ)

32

33 constant s : int

34

35 axiom H3 : 5 = (51 + 1)

36

37axiom H2 : ((s - 1) - rl) >=0
38

39 constant r : int

41 axiom H1 : r = (rl + 1)

43axiom H : 1<=r /\r<n\/n=0/r=1

46

47 goal VC fac : u = fact r

48

49

50 =================—==> Prover: 23 4.7.1 (noBV)
51 Timeout

52

53 The prover did not return counterexamples.

0/0/0

Messages | Log | Edited proof | Prover output | Counterexample
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Final comment

Step 2: ..

Why3 Interactive Proof Session

File Tools View Help

Status Theories/Goals

Q00000000000 000000000

~ 7 . jturing.miw
~ | TuringFac
_] VC fac [VC for fac]

- split_vc

_/ 0 [loop invariant init]

1 [loop invariant init]

L] 2 [postcondition]

_/ 3 [loop invariant init]

4 [loop invariant init]

L./ 5 [loop invariant init]

_/ 6 [loop variant decrease]

L./ 7 [loop invariant preservation]

8 [loop invariant preservation]
Z34.7.1 (noBV)

L/ 9loop variant decrease]

L./ 10[loop invariant preservation]

_/ 11 [loop invariant preservation]

L] 12 [loop invariant preservation]

13 [loop variant decrease]

14 [loop invariant preservation]

L/ 15 [loop invariant preservation]

L] 16 [unreachable point]

Time

5.00

Task | ..fturing.mlw
SLaxion nE ;U= (UL ¥ UZ)

32

33 constant s : int

34

35 axiom H3 : 5 = (51 + 1)

36

37axiom H2 : ((s - 1) - rl) >=0
38

39 constant r : int

41 axiom H1 : r = (rl + 1)

43axiom H : 1<=r /\r<n\/n=0/r=1

46

47 goal VC fac : u = fact r

48

49

50 =================—==> Prover: 23 4.7.1 (noBV)
51 Timeout

52

53 The prover did not return counterexamples.

0/0/0

Messages | Log | Edited proof | Prover output | Counterexample

46



Final comment

Step 3: Dopamine rush!

Why3 Interactive Proof Session x
File Tools View Help
Status | Theories/Goals Time Task | ./turing.mlw
@ ~ & tuingmiw SLaxion na © U= (Ul ¥ UZ)
) 32
© ~ [ TuringFac 33 constant s : int
@ v L] vCfac[VC for fac] 34
® v B split_ve gg axiom H3 : 5 = (51 + 1)
o » LJ 0lloop invariant init] 37 axion H2 ¢ ((s - 1) - r1) >= 0
(~] » 1 [loop invariant init] 38
® » L] 2 [postcondition] 39 constant r : int
© » L/ 3 [loop invariant init] 41 axiom H1 : r = (rl + 1)
@ » 4 [loop invariant init]
® v L7 5 [loop invariant init] 43axiom H : T<=r /\ren\/n=0/\r=1
@ » L] 6 [loop variant decrease] 45 <o Jorr
@ » L] 7 [loop invariant preservation] 46
® ~ L] 8 lloop invariant preservation] 47goal VC fac : u = fact r

48
Alt-Ergo 2.0.0 0.01 (steps: 49

@) S 73471 100 50 ====================> Prover: ALt-Ergo 2.0.0

O » [/ 9[loop variant decrease] 2; valid

@ » L] 10[loop invariant preservation] 53 The prover did not return counterexamples.

(~] b L] 11[loop invariant preservation]

(~] » L[] 12 [loop invariant preservation] 0/6/0

(~] » 13 [loop variant decrease]

Q » L] 14 [loop invariant preservation] Messages | Log | Edited proof | Prover output | Counterexample
® » L] 15 [loop invariant preservation] Session refresh successful

(~] » L[/ 16[unreachable point]

47
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