Program verification with Why3

Marc Schoolderman
February 7, 2019

Preliminaries

The first part of this course is on Why3

m Main sessions: thursdays, 8:30 HGO0.068

m Tutorial hour: next wednesday, 10:30 MERC |1 00.28
Slot will not always be used - check announcements!

Useful if you remember something from:

m Mathematical Structures
m Assertion and Argumentation
m Semantics and Correctness

m Functional Programming

Practicalities

Reference materials
Why3 Tutorial by J.C. Filliatre:

why3.1lri.fr/vtsa-18/notes-why3.pdf

Manual:
why3.1lri.fr/manual .pdf

Exercises: see Brightspace

m Important you do these!
m Work in pairs!
m Deadline: tuesday 12:00

Help? Contact: m. schoolderman@cs.ru.nl

why3.lri.fr/vtsa-18/notes-why3.pdf
why3.lri.fr/manual.pdf
m.schoolderman@cs.ru.nl

Motivation

Formal verification

Validation
Writing the correct program

m Are informal requirements captured in a specification?

Verification
Writing the program correctly

m Does the program match the specification?

Formal verification

Validation
Writing the correct program

m Are informal requirements captured in a specification?

Verification
Writing the program correctly

m Does the program match the specification?

Formal verification
The art of using rigorous, mathematical techniques for verification

m Prove that a program matches a formal specification!

The dawn of computing science

1948 Manchester Baby: first programmable computer

The dawn of computing science

1948 Manchester Baby: first programmable computer
1949 Early program proof by Turing for computing 7!

The dawn of computing science

1948 Manchester Baby: first programmable computer
1949 Early program proof by Turing for computing 7!

... “crickets™ ...

The dawn of computing science

1948 Manchester Baby: first programmable computer

1949 Early program proof by Turing for computing 7!
.. “crickets™ ...

1967 Floyd: “Assigning Meanings to Programs”

1969 Hoare logic (Axiomatic semantics)

1975 Dijkstra: weakest preconditions

The dawn of computing science

1948 Manchester Baby: first programmable computer

1949 Early program proof by Turing for computing 7!
.. “crickets™ ...

1967 Floyd: “Assigning Meanings to Programs”

1969 Hoare logic (Axiomatic semantics)

1975 Dijkstra: weakest preconditions

... fast forward ...

The dawn of computing science

1948 Manchester Baby: first programmable computer
1949 Early program proof by Turing for computing 7!
.. “crickets™ ...
1967 Floyd: “Assigning Meanings to Programs”
1969 Hoare logic (Axiomatic semantics)
1975 Dijkstra: weakest preconditions
... fast forward ...

2019 Formal verification seldomly used

Turing’s notes

vocamon koo | keb ! kus ked ked 1 kel ke2
) i s s+l s
1 28 r . * LT -
29 n n 3 n - T on n
‘ 30 N st e ()i
[2 P o L+ T
- : : .
! ,-m®"ru@xm® ™wQ® i o® T®
wiTH Tl e | Rl
. sl T vo ® 1 R
i 1myim ! , To @
. WITH ' swe)
N w slr
|
1

Critical software bugs

Testing shows the presence, not the absence of bugs - Dijkstra

1996 Ariane 5: uncaught runtime exception

1999 NASA: confused imperial and metric system
2008 Debian OpenSSL: RNG seeded with well-known data
2009 Toyota “unintended acceleration: stack overflow
2014 Apple SSL: goto fail

2014 HeartBleed: buffer overflow

2014 ShellShock: Incorrect input processing
(undetected for 25 years)

More stories:
http://www.cs.tau.ac.il/~nachumd/horror.html

http://www.cs.tau.ac.il/~nachumd/horror.html

Bugs in the Java |DK

2006 “Nearly All Binary Searches and Mergesorts are
Broken” - Joshua Bloch:"

int mid = (low+high)/2
int midVal = a[mid]

Thttps://ai.googleblog. com/2006/06/

extra-extra-read-all-about-it-nearly.html

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

Bugs in the Java |DK

2006 “Nearly All Binary Searches and Mergesorts are
Broken” - Joshua Bloch:"

int mid = (low+high)/2
int midVal = a[mid]

Will cause overflow if 1ow+high> 231!

Thttps://ai.googleblog. com/2006/06/

extra-extra-read-all-about-it-nearly.html

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

Bugs in the Java |DK

2006 “Nearly All Binary Searches and Mergesorts are
Broken” - Joshua Bloch:"

int mid = (low+high)/2
int midVal = a[mid]

Will cause overflow if Low+high> 23! Fixing this in C:

int mid = low + (high—low)/2

Thttps://ai.googleblog. com/2006/06/

extra-extra-read-all-about-it-nearly.html

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

What can we do about this?

Proofs can show the absence of (certain) bugs.

What can we do about this?

Proofs can show the absence of (certain) bugs.

The Bad News
Formal proofs are hard, tedious, time-consuming, and error-prone.

What can we do about this?

Proofs can show the absence of (certain) bugs.

The Bad News
Formal proofs are hard, tedious, time-consuming, and error-prone.

The Good News
Major advances in computional power and artificial intelligence

m Interactive theorem provers: Coq, PVS, Isabelle/HOL
m Fully automated provers: 73, CVC4, E, Alt-Ergo, ...

Another reason to use machine intelligence

Do you trust your own proofs?

Do you trust other people's proofs?

https://eprint.iacr.org/2018/1040.pdf

Another reason to use machine intelligence

Do you trust your own proofs?

Do you trust other people's proofs?

Cryptanalysis of OCB2 - Inoue & Minematsu

m OCB2: authenticated encryption, ‘proven secure’ in 2004

m Broken in 20187
https://eprint.iacr.org/2018/1040.pdf

https://eprint.iacr.org/2018/1040.pdf

Some high-profile stories

AMD K5 Verification of fdiv using ACL2 (1995)
Paris Métro Driverless Ligne 14 verified using B-Method (1998)
Hyper-V Hypervisor verified using VCC and Z3 (2005)
CompCert C compiler verified using Coq (2009)
seL4 micro-kernel verified using Isabelle/HOL (2009)

Work in progress:

Project Everest Verified HTTPS stack using F*
CakeML Bootstrapping, verified compiler for ML

The state of the art

Modern systems for program verification

m Why3 (INRIA)
m F* (Microsoft Research)
m Frama-C/WP (INRIA+CEA)

Modern systems for program verification

m Why3 (INRIA)
m F* (Microsoft Research)
m Frama-C/WP (INRIA+CEA)

Common complaint from industry:
“Give us a system that we can actually use”

Modern systems for program verification

m Why3 (INRIA)

Common complaint from industry:
“Give us a system that we can actually use”

Let’s see how far we get with Why3

m Recently had major updates

m Expertise present at Radboud

The Why3 Platform

specifications + programs s verification conditions

i WhyML programs i
i Why logic |
Alt-Ergo) [CVC3} [CVCA] [E| Lz\\COqPVS]
machine intelligence proof checkers

Layers of Why3

WhyML consists of two parts:

@ A pure logic system
> Usage: theorem proving.
® A programming language

» Usage: modelling programs, intermediate language

Three ways of using Why3

@ A pure logic system
> First order logic + pure functions (no side effects)
» Proofs discharged by automatic provers
» Why3 keeps track of dependencies between proofs
> Ability to produce (potential) counter-examples

module Example

use int.Int

predicate odd (x:

function sqr (x:

lemma odd_square:

forall x: int.

end

int) = exists k: int. x

int): int = x*x

odd x —> odd (sqr x)

WhyML

@® WhyML as a programming language
» Imperative programming (while loops, mutable data)
» Function contracts: pre- and postconditions
> Algebraic data types with pattern matching
» Type inference (like Haskell, ML)
» Control-flow: break, continue, return
» Why3 generates verification conditions

17

WhyML programs

let foo (x: int): int
requires { x >= 0 }
ensures { result >= 0 }
= let z = ref 0 in
let odd = ref 1 in
let sum = ref 1 in

while !sum <= x do

z = lz + 1;
odd := lodd + 2;
sum := !sum + !odd;
done;
return !z

18

Theoretical background

Pre- and postconditions: {P} S {Q}

m Partial correctness: if P holds, and we run S, then Q holds when
it terminates.

m Note: Doesn't say S will actually terminate!

Comes with derivation rules:

| {x=42} {P[x ~ a]}x:=a{P}
I (P)Si{Q} {QIS:(R)
|

{y=43% {P}Sl;Sz{R}

Do you enjoy Hoare logic?

\ {x>01}
\ while x > 0 do
‘ x = x-1

‘ done

|

{x=01}%

20

Do you enjoy Hoare logic?

{x>07%}

while x > 0 do

21

Do you enjoy Hoare logic?

{x>07%}

{ 1Inv %

while x > 0 do
{x>0/\ INV }

x = x-1

{ InV }
done
{ not (x> 0) /\ INV }
{x=01}

22

Do you enjoy Hoare logic?

{x>07%}

{x>01%

while x > 0 do
{x>0/\x>01%

x = x-1

{x>01}
done
{not (x>0) /\x>07%
{x=01}

23

Do you enjoy Hoare logic?

{x>07%}

{x>01%

while x > 0 do
{x>0/\x>01%
{x-1>01}
x = x-1
{x>013%
{x>01}

done

{not (x>0) /\x>07%

{x=01}

24

Some observations

Hoare logic proofs are mostly mechanical, except:

m Finding loop invariants

m Proving that one condition follows from another

And can only show partial correctness!

25

Weakest liberal precondition

A predicate wlp(S, Q), so that {wip(S,Q)} S {Q}
m Instead of deriving {P} S {Q}, just show P — wip(S, Q)

26

Weakest liberal precondition

A predicate wlp(S, Q), so that {wip(S,Q)} S {Q}
m Instead of deriving {P} S {Q}, just show P — wip(S, Q)

wlp(x:=e, Q) = Qlx - ¢]
wlp(e1;e2,Q) = wip(el, wip(e2,Q))
wlp(if b then el else e2,Q) = (b — wip(el,Q)) A (—b — wip(e2,Q))
wlp(while b do 8,Q) = INVA

Vv € SINV — (b — wip(S,INV)) A (=b — Q)

26

wlp: Computation

wlp(while...done, x = 0) = INVA
Vx.INV —(x > 0 — wip(x:=x-1,INV)) A
(=(x>0) > x=0)

{x>01%
while x > 0 do invariant x >= 0

|

|

‘ x = x-1
‘ done
|

{x=01%

27

wlp: Computation

wlp(while...done, x = 0) = x > 0A
Vx.x >0 —(x >0 — wilp(x:=x-1,x > 0))A
(=(x>0) > x=0)

{x>01%
while x > 0 do invariant x >= 0

|

|

‘ x = x-1
‘ done
|

{x=01%

28

wlp: Computation

wlp(while...done, x = 0) = x > 0A
Vxx>0—=(x>0—>x—1>0)A
(=(x>0) - x=0)

{x>01%

while x > 0 do invariant x >= 0
x = x-1

done

{x=01%

29

wlp: Computation

This is the verification condition:

x > 0 — wip(while ...done, x = 0)

30

wlp: Computation

This is the verification condition:

x>0 —x>0A
Vxx>0—(x>0—>x—1>0)A(~(x>0) -x=0)

30

wlp: Computation

This is the verification condition:

x>0 —x>0A
Vxx>0—(x>0—>x—1>0)A(~(x>0) -x=0)

This is what Why3 will do for you:

m Why3 computes (more or less) exactly this.

m Why3 will also do this proof for you.

30

What do we want to prove?

Partial correctness {P} S {Q}
Termination Prove that S terminates.

Total correctness Partial correctness + termination

31

What do we want to prove?

Partial correctness {P} S {Q}
Termination Prove that S terminates.

Total correctness Partial correctness + termination

Partial correctness on its own can be weak.

while not sorted a do

tmp := al[0]; a[0] := al[1]; al1] := tmp;
done
{ sorted a }

31

Proving termination

To prove termination of while loops, find some quantity that:

m Gets smaller every iteration

m Never becomes negative

32

Proving termination

To prove termination of while loops, find some quantity that:

m Gets smaller every iteration

m Never becomes negative

We call this the variant.

{x>07% “ “

while x > 0 do . . i i
invariant x >= 0 § % ‘”””“”I'lﬁl‘“ Illl'lllllm fiii
variant x . \ h % % 8
x := x-1 ﬁ "“Hmluu T T uulu‘

done ‘ 3

{x=01%

32

Practical matters: the Why3 toolbox

Programming in WhyML

If you can program, you can program in WhyML!
m Programs can be run directly (why3 execute)
Built-in types: bool, int, real

m Data is immutable by default

m Mutable data can be stored in references: ref int
WhyML has annotations for:

m Function contracts: requires, ensures
m While loops: invariant, variant

m Assertions: assert

38

WhyML programs

let foo (x: int): int

requires { ... }
ensures { ... }
= let z: ref int = ref 0 in

let odd: ref int = ref 1 in
let sum: ref int = ref 1 in

while !sum <= x do

invariant { ... }

variant { ... }

z = lz + 1;

odd := lodd + 2;

assert { ... };

sum := !sum + !odd;
done;

return !z

34

Logical language

Pure WhyML expressions + first order logic

Quick syntax guide:
XAy x/\y
xVy x\/y
-y not x
X —=Yy X=>y
X4y x<->y

Vx € T[P(x)] forall x:t. p x
Jx € T[P(x)] exists x:t. p X

35

Logic vs. Code

Pure logic: Program code:

let double (x: int): int =

2%x

function double (x: int): int =

2%x

let divides (d n: int): bool =
d=0&& n =0l mdnd-=0

predicate divides (d n: int) =

exists q: int. n = g*xd

36

Logic vs. Code

@ Logical expressions can only be used in annotations

Pure logic: Program code:

let double (x: int): int =

2%x

function double (x: int): int =

2%x

let divides (d n: int): bool =
d=0&& n=0 ||l mdnd-=0

predicate divides (d n: int) =

exists q: int. n = g*d

36

Logic vs. Code

@ Logical expressions can only be used in annotations

@ To reason about programs, you generally need contracts

Pure logic:

function double (x: int): int

2%x

predicate divides (d n: int) =

exists q: int. n = g*xd

Program code:

let double (x: int): int
ensures { result = 2*x }

= 2¥x

let divides (d n: int): bool
ensures { result <->
exists q: int. n = gqxd }
=d=0&& n=0 ||l mdnd-=0

37

Logic vs. Code

Often we can avoid repeating ourselves:

Usable in both logical formulas and programs:

let function double (x: int): int =

2%X

ensures { result <-> exists q: int. n = g*d }

|
|
|
‘ let predicate divides (d n: int)
|
| =d=0&n=01llmdnd=0

38

Why3 IDE

Proving programs is done in the Why3 IDE (why3 ide)

m Has a program view and a logical view
m Allows editing the program
m Access provers with right click

m Logical formulas can be manipulated

> Strategies: automated splitting & proving
» Transformations: fine-grained control

m State can be saved and returned to later

39

Let's do something!

let foo (x:
let z =ref O
let odd = ref 1

let sum = ref 1

while !sum <= x

z = lz +1;

odd := lodd +

sum := !sum +
done;

return 'z

int):

What does this compute?

int
in
in
in
do

2;
lodd;

let foo (x:

What does this compute?

int):

let z =ref O
let odd = ref 1

let sum = ref 1

while !sum <= x

z = lz +1;

odd := lodd +

sum := !sum +
done;

return 'z

let foo (x: int):
let z = ref
let odd = ref
let sum = ref
while !sum <=
z = lz +1;
odd := lodd +
sum := !sum +
done;

return 'z

What does this compute?

'z lodd

int
in

in

do

2;
lodd;

let foo (x: int):
let z = ref
let odd = ref
let sum = ref
while !sum <=
z = lz +1;
odd := lodd +
sum := !sum +
done;

return 'z

What does this compute?

. 1z lodd
int

. 0 1
in

Sim 1 3
in

do

2;

lodd;

let foo (x: int):
let z = ref
let odd = ref
let sum = ref
while !sum <=
z = lz +1;
odd := lodd +
sum := !sum +
done;

return 'z

What does this compute?

int
in

in

do

2;
lodd;

while !sum <=

What does this compute?

int
in

in

do

2;
lodd;

~N 01w

What does this compute?

let foo (x: int):
= let z =ref O
let odd = ref 1
let sum = ref 1

while !sum <= x

z = lz +1;
odd := lodd +
sum := !sum +
done;
return 'z

) lz lodd !sum

int

) 0 1 1

in

m 1 3 4

in 2 5 9

do 3 7 16
4 9 25

28

lodd;

40

What does this compute?

let foo (x: int):
= let z =ref O
let odd = ref 1
let sum = ref 1

while !sum <= x

z = lz +1;
odd := lodd +
sum := !sum +
done;
return 'z

) lz lodd !sum

int

) 0 1 1

in

Sim 1 3 4

in 2 5 9

do 3 7 16
4 9 25

2 5 11 36

lodd;

40

What does this compute?

let foo (x: int):
= let z =ref O
let odd = ref 1
let sum = ref 1

while !sum <= x

z = lz +1;
odd := lodd +
sum := !sum +
done;
return 'z

) lz lodd !sum

int

. 0 1 1

in

in 1 3 4

in 2 5 9

do 3 7 16
4 9 25

2 5 11 36

todd; 6 13 49

40

What does this compute?

let foo (x: int):
= let z =ref O
let odd = ref 1
let sum = ref 1

while !sum <= x

z = lz +1;
odd := lodd +
sum := !sum +
done;
return 'z

) lz lodd !sum

int

. 0 1 1

in

in 1 3 4

in 2 5 9

do 3 7 16
4 9 25

2 5 11 36

todd; 6 13 49
7 15 64

40

Demo!

41

How to find good invariants?

Find a property that generalizes initial and end condition.

assert { !i = 0 };
let j = ref 9 in
while !i < 10 do

invariant { ... }
i =11+ 1;
ji=1j-1;

done

assert { !i = 9 };

)

How to find good invariants?

Find a property that generalizes initial and end condition.

assert { !i = 0 };
let j = ref 9 in
while !i < 10 do

invariant { !i + !j =9 }

i =11+ 1;
jo=13 -1
done

assert { !i = 9 };

43

Conclusion

Why3 is a platform for automating total correctness proofs

Uses powerful SMT solvers to do tedious proofs

WhyML: Logical formulas + Program code
m Functions: specify contracts

while loops: specify invariants and variants

44

Final comment

Step 1: Frustration

Why3 Interactive Proof Session

Eile

Tools

Status Theories/Goals

Q00000000000 000000000

View Help
fturing.miw
TuringFac
+ L] vcfac [VC for fac]
v J§ split_vc
» [0[loop invariant init]
» 1 [loop invariant init]
» L] 2 [postcondition]
» L] 3 [loop invariant init]
3 4 [loop invariant init]
» L/ 5[loop invariantinit]
» L] 6 [loop variant decrease]
» L/ 7[loop invariant preservation]
- 8 [loop invariant preservation]

Z34.7.1 (noBV)

L/ 9loop variant decrease]

L./ 10[loop invariant preservation]
_/ 11 [loop invariant preservation]
L] 12 [loop invariant preservation]
13 [loop variant decrease]

14 [loop invariant preservation]
L/ 15 [loop invariant preservation]
L] 16 [unreachable point]

Time

5.00

Task | ..fturing.mlw
SLaxion nE ;U= (UL ¥ UZ)

32

33 constant s : int

34

35 axiom H3 : 5 = (51 + 1)

36

37axiom H2 : ((s - 1) - rl) >=0
38

39 constant r : int

41 axiom H1 : r = (rl + 1)

43axiom H : 1<=r /\r<n\/n=0/r=1

46

47 goal VC fac : u = fact r

48

49

50 =================—==> Prover: 23 4.7.1 (noBV)
51 Timeout

52

53 The prover did not return counterexamples.

0/0/0

Messages | Log | Edited proof | Prover output | Counterexample

45

Final comment

Step 2: ..

Why3 Interactive Proof Session

File Tools View Help

Status Theories/Goals

Q00000000000 000000000

~ 7 . jturing.miw
~ | TuringFac
_] VC fac [VC for fac]

- split_vc

_/ 0 [loop invariant init]

1 [loop invariant init]

L] 2 [postcondition]

_/ 3 [loop invariant init]

4 [loop invariant init]

L./ 5 [loop invariant init]

_/ 6 [loop variant decrease]

L./ 7 [loop invariant preservation]

8 [loop invariant preservation]
Z34.7.1 (noBV)

L/ 9loop variant decrease]

L./ 10[loop invariant preservation]

_/ 11 [loop invariant preservation]

L] 12 [loop invariant preservation]

13 [loop variant decrease]

14 [loop invariant preservation]

L/ 15 [loop invariant preservation]

L] 16 [unreachable point]

Time

5.00

Task | ..fturing.mlw
SLaxion nE ;U= (UL ¥ UZ)

32

33 constant s : int

34

35 axiom H3 : 5 = (51 + 1)

36

37axiom H2 : ((s - 1) - rl) >=0
38

39 constant r : int

41 axiom H1 : r = (rl + 1)

43axiom H : 1<=r /\r<n\/n=0/r=1

46

47 goal VC fac : u = fact r

48

49

50 =================—==> Prover: 23 4.7.1 (noBV)
51 Timeout

52

53 The prover did not return counterexamples.

0/0/0

Messages | Log | Edited proof | Prover output | Counterexample

46

Final comment

Step 3: Dopamine rush!

Why3 Interactive Proof Session x
File Tools View Help
Status | Theories/Goals Time Task | ./turing.mlw
@ ~ & tuingmiw SLaxion na © U= (Ul ¥ UZ)
) 32
© ~ [TuringFac 33 constant s : int
@ v L] vCfac[VC for fac] 34
® v B split_ve gg axiom H3 : 5 = (51 + 1)
o » LJ 0lloop invariant init] 37 axion H2 ¢ ((s - 1) - r1) >= 0
(~] » 1 [loop invariant init] 38
® » L] 2 [postcondition] 39 constant r : int
© » L/ 3 [loop invariant init] 41 axiom H1 : r = (rl + 1)
@ » 4 [loop invariant init]
® v L7 5 [loop invariant init] 43axiom H : T<=r /\ren\/n=0/\r=1
@ » L] 6 [loop variant decrease] 45 <o Jorr
@ » L] 7 [loop invariant preservation] 46
® ~ L] 8 lloop invariant preservation] 47goal VC fac : u = fact r

48
Alt-Ergo 2.0.0 0.01 (steps: 49

@) S 73471 100 50 ====================> Prover: ALt-Ergo 2.0.0

O » [/ 9[loop variant decrease] 2; valid

@ » L] 10[loop invariant preservation] 53 The prover did not return counterexamples.

(~] b L] 11[loop invariant preservation]

(~] » L[] 12 [loop invariant preservation] 0/6/0

(~] » 13 [loop variant decrease]

Q » L] 14 [loop invariant preservation] Messages | Log | Edited proof | Prover output | Counterexample
® » L] 15 [loop invariant preservation] Session refresh successful

(~] » L[/ 16[unreachable point]

47

	Motivation
	The state of the art
	Theoretical background
	Practical matters: the Why3 toolbox
	Let's do something!
	Conclusion

