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Preliminaries

The first part of this course is on Why3

Main sessions: thursdays, 8:30 HG00.068

Tutorial hour: next wednesday, 10:30 MERC I 00.28
Slot will not always be used – check announcements!

Useful if you remember something from:

Mathematical Structures

Assertion and Argumentation

Semantics and Correctness

Functional Programming
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Practicalities

Reference materials
Why3 Tutorial by J.C. Filliâtre:
why3.lri.fr/vtsa-18/notes-why3.pdf

Manual:
why3.lri.fr/manual.pdf

Exercises: see Brightspace

Important you do these!

Work in pairs!

Deadline: tuesday 12:00

Help? Contact: m.schoolderman@cs.ru.nl
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Motivation



Formal verification

Validation
Writing the correct program

Are informal requirements captured in a specification?

Verification
Writing the program correctly

Does the program match the specification?

Formal verification
The art of using rigorous, mathematical techniques for verification

Prove that a program matches a formal specification!
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The dawn of computing science

1948 Manchester Baby: first programmable computer

1949 Early program proof by Turing for computing n!

... *crickets* ...

1967 Floyd: “Assigning Meanings to Programs”

1969 Hoare logic (Axiomatic semantics)

1975 Dijkstra: weakest preconditions

... fast forward ...

2019 Formal verification seldomly used
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Turing’s notes
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Critical software bugs

Testing shows the presence, not the absence of bugs – Dijkstra

1996 Ariane 5: uncaught runtime exception

1999 NASA: confused imperial and metric system

2008 Debian OpenSSL: RNG seeded with well-known data

2009 Toyota “unintended acceleration”: stack overflow

2014 Apple SSL: goto fail

2014 HeartBleed: buffer overflow

2014 ShellShock: Incorrect input processing
(undetected for 25 years)

More stories:
http://www.cs.tau.ac.il/˜nachumd/horror.html
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Bugs in the Java JDK

2006 “Nearly All Binary Searches and Mergesorts are
Broken” – Joshua Bloch:¶

i n t mid = ( low + h igh )/2
i n t midVal = a [ mid ]

Will cause overflow if low+high≥ 231! Fixing this in C:

i n t mid = low + ( high−low )/2

¶https://ai.googleblog.com/2006/06/

extra-extra-read-all-about-it-nearly.html
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What can we do about this?

Proofs can show the absence of (certain) bugs.

The Bad News
Formal proofs are hard, tedious, time-consuming, and error-prone.

The Good News
Major advances in computional power and artificial intelligence

Interactive theorem provers: Coq, PVS, Isabelle/HOL

Fully automated provers: Z3, CVC4, E, Alt-Ergo, ...
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Another reason to use machine intelligence

Do you trust your own proofs?

Do you trust other people’s proofs?

Cryptanalysis of OCB2 – Inoue & Minematsu

OCB2: authenticated encryption, ‘proven secure’ in 2004

Broken in 2018?!
https://eprint.iacr.org/2018/1040.pdf
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Some high-profile stories

AMD K5 Verification of fdiv using ACL2 (1995)

Paris Métro Driverless Ligne 14 verified using B-Method (1998)

Hyper-V Hypervisor verified using VCC and Z3 (2005)

CompCert C compiler verified using Coq (2009)

seL4 micro-kernel verified using Isabelle/HOL (2009)

Work in progress:

Project Everest Verified HTTPS stack using F∗

CakeML Bootstrapping, verified compiler for ML
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The state of the art



Modern systems for program verification

Why3 (INRIA)

F∗ (Microsoft Research)

Frama-C/WP (INRIA+CEA)

Common complaint from industry:
“Give us a system that we can actually use”

Let’s see how far we get with Why3

Recently had major updates

Expertise present at Radboud

12



Modern systems for program verification

Why3 (INRIA)

F∗ (Microsoft Research)

Frama-C/WP (INRIA+CEA)

Common complaint from industry:
“Give us a system that we can actually use”

Let’s see how far we get with Why3

Recently had major updates

Expertise present at Radboud

12



Modern systems for program verification

Why3 (INRIA)

F∗ (Microsoft Research)

Frama-C/WP (INRIA+CEA)

Common complaint from industry:
“Give us a system that we can actually use”

Let’s see how far we get with Why3

Recently had major updates

Expertise present at Radboud

12



The Why3 Platform

specifications + programs 7→ verification conditions

WhyML programs

Why logic

Alt-Ergo CVC3 CVC4 E Z3 Coq PVS

machine intelligence proof checkers
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Layers of Why3

WhyML consists of two parts:

1 A pure logic system
I Usage: theorem proving.

2 A programming language
I Usage: modelling programs, intermediate language
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Three ways of using Why3

1 A pure logic system
I First order logic + pure functions (no side effects)
I Proofs discharged by automatic provers
I Why3 keeps track of dependencies between proofs
I Ability to produce (potential) counter-examples
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Why3 logic

module Example

use int.Int

predicate odd (x: int) = exists k: int. x = 2*k+1

function sqr (x: int): int = x*x

lemma odd˙square:

forall x: int. odd x -¿ odd (sqr x)

end
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WhyML

2 WhyML as a programming language
I Imperative programming (while loops, mutable data)
I Function contracts: pre- and postconditions
I Algebraic data types with pattern matching
I Type inference (like Haskell, ML)
I Control-flow: break, continue, return
I Why3 generates verification conditions
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WhyML programs

let foo (x: int): int

requires – x ¿= 0 ˝

ensures – result ¿= 0 ˝

= let z = ref 0 in

let odd = ref 1 in

let sum = ref 1 in

while !sum ¡= x do

z := !z + 1;

odd := !odd + 2;

sum := !sum + !odd;

done;

return !z
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Theoretical background



Hoare logic

Pre- and postconditions: {P} S {Q}

Partial correctness: if P holds, and we run S, then Q holds when
it terminates.

Note: Doesn’t say S will actually terminate!

Comes with derivation rules:

– x = 42 ˝

– x+1 = 43 ˝

y := x + 1

– y = 43 ˝

{P[x 7→ a]}x:=a{P}

{P}S1{Q} {Q}S2{R}
{P}S1;S2{R}

19



Do you enjoy Hoare logic?

– x ¿= 0 ˝

while x ¿ 0 do

x := x-1

done

– x = 0 ˝

20



Do you enjoy Hoare logic?

– x ¿= 0 ˝

while x ¿ 0 do

x := x-1

done

– x = 0 ˝

21



Do you enjoy Hoare logic?

– x ¿= 0 ˝

– INV ˝

while x ¿ 0 do

– x ¿ 0 /“ INV ˝

x := x-1

– INV ˝

done

– not (x ¿ 0) /“ INV ˝

– x = 0 ˝

22



Do you enjoy Hoare logic?

– x ¿= 0 ˝

– x ¿= 0 ˝

while x ¿ 0 do

– x ¿ 0 /“ x ¿= 0 ˝

x := x-1

– x ¿= 0 ˝

done

– not (x ¿ 0) /“ x ¿= 0 ˝

– x = 0 ˝

23



Do you enjoy Hoare logic?

– x ¿= 0 ˝

– x ¿= 0 ˝

while x ¿ 0 do

– x ¿ 0 /“ x ¿= 0 ˝

– x-1 ¿= 0 ˝

x := x-1

– x ¿= 0 ˝

– x ¿= 0 ˝

done

– not (x ¿ 0) /“ x ¿= 0 ˝

– x = 0 ˝

24



Some observations

Hoare logic proofs are mostly mechanical, except:

Finding loop invariants

Proving that one condition follows from another

And can only show partial correctness!
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Weakest liberal precondition

A predicate wlp(S, Q), so that {wlp(S, Q)} S {Q}

Instead of deriving {P} S {Q}, just show P→ wlp(S, Q)

wlp(x:=e, Q) = Q[x 7→ e]

wlp(e1;e2, Q) = wlp(e1, wlp(e2, Q))

wlp(if b then e1 else e2, Q) = (b→ wlp(e1, Q)) ∧ (¬b→ wlp(e2, Q))

wlp(while b do S, Q) = INV∧
∀v ∈ S.INV → (b→ wlp(S, INV)) ∧ (¬b→ Q)
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wlp: Computation

wlp(while. . .done, x = 0) = INV∧
∀x.INV →(x > 0→ wlp(x:=x-1, INV))∧

(¬(x > 0)→ x = 0)

– x ¿= 0 ˝

while x ¿ 0 do invariant x ¿= 0

x := x-1

done

– x = 0 ˝
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wlp: Computation

wlp(while. . . done, x = 0) = x ≥ 0∧
∀x.x ≥ 0→(x > 0→ wlp(x:=x-1, x ≥ 0))∧

(¬(x > 0)→ x = 0)

– x ¿= 0 ˝

while x ¿ 0 do invariant x ¿= 0

x := x-1

done

– x = 0 ˝
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wlp: Computation
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wlp: Computation

This is the verification condition:

x ≥ 0 −→ wlp(while . . . done, x = 0)

This is what Why3 will do for you:

Why3 computes (more or less) exactly this.

Why3 will also do this proof for you.
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What do we want to prove?

Partial correctness {P} S {Q}
Termination Prove that S terminates.

Total correctness Partial correctness + termination

Partial correctness on its own can be weak.

while not sorted a do

tmp := a[0]; a[0] := a[1]; a[1] := tmp;

done

– sorted a ˝
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Proving termination

To prove termination of while loops, find some quantity that:

Gets smaller every iteration

Never becomes negative

We call this the variant.

– x ¿= 0 ˝

while x ¿ 0 do

invariant x ¿= 0

variant x

x := x-1

done

– x = 0 ˝
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Practical matters: the Why3 toolbox



Programming in WhyML

If you can program, you can program in WhyML!

Programs can be run directly (why3 execute)

Built-in types: bool, int, real

Data is immutable by default

Mutable data can be stored in references: ref int

WhyML has annotations for:

Function contracts: requires, ensures

While loops: invariant, variant

Assertions: assert
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WhyML programs

let foo (x: int): int

requires – ... ˝

ensures – ... ˝

= let z: ref int = ref 0 in

let odd: ref int = ref 1 in

let sum: ref int = ref 1 in

while !sum ¡= x do

invariant – ... ˝

variant – ... ˝

z := !z + 1;

odd := !odd + 2;

assert – ... ˝;

sum := !sum + !odd;

done;

return !z
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Logical language

Pure WhyML expressions + first order logic

Quick syntax guide:

x∧ y x/“y

x∨ y x“/y

¬y not x

x→ y x-¿y

x↔ y x¡-¿y

∀x ∈ T[P(x)] forall x:t. p x

∃x ∈ T[P(x)] exists x:t. p x
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Logic vs. Code

Pure logic:

function double (x: int): int =

2*x

predicate divides (d n: int) =

exists q: int. n = q*d

Program code:

let double (x: int): int =

2*x

let divides (d n: int): bool =

d = 0 && n = 0 —— mod n d = 0
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Logic vs. Code

1 Logical expressions can only be used in annotations

Pure logic:

function double (x: int): int =

2*x

predicate divides (d n: int) =

exists q: int. n = q*d

Program code:

let double (x: int): int =

2*x

let divides (d n: int): bool =

d = 0 && n = 0 —— mod n d = 0

36



Logic vs. Code

1 Logical expressions can only be used in annotations

2 To reason about programs, you generally need contracts

Pure logic:

function double (x: int): int =

2*x

predicate divides (d n: int) =

exists q: int. n = q*d

Program code:

let double (x: int): int

ensures – result = 2*x ˝

= 2*x

let divides (d n: int): bool

ensures – result ¡-¿

exists q: int. n = q*d ˝

= d = 0 && n = 0 —— mod n d = 0
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Logic vs. Code

Often we can avoid repeating ourselves:

Usable in both logical formulas and programs:

let function double (x: int): int =

2*x

let predicate divides (d n: int)

ensures – result ¡-¿ exists q: int. n = q*d ˝

= d = 0 && n = 0 —— mod n d = 0
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Why3 IDE

Proving programs is done in the Why3 IDE (why3 ide)

Has a program view and a logical view

Allows editing the program

Access provers with right click

Logical formulas can be manipulated
I Strategies: automated splitting & proving
I Transformations: fine-grained control

State can be saved and returned to later
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Let’s do something!



Example

What does this compute?

let foo (x: int): int

= let z = ref 0 in

let odd = ref 1 in

let sum = ref 1 in

while !sum ¡= x do

z := !z + 1;

odd := !odd + 2;

sum := !sum + !odd;

done;

return !z

!z !odd !sum

0 1 1

1 3 4

2 5 9

3 7 16

4 9 25

5 11 36

6 13 49

7 15 64
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Demo!

41



How to find good invariants?

Find a property that generalizes initial and end condition.

assert – !i = 0 ˝;

let j = ref 9 in

while !i ¡ 10 do

invariant – ... ˝

i := !i + 1;

j := !j - 1;

done

assert – !i = 9 ˝;
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How to find good invariants?

Find a property that generalizes initial and end condition.

assert – !i = 0 ˝;

let j = ref 9 in

while !i ¡ 10 do

invariant – !i + !j = 9 ˝

i := !i + 1;

j := !j - 1;

done

assert – !i = 9 ˝;
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Conclusion



Summary

Why3 is a platform for automating total correctness proofs

Uses powerful SMT solvers to do tedious proofs

WhyML: Logical formulas + Program code

Functions: specify contracts

while loops: specify invariants and variants
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Final comment

Step 1: Frustration
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Final comment

Step 2: ...
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Final comment

Step 3: Dopamine rush!
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