
Program verification with Why3, III

Marc Schoolderman

February 21, 2019



Sorting - statistics

Very promising results: 15 submissions

8 – proof complete

5 – proof half complete

2 – needs work

Don’t forget report.txt!

2



Sorting

Selection sort – relatively easy

Insertion sort – relatively easy

Bubblesort – relatively hard

What does it mean to be sorted?

not exists i j. 0 ¡= i ¡ j ¡ length result /“ result[i] ¿ result[j]

forall k. 0 ¡ k ¡ length result -¿ result[k-1] ¡= result[k]

forall i j. 0 ¡= i ¡= j ¡ length result -¿ result[i] ¡= result[j]

IntArraySorted.sorted result

3



Sorting

Selection sort – relatively easy

Insertion sort – relatively easy

Bubblesort – relatively hard

What does it mean to be sorted?

not exists i j. 0 ¡= i ¡ j ¡ length result /“ result[i] ¿ result[j]

forall k. 0 ¡ k ¡ length result -¿ result[k-1] ¡= result[k]

forall i j. 0 ¡= i ¡= j ¡ length result -¿ result[i] ¡= result[j]

IntArraySorted.sorted result

3



Sorting

Proving that your algorithm permutes elements

Using Array.swap – trivial?

Direct array manipulation – very hard

Note: my solutions can be found at
http://cs.ru.nl/˜mschool/swan2019/

(Will be uploaded to BrightSpace soon.)

4

http://cs.ru.nl/~mschool/swan2019/


Sorting

Proving that your algorithm permutes elements

Using Array.swap – trivial?

Direct array manipulation – very hard

Note: my solutions can be found at
http://cs.ru.nl/˜mschool/swan2019/

(Will be uploaded to BrightSpace soon.)

4

http://cs.ru.nl/~mschool/swan2019/


Proof techniques



Why can’t I prove something?

Reasons a proof might fail:

1 What you want to prove is not true!
I Fix your specifications!

2 Not enough information to support a proof
I E.g., missing invariant

3 Automatic provers don’t find the proof
I Special case: proof by induction

5



Why can’t I prove something?

Reasons a proof might fail:

1 What you want to prove is not true!
I Fix your specifications!

2 Not enough information to support a proof
I E.g., missing invariant

3 Automatic provers don’t find the proof
I Special case: proof by induction

5



Why can’t I prove something?

Reasons a proof might fail:

1 What you want to prove is not true!
I Fix your specifications!

2 Not enough information to support a proof
I E.g., missing invariant

3 Automatic provers don’t find the proof
I Special case: proof by induction

5



Why can’t I prove something?

Reasons a proof might fail:

1 What you want to prove is not true!
I Fix your specifications!

2 Not enough information to support a proof
I E.g., missing invariant

3 Automatic provers don’t find the proof
I Special case: proof by induction

5



Proof remedies I

Use more power:

Increase time/memory limits for provers

Try different provers

Use human intelligence:

Add lemmas or assert’s to state intermediate steps

Hard ”49 is not prime”
Easy ”49 is 7*7; so 49 is not prime”

Try to discover a general principle to add as a lemma!

6



Proof remedies I

Use more power:

Increase time/memory limits for provers

Try different provers

Use human intelligence:

Add lemmas or assert’s to state intermediate steps

Hard ”49 is not prime”

Easy ”49 is 7*7; so 49 is not prime”

Try to discover a general principle to add as a lemma!

6



Proof remedies I

Use more power:

Increase time/memory limits for provers

Try different provers

Use human intelligence:

Add lemmas or assert’s to state intermediate steps

Hard ”49 is not prime”
Easy ”49 is 7*7; so 49 is not prime”

Try to discover a general principle to add as a lemma!

6



Proof remedies I

Use more power:

Increase time/memory limits for provers

Try different provers

Use human intelligence:

Add lemmas or assert’s to state intermediate steps

Hard ”49 is not prime”
Easy ”49 is 7*7; so 49 is not prime”

Try to discover a general principle to add as a lemma!

6



Proof remedies II

The dark arts:

Use proof transformations

split * break formula into smaller components
inline * expand function calls
compute in goal more aggressive rewrite
eliminate * replace high level concepts by simpler ones
induction ty lex induction over algebraic data

induction var from start mathematical induction
exists object solving existential goals

smoke detector finds inconsistencies, should not be provable!

Not entirely predictable beforehand what works and what doesn’t.

7



Proof remedies II

The dark arts:

Use proof transformations

split * break formula into smaller components
inline * expand function calls
compute in goal more aggressive rewrite
eliminate * replace high level concepts by simpler ones
induction ty lex induction over algebraic data
induction var from start mathematical induction
exists object solving existential goals

smoke detector finds inconsistencies, should not be provable!

Not entirely predictable beforehand what works and what doesn’t.

7



Proof remedies II

The dark arts:

Use proof transformations

split * break formula into smaller components
inline * expand function calls
compute in goal more aggressive rewrite
eliminate * replace high level concepts by simpler ones
induction ty lex induction over algebraic data
induction var from start mathematical induction
exists object solving existential goals

smoke detector finds inconsistencies, should not be provable!

Not entirely predictable beforehand what works and what doesn’t.

7



Proof remedies II

The dark arts:

Use proof transformations

split * break formula into smaller components
inline * expand function calls
compute in goal more aggressive rewrite
eliminate * replace high level concepts by simpler ones
induction ty lex induction over algebraic data
induction var from start mathematical induction
exists object solving existential goals

smoke detector finds inconsistencies, should not be provable!

Not entirely predictable beforehand what works and what doesn’t.

7



Proof remedy: last resort

Use an interactive theorem prover such as Coq

Slow, painful, expertise needed

Most often will show you why the proof cannot work

No extra ‘safety guarantee’

8



More systematic remedy

Which do you have more experience with?

Writing a program for a particular problem

Proving a mathematical theorem

So, write programs instead of proofs!

9



More systematic remedy

Which do you have more experience with?

Writing a program for a particular problem

Proving a mathematical theorem

So, write programs instead of proofs!

9



Ghost code and Let lemmas



The Aristotelian Universe

10



The Why3 Universe

1 Logical layer

2 Program layer

let foo (x: int) = prime x

This will give the error message:

‘‘Logical symbol prime is used in a non-ghost context’’

11



The Why3 Universe

1 Logical layer

2 Program layer

let foo (x: int) = prime x

This will give the error message:

‘‘Logical symbol prime is used in a non-ghost context’’

11



The Why3 Universe

1 Logical layer

2 Ghost layer

3 Program layer

let ghost foo (x: int) = prime x

This is fine!

12



The Why3 Universe

1 Logical layer

2 Ghost layer

3 Program layer

let ghost foo (x: int) = prime x

This is fine!

12



The spirit of ghost code

Functions, variables, and expressions can be marked as ghost.

Ghosts can observe, but not affect the ‘real world’

Therefore:

Ghost code only modify ghost data.
I Why3 will deduce the ghostness of an expression.

Ghost code can use purely logical functions/types

Ghost code must always terminate!

Ghost code can be safely erased from programs.

13



The spirit of ghost code

Functions, variables, and expressions can be marked as ghost.

Ghosts can observe, but not affect the ‘real world’

Therefore:

Ghost code only modify ghost data.
I Why3 will deduce the ghostness of an expression.

Ghost code can use purely logical functions/types

Ghost code must always terminate!

Ghost code can be safely erased from programs.

13



The spirit of ghost code

Functions, variables, and expressions can be marked as ghost.

Ghosts can observe, but not affect the ‘real world’

Therefore:

Ghost code only modify ghost data.
I Why3 will deduce the ghostness of an expression.

Ghost code can use purely logical functions/types

Ghost code must always terminate!

Ghost code can be safely erased from programs.

13



The spirit of ghost code

Functions, variables, and expressions can be marked as ghost.

Ghosts can observe, but not affect the ‘real world’

Therefore:

Ghost code only modify ghost data.
I Why3 will deduce the ghostness of an expression.

Ghost code can use purely logical functions/types

Ghost code must always terminate!

Ghost code can be safely erased from programs.

13



The spirit of ghost code

Functions, variables, and expressions can be marked as ghost.

Ghosts can observe, but not affect the ‘real world’

Therefore:

Ghost code only modify ghost data.
I Why3 will deduce the ghostness of an expression.

Ghost code can use purely logical functions/types

Ghost code must always terminate!

Ghost code can be safely erased from programs.

13



Example: shifting an array

For insertion sort, we could use this to insert x at the right spot:

find a l h x finds a position i ∈ [l, h) to insert x into a

let x = a[pos] in

let i = find a 0 pos x in

Array.self˙blit a i (i+1) (pos-i);

a[i] ¡- x;

assert – permut˙all (old a) a ˝;

Problem: extremely hard to prove that a stays a permutation!

14



Example: shifting an array

We can also shift the array using just swaps:

let shift (a: array int) (i j: int)

= for k = j downto i+1 do

swap a k (k-1);

done

15



Example: shifting an array

Which needs to be proven correct:

let shift (a: array int) (i j: int)

requires – 0 ¡= i ¡= j ¡ length a ˝

ensures – forall k. i+1 ¡= k ¡= j -¿ a[k] = old a[k-1] ˝

ensures – a[i] = old a[j] ˝

ensures – permut˙sub (old a) a i (j+1) ˝

= for k = j downto i+1 do

invariant – permut˙sub (old a) a i (j+1) ˝

invariant – forall k’. i ¡= k’ ¡ k -¿ a[k’] = old a[k’] ˝

invariant – forall k’. k ¡ k’ ¡= j -¿ a[k’] = old a[k’-1] ˝

invariant – a[k] = old a[j] ˝

swap a k (k-1);

done

16



Example: shifting an array

Now we can easily prove that:

1 shift returns a permutation

2 shift does the same thing as the original code

let b = ghost copy a in

assert – permut˙all (old a) b ˝;

shift b i pos;

assert – permut˙all (old a) b ˝;

let x = a[pos] in

let i = find a 0 pos x in

Array.self˙blit a i (i+1) (pos-i);

a[i] ¡- x;

assert – array˙eq a b ˝;

assert – permut˙all (old a) a ˝;

17



Example: shifting an array

Now we can easily prove that:

1 shift returns a permutation

2 shift does the same thing as the original code

let b = ghost copy a in

assert – permut˙all (old a) b ˝;

shift b i pos;

assert – permut˙all (old a) b ˝;

let x = a[pos] in

let i = find a 0 pos x in

Array.self˙blit a i (i+1) (pos-i);

a[i] ¡- x;

assert – array˙eq a b ˝;

assert – permut˙all (old a) a ˝;

17



let lemma

Consider a ghost function without external side-effects:

let ghost foo (x: some˙type)

requires – p x ˝

ensures – q x ˝

= (* ... *)

Observe: foo can be called at any time to get Q(x) from P(x).

If foo is correct, this means P(x) → Q(x) for all x!

18



let lemma

Consider a ghost function without external side-effects:

let ghost foo (x: some˙type)

requires – p x ˝

ensures – q x ˝

= (* ... *)

Observe: foo can be called at any time to get Q(x) from P(x).

If foo is correct, this means P(x) → Q(x) for all x!

18



let lemma

Consider a ghost function without external side-effects:

let ghost foo (x: some˙type)

requires – p x ˝

ensures – q x ˝

= (* ... *)

Observe: foo can be called at any time to get Q(x) from P(x).

If foo is correct, this means P(x) → Q(x) for all x!

18



let lemma

Ghost functions like these be turned into lemma functions:

let lemma foo (x: some˙type)

requires – p x ˝

ensures – q x ˝

= (* ... *)

After this definition, Why3 behaves as if you had proved:

lemma foo:

forall x: some˙type. p x -¿ q x

19



let lemma

Ghost functions like these be turned into lemma functions:

let lemma foo (x: some˙type)

requires – p x ˝

ensures – q x ˝

= (* ... *)

After this definition, Why3 behaves as if you had proved:

lemma foo:

forall x: some˙type. p x -¿ q x

19



Induction using let rec lemma

Sometimes a proof needs induction:

lemma fib˙property:

real˙fib 0 = 0.0 /“

real˙fib 1 = 1.0 /“

forall k. k ¿= 2 -¿ real˙fib (k-2) +. real˙fib (k-1) = real˙fib k

lemma functional˙equivalence:

forall k. k ¿= 0 -¿ real˙fib k = from˙int (fib k)

20



Induction using let rec lemma

This can be done using a recursive lemma function:

let rec lemma fib˙equivalence (k: int)

requires – k ¿= 0 ˝

ensures – real˙fib k = from˙int (fib k) ˝

variant – k ˝

= if k ¿= 2 then begin

assert – real˙fib (k-2) +. real˙fib (k-1) = real˙fib k ˝;

fib˙equivalence (k-1);

fib˙equivalence (k-2);

end

21



Another example: fact is positive

Typically:

Lemma functions look rather strange

Lemma functions mimic the structure of an induction

let rec lemma fact˙positive (n: int)

requires – n ¿= 0 ˝

ensures – fact n ¿ 0 ˝

variant – n ˝

= if n = 0 then ()

else fact˙positive (n-1)

22



Proof minimization



Why does context size matter?*

The only people in the cereal cafe are from Stoke.

Every person would make a great Uber driver, if he or she is not allergic to gluten.

When I love someone, I avoid them.

No one is a werewolf, unless they have orange skin and blond hair.

No one from Stoke fails to Instagram their breakfast.

No one ever asks me whether I prefer Wills to Harry, except people in the cereal cafe.

People from Thanet wouldn’t make great Uber drivers.

None but werewolves Instagram their breakfast.

The people I love are the ones who do not ask me whether I prefer Wills to Harry.

People with orange skin and blond hair are not allergic to gluten.

Claim: People from Thanet are allergic to gluten

*Source of puzzle:
https://www.theguardian.com/science/2017/jan/30/can-you-solve-it-lewis-carroll-on-brexit-britain

23

https://www.theguardian.com/science/2017/jan/30/can-you-solve-it-lewis-carroll-on-brexit-britain


Why does context size matter?*

The only people in the cereal cafe are from Stoke.

Every person would make a great Uber driver, if he or she is not allergic to gluten.

When I love someone, I avoid them.

No one is a werewolf, unless they have orange skin and blond hair.

No one from Stoke fails to Instagram their breakfast.

No one ever asks me whether I prefer Wills to Harry, except people in the cereal cafe.

People from Thanet wouldn’t make great Uber drivers.

None but werewolves Instagram their breakfast.

The people I love are the ones who do not ask me whether I prefer Wills to Harry.

People with orange skin and blond hair are not allergic to gluten.

Claim: People from Thanet are allergic to gluten

*Source of puzzle:
https://www.theguardian.com/science/2017/jan/30/can-you-solve-it-lewis-carroll-on-brexit-britain

23

https://www.theguardian.com/science/2017/jan/30/can-you-solve-it-lewis-carroll-on-brexit-britain


Why does context size matter?*

The only people in the cereal cafe are from Stoke.

Every person would make a great Uber driver, if he or she is not allergic to gluten.

When I love someone, I avoid them.

No one is a werewolf, unless they have orange skin and blond hair.

No one from Stoke fails to Instagram their breakfast.

No one ever asks me whether I prefer Wills to Harry, except people in the cereal cafe.

People from Thanet wouldn’t make great Uber drivers.

None but werewolves Instagram their breakfast.

The people I love are the ones who do not ask me whether I prefer Wills to Harry.

People with orange skin and blond hair are not allergic to gluten.

Claim: People from Thanet are allergic to gluten

*Source of puzzle:
https://www.theguardian.com/science/2017/jan/30/can-you-solve-it-lewis-carroll-on-brexit-britain

23

https://www.theguardian.com/science/2017/jan/30/can-you-solve-it-lewis-carroll-on-brexit-britain


Ways to minimize context

Common sense:

When a proof is done, get rid of unnecessary lemmas/asserts

Replace specific lemmas with general ones

Don’t use unnecessary or large modules

Why3 tools:

Ghost code

Context manipulation

Abstract blocks

24



Ways to minimize context

Common sense:

When a proof is done, get rid of unnecessary lemmas/asserts

Replace specific lemmas with general ones

Don’t use unnecessary or large modules

Why3 tools:

Ghost code

Context manipulation

Abstract blocks

24



Context manipulation: minimizing formulas

logic formula vc split added to context
a /“ b

1 a

2 b

a /“ b

a && b

1 a

2 a -¿ b

a /“ b

b by a

1 a

2 a -¿ b

b

25



Context manipulation: minimizing formulas

logic formula vc split added to context
a /“ b

1 a

2 b

a /“ b

a && b

1 a

2 a -¿ b

a /“ b

b by a

1 a

2 a -¿ b

b

25



Context manipulation: minimizing formulas

logic formula vc split added to context
a /“ b

1 a

2 b

a /“ b

a && b

1 a

2 a -¿ b

a /“ b

b by a

1 a

2 a -¿ b

b

25



Context manipulation: abstract blocks

Complex blocks of code can be summarized:

if !b = 1 then

if !a = 1 then a := 0

else begin a := 1; b := 0 end

26



Context manipulation: abstract blocks

Complex blocks of code can be summarized:

begin

requires – 0 ¡= !a ¡= 1 /“ 0 ¡= !b ¡= 1 ˝

ensures – !b*2 + !a = old (!a + !b) ˝

if !b = 1 then

if !a = 1 then a := 0

else begin a := 1; b := 0 end

end

Like a function contract, but without the function

What is said in the abstract block, stays in the abstract block

27



Summary

Proof transformations

Ghost code

Let lemmas
I Can do all kinds of induction!

Minimizing proof context

Abstract blocks

28


	Proof techniques
	Ghost code and Let lemmas
	Proof minimization

