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Abstract. Control engineering is a field of major industrial im-

portance as it offers principles for engineering controllable physical

devices, such as cell phones, television sets, and printing systems.

Control engineering techniques assume that a physical system’s dy-

namic behaviour can be completely described by means of a set of

equations. However, as modern systems are often of high complexity,

drafting such equations has become more and more difficult. More-

over, to dynamically adapt the system’s behaviour to a changing en-

vironment, observations obtained from sensors at runtime need to

be taken into account. However, such observations give an incom-

plete picture of the system’s behaviour; when combined with the in-

completely understood complexity of the device, control engineer-

ing solutions increasingly fall short. Probabilistic reasoning would

allow one to deal with these sources of incompleteness, yet in the

area of control engineering such AI solutions are rare. When using

a Bayesian network in this context the required model can be learnt,

and tuned, from data, uncertainty can be handled, and the model can

be subsequently used for stochastic control of the system’s behaviour.

In this paper we discuss industrial research in which Bayesian net-

works were successfully used to control complex printing systems.

1 INTRODUCTION

Many complex physical systems are required to make dynamic trade-

offs between the various characteristics of operation, which can be

viewed as the capability to adapt to a changing environment. For

example, in printing systems such characteristics include power di-

vision and consumption, the speed of printing, and the quality of the

print product. Such trade-offs heavily depend on the system’s envi-

ronment determined by humidity, temperature, and available power.

Failure to adapt adequately to the environment may result in faults

or suboptimal behaviour, resulting, for example, in low quality print

products or low throughput of paper.

The problem of adaptability concerns taking actions based on

available runtime information, which we call making decisions. As

defined above it has two main features. First, making decisions is

typically required at a low frequency: it is not necessary and not even

desirable to change the speed or energy usage of an engine many

times per second. Second, there is a lot of uncertainty involved when

making decisions, in particular about the environment, the state of

the machine, and also about the dynamics of the system. Complex

systems usually cannot be modelled accurately, whereas adaptability

requires one to make system-wide, complex, decisions. In order to

deal with these uncertainties, techniques where probability distribu-

tions can be learnt from available data seem most appropriate.
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In this paper, we propose to use Bayesian networks [17] to deal

with the control of such complex systems. The formalism possesses

the unique quality of being both an AI-like and statistical knowledge-

representation formalism. Nowadays, Bayesian networks take a cen-

tral role for dealing with uncertainty in AI and have been successfully

applied in many fields, such as medicine and finance. The control of

physical systems, on the other hand, is largely done using traditional

methods from control theory.

One of the attractive features of Bayesian networks is that they

contain a qualitative part, which can be constructed using expert

knowledge, normally yielding an understandable, white-box model.

Moreover, the quantitative parameters of a Bayesian network can be

learnt from data. Other AI learning techniques, such as neural net-

works, resist providing insight into why a machine changes its be-

haviour, as they are black-box models. Furthermore, rules—possibly

fuzzy—are difficult to obtain and require extensive testing in order

to check whether they handle all the relevant situations.

The present paper summarises our successful effort in using

Bayesian-network based controllers in the industrial design of adap-

tive printing systems, which can be looked upon as special stochastic

controllers. In our view, as systems get more and more complex, the

embedded software will need to be equipped with such AI reason-

ing capabilities to render the design of adaptive industrial systems

feasible.

2 BAYESIAN NETWORKS FOR CONTROL

We first offer some background about Bayesian networks and discuss

needed assumptions for modelling and reasoning about dynamic sys-

tems using Bayesian networks.

2.1 Background

A Bayesian network B = (G, P ) consists of a directed acyclic graph

G = (V, E), where V is a set of vertices and E ⊆ V × V is a set of

directed edges or arcs, and P is a joint probability distribution asso-

ciated with a set of random variables X that correspond one-to-one

to the vertices of G, i.e., to each vertex v ∈ V corresponds exactly

one random variable Xv and vice versa. As the joint probability dis-

tribution P of the Bayesian network is always factored in accordance

to the structure of the graph G, it holds that:

P (X) =
Y

v∈V

P (Xv | Xπ(v)),

where π(v) is the set of parents of v. Thus, P can be defined as a

family of local conditional probability distributions P (Xv | Xπ(v)),
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Figure 1. A temporal Bayesian network structure for modelling dynamic systems.

for each vertex v ∈ V . Bayesian networks can encode various prob-

ability distributions. Most often the variables are either all discrete or

all continuous. Hybrid Bayesian networks, however, containing both

discrete and continuous conditional probability distributions are also

possible. A commonly used type of hybrid Bayesian network is the

conditional linear Gaussian model [3, 8]. Efficient exact and approxi-

mate algorithms have been developed to infer probabilities from such

networks [10, 2, 12]. Also important in the context of embedded sys-

tems is that real-time probabilistic inference can be done using any-

time algorithms [6].

A Bayesian network can be constructed with the help of one

or more domain experts. However, building Bayesian networks us-

ing expert knowledge, although by now known to be feasible for

some domains, can be very tedious and time consuming. Learning

a Bayesian network from data is also possible, a task which can be

separated into two subtasks: (1) structure learning, i.e., identifying

the topology of the network, and (2) parameter learning, i.e., deter-

mining the associated joint probability distribution, P , for a given

network topology. In this paper, we employ parameter learning. This

is typically done by computing the maximum likelihood estimates of

the parameters, i.e., the conditional probability distributions, associ-

ated to the networks structure given data [9].

Temporal Bayesian networks are Bayesian network where the ver-

tices of the graph are indexed with (discrete) time. All vertices with

the same time index form a so-called time slice. Each time slice con-

sists of a static Bayesian network and the time slices are linked to

represent the relationships between states in time. If the structure

and parameters of the static Bayesian network are the same at every

time slice (with the exception of the first), one speaks of a dynamic

Bayesian network, as such networks can be unrolled (cf. [16] for an

overview).

2.2 Bayesian-network modelling of a dynamic
system

Common assumptions in the modelling of dynamic physical systems

are that the system is Markovian and stationary (e.g., [11]), i.e., the

system state at time t + 1 is only dependent on the system state at

time t, and the probabilistic dependencies are the same at each time

t. Stationarity is an assumption too strong for the work discussed be-

low; however, it is assumed that the network structure is the same

for every t. In case a particular dependence is absent in a time-slices,

then such independence will be reflected in the conditional probabil-

ity distributions rather than in the structure.

Four different types of vertices were distinguished in developing

Bayesian networks for stochastic control:

• Control variables C act as input to the physical system’s control

system, such as the car engine’s throttle position.

• Hidden state variables H determine the unobservable state of

the system, such as the engine’s speed.

• Sensor information S provides observations about the (unob-

servable) state of the machine (here engine), for example by a

measurement of the speed of the car.

• Target variables T act as reference values or set-points of the

system. It is the purpose of a Bayesian network to control these

variables.

A schematic representation of such a network is shown in Figure 1.

Given n time slices, a Bayesian network will have an associated joint

probability distribution of the following form:

P (S1, C1, H1, T1, . . . , Sn, Cn, Hn, Tn)

The chosen representation closely fits the concepts of traditional con-

trol theory. A typical feedback controller influences the system (H)

through a system’s input (C); it does so by comparing the sensed data

(S) with a reference value (T ). A feed-forward controller is similar

in this view, except that the sensor variables are missing or cannot be

observed.

After t time steps, the probability distribution can be updated with

the observations S1, . . . , St and earlier control choices C1, . . . , Ct

to a probability distribution over the remaining variables:

P (H1, . . . , Hn, T1, . . . , Tn, St+1, . . . , Sn, Ct+1, . . . , Cn

| S1, . . . , St, C1, . . . , Ct)

In the following, this conditional probability distribution is abbrevi-

ated to

Pt(H1, . . . , Hn, T1, . . . , Tn, St+1, . . . , Sn, Ct+1, . . . , Cn) (1)

A common question in control is to provide an estimation of the tar-

get variable, i.e., to compute Pt(Tk) for some k from the conditional

probability distribution (1). If this can be done reliably, it offers the

possibility to exploit the network for control. The controller is able

to decide what to do in the future by reasoning about the target of

control in the future Tf = Tt+1, . . . Tt+m, t + m ≤ n given a pos-

sible choice of control Cf = Ct+1, . . . Tt+p, t + p ≤ n. Both m as

well as p can be tuned to domain-specific requirements.

Let U : Tf → R be a utility function defined for the target

variables Tf . The expected utility for controlling the machine by
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Figure 2. This graph shows the classification accuracy of the Bayesian
network plotted as a function of time after the start of a print job.

Cf = cf , eu(cf ) is then equal to:

eu(cf ) =
X

tf

Pt(tf |cf )U(tf )

This approach can also be adapted to continuous variables by inte-

grating over the domain of Tf . A control strategy c∗f with maximal

expected utility yields a maximal value for eu(cf ).

c
∗

f = argmax
cf

eu(cf )

In Sections 3 and 4, we present research in which we have explored

the theory summarised above with the aim of making an industrial

printing system adaptive to its environment.

3 ESTIMATION OF MEDIA TYPE

Printing systems contain many challenging control problems. As a

first study, we consider the problem of establishing the media weight

during a run, which can be exploited during the control of many dif-

ferent parts of the printer. For example, if the media weight, here

interpreted as paper type, is known, then we can (i) avoid bad print

quality, (ii) avoid engine pollution in several parts of the printer, and

(iii) help service technician at service call diagnosis, i.e., to avoid

blocking for specific media under specific circumstances. Given the

mechanical space limitations in printers, it is non-trivial to design

a printer that measures paper properties directly nor is it desirable

to ask the user to supply this information. We therefore investigated

whether the available sensor data could be used to estimate these

properties. This sensor data mainly consists of temperatures and volt-

ages that are required during the regular control of the printer and is

available without any extra cost.

The data that is available consists of logging data of runs from

stand-by position with a warm machine. In order to vary different

conditions, the duration of stand-by prior to the run was deliberately

varied. This ensures a realistic variation of temperatures inside the

engine. Moreover, the paper type was varied, namely the data con-

tains runs with 70 gsm (n = 35), 100 gsm (n = 10), 120 gsm

(n = 24), 140 gsm (n = 10), and 200 gsm (n = 29) paper.

With the help of the domain experts we designed a Bayesian net-

work structure with 8 vertices at each time-slice. Logging data of an
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Figure 3. The estimation of paper weight plotted in time. The solid line
denotes the mean media weight estimation and the gray area visualises three

standard deviations from the mean.

industrial printing system were obtained at a frequency of 2Hz for

15 second, which would yield a total of 240 vertices in the temporal

Bayesian network if represented explicitly. All variables were mod-

elled as Gaussian random variables. To convert the Bayesian network

into a classifier, the estimations of the model were mapped to a num-

ber of classes, corresponding to the distinguished media types.

The plot shown in Figure 2 indicates that it takes some time be-

fore the Bayesian network is able to reliably distinguish between the

media types based on the sensor information available. After about 6

seconds the classification reaches a performance that is seen as suffi-

ciently reliable for many applications. However, for high-speed print-

ing systems a higher reliability may be required. As the plot shows,

on the whole there is a gradual, and robust increase in performance

with a form that looks like a sigmoid learning curve. However, note

that the only thing that changes in time are the data: the nature of the

data is such that in time it becomes easier for the Bayesian network

to distinguish between various media types. Further evidence of the

robustness of the approach is obtained by computing the confidence

intervals of the weight estimates. As shown in Figure 3, the confi-

dence intervals become smaller in time, and conclusions about media

type are therefore also more reliable. Hence, it is fair to conclude that

the model was able to derive useful information about media type by

using sensor information, here about temperature and voltage usage,

that is not immediately related to media type.

In case there is reasonable confidence in the estimation, decisions

can be made to adapt the system’s behaviour. Our work on such adap-

tation is presented in the next section.

4 CONTROL OF ENGINE SPEED

4.1 Description of the problem

The productivity of printers is limited by the amount of power avail-

able, in particular in countries or regions with weak mains. If there

is insufficient power available, then temperature setpoints cannot be

reached, which causes bad print quality. To overcome this problem,

it is either possible to decide to always print at lower speeds or to

adapt to the available power dynamically. In this section, we explore

the latter option by a dynamic speed adjustment using a Bayesian

network.



4.2 Approach

The block diagram in Figure 4 offers an overview of this approach. In

this schema, ‘sensors’ are put on low-level controllers and signal the

high-level controller with requests. The network then reasons about

appropriate setpoints of the low-level controller. In this problem set-

ting, the high-level controller decides on a specific velocity of the

engine based on requested power by a lower-level controller.

For this problem, we look at the model of a part of the printer in

more detail. The structure of the model at each time slice is shown

in Figure 5. The requested power available is an observable variable

that depends on low-level controllers that aim at maintaining the right

setpoint for reaching a good print quality. The error variable models

the deviation of the actual temperature from the ideal temperature,

which can be established in a laboratory situation, but not during run-

time. If this exceeds a certain threshold, then the print quality will be

below a norm that has been determined by the printer manufacturer.

Both velocity and available power influence the power that is or

can be requested by the low-level controllers. Furthermore, the com-

bination of the available power and the requested power is a good

predictor of the error according to the domain experts. To model the

dynamics, we use two time slices with the interconnections between

the available power – which models that the power supply on dif-

ferent time slices is not independent – and requested power, which

models the state of the machine that influences the requested power.

We again considered to model all the variables as Gaussian dis-

tributed random variables. This seemed reasonable, as most variables

were Gaussian distributed, however with the exception of the avail-

able power (see Figure 6). Fitting a Gaussian distribution to such a

distribution will typically lead to insufficient accuracy. To improve

this, this variable was modelled as a mixture of two Gaussian dis-

tributed variables, one with mean µlow
Power and one with mean µ

high
Power

with a small variance. Such a distribution can be modelled using a

hybrid network as follows. The network is augmented with an addi-

tional (binary) parent vertex S with values ‘high’ and ‘low’ for the

requested power variable. For both states of this node, a normal dis-

tribution is associated to this variable. The marginal distribution of

requested power is obtained by basic probability theory by

P (Preq) =
X

S

P (Preq | S)P (S).

4.3 Error estimation

The main reasoning tasks of the network is to estimate the error, i.e.,

the deviation from the ideal temperature, given a certain velocity and

observations. This problem could be considered as a classification

task, i.e., the print quality is bad or good. The advantage is that this
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Figure 4. Architecture of an adaptive controller using a Bayesian network.
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Figure 5. Structure of the Bayesian network of each time slice.

provides means to compare different models and see how well it per-

forms at distinguishing between these two possibilities. A standard

method to visualise and quantify this is by means of a Receiver Oper-

ating Characteristic (ROC) curve, which shows the relation between

the false positive ratio and the true positive ratio (sensitivity). The

area under the curve is a measure for its classification performance.

We have compared three models, i.e., a discrete model, a fully con-

tinuous model and a hybrid model for modelling the distribution of

the requested power with two normally distributed random variables.

The classification performance is outlined in Figure 7. As expected,

the fully continuous model performs worse, whereas the hybrid and

discrete show a similar trend. The advantage of the discrete version is

that the probability distribution can easily be inspected and it has no

underlying assumptions about the distribution, which makes it easier

to use in practice. The hybrid version however allows for more ef-

ficient computation as we need a large number of discrete values to

describe the conditional distributions. For this reason, we have used

the hybrid version in the following.

4.4 Decision making for control

As the error information is not observable during runtime, the

marginal probability distribution of the error in the next time slice

is computed using the information about the power available and

power requested. This error is a normal random variable with mean

µ and standard deviation σ. The maximum error that we allow in

this domain is denoted by Emax and we define a random variable for

print quality Qk, which is true if µ + kσ < Emax, where k is a con-

Pmin Pmax
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Figure 6. Distribution of requested power.
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stant. Different values of k correspond to different points on the ROC

curve as depicted in Figure 7. For a normal random variable, more

than 99.73% of the real value of the error will be within three stan-

dard deviations of the mean, so for example k = 3 would imply that

P (Errort+1 < Emax) > 99.87%. The target variables of our control

are the print quality, modelled by Qk, and the velocity V . Define a

utility function U : {Qk, V } → R as:

U(q, v) =



−1 if q = ⊥
v otherwise

and apply the maximal expected utility criterion as discussed in Sec-

tion 2. This implies that the expected utility of a velocity v, eu(v)
equals −1 or v depending on the risk of having bad print quality. In

effect, we choose the highest velocity v such that Qk = ⊤.

In order to evaluate the approach, we compared the productivity

of the resulting network with the rule-based method (implemented

in terms of repetitive and conditional statements of a programming

language for use in the actual control engine) that incorporates some

heuristics for choosing the right velocity. The productivity is defined

here simply as
R τ

0
v(t)dt, where τ is the simulation time. In order

to smooth the signal that the network produces, we employ a a FIR

(Finite Impulse Response) filter in which we employ a moving av-

erage of 10 decisions. The resulting behaviour was simulated and is

presented in Figure 8 (with k = 3). Compared to the rule-based ap-

proach, we improve roughly 9% in productivity while keeping the

error within an acceptable range. While it could certainly be the case

that the rules could be improved and optimised, the point is that the

logic underlying the controller does not have to be designed. What is

required is a qualitative model, data, and a probabilistic criterion that

can be inferred.

5 RELATED WORK

Bayesian inference is well-known for the inference of hidden states

in a dynamic model. Typical applications are filtering – i.e., infer-

ring the current hidden state given the observations in the past – and

smoothing where past states are inferred. For example, the Kalman

filter [7] is well-known in stochastic control theory (see e.g., [1]) and

is a special case of a dynamic Bayesian networks, where the model

is the linear Gaussian variant of a hidden Markov model, i.e., it de-

scribes a Markov process with noise parameters on the input and out-

put variables. Non-linear variants, such as the extended Kalman filter

or the unscented Kalman filter (see e.g., [15]) are approximate infer-

ence algorithms for non-linear Gaussian models by linearisation of

the model. More recently, particle filters [13], have been proposed as

an alternative, which relies on sampling to approximate the posterior

distribution.



The difference with these filtering approaches is that for Bayesian

networks there is an underlying domain model which is understand-

able. As Bayesian networks are general formalisms, they could also

be used or re-used for diagnostic purposes, where it is typically re-

quired that a diagnosis can be represented in a human-understandable

way so that proper action can be taken (e.g., [19] in the printing do-

main). Furthermore, it is well-known that the structure of the graphi-

cal part of a Bayesian network facilitates the assessment of probabil-

ities, even to the extent that reliable probabilistic information can be

obtained from experts (see [14]). One other advantage compared to

black-box models is that the modelled probability distribution can be

exploited for decision making using decision theory. This is particu-

larly important if one wants to make real trade-offs such as between

productivity and energy consumption.

With respect to decision making, adaptive controllers using ex-

plicit Bayesian networks have not been extensively investigated. The

most closely related work is by Deventer [4], who investigated the

use of dynamic Bayesian networks for controlling linear and non-

linear systems. The premise of this work is that the parameters of

a Bayesian network can be estimated from a deterministic physical

model of the system. In contrast, we aim at using models that were

learnt from data. Such data can be obtained from measurements dur-

ing design time or during runtime of the system.

Several approaches for traditional adaptive control already exists.

First, model-reference adaptive control uses a reference model that

reflects the desired behaviour of the system. On the basis of the ob-

served output and of the reference model, the system is tuned. The

second type of adaptive controllers are so called self-tuning con-

trollers, which estimate the correct parameters of the system based

on observations and tunes the control accordingly. Our approach em-

ploys a mixture of the two, where a reference model is given by a

Bayesian network and tunes other parts of the system accordingly.

In the last few decades, also techniques from the area of artificial in-

telligence, such as rule-based systems, fuzzy logic, neural networks,

evolutionary algorithms, etc. have been used in order to determine

optimal values for control parameters (see e.g. [5]). The work pre-

sented in this paper extends these approaches using human-readable

Bayesian networks.

6 CONCLUSIONS

In embedded software, there is an increasing trend to apply and verify

new software methods in an industrial context, i.e., the industry-as-

laboratory paradigm [18]. This means that concrete cases are stud-

ied in their industrial context to promote the applicability and scal-

ability of solution strategies under the relevant practical constraints.

Much of the current AI research, on the other hand, is done in theory

using standard benchmark problems and data sets. It poses a num-

ber of challenges if one wishes to apply an AI technique such as

Bayesian networks to industrial practice. First, there is little support

for modelling systems in an industrial context. Bayesian networks

are expressive formalisms and little guidance is given to the construc-

tion of networks that can be employed in such an industrial setting.

Moreover, there seems to be little theory of using Bayesian networks

in these areas. For example, while there is a lot of research in the

area of stochastic control, it is unclear how these results carry over

to Bayesian networks. Similarly, techniques developed in context of

Bayesian networks do not carry over to the problem of control.

Bayesian networks have drawn attention in many different re-

search areas, such as AI, mathematics and statistics. In this paper, we

have explored the use of Bayesian networks for designing an adapt-

able printing systems. We have shown that the approach is feasible

and can act as a basis for designing an intelligent printing system.

This suggests that Bayesian networks can have a much wider appli-

cation in the engineering sciences, in particular for control and fault

detection. With the increasing complexity of systems, there is little

doubt that these AI techniques will play a pivotal role in industry.
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