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History of the Book

This book was written from 1989 to 1990 and it took a year before it was ready for publication
by Addison-Wesley. From a modern AI point of view, it gives a detailed account of methods
and techniques, often including details of their implementation, of the systems that caused a
hype during the 1980s. At the time, there were books that gave some insight into methods,
but none of the books gave actual details on algorithms and implementation. Thus the book
was written to close the gap between theory (and there is plenty of theory in this book) and
implementation, making theoretical ideas concrete.

Unfortunately, when the book was published, the AI winter had started and it never
became a success. From a modern point of view, this book is now one of few books that give
details about methods and systems that once were in the centre of interest. It establishes
relationships between logic and rule-based methods which you will find in no other books.
The chapter on reasoning with uncertainty is also still of interest. It also gives details about
many of the early AI methods, languages and systems.

Although the title of the book mentions the phrase ‘Expert Systems’, the book is in reality
about knowledge (based) systems. Nevertheless, it is assumed that such systems are built
using human knowledge only. Since the beginning of the 1990s there has been considerable
emphasis on using machine learning methods to build such systems automatically. However,
now we know that machine learning also has its limitations and that you cannot build such
systems without a considerable amount of human knowledge.

Peter Lucas, January, 2014
Utrecht, The Netherlands
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Foreword

Principles of Expert Systems by Peter Lucas and Linda van der Gaag is a textbook on
expert systems. In this respect, the book does not distinguish itself from many other, serious
textbooks in computer science. It does, however, distinguish itself from many books on expert
systems. The book’s aim is not to leave the reader dumbfounded with the authors’ knowledge
of a topic that has aroused interest. Neither is the aim to raise in a bird’s-eye view all kinds
of topical and sometimes modish matters by means of a sloppy review of ‘existing’ expert
systems and their (supposed) applications. Its real aim is to treat in a thorough way the
more or less accepted formalisms and methods that place expert systems on a firm footing.

In its first decade, research in artificial intelligence—performed by a relatively small group
of researchers—remained restricted to investigations into universal methods for problem solv-
ing. In the seventies, also due to the advent of cheaper and faster computers with large
memory capacity, attention shifted to methods for problem solving in which the focus was
not on the smart algorithms, but rather on the representation and use of knowledge necessary
to solve particular problems. This approach has led to the development of expert systems,
programs in which there is a clear distinction between domain-specific knowledge and general
knowledge for problem solving. An important stimulant for doing this type of research has
been the Japanese initiative aimed at the development of fifth generation computer systems
and the reactions to this initiative by regional and national research programmes in Europe
and the United States.

An expert system is meant to embody the expertise of a human expert concerning a
particular field in such a way that non-expert users, looking for advice in that field, get the
expert’s knowledge at their disposal by questioning the system. An important feature of
expert systems is that they are able to explain to the user the line of reasoning which led to
the solution of a problem or the desired advice. In many domains the number of available
experts is limited, it may be expensive to consult an expert and experts are not always
available. Preserving their knowledge is useful, if only for teaching or training purposes. On
the other hand, although in common parlance not always referred to as experts, in every
organization there are employees who possess specialized knowledge, obtained as the fruit of
long experience and often very difficult to transfer from one person to another. Recording
this knowledge allows us to use computers in domains where human knowledge, experience,
intuition and heuristics are essential. From this, one may not conclude that it is not useful
or possible to offer also ‘shallow’ knowledge, as available in medical, juridical or technical
handbooks, to users of expert systems. With these applications it is perhaps more appropriate
to speak of knowledge systems or knowledge-based systems than of expert systems. Neither
should it be excluded that knowledge in an expert system is based on a scientific theory or
on functional or causal models belonging to a particular domain.

Advances in research in the field of expert systems and increasing knowledge derived from
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experiences gained from designing, implementing and using expert systems made it necessary
for the authors of this book to choose from the many subject-matters that can be treated in a
textbook. For example, in this book there is no attempt to cover knowledge acquisition, the
development of tools for automatic knowledge acquisition and, more generally, many software
engineering aspects of building expert systems. Nor is any attention paid to the use of more
fundamental knowledge models, e.g. causal or functional models, of the problem domain on
which an expert system can fall back if it turns out that heuristic reasoning is not sufficient,
or to the automatic conversion of deep, theoretical knowledge to heuristic rules.

Researchers, and those who are otherwise involved in the development of expert systems,
set up expectations. It is possible that not before in computer science so much time has been
devoted and so much attention has been paid to a single topic than during the past years
to expert systems. One might think that expert systems have found wide-spread commercial
and non-commercial applications. This hardly is the case. The development of practical
expert systems—systems not only of interest to a small group of researchers—turns out to
be less straightforward than has sometimes been suggested or has appeared from example
programs. Not being able to satisfy the created high expectations may therefore lead to an
‘AI winter’: the collapse of the confidence that present-day research in artificial intelligence
will lead to a widespread use of expert systems in business and industry. Therefore, it should
be appreciated that in this book the authors confine themselves to the present-day ‘hard core’
of their speciality and have not let themselves lead away to include all sorts of, undeniable
interesting, but not yet worked-out and proven ideas which one may come across in recent
literature. The material presented in this book provides the reader with the knowledge and
the insight to read this literature with success and it gives a useful start for participating in
research and development in the field of expert and knowledge-based systems. The reader of
this book will become convinced that the principles and techniques that are discussed here
constitute a lasting addition to the already available arsenal of principles and techniques of
traditional computer science.

Both authors have gained practical experience in designing and building expert systems.
In addition, they have thorough knowledge of the general principles that underlie knowledge-
based systems. Add their undeniably available didactic qualities and we have the right persons
to write a carefully thought out textbook on expert systems. Because of its profoundness, its
consistent style and its balanced choice of subject-matters this book is a relief between the
many superficial books that are presented as introductions to expert systems. The book is
not always easy reading, but on the other hand the study of this book will bring a deeper
understanding of the principles of expert systems than can be obtained by reading many
others. It is up to the reader to benefit from this.

Anton Nijholt
Professor of Computer Science
Twente University
The Netherlands



Preface

The present book is an introductory text book on the undergraduate level, covering the
subject of expert systems for students of computer science. The major motive for writing
this book was a course on expert systems given by the first author to third and fourth year
undergraduate computer science students at the University of Amsterdam for the first time in
1986. Although at that time already a large number of books on expert systems was available,
none of these were considered to be suitable for teaching the subject to a computer science
audience. The present book was written in an attempt to fill this gap.

The central topics in this book are formalisms for the representation and manipulation of
knowledge in the computer, in a few words: logic, production rules, semantic nets, frames,
and formalisms for plausible reasoning. The choice for the formalisms discussed in the present
book, has been motivated on the one hand by the requirement that at least the formalisms
which nowadays are of fundamental importance to the area of expert systems must be covered,
and on the other hand, that the formalisms which have been in use for considerable time and
have laid the foundation of current research into more advanced methods should also be
treated. We have in particular paid attention to those formalisms which have been shown
to be of practical importance for building expert systems. As a consequence, several other
subjects, for example truth maintenance systems and non-standard logics, are not covered
or merely briefly touched upon. These topics have only become a subject of investigation in
recent years, and their importance to the area of expert systems was not clear at the moment
of writing this book. Similarly, in selecting example computer systems for presentation in the
book, our selection criterion as been more the way such a system illustrates the principles
dealt with in the book than recency. Similar observations underly our leaving out the subject
of methodologies for building expert systems: although this is a very active research area,
with many competing theories, we feel that none of these is as yet stable enough to justify
treatment in a text book. On the whole, we expect that our choice renders the book less
subject to trends in expert system research than if we had for example included an overview
of the most recent expert systems, tools, or methodologies.

It is hardly possible to develop an intuition concerning the subjects of knowledge represen-
tation and manipulation if these principles are not illustrated by clear and easy to understand
examples. We have therefore tried to restrict ourselves as far as possible to one and the same
problem area, from which almost all examples have been taken: a very small part of the area
of cardiovascular medicine. Although they are not completely serious, our examples are more
akin to real-life problems solved by expert systems than the examples usually encountered
in literature on knowledge representation. If desirable, however, the chosen problem domain
can be supplemented or replaced by any other problem domain.

Most of the principles of expert systems have been worked out in small programs written
either in PROLOG or in LISP, or sometimes in both programming languages. These programs
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are mainly used to illustrate the material treated in the text, and intend to demonstrate
various programming techniques in building expert systems; we have not attempted to make
them as efficient as possible, nor have we included extensive user interfaces. We feel that
students of artificial intelligence and expert systems should at least actively master one of the
programming languages PROLOG and LISP, and also be able to understand the programs
written in the other language. For those not sufficiently familiar with one of these or both
programming languages, two introductory appendices have been included covering enough of
them to help the reader to understand the programs discussed in the book. We emphasize
that all programs are treated in separate sections: a reader only interested in the principles
of expert systems may therefore simply skip these sections on reading.

The book can serve several purposes in teaching a course on expert systems. Experience
has learned that the entire book takes about thirty weeks, two hours a week, of teaching
to be covered when supplemented with small student projects. For the typical twenty-week
course of two hours a week, one may adopt one of the following three frameworks as a point
of departure for a course, depended on the audience to which the subject is taught:

(1) A course covering both theory and practice of building expert systems. The lectures may
be organized as follows: 1, 2.1, 2.2, 3.1, 3.2.1, 6.1, 3.2.4, 7.1, 4.1, 4.2.1, 4.2.2, 4.2.5,
4.3.1, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 6.4, 7.2, 7.3. If some time remains, more of chapter
2 or chapter 4 may be covered. In this one-semester twenty-week course, none of the
LISP or PROLOG programs in the text is treated as part of the lectures; rather, the
students are asked to extent one or two of the programs dealt with in the book in small
projects. Several exercises in the text give suggestions for such projects. It may also be
a good idea to let the students experiment with an expert system shell by having them
build a small knowledge base. The study of OPS5 in section 7.1 may for example be
supplemented by practical lessons using the OPS5 interpreter.

(2) A course emphasizing practical aspects of building expert systems. The lectures may
be organized as follows: 1, 3.1.1, 3.1.2, 3.1.3, 3.2, 3.3, 6.1, 6.2, 6.3, 7.1, 2.1, 2.2, 4.1.1,
4.1.2, 4.2, 5.1, 5.2, 5.4, 5.5, 6.4, 7.2, 7.3. In this case, as much of logic is treated as is
necessary to enable the students to grasp the material in chapter 4. Chapter 2 may even
be skipped if the students are already acquainted on a conceptual level with first-order
predicate logic: the technical details of logic are not paid attention to in this course.
At least some of the programs in the text are treated in the class room. Furthermore,
in the course one of the development methodologies for expert systems described in the
recent literature may be briefly discussed. It is advisable to let the students build a
knowledge base for a particular problem domain, using one of the PROLOG or LISP
programs presented in the book, or a commercially available expert system shell.

(3) A course dealing with the theory of expert systems. In this course, more emphasis
is placed on logic as a knowledge-representation language in expert systems than in
the courses A and B. The lectures may be organized as follows: 1, 2, 3.1, 3.2, 4.1,
4.2.1, 4.2.2, 4.2.5, 4.2.7, 4.3, 5, 6.1, 7.3. It is advised to let the students perform
some experiments with the programs discussed in chapter 2, in particular with the
LISP program implementing SLD resolution in the sections 2.8 and 2.9. Additional
experiments may be carried out using the OTTER resolution-based theorem prover
that can be obtained from the Argonne National Laboratory. This theorem prover may
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Figure 1: Dependency of sections.

be used to experiment with logic knowledge bases in the same style as the one discussed
in section 2.9.

For the reader mainly interested in the subjects of knowledge representation and automated
reasoning, it suffices to read the chapters 1 to 5, where sections dealing with implementation
techniques can be skipped. For those primarily interested in the practical aspects of expert
systems, the chapters 1 and 3, the sections 4.2, 5.1, 5.2, 5.3, and 5.4, and the chapters 6 and
7 are of main importance. For a study of the role of logic in expert systems, one may read
chapter 2, and the sections 3.1, 4.1.3, 4.2.1, and 4.2.2, which deal with the relationship of
logic to other knowledge-representation formalisms. Those interested in production systems
should study the chapters 3 and 6, and section 7.1. Semantic nets and frame systems are
dealt with in chapter 4, and the sections 7.2 and 7.3. Chapter 5 is a rather comprehensive
treatise on methods for plausible reasoning. The dependency between the various sections in
the book is given in the dependency graph on the next page.
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Introduction

1.1 Expert systems and AI 1.4 A problem domain
1.2 Some examples Suggested reading
1.3 Separating knowledge and Exercises

Inference

During the past decade the interest in the results of artificial intelligence research has been
growing to an increasing extent. In particular, the area of knowledge-based systems, one of
the first areas of artificial intelligence to be commercially fruitful, has received a lot of
attention. The phrase knowledge-based system is generally employed to indicate
information systems in which some symbolic representation of human knowledge is applied,
usually in a way resembling human reasoning. Of these knowledge-based systems, expert
systems have been the most successful at present. Expert systems are systems which are
capable of offering solutions to specific problems in a given domain or which are able to give
advice, both in a way and at a level comparable to that of experts in the field. Building
expert systems for specific application domains has even become a separate subject known
as knowledge engineering.

The problems in the fields for which expert systems are being developed are those that
require considerable human expertise for their solution. Examples of such problem domains
are medical diagnosis of disease, financial advice, products design, etc. Most present-day
expert systems are only capable of dealing with restricted problem areas. Nevertheless, even
in highly restricted domains, expert systems usually need large amounts of knowledge to
arrive at a performance comparable to that of human experts in the field.

In the present chapter, we review the historical roots of expert systems in the broader
field of artificial intelligence, and briefly discuss several classical examples. Furthermore, the
basic principles of expert systems are introduced and brought in relation to the subsequent
chapters of the book, where these principles are treated in significant depth. The chapter
concludes with a description of a problem domain from which almost all examples presented
in this book have been selected.

1
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1.1 Expert systems and AI

Although the digital computer was originally designed to be a number processor, already in
the early days of its creation there was a small core of researchers engaged in non-numerical
applications. The efforts of these researchers eventually led to what is known since the
Dartmouth Summer Seminar in 1956 as artificial intelligence (AI), the area of computer
science concerned with systems producing results for which human behaviour would seem
necessary.

The early areas of attention in the fifties were theorem proving and problem solving. In
both fields, the developed computer programs are characterized by being based on complex
algorithms which have a general solving capability, independent of a specific problem domain
and which furthermore operate on problems posed in rather simple primitives.

Theorem proving is the field concerned with proving theorems automatically from a given
set of axioms by a computer. The theorems and axioms are expressed in logic, and logi-
cal inference rules are applied to the given set of axioms in order to prove the theorems.
The first program that actually constructed a mathematical proof of a theorem in number
theory was developed by M. Davis as early as 1954. Nevertheless, the major breakthrough
in theorem proving did not come until halfway the sixties. Only after the introduction of
an inference rule called resolution, did theorem proving become interesting from a practical
point of view. Further progress in the field during the seventies came from the development
of several refinements of the original resolution principle.

Researchers in the field of problem solving focussed on the development of computer
systems with a general capability for solving different types of problems. The best known
system is GPS (General Problem Solver), developed by A. Newell, H.A. Simon and J.C.
Shaw. A given problem is represented in terms of an initial state, a wished for final state and
a set of transitions to transform states into new states. Given such a representation by means
of states and operations, GPS generates a sequence of transitions that transform the initial
state into the given final state when applied in order. GPS has not been very successful.
First, representing a non-trivial problem in terms which could be processed by GPS proved
to be no easy task. Secondly, GPS turned out to be rather inefficient. Since GPS was a
general problem solver, specific knowledge of the problem at hand could not be exploited in
choosing a transition on a given state, not even if such knowledge indicated that a specific
transition would lead to the solution of the problem more efficiently. In each step GPS
examined all possible transitions, thus yielding an exponential time complexity. Although
the success of GPS as a problem solver has been rather limited, GPS initiated a significant
shift of attention in artificial intelligence research towards more specialized systems. This
shift in attention from general problem solvers to specialized systems in which the reasoning
process could be monitored using knowledge of the given problem, is generally viewed as a
breakthrough in artificial intelligence.

For problems arising in practice in many domains, there are no well-defined solutions
which can be found in the literature. The knowledge an expert in the field has, is generally
not laid down in clear definitions or unambiguous algorithms, but merely exists in rules of
thumb and facts learned by experience, called heuristics. So, the knowledge incorporated in
an expert system is highly domain dependent. The success of expert systems is mainly due
to their capability for representing heuristic knowledge and techniques, and for making these
applicable for computers. Generally, expert systems are able to comment upon the solutions
and advice they have given, based on the knowledge present in the system. Moreover, expert
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systems offer the possibility for integrating new knowledge with the knowledge that is already
present, in a flexible manner.

1.2 Some examples

The first expert systems were developed as early as the late sixties. However, it took until
the seventies before the research actually started on a large scale. The early expert systems
mostly concerned the field of medical diagnosis. The best-known expert system in medicine,
developed in the seventies, is MYCIN. The development of this expert system took place at
Stanford University; especially E.H. Shortliffe played an important role in its development.
The MYCIN system is able to assist internists in the diagnosis and the treatment of a number
of infectious diseases, in particular meningitis and bacterial septicaemia. When a patient
shows the signs of such an infectious disease, usually a culture of blood and urine is made in
order to determine the bacterium species that causes the infection. Generally, it takes 24 to 48
hours before the laboratory results become known. In case of the above mentioned infectious
diseases however, the physician will have to start treatment before these results are available,
since otherwise the disease may progress and actually cause death of the patient. Given the
patient data that are available to the system but which are apt to be incomplete and inexact,
MYCIN gives an interim indication of the organisms that are most likely to be the cause of
the infection. Given this indication, MYCIN advises the administration of a number of drugs
that should control the disease by suppressing the indicated organisms. The interaction of
the prescribed drugs among themselves and with the drugs the patient already takes, possible
toxic drug reactions, etc. are also taken into account. Moreover, MYCIN is able to comment
on the diagnosis it has arrived at, and the prescription of the drugs. The MYCIN system
clearly left its mark on the expert systems that have been developed since. Even at present,
this expert system and its derivatives are sources of ideas concerning the representation and
manipulation of medical knowledge. The MYCIN system also has given an important impulse
to the development of similar expert systems in fields other than medicine.

The development of the INTERNIST-1 system started early in the seventies as well.
The system is being still developed by H.E. Pople and J.D. Myers at Pittsburgh University.
Later on in their research, Pople and Myers renamed the system to CADUCEUS. One of
the objectives of the INTERNIST/CADUCEUS project is the study of models for diagnosing
diseases in internal medicine. In internal medicine several hundreds of different diseases are
discerned. An internist not only has to bear in mind all the clinical pictures of these diseases
during the diagnostic process, but also has to take into account the possible combinations
of symptoms and signs that can be caused by the interaction of several diseases present in
a patient at the same time. The number of diseases in internal medicine, and the possible
combinations of clinical signs and symptoms, is so large that it is not possible to consider
them one by one. INTERNIST/CADUCEUS therefore focusses on those diseases that are
most likely, given the symptoms, clinical signs, and the results of laboratory tests obtained
from the patient.

To a growing extent, expert systems are also being developed in technical fields. One of
the first systems with which the phrase expert system has been associated, is HEURISTIC
DENDRAL. The DENDRAL project commenced in 1965 at Stanford University. The system
was developed by J. Lederberg, an organic chemist (and Nobel prize winner in chemistry), in
conjunction with E.A. Feigenbaum and B.G. Buchanan both well-known research scientists
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in artificial intelligence. The HEURISTIC DENDRAL system offers assistance in the field
of organic chemistry in determining the structural formula of a chemical compound that has
been isolated from a given sample. In determining a structural formula, information con-
cerning the chemical formula, such as C4H9OH for butanol, and the source the compound
has been taken from, is used as well as information that has been obtained by subjecting
the compound to physical, chemical and spectrometric tests. The method employed is called
generate-and-test, since the system first generates all plausible molecular structures as hy-
potheses, which subsequently are tested against the observed data. The original DENDRAL
algorithm was developed by J. Lederberg for generating all possible isomers of a chemical com-
pound. HEURISTIC DENDRAL contains a subsystem, the so-called Structure Generator,
which implements the DENDRAL algorithm, but in addition incorporates various heuristic
constraints on possible structures, thus reducing the number of alternatives to be considered
by the remainder of the system. In particular, mass spectrometry is useful for finding the
right structural formula. In a mass spectrometer, the compound is bombarded with a beam of
electrons in vacuum, causing the molecule to break up into several smaller charged fragments.
These fragments are accelerated within an electrical field, and are bent off in proportion to
their mass-charge ratio, using a magnetic field. The fragments that are separated this way
cause a pattern called a spectrogram, which is recorded by means of a writing device. Such a
spectrogram shows a number of peaks corresponding to the respective mass-charge ratios of
the separated fragments. A spectrogram provides significant information about the structure
of the original chemical compound. HEURISTIC DENDRAL helps in interpreting the pat-
terns in a spectrogram. To this end, another subsystem of HEURISTIC DENDRAL, called
the Predictor, suggests expected mass spectrograms for each molecular structure generated
by the Structure Generator. Each expected mass spectrogram is then tested against the
mass spectrogram observed using some measure of similarity for comparison; this has been
implemented in the last part of the system, the Evaluation Function. Usually, more than one
molecular structure matches the pattern found in the spectrogram. Therefore, the system
usually produces more than one answer, ordered by the amount of evidence favouring them.

XCON, previously called R1, is an expert system able to configure VAX, PDP11, and
microVAX computer systems from Digital Equipment Corporation (DEC). DEC offers the
customer a wide choice in components when purchasing computer equipment, so that each
client can be provided with a custom-made system. Given the customer’s order a configu-
ration is made, possibly showing that a specific component has to be replaced by another
equivalent component, or that a certain component has to be added in order to arrive at a
fully operational system. The problem is not so much that the information is incomplete or
inexact but merely that the information is subject to rapid change. Moreover, configuring
a computer system requires considerable skill and effort. In the late seventies, DEC in con-
junction with J. McDermott from Carnegie-Mellon University commenced the development
of XCON. Since 1981, XCON is fully operational. At present, XCON is supplemented with
XSEL, a system that assists DEC agents in drawing up orders.

The expert systems mentioned above are classics. Inspired by their success, many more
expert systems have been constructed since the end of the seventies. The systems have also led
to the construction of various direct derivatives. For example, the MYCIN system has been
redesigned to the NEOMYCIN system, in which the various diagnostic tasks are distinguished
more explicitly. HEURISTIC DENDRAL has been elaborated further by incorporating im-
proved subsystems for generating and testing plausible molecular structures. Moreover, a
system capable of learning heuristics from example has been developed, called METADEN-
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DRAL, to ease the transfer of domain knowledge for use in HEURISTIC DENDRAL. In the
suggested reading at the end of this chapter, several more recent expert systems are briefly
discussed.

1.3 Separating knowledge and inference

In the early years, expert systems were usually written in a high-level programming language.
LISP, in particular, was frequently chosen for the implementation language. When using a
high-level programming language as an expert system building tool, however, one has to pay
a disproportionate amount of attention to the implementational aspects of the system which
have nothing to do with the field to be modelled. Moreover, the expert knowledge of the
field and the algorithms for applying this knowledge automatically, will be highly interwoven
and not easily set apart. This led to systems that once constructed, were practically not
adaptable to changing views on the field of concern. Expert knowledge however has a dynamic
nature: knowledge and experience are continuously subject to changes. Awareness of these
properties has led to the view that the explicit separation of the algorithms for applying the
highly-specialized knowledge from the knowledge itself is highly desirable if not mandatory
for developing expert systems. This fundamental insight for the development of present-day
expert systems is formulated in the following equation, sometimes called the paradigm of
expert system design:

expert system = knowledge + inference

Consequently, an expert system typically comprises the following two essential components:

• A knowledge base capturing the domain-specific knowledge, and

• An inference engine consisting of algorithms for manipulating the knowledge represented
in the knowledge base.

Nowadays, an expert system is rarely written in a high-level programming language. It fre-
quently is constructed in a special, restricted environment, called an expert system shell.
An example of such an environment is the well-known EMYCIN (Essential MYCIN) system
that originated from MYCIN by stripping it of its knowledge concerning infectious disease.
Recently, several more general tools for building expert systems, more like special-purpose
programming languages, have become available, where again such a separation between knowl-
edge and inference is enforced. These systems will be called expert system builder tools in
this book.

The domain-specific knowledge is laid down in the knowledge base using a special knowledge-
representation formalism. In an expert system shell or an expert system builder tool, one or
more knowledge-representation formalisms are predefined for encoding the domain knowledge.
Furthermore, a corresponding inference engine is present that is capable of manipulating the
knowledge represented in such a formalism. In developing an actual expert system only the
domain-specific knowledge has to be provided and expressed in the knowledge-representation
formalism. Several advantages arise from the fact that a knowledge base can be developed
separately from the inference engine, for instance, a knowledge base can be developed and
refined stepwise, and errors and inadequacies can easily be remedied without making major
changes in the program text necessary. Explicit separation of knowledge and inference has
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the further advantage that a given knowledge base can be substituted by a knowledge base
on another subject thus rendering quite a different expert system.

Developing a specific expert system is done by consulting various knowledge sources, such
as human experts, text books, and databases. Building an expert system is a task requiring
high skills; the person performing this task is called the knowledge engineer. The process of
collecting and structuring knowledge in a problem domain is called knowledge acquisition. If,
more in particular, the knowledge is obtained by interviewing domain experts, one speaks
of knowledge elicitation. Part of the work of a knowledge engineer concerns the selection of
a suitable knowledge-representation formalism for presenting the domain knowledge to the
computer in an encoded form.

We now present a short overview of the subjects which will be dealt with in this book.
Representing the knowledge that is to be used in the process of problem solving has for a long
time been an underestimated issue in artificial intelligence. Only in the early seventies has it
been recognized as an issue of importance and a separate area of research called knowledge
representation came into being. There are various prerequisites to a knowledge-representation
formalism before it may be considered to be suitable for encoding domain knowledge. A
suitable knowledge-representation formalism should:

• Have sufficient expressive power for encoding the particular domain knowledge;

• Posses a clean semantic basis, such that the meaning of the knowledge present in the
knowledge base is easy to grasp, especially by the user;

• Permit efficient algorithmic interpretation;

• Allow for explanation and justification of the solutions obtained by showing why certain
questions were asked of the user, and how certain conclusions were drawn.

Part of these conditions concerns the form (syntax ) of a knowledge-representation formalism;
others concern its meaning (semantics). Unfortunately, it turns out that there is not a
single knowledge-representation formalism which meets all of the requirements mentioned.
In particular, the issues of expressive power of a formalism and its efficient interpretation
seem to be conflicting. However, as we shall see in the following chapters, by restricting
the expressive power of a formalism (in such a way that the domain knowledge can still be
represented adequately), we often arrive at a formalism that does indeed permit efficient
interpretation.

From the proliferation of ideas that arose in the early years, three knowledge-representation
formalisms have emerged which at present still receive a lot of attention:

• Logic,

• Production rules,

• Semantic nets and frames.

In the three subsequent chapters, we shall deal with the question how knowledge can be
represented using these respective knowledge-representation formalisms.

Associated with each of the knowledge-representation formalisms are specific methods for
handling the represented knowledge. Inferring new information from the available knowledge
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is called reasoning or inference. With the availability of the first digital computers, auto-
mated reasoning in logic became one of the first subjects of research, yielding results which
concerned proving theorems from mathematics. However, in this field, the immanent conflict
between the expressiveness of the logic required for representing mathematical problems and
its efficient interpretation was soon encountered. Sufficiently efficient algorithms were lacking
for applying logic in a broader context. In 1965 though, J.A. Robinson formulated a general
inference rule, known as the resolution principle, which made automated theorem proving
more feasible. This principle served as the basis for the field of logic programming and the
programming language PROLOG. In logic programming, logic is used for the representation
of the problem to be solved; the logical specification can then be executed by an interpreter
based on resolution. Some attempts were made in the sixties, for example by C.C. Green, to
use logic as a knowledge-representation formalism in fields other than mathematics. At that
time, these theorem-proving systems were known as question-answering systems; they may
now be viewed as early logic-based expert systems. In the classical expert systems however,
a choice was made for more specialized and restricted knowledge-representation formalisms
for encoding domain knowledge. Consequently, logic has seldom been used as a knowledge-
representation formalism for building expert systems (although many expert systems have
been developed using PROLOG). On the other hand, as we shall see, thinking of the other
knowledge-representation formalisms as some special forms of logic, often aids in the under-
standing of their meaning, and makes many of their peculiarities more evident than would be
otherwise the case. We therefore feel that a firm basis in logic helps the knowledge engineer
to understand building expert systems, even if some other formalism is employed for their
actual construction. In chapter 2 we pay attention to the representation of knowledge in logic
and automated reasoning with logical formulas; it will also be indicated how logic can be used
for building an expert system.

Since the late sixties, considerable effort in artificial intelligence research has been spent
on developing knowledge-representation formalisms other than logic, resulting in the before-
mentioned production rules and frames. For each of these formalisms, special inference meth-
ods have been developed that on occasion closely resemble logical inference. Usually, two
basic types of inference are discerned. The phrases top-down inference and goal-directed in-
ference are used to denote the type of inference in which given some initial goal, subgoals
are generated by employing the knowledge in the knowledge base until such subgoals can be
reached using the available data. The second type of inference is called bottom-up inference
or data-driven inference. When applying this type of inference, new information is derived
from the available data and the knowledge in the knowledge base. This process is repeated
until it is not possible any more to derive new information. The distinction between top-down
inference and bottom-up inference is most explicitly made in reasoning with production rules,
although the two types of reasoning are distinguished in the context of the other knowledge-
representation formalisms as well. The production rule formalism and its associated reasoning
methods are the topics of chapter 3.

Chapter 4 is concerned with the third major approach in knowledge representation: se-
mantic nets and frames. These knowledge representation schemes are characterized by a
hierarchical structure for storing information. Since semantic nets and frames have several
properties in common and the semantic net generally is viewed as the predecessor of the
frame formalism, these formalisms are dealt with in one chapter. The method used for the
manipulation of knowledge represented in semantic nets and frames is called inheritance.
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Figure 1.1: Global architecture of an expert system.

As we have noted before, expert systems are used to solve real-life problems which do
not have a predefined solution to be found in the relevant literature. Generally, the knowl-
edge that is explicitly available on the subject is incomplete or uncertain. Nevertheless, a
human expert often can arrive at a sound solution to the given problem using such deficient
knowledge. Consequently, expert systems research aims at building systems capable of han-
dling incomplete and uncertain information as well as human experts are. Several models for
reasoning with uncertainty have been developed. Some of these will be discussed in chapter
5.

The inference engine of a typical expert system shell is part of a so-called consultation
system. The consultation system further comprises a user interface for the interaction with the
user, mostly in the form of question-answering sessions. Furthermore, the user of the expert
system and the knowledge engineer are provided with a variety of facilities for investigating the
contents of the knowledge base and the reasoning behaviour of the system. The explanation
facilities offer the possibility to ask at any moment during the course of the consultation of
the knowledge base how certain conclusions were arrived at, why a specific question is asked,
or why other conclusions on the contrary have not been drawn. By using the trace facilities
available in the consultation system, the reasoning behaviour of the system can be followed
one inference step at a time during the consultation. It turns out that most of these facilities
are often more valuable to the knowledge engineer, who applies them mainly for debugging
purposes, than to the final user of the system. Chapter 6 deals with these facilities. Figure 1.1
shows the more or less characteristic architecture of an expert system, built using an expert
system shell.

We mentioned before that, except for the expert system shells, we also have the more
powerful expert system builder tools for developing knowledge-based systems, and expert
systems more in particular. Chapter 7 deals with two well-known tools. Discussed are OPS5,
a special-purpose programming language designed for developing production systems, and
LOOPS, a multiparadigm programming environment for expert systems supporting object-
oriented programming amongst other programming paradigms. Furthermore, chapter 7 pays
attention to CENTAUR, a dedicated expert system in which several knowledge-representation
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Figure 1.2: Classification of blood vessels.

schemes and reasoning methods are combined.
This book discusses a number of programs written in LISP and PROLOG to illustrate

several implementation techniques for developing an expert system builder tool or shell. For
those not familiar with one or both of these languages, appendix A provides an introduction
to PROLOG, and appendix B introduces LISP.

1.4 A problem domain

In each of the three subsequent chapters, a specific knowledge-representation formalism and
its associated inference method will be treated. When discussing these different knowledge-
representation formalisms, where possible, examples will be drawn from one and the same
medical problem domain: the human cardiovascular system. To this purpose, some aspects
of this domain will be introduced here.

The cardiovascular system consists of the heart and a large connected network of blood
vessels. The blood vessels are subdivided in three categories: the arteries, the capillaries and
the veins. These categories are further subdivided according to figure 1.2. The aorta, the
brachial artery and vein, and the ulnar artery are all examples of specific blood vessels. An
artery transfers blood from the heart to the tissues by means of capillaries and is distinguished
from other vessels by its thick wall containing a thick layer of smooth muscle cells. In most
cases, an artery contains blood having a high oxygen level. Contrary to the arteries, veins
transfer blood from the tissues back to the heart. They have a relatively thin wall containing
fewer muscular fibres than arteries but more fibrous connective tissue than these. The blood
contained in veins is usually oxygen-poor.

The mean blood pressure in arteries is relatively high. For example, the mean blood
pressure in the aorta is about 100 mmHg and the mean blood pressure in the ulnar artery is
about 90 mmHg. Within the veins a considerably lower blood pressure is maintained. Table
1.1 summarizes some blood pressure values for different portions of the cardiovascular system.
One of the exceptions to the classification of blood vessels just discussed is the pulmonary
artery. This artery transfers blood from the heart to the lungs and has a thick muscular
coat. Due to these characteristics the vessel has been classified as an artery. However, the
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Table 1.1: The mean blood pressure for some categories of blood vessels.
Category Mean blood pressure

(mmHg)

arteries 40–100
large arteries 90–100
small arteries 80–90
arterioles 40–80
veins < 10

Table 1.2: Diameters of different blood-vessel categories.
Category Diameter

large arteries 1–2.5 cm
small arteries 0.4 cm
arterioles 30 µm
large veins 1.5–3 cm
small veins 0.5 cm

pulmonary artery transfers oxygen-poor blood and the mean blood pressure is rather low, 13
mmHg, which is, however, still higher than the blood pressure maintained in the pulmonary
veins.

Table 1.2 indicates the diameters of blood vessels belonging to various categories. For
example the aorta, the largest artery, has a diameter equal to 2.5 centimetre. The percentage
of the total blood volume contained in the different portions of the vascular system is shown
in table 1.3. The heart contains another 7% of the total blood volume. The way the cardio-
vascular system operates is often explained by using the mechanical analogue of a hydraulic
system composed of a pump (the heart), a collection of interconnected conduits (the blood
vessels), and a container connected to the pump (the pressurization system), which is filled
with water.

The information presented in the discussion above is generally applicable to any healthy
human adult. However, the presence of disease in a particular person might result in some of
the parameters taking a value different from normal. For example, in a patient suffering from
an arterial stenosis, the blood pressure distal (that is, in a direction away from the heart)
from the stenosis (narrowing) in the artery is about near zero.

The mean blood pressure in a patient is computed from values for the blood pressure

Table 1.3: Percentage of the total blood volume contained in various vessels.
Category Percentage of the

total blood volume

large arteries 11
small arteries 7
arterioles 2
capillaries 9
large veins 39
small veins 25
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over some time interval. If the blood pressure is recorded, a curve is obtained as pictured
in figure 1.3. The blood pressure fluctuates between a maximal pressure, called the systolic
level, and a minimal pressure, called the diastolic level. The difference between the systolic
and diastolic pressure levels is called the pulse pressure. Suppose that a physician measures
the blood pressure in a patient; by using information concerning the time interval during
which the blood pressure was measured, the mean blood pressure in the time interval [t0, t1]
can be computed using the following formula

P̄ =

∫ t1
t0

P (t)dt

t1 − t0

where P̄ indicates the mean blood pressure, t0 and t1 the points in time at which P (t), the
blood pressure, was recorded. In daily practice, only approximate values for the systolic and
diastolic pressure are obtained, using an ordinary manometer with arm cuff.

In addition to the blood pressure, in some patients the cardiac output is determined. The
cardiac output is the volume of blood pumped by the heart into the aorta each minute. It
may be computed using the following formula:

CO = F · SV

where CO is the cardiac output and F the heart rate. SV stands for the stroke volume, that
is the volume of blood which is pumped into the aorta with each heart beat. F and SV can
be recorded.

The kind of knowledge concerning the human cardiovascular system presented above, is
called deep knowledge. Deep knowledge entails the detailed structure and function of some
system in the domain of discourse. Deep knowledge may be valuable for diagnostic reasoning,
that is, reasoning aimed at finding the cause of failure of some system. For example, if
the blood pressure in a patient is low, we know from the structure and function of the
cardiovascular system that the cause may be a failure of the heart to expel enough blood,
a failure of the blood vessels to deliver enough resistance to the blood flow, or a volume
of the blood too low to fill the system with enough blood. In a patient suffering from some
cardiovascular disorder, the symptoms, signs and the data obtained from the tests the patient
has been subjected to, are usually related to that disorder. On the other hand, the presence of
certain symptoms, signs and test results may also be used to diagnose of cardiovascular disease.
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For instance, if a patient experiences a cramp in the leg when walking, which disappears within
one or two minutes in rest, then a stenosis of one of the arteries in the leg, possibly due to
atherosclerosis, is conceivable. This kind of knowledge is often called shallow knowledge to
distinguish it from deep knowledge. As one can see, no knowledge concerning the structure
and function of the cardiovascular system is applied for establishing the diagnosis; instead, the
empirical association of a particular kind of muscle cramps and some cardiovascular disease is
used as evidence for the diagnosis of arterial stenosis. Many expert systems only contain such
shallow knowledge, since this is the kind of knowledge employed in dayly practice by field
experts for rapidly handling the problems they encounter. However, using deep knowledge
frequently leads to a better justification of the solution proposed by the system. Other
examples of the application of deep and shallow knowledge will be met with in the next
chapters.

It is not always easy to sharply distinguish between deep and shallow knowledge in a
problem domain. Consider the following example from medical diagnosis. If the systolic
pressure measured in the patient exceeds 140 mmHg, and on physical examination a diastolic
murmur or an enlarged heart is noticed, an aortic regurgitation (leaky aortic valve) may be the
cause of symptoms and signs. We see in this example that some, but limited, use is made of
the structure and function of the cardiovascular system for diagnosis. The following example
from the area of medical diagnosis finishes our description of the problem domain: when a
patient is suffering from abdominal pain, and by auscultation a murmur in the abdomen is
noticed, and a pulsating mass is felt on examination, an aneurysm (bulge) of the abdominal
aorta quite likely causes these signs and symptoms.

Suggested reading

In this chapter the historical development of artificial intelligence was briefly sketched. Exam-
ples of textbooks containing a more extensive introduction to the area of artificial intelligence
are [Bonnet85], [Winston84], [Nilsson82] and [Charniak86]. A more fundamental book on
artificial intelligence is [Bibel86]. General introductory text books on expert systems are, in
addition to the present book, [Harmon85], [Jackson86] and [Frost86]. [Luger89] is a general
book about artificial intelligence, with some emphasis on expert systems and AI programming
languages. In [Hayes-Roth83] the attention is focussed on methods for knowledge engineering.
A more in-depth study of expert systems may be based on consulting the following papers
and books.

The article in which M. Davis describes the implementation of a theorem prover for
Presburger’s algorithm in number theory can be found in [Siekmann83a]. Question-answering
systems are discussed in [Green69]. [Chang73] presents a thorough treatment of resolution
and discusses a large number of refinements of this principle. The General Problem Solver
is discussed in [Newell63] and [Ernst69]. In the latter book a number of problems are solved
using techniques from GPS.

There is available a large and ever growing number of books and papers on specific expert
systems. Several of the early, and now classical, expert systems in the area of medicine are
discussed in [Szolovits82] and [Clancey84]. [Shortliffe76] treats MYCIN in considerable detail.
Information about NEOMYCIN can be found in [Clancey84]. INTERNIST is described in
[Miller82]. Except for MYCIN and INTERNIST several other expert systems have been
developed in the area of medicine: PIP [Pauker76] for the diagnosis of renal disorders, PUFF
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[Aikins84] for the interpretation of pulmonary function test results, CASNET [Weiss78] for the
diagnosis of glaucoma, ABEL [Patil82] for the diagnosis of acid-base and electrolyte disorders,
VM [Fagan80] for the recording and interpretation of physiological data from patients who
need ventilatory assistance after operation and HEPAR [Lucas89b] for the diagnosis of liver
and biliary disease.

The HEURISTIC DENDRAL system is described in [Buchanan69] and [Lindsay80].
METADENDRAL is described in the latter reference and in [Buchanan78]. [Kraft84] dis-
cusses XCON. In a large number of areas expert systems have been developed. R1 is dis-
cussed in [McDermott82b]. PROSPECTOR [Duda79] and DIPMETER ADVISOR [Smith83]
are expert systems in the area of geology, Fossil [Brough86] is a system meant for the dating
of fossils, SPAM [McKeown85] is a system for the interpretation of photographs of air port
situations and a system in the area of telecommunication is ACE [Vesonder83]. RESEDA
[Zarri84] is a system that contains biographical data pertaining the French history in the
period from 1350 to 1450.

The expert system shell EMYCIN (Essential MYCIN) has originated in the MYCIN sys-
tem. It is discussed in detail in [Melle79], [Melle80], [Melle81], and [Buchanan84]. An in-
teresting non-medical application developed using EMYCIN is SACON [Bennett78]. The
architecture of CENTAUR [Aikins83] has been inspired by practical experience with the
MYCIN-like expert system PUFF [Aikins84]. PUFF and CENTAUR both concern the inter-
pretation of data obtained from pulmonary function tests, in particular spirometry. OPS5 is
a programming language for developing production systems. Its use is described in [Brown-
ston85]. LOOPS is a programming environment that provides the user with a large number
of techniques for the representation of knowledge [Stefik84, Stefik86].

An overview of the various formalisms for representing knowledge employed in artificial
intelligence is given in [Barr80]. In addition, [Brachman85a] is a collection of distinguished
papers in the area of knowledge representation. In particular [Levesque85] is an interesting
paper that discusses the relationship between the expressiveness of a knowledge-representation
language and the computational complexity of associated inference algorithms.

Information on the anatomy and physiology of the cardiovascular system can be found in
[Guyton76].

Exercises

(1.1) One of the questions raised in the early days of artificial intelligence was: ‘Can machines
think?’. Nowadays, the question remains the subject of heated debates. This question
was most lucidly formulated and treated by A. Turing in the paper ‘Computing Ma-
chinery and Intelligence’ which appeared in Mind, vol. 59, no. 236, 1950. Read the
paper by A. Turing, and try to think what your answer would be when someone posed
that question to you.

(1.2) Read the description of GPS in section 1.1 of this chapter again. Give a specification
of the process of shopping in terms of an initial state, final state, and transitions, as
would be required by GPS.

(1.3) An important component of the HEURISTIC DENDRAL system is the Structure Gen-
erator subsystem which generates plausible molecular structures. Develop a program
in PROLOG or LISP that enumerates all possible structural formulas of a given alkane
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(that is, a compound having the chemical formula CnH2n+2) given the chemical formula
as input for n = 1, . . . , 8.

(1.4) The areas of knowledge engineering and software engineering have much in common.
However, there are also some evident distinctions. Which similarities and differences do
you see between these fields?

(1.5) Give some examples of deep and shallow knowledge from a problem domain you are
familiar with.

(1.6) Mention some problem areas in which expert systems can be of real help.
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One of the earliest formalisms for the representation of knowledge is logic. The formalism is
characterized by a well-defined syntax and semantics, and provides a number of inference
rules to manipulate logical formulas on the basis of their form in order to derive new
knowledge. Logic has a very long and rich tradition, going back to the ancient Greeks: its
roots may be traced to Aristotle. However, it took until the present century before the
mathematical foundations of modern logic were laid, amongst others by T. Skolem, J.
Herbrand, K. Gödel, and G. Gentzen. The work of these great and influential
mathematicians rendered logic firmly established before the area of computer science came
into being.

Already from the early fifties, as soon as the first digital computers became available,
research was initiated on using logic for problem solving by means of the computer. This
research was undertaken from different points of view. Several researchers were primarily
interested in the mechanization of mathematical proofs: the efficient automated generation
of such proofs was their main objective. One of them was M. Davis who, already in 1954,
developed a computer program which was capable of proving several theorems from number
theory. The greatest triumph of the program was its proof that the sum of two even
numbers is even. Other researchers, however, were more interested in the study of human
problem solving, more in particular in heuristics. For these researchers, mathematical
reasoning served as a point of departure for the study of heuristics, and logic seemed to
capture the essence of mathematics; they used logic merely as a convenient language for the
formal representation of human reasoning. The classical example of this approach to the
area of theorem proving is a program developed by A. Newell, J.C. Shaw and H.A. Simon in

15
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1955, called the Logic Theory Machine. This program was capable of proving several
theorems from the Principia Mathematica of A.N. Whitehead and B. Russell. As early as
1961, J. McCarthy, amongst others, pointed out that theorem proving could also be used for
solving non-mathematical problems. This idea was elaborated by many authors.
Well-known is the early work on so-called question-answering systems by J.R. Slagle and
the later work in this field by C.C. Green and B. Raphael.

After some initial success, it soon became apparent that the inference rules known at
that time were not as suitable for application in digital computers as hoped for. Many AI
researchers lost interest in applying logic, and shifted their attention towards the
development of other formalisms for a more efficient representation and manipulation of
information. The breakthrough came thanks to the development of an efficient and flexible
inference rule in 1965, named resolution, that allowed applying logic for automated problem
solving by the computer, and theorem proving finally gained an established position in
artificial intelligence and, more recently, in the computer science as a whole as well.

Logic can directly be used as a knowledge-representation formalism for building expert
systems; currently however, this is done only on a small scale. But then, the clear semantics
of logic makes the formalism eminently suitable as a point of departure for understanding
what the other knowledge-representation formalisms are all about. In this chapter, we first
discuss the subject of how knowledge can be represented in logic, departing from
propositional logic, which although having a rather limited expressiveness, is very useful for
introducing several important notions. First-order predicate logic, which offers a much
richer language for knowledge representation, is treated in Section 2.2. The major part of
this chapter however will be devoted to the algorithmic aspects of applying logic in an
automated reasoning system, and resolution in particular will be the subject of study.

2.1 Propositional logic

Propositional logic may be viewed as a representation language which allows us to express
and reason with statements that are either true or false. Examples of such statements are:

‘The aorta is a large artery’
‘10 mmHg > 90 mmHg’

Statements like these are called propositions and are usually denoted in propositional logic
by uppercase letters. Simple propositions such as P and Q are called atomic propositions or
atoms for short. Atoms can be combined with so-called logical connectives to yield composite
propositions. In the language of propositional logic, we have the following five connectives at
our disposal:

negation: ¬ (not)
conjunction: ∧ (and)
disjunction: ∨ (or)
implication: → (if then)
bi-implication: ↔ (if and only if)

For example, when we assume that the propositions G and D have the following meaning

G = ‘The aorta is a large artery’
D = ‘The aorta has a diameter equal to 2.5 centimetre’
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then the composite proposition

G ∧D

has the meaning:

‘The aorta is a large artery and the aorta has a diameter equal to 2.5 centimetre’

However, not all formulas consisting of atoms and connectives are (composite) propositions.
In order to distinguish syntactically correct formulas that do represent propositions from those
that do not, the notion of a well-formed formula is introduced in the following definition.

Definition 2.1 A well-formed formula in propositional logic is an expression having one of
the following forms:

(1) An atom is a well-formed formula.

(2) If F is a well-formed formula, then (¬F ) is a well-formed formula.

(3) If F and G are well-formed formulas, then (F ∧ G), (F ∨ G), (F → G) and (F ↔ G)
are well-formed formulas.

(4) No other formula is well-formed.

EXAMPLE 2.1

Both formulas (F ∧(G→ H)) and (F ∨(¬G)) are well-formed according to the previous
definition, but the formula (→ H) is not.

In well-formed formulas, parentheses may be omitted as long as no ambiguity can occur; the
adopted priority of the connectives is, in decreasing order, as follows:

¬ ∧ ∨ → ↔

In the following, the term formula is used as an abbreviation when a well-formed formula is
meant.

EXAMPLE 2.2

The formula P → Q ∧R is the same as the formula (P → (Q ∧R)).

The notion of well-formedness of formulas only concerns the syntax of formulas in proposi-
tional logic: it does not express the formulas to be either true or false. In other words, it tells
us nothing with respect to the semantics or meaning of formulas in propositional logic. The
truth or falsity of a formula is called its truth value. The meaning of a formula in propositional
logic is defined by means of a function w : PROP→ {true, false} which assigns to each propo-
sition in the set of propositions PROP either the truth value true or false. Consequently, the
information that the atom P has the truth value true, is now denoted by w(P ) = true, and
the information that the atom P has the truth value false, is denoted by w(P ) = false. Such
a function w is called an interpretation function, or an interpretation for short, if it satisfies
the following properties (we assume F and G to be arbitrary well-formed formulas):



18 Chapter 2. Logic and Resolution

Table 2.1: The meanings of the connectives.
F G ¬F F ∧G F ∨G F → G F ↔ G

true true false true true true true
true false false false true false false
false true true false true true false
false false true false false true true

Table 2.2: Truth table for P → (¬Q ∧R).
P Q R ¬Q ¬Q ∧R P → (¬Q ∧R)

true true true false false false
true true false false false false
true false true true true true
true false false true false false
false true true false false true
false true false false false true
false false true true true true
false false false true false true

(1) w(¬F ) = true if w(F ) = false, and w(¬F ) = false if w(F ) = true.

(2) w(F ∧G) = true if w(F ) = true and w(G) = true; otherwise w(F ∧G) = false.

(3) w(F ∨G) = false if w(F ) = false and w(G) = false ; in all other cases, that is, if at least
one of the function values w(F ) and w(G) equals true, we have w(F ∨G) = true.

(4) w(F → G) = false if w(F ) = true and w(G) = false; in all other cases we have
w(F → G) = true.

(5) w(F ↔ G) = true if w(F ) = w(G); otherwise w(F ↔ G) = false .

These rules are summarized in Table 2.1. The first two columns in this table list all possible
combinations of truth values for the atomic propositions F and G; the remaining columns
define the meanings of the respective connectives. If w is an interpretation which assigns to
a given formula F the truth value true, then w is called a model for F .

By repeated applications of the rules listed in table 2.1, it is possible to express the truth
value of an arbitrary formula in terms of the truth values of the atoms the formula is composed
of. In a formula containing n different atoms, there are 2n possible ways of assigning truth
values to the atoms in the formula.

EXAMPLE 2.3

Table 2.2 lists all possible combinations of truth values for the atoms in the formula
P → (¬Q ∧ R); for each combination, the resulting truth value for this formula is
determined. Such a table where all possible truth values for the atoms in a formula
F are entered together with the corresponding truth value for the whole formula F , is
called a truth table.
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example:example:example:
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P ∧ ¬PP ∨QP ∨ ¬P

Figure 2.1: Relationship between validity and satisfiability.

Definition 2.2 A formula is called a valid formula if it is true under all interpretations. A
valid formula is often called a tautology. A formula is called invalid if it is not valid.

So, a valid formula is true regardless of the truth or falsity of its constituent atoms.

EXAMPLE 2.4

The formula ((P → Q) ∧ P ) → Q is an example of a valid formula. In the previous
example we dealt with an invalid formula.

Definition 2.3 A formula is called unsatisfiable or inconsistent if the formula is false under
all interpretations. An unsatisfiable formula is also called a contradiction. A formula is called
satisfiable or consistent if it is not unsatisfiable.

Note that a formula is valid precisely when its negation is unsatisfiable and vice versa.

EXAMPLE 2.5

The formulas P ∧ ¬P and (P → Q) ∧ (P ∧ ¬Q) are both unsatisfiable.

Figure 2.1 depicts the relationships between the notions of valid, invalid, and satisfiable, and
unsatisfiable formulas.

Definition 2.4 Two formulas F and G are called equivalent, written as F ≡ G, if the truth
values of F and G are the same under all possible interpretations.

Two formulas can be shown to be equivalent by demonstrating that their truth tables are
identical.

EXAMPLE 2.6

Table 2.3 shows that ¬(P ∧Q) ≡ ¬P ∨ ¬Q.
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Table 2.3: Truth table of ¬(P ∧Q) and ¬P ∨ ¬Q.
P Q ¬(P ∧Q) ¬P ∨ ¬Q

true true false false
true false true true
false true true true
false false true true

Table 2.4: Laws of equivalence.
¬(¬F ) ≡ F (a)
F ∨G ≡ G ∨ F (b)
F ∧G ≡ G ∧ F (c)
(F ∧G) ∧H ≡ F ∧ (G ∧H) (d)
(F ∨G) ∨H ≡ F ∨ (G ∨H) (e)
F ∨ (G ∧H) ≡ (F ∨G) ∧ (F ∨H) (f)
F ∧ (G ∨H) ≡ (F ∧G) ∨ (F ∧H) (g)
F ↔ G ≡ (F → G) ∧ (G→ F ) (h)
F → G ≡ ¬F ∨G (i)
¬(F ∧G) ≡ ¬F ∨ ¬G (j)
¬(F ∨G) ≡ ¬F ∧ ¬G (k)

Using truth tables the logical equivalences listed in Table 2.4 can easily be proven. These
equivalences are called laws of equivalence. Law (a) is called the law of double negation; the
laws (b) and (c) are called the commutative laws; (d) and (e) are the so-called associative
laws, and (f) and (g) are the distributive laws. The laws (j) and (k) are known as the laws
of De Morgan. These laws often are used to transform a given well-formed formula into a
logically equivalent but syntactically different formula.

In the following, a conjunction of formulas is often written as a set of formulas, where the
elements of the set are taken as the conjunctive subformulas of the given formula.

EXAMPLE 2.7

The set S = {F ∨G,H} represents the following formula: (F ∨G) ∧H.

Truth tables can be applied to determine whether or not a given formula follows logically
from a given set of formulas. Informally speaking, a formula logically follows from a set of
formulas if it is satisfied by all interpretations satisfying the given set of formulas; we say
that the formula is a logical consequence of the formulas in the given set. The following is a
formal definition of this notion.

Definition 2.5 A formula G is said to be a logical consequence of the set of formulas F =
{F1, . . . , Fn}, n ≥ 1, denoted by F � G, if for each interpretation w for which w(F1∧· · ·∧Fn) =
true, we have w(G) = true.

EXAMPLE 2.8
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The formula R is a logical consequence of the set of formulas {P ∧ ¬Q,P → R}. Thus
we can write {P ∧ ¬Q,P → R} � R.

Note that another way of stating that two formulas F and G are logically equivalent, that is,
F ≡ G, is to say that both {F} � G and {G} � F hold. This tells us that the truth value of
F and G are explicitly related to each other, which can also be expressed as � (F ↔ G).

Satisfiability, validity, equivalence and logical consequence are semantic notions; these
properties are generally established using truth tables. However, for deriving logical conse-
quences from of a set of formulas for example, propositional logic provides other techniques
than using truth tables as well. It is possible to derive logical consequences by syntactic
operations only. A formula which is derived from a given set of formulas then is guaranteed
to be a logical consequence of that set if the syntactic operations employed meet certain con-
ditions. Systems in which such syntactic operations are defined, are called (formal) deduction
systems. Various sorts of deduction systems are known. An example of a deduction system is
an axiomatic system, consisting of a formal language, such as the language of propositional
logic described above, a set of inference rules (the syntactic operations) and a set of axioms.
In Section 2.4 we shall return to the subject of logical deduction.

2.2 First-order predicate logic

In propositional logic, atoms are the basic constituents of formulas which are either true or
false. A limitation of propositional logic is the impossibility to express general statements
concerning similar cases. First-order predicate logic is more expressive than propositional
logic, and such general statements can be specified in its language. Let us first introduce the
language of first-order predicate logic. The following symbols are used:

• Predicate symbols, usually denoted by uppercase letters. Each predicate symbol has
associated a natural number n, n ≥ 0, indicating the number of arguments the predicate
symbol has; the predicate symbol is called an n-place predicate symbol. 0-place or
nullary predicate symbols are also called (atomic) propositions. One-place, two-place
and three-place predicate symbols are also called unary, binary and ternary predicate
symbols, respectively.

• Variables, usually denoted by lowercase letters from the end of the alphabet, such as x,
y, z, possibly indexed with a natural number.

• Function symbols, usually denoted by lowercase letters halfway the alphabet. Each
function symbol has associated a natural number n, n ≥ 0, indicating its number of
arguments; the function symbol is called n-place. Nullary function symbols are usually
called constants.

• The logical connectives which have already been discussed in the previous section.

• Two quantifiers: the universal quantifier ∀, and the existential quantifier ∃. The quan-
tifiers should be read as follows: if x is a variable, then ∀x means ‘for each x’ or ‘for all
x’, and ∃x means ‘there exists an x’.

• A number of auxiliary symbols such as parentheses and commas.
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Variables and functions in logic are more or less similar to variables and functions in for
instance algebra or calculus.

Before we define the notion of an atomic formula in predicate logic, we first introduce the
notion of a term.

Definition 2.6 A term is defined as follows:

(1) A constant is a term.

(2) A variable is a term.

(3) If f is an n-place function symbol, n ≥ 1, and t1, . . . , tn are terms, then f(t1, . . . , tn) is
a term.

(4) Nothing else is a term.

So, a term is either a constant, a variable or a function of terms. Recall that a constant may
also be viewed as a nullary function symbol. An atomic formula now consists of a predicate
symbol and a number of terms to be taken as the arguments of the predicate symbol.

Definition 2.7 An atomic formula, or atom for short, is an expression of the form
P (t1, . . . , tn), where P is an n-place predicate symbol, n ≥ 0, and t1, . . . , tn are terms.

EXAMPLE 2.9

If P is a unary predicate symbol and x is a variable, then P (x) is an atom.
Q(f(y), c, g(f(x), z)) is an atom if Q is a ternary predicate symbol, c is a constant,
f a unary function symbol, g a binary function symbol, and x, y and z are variables.
For the same predicate symbols P and Q, P (Q) is not an atom, because Q is not a term
but a predicate symbol.

Composite formulas can be formed using the five connectives given in Section 2.1, together
with the two quantifiers ∀ and ∃ just introduced. As was done for propositional logic, we now
define the notion of a well-formed formula in predicate logic. The following definition also
introduces the additional notions of free and bound variables.

Definition 2.8 A well-formed formula in predicate logic, and the set of free variables of a
well-formed formula are defined as follows:

(1) An atom is a well-formed formula. The set of free variables of an atomic formula
consists of all the variables occurring in the terms in the atom.

(2) Let F be a well-formed formula with an associated set of free variables. Then, (¬F ) is
a well-formed formula. The set of free variables of (¬F ) equals the set of free variables
of F .

(3) Let F and G be well-formed formulas and let for each of these formulas a set of free
variables be given. Then, (F ∨ G), (F ∧ G), (F → G) and (F ↔ G) are well-formed
formulas. The set of free variables of each of these last mentioned formulas is equal to
the union of the sets of free variables of F and G.



2.2. First-order predicate logic 23

(4) If F is well-formed formula and x is an element of the set of free variables of F , then
both (∀xF ) and (∃xF ) are well-formed formulas. The set of free variables of each of
these formulas is equal to the set of free variables of F from which the variable x has
been removed. The variable x is called bound by the quantifier ∀ or ∃.

(5) Nothing else is a well-formed formula.

Note that we have introduced the notion of a formula in the preceding definition only from a
purely syntactical point of view: nothing has been said about the meaning of such a formula.

Parentheses will be omitted from well-formed formulas as long as ambiguity cannot occur;
the quantifiers then have a higher priority than the connectives.

Definition 2.9 A well-formed formula is called a closed formula, or a sentence, if its set of
free variables is empty; otherwise it is called an open formula.

EXAMPLE 2.10

The set of free variables of the formula ∀x∃y(P (x)→ Q(y, z)) is equal to {z}. So, only
one of the three variables in the formula is a free variable. The formula ∀x(P (x)∨R(x))
has no free variables at all, and thus is an example of a sentence.

In what follows, we shall primarily be concerned with closed formulas; the term formula will
be used to mean a closed formula, unless explicitly stated otherwise.

In the formula ∀x(A(x) → G(x)) all occurrences of the variable x in A(x) → G(x) are
governed by the associated universal quantifier; A(x) → G(x) is called the scope of this
quantifier.

EXAMPLE 2.11

The scope of the universal quantifier in the formula

∀x(P (x)→ ∃yR(x, y))

is P (x)→ ∃yR(x, y); the scope of the existential quantifier is the subformula R(x, y).

In propositional logic, the truth value of a formula under a given interpretation is obtained by
assigning either the truth value true or false to each of its constituent atoms according to this
specific interpretation. Defining the semantics of first-order predicate logic is somewhat more
involved than in propositional logic. In predicate logic, a structure representing the ‘reality’
is associated with the meaningless set of symbolic formulas: in a structure the objects or
elements of the domain of discourse, or domain for short, are enlisted, together with functions
and relations defined on the domain.

Definition 2.10 A structure S is a tuple

S = (D, {f̄n
i : Dn → D,n ≥ 1}, {P̄m

i : D→{true , false},m ≥ 0})

having the following components:

(1) A non-empty set of elements D, called the domain of S;
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(2) A set of functions defined on Dn, {f̄n
i : Dn → D,n ≥ 1};

(3) A non-empty set of mappings, called predicates, from Dm to the set of truth values
{true , false}, {P̄m

i : Dm → {true, false},m ≥ 0}.

Now we have to express how a given meaningless formula should be interpreted in a given
structure: it is not possible to state anything about the truth value of a formula as long as
it has not been prescribed which elements from the structure are to be associated with the
elements in the formula.

EXAMPLE 2.12

Consider the formula A(c). We associate the predicate having the intended meaning
‘is an artery’ with the predicate symbol A. The formula should be true if the constant
representing the aorta is associated with c; on the other hand, the same formula should
be false if the constant representing the brachial vein is associated with c. However,
if we associate the predicate ‘is a vein’ with A, the truth values of A(c) for the two
constants should be opposite to the ones mentioned before.

In the following definition, we introduce the notion of an assignment, which is a function that
assigns elements from the domain of a structure to the variables in a formula.

Definition 2.11 An assignment ( valuation) v to a set of formulas F in a given structure S
with domain D is a mapping from the set of variables in F to D.

The interpretation of (terms and) formulas in a structure S under an assignment v now
consists of the following steps. First, the constants in the formulas are assigned elements from
D. Secondly, the variables are replaced by the particular elements from D that have been
assigned to them by v. Then, the predicate and function symbols occurring in the formulas
are assigned predicates and functions from S. Finally, the truth values of the formulas are
determined.

Before the notion of an interpretation is defined more formally, a simple example in which
no function symbols occur, is given. For the reader who is not interested in the formal aspects
of logic, it suffices to merely study this example.

EXAMPLE 2.13

The open formula

F = A(x)→ O(x)

contains the unary predicate symbols A and O, and the free variable x. Consider the
structure S consisting of the domain D = {aorta , pulmonary-artery, brachial-vein} and
the set of predicates comprising of the following elements:

• a unary predicate Artery, with the intented meaning ‘is an artery’, defined by
Artery(aorta) = true, Artery(pulmonary-artery) = true and Artery(brachial-vein) =
false , and
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• the unary predicate Oxygenrich with the intended meaning ‘contains oxygen-rich
blood’, defined by Oxygenrich(aorta) = true, Oxygenrich(pulmonary-artery) =
false and
Oxygenrich(brachial-vein) = false .

Let us take for the predicate symbol A the predicate Artery, and for the predicate
symbol O the predicate Oxygenrich. It will be obvious that the atom A(x) is true
in S under any assignment v for which Artery(v(x)) = true; so, for example for the
assignment v(x) = aorta , we have that A(x) is true in S under v. Furthermore, F is
true in the structure S under the assignment v with v(x) = aorta, since A(x) and O(x)
are both true in S under v. On the other hand, F is false in the structure S under the
assignment v′ with v′(x) = pulmonary-artery, because Artery(pulmonary-artery) = true
and Oxygenrich(pulmonary-artery) = false in S. Now, consider the closed formula

F ′ = ∀x(A(x)→ O(x))

and again the structure S. It should be obvious that F ′ is false in S.

Definition 2.12 An interpretation of terms in a structure S = (D, {f̄n
i }, {P̄

m
i }) under an

assignment v, denoted by IS
v , is defined as follows:

(1) IS
v (ci) = di, di ∈ D, where ci is a constant.

(2) IS
v (xi) = v(xi), where xi is a variable.

(3) IS
v (fn

i (t1, . . . , tn)) = f̄n
i (IS

v (t1), . . . , I
S
v (tn)), where f̄n

i is a function from S associated
with the function symbol f

n

i .

The truth value of a formula in a structure S under an assignment v for a given interpretation
IS
v is obtained as follows:

(1) IS
v (Pm

i (t1, . . . , tm)) = P̄m
i (IS

v (t1), . . . , I
S
v (tm)), meaning that an atom Pm

i (t1, . . . , tm) is
true in the structure S under the assignment v for the interpretation IS

v if
P̄m

i (IS
v (t1), . . . , I

S
v (tm)) is true, where P̄m

i is the predicate from S associated with Pm
i .

(2) If the truth values of the formulas F and G have been determined, then the truth values
of ¬F , F ∧G, F ∨G, F → G and F ↔ G are defined by the meanings of the connectives
as listed in Table 2.1.

(3) ∃xF is true under v if there exists an assignment v′ differing from v at most with regard
to x, such that F is true under v′.

(4) ∀xF is true under v if for each v′ differing from v at most with regard to x, F is true
under v′.

The notions valid, invalid, satisfiable, unsatisfiable, logical consequence, equivalence and
model have meanings in predicate logic similar to their meanings in propositional logic. In
addition to the equivalences listed in Table 2.4, predicate logic also has some laws of equiva-
lence for quantifiers, which are given in Table 2.5. Note that the properties ∀x(P (x)∨Q(x)) ≡
∀xP (x) ∨ ∀xQ(x) and ∃x(P (x) ∧Q(x)) ≡ ∃xP (x) ∧ ∃xQ(x) do not hold.

We conclude this subsection with another example.

EXAMPLE 2.14
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Table 2.5: Laws of equivalence for quantifiers.
¬∃xP (x) ≡ ∀x¬P (x) (a)
¬∀xP (x) ≡ ∃x¬P (x) (b)
∀x(P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x) (c)
∃x(P (x) ∨Q(x)) ≡ ∃xP (x) ∨ ∃xQ(x) (d)
∀xP (x) ≡ ∀yP (y) (e)
∃xP (x) ≡ ∃yP (y) (f)

We take the unary (meaningless) predicate symbols A, L, W , O and E, and the constants
a and p from a given first-order language. Now, consider the following formulas:

(1) ∀x(A(x)→W (x))

(2) L(a)

(3) ∀x(L(x)→ A(x))

(4) ¬E(a)

(5) ∀x((A(x) ∧ ¬E(x))→ O(x))

(6) L(p)

(7) ¬O(p)

(8) E(p)

Consider the structure S in the reality with a domain consisting of the elements aorta
and pulmonary-artery, which are assigned to the constants a and p, respectively. The set
of predicates in S comprises the unary predicates Artery, Large, Wall, Oxygenrich, and
Exception, which are taken for the predicate symbols A, L, W , O, and E, respectively.
The structure S and the mentioned interpretation have been carefully chosen so as to
satisfy the above-given closed formulas, for instance by giving the following intended
meaning to the predicates:

Artery = ‘is an artery’
Large = ‘is a large artery’
Wall = ‘has a muscular wall’
Oxygenrich = ‘contains oxygen-rich blood’
Exception = ‘is an exception’

In the given structure S, the formula numbered 1 expresses the knowledge that every
artery has a muscular wall. The fact that the aorta is an example of a large artery,
has been stated in formula 2. Formula 3 expresses that every large artery is an artery,
and formula 4 states that the aorta is not an exception to the rule that arteries contain
oxygen-rich blood, which has been formalized in logic by means of formula 5. The pul-
monary artery is a large artery (formula 6), but contrary to the aorta it does not contain
oxygen-rich blood (formula 7), and therefore is an exception to the last mentioned rule;
the fact that the pulmonary artery is an exception is expressed by means of formula 8.

It should be noted that in another structure with another domain and other predicates,
the formulas given above might have completely different meanings.
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2.3 Clausal form of logic

Before turning our attention to reasoning in logic, we introduce in this section a syntactically
restricted form of predicate logic, called the clausal form of logic, which will play an important
role in the remainder of this chapter. This restricted form however, can be shown to be as
expressive as full first-order predicate logic. The clausal form of logic is often employed, in
particular in the fields of theorem proving and logic programming.

We start with the definition of some new notions.

Definition 2.13 A literal is an atom, called a positive literal, or a negation of an atom,
called a negative literal.

Definition 2.14 A clause is a closed formula of the form

∀x1 · · · ∀xs(L1 ∨ · · · ∨ Lm)

where each Li, i = 1, . . . ,m, m ≥ 0, is a literal, with Li 6= Lj for each i 6= j, and x1, . . . , xs,
s ≥ 0, are variables occurring in L1 ∨ · · · ∨ Lm. If m = 0, the clause is said to be the empty
clause, denoted by �.

The empty clause � is interpreted as a formula which is always false, in other words, � is an
unsatisfiable formula.

A clause

∀x1 · · · ∀xs(A1 ∨ · · · ∨Ak ∨ ¬B1 ∨ · · · ∨ ¬Bn)

where A1, . . . , Ak, B1, . . . , Bn are atoms and x1, . . . , xs are variables, is equivalent to

∀x1 · · · ∀xs(B1 ∧ · · · ∧Bn → A1 ∨ · · · ∨Ak)

as a consequence of the laws ¬F ∨G ≡ F → G and ¬F ∨¬G ≡ ¬(F ∧G), and is often written
as

A1, . . . , Ak ← B1, . . . , Bn

The last notation is the more conventional one in logic programming. The commas in
A1, . . . , Ak each stand for a disjunction, and the commas in B1, . . . , Bn indicate a conjunction.
A1, . . . , Ak are called the conclusions of the clause, and B1, . . . , Bn the conditions.

Each well-formed formula in first-order predicate logic can be translated into a set of
clauses, which is viewed as the conjunction of its elements. As we will see, this translation
process may slightly alter the meaning of the formulas. We shall illustrate the translation
process by means of an example. Before proceeding, we define two normal forms which are
required for the translation process.

Definition 2.15 A formula F is in prenex normal form if F is of the form

Q1x1 · · ·QnxnM

where each Qi, i = 1, . . . , n, n ≥ 1, equals one of the two quantifiers ∀ and ∃, and where M
is a formula in which no quantifiers occur. Q1x1 . . . Qnxn is called the prefix and M is called
the matrix of the formula F .
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Definition 2.16 A formula F in prenex normal form is in conjunctive normal form if the
matrix of F is of the form

F1 ∧ · · · ∧ Fn

where each Fi, i = 1, . . . , n, n ≥ 1, is a disjunction of literals.

EXAMPLE 2.15

Consider the following three formulas:

∀x(P (x) ∨ ∃yQ(x, y))
∀x∃y∀z((P (x) ∧Q(x, y)) ∨ ¬R(z))
∀x∃y((¬P (x) ∨Q(x, y)) ∧ (P (y) ∨ ¬R(x)))

The first formula is not in prenex normal form because of the occurrence of an existential
quantifier in the ‘inside’ of the formula. The other two formulas are both in prenex
normal form; moreover, the last formula is also in conjunctive normal form.

The next example illustrates the translation of a well-formed formula into a set of clauses.
The translation scheme presented in the example however is general and can be applied to
any well-formed formula in first-order predicate logic.

EXAMPLE 2.16

Consider the following formula:

∀x(∃yP (x, y) ∨ ¬∃y(¬Q(x, y)→ R(f(x, y))))

This formula is transformed in eight steps, first into prenex normal form, subsequently
into conjunctive normal form, amongst others by applying the laws of equivalence listed
in the tables 2.4 and 2.5, and finally into a set of clauses.

Step 1. Eliminate all implication symbols using the equivalences F → G ≡ ¬F ∨G and
¬(¬F ) ≡ F :

∀x(∃yP (x, y) ∨ ¬∃y(Q(x, y) ∨R(f(x, y))))

If a formula contains bi-implication symbols, these can be removed by applying the
equivalence

F ↔ G ≡ (F → G) ∧ (G→ F )

Step 2. Diminish the scope of the negation symbols in such a way that each negation
symbol only governs a single atom. This can be accomplished by using the equivalences
¬∀xF (x) ≡ ∃x¬F (x), ¬∃xF (x) ≡ ∀x¬F (x), ¬(¬F ) ≡ F , together with the laws of De
Morgan:

∀x(∃yP (x, y) ∨ ∀y(¬Q(x, y) ∧ ¬R(f(x, y))))

Step 3. Rename the variables in the formula using the equivalences ∀xF (x) ≡ ∀yF (y)
and ∃xF (x) ≡ ∃yF (y), so that each quantifier has its own uniquely named variable:

∀x(∃yP (x, y) ∨ ∀z(¬Q(x, z) ∧ ¬R(f(x, z))))

Formulas only differing in the names of their bound variables are called variants.
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Step 4. Eliminate all existential quantifiers. For any existentially quantified variable
x not lying within the scope of a universal quantifier, all occurrences of x in the for-
mula within the scope of the existential quantifier can be replaced by a new, that is,
not previously used, constant symbol c. The particular existential quantifier may then
be removed. For instance, the elimination of the existential quantifier in the formula
∃xP (x) yields a formula P (c). However, if an existentially quantified variable y lies
within the scope of one or more universal quantifiers with the variables x1, . . . , xn,
n ≥ 1, then the variable y may be functionally dependent upon x1, . . . , xn. Let this
dependency be represented explicitly by means of a new n-place function symbol g such
that g(x1, . . . , xn) = y. All occurrences of y within the scope of the existential quan-
tifier then are replaced by the function term g(x1, . . . , xn), after which the existential
quantifier may be removed. The constants and functions introduced in order to allow
for the elimination of existential quantifiers are called Skolem functions.

The existentially quantified variable y in the example lies within the scope of the uni-
versal quantifier with the variable x, and is replaced by g(x):

∀x(P (x, g(x)) ∨ ∀z(¬Q(x, z) ∧ ¬R(f(x, z))))

Note that by replacing the existentially quantified variables by Skolem functions, we lose
logical equivalence. Fortunately, it can be shown that a formula F is satisfiable if and
only if the formula F ′, obtained from F by replacing existentially quantified variables
in F by Skolem functions, is satisfiable as well. In general, the satisfiability of F and F ′

will not be based on the same model, since F ′ contains function symbols not occurring
in F . In the following, it will become evident that this property is sufficient for our
purposes.

Step 5. Transform the formula into prenex normal form, by placing all the universal
quantifiers in front of the formula:

∀x∀z(P (x, g(x)) ∨ (¬Q(x, z) ∧ ¬R(f(x, z))))

Note that this is allowed because by step 3 each quantifier applies to a uniquely named
variable; this means that the scope of all quantifiers is the entire formula.

Step 6. Bring the matrix in conjunctive normal form using the distributive laws:

∀x∀z((P (x, g(x)) ∨ ¬Q(x, z)) ∧ (P (x, g(x)) ∨ ¬R(f(x, z))))

Step 7. Select the matrix by disregarding the prefix:

(P (x, g(x)) ∨ ¬Q(x, z)) ∧ (P (x, g(x)) ∨ ¬R(f(x, z)))

All variables in the matrix are now implicitly considered to be universally quantified.

Step 8. Translate the matrix into a set of clauses, by replacing formulas of the form
F ∧ G by a set of clauses {F ′, G′}, where F ′ and G′ indicate that F and G are now
represented using the notational convention of logic programming:

{P (x, g(x)) ← Q(x, z)), P (x, g(x)) ← R(f(x, z))i}

We conclude this subsection with the definition of a special type of clause, a so-called Horn
clause, which is a clause containing at most one positive literal.

Definition 2.17 A Horn clause is a clause having one of the following forms:



30 Chapter 2. Logic and Resolution

(1) A←

(2) ← B1, . . . , Bn, n ≥ 1

(3) A← B1, . . . , Bn, n ≥ 1

A clause of the form 1 is called a unit clause; a clause of form 2 is called a goal clause.

Horn clauses are employed in the programming language PROLOG. We will return to this
observation in Section 2.7.2.

2.4 Reasoning in logic: inference rules

In the Sections 2.1 and 2.2 we described how a meaning could be attached to a meaningless set
of logical formulas. This is sometimes called the declarative semantics of logic. The declarative
semantics offers a means for investigating for example whether or not a given formula is a
logical consequence of a set of formulas. However, it is also possible to answer this question
without examining the semantic contents of the formulas concerned, by applying so-called
inference rules. Contrary to truth tables, inference rules are purely syntactic operations
which only are capable of modifying the form of the elements of a given set of formulas.
Inference rules either add, replace or remove formulas; most inference rules discussed in this
book however add new formulas to a given set of formulas. In general, an inference rule
is given as a schema in which a kind of meta-variables occur that may be substituted by
arbitrary formulas. An example of such a schema is shown below:

A,A→ B

B
The formulas above the line are called the premises, and the formula below the line is called
the conclusion of the inference rule. The above-given inference rule is known as modus ponens,
and when applied, removes an implication from a formula. Another example of an inference
rule, in this case for introducing a logical connective, is the following schema:

A,B

A ∧B
Repeated applications of inference rules give rise to what is called a derivation or deduction.
For instance, modus ponens can be applied to draw the conclusion S from the two formulas
P ∧ (Q ∨R) and P ∧ (Q ∨R)→ S. It is said that there exists a derivation of the formula S
from the set of clauses {P ∧ (Q ∨R), P ∧ (Q ∨R)→ S}. This is denoted by:

{P ∧ (Q ∨R), P ∧ (Q ∨R)→ S} ⊢ S

The symbol ⊢ is known as the turnstile.

EXAMPLE 2.17

Consider the set of formulas {P,Q,P ∧Q→ S}. If the inference rule

A,B

A ∧B

is applied to the formulas P and Q, the formula P ∧ Q is derived; the subsequent
application of modus ponens to P ∧Q and P ∧Q→ S yields S. So,

{P,Q,P ∧Q→ S} ⊢ S
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Now that we have introduced inference rules, it is relevant to investigate how the declarative
semantics of a particular class of formulas and its procedural semantics, described by means
of inference rules, are interrelated: if these two notions are related to each other, we are in the
desirable circumstance of being able to assign a meaning to formulas which have been derived
using inference rules, simply by our knowledge of the declarative meaning of the original set
of formulas. On the other hand, when starting with the known meaning of a set of formulas,
it will then be possible to derive only formulas which can be related to that meaning. These
two properties are known as the soundness and the completeness, respectively, of a collection
of inference rules.

More formally, a collection of inference rules is said to be sound if and only if for each
formula F derived by applying these inference rules on a given set of well-formed formulas S
of a particular class (for example clauses), we have that F is a logical consequence of S. This
property can be expressed more tersely as follows, using the notations introduced before:

if S ⊢ F then S � F .

In other words, a collection of inference rules is sound if it preserves truth under the operations
of a derivation. This property is of great importance, because only by applying sound inference
rules it is possible to assign a meaning to the result of a derivation.

EXAMPLE 2.18

The previously discussed inference rule modus ponens is an example of a sound inference
rule. From the given formulas F and F → G, the formula G can be derived by applying
modus ponens, that is, we have {F,F → G} ⊢ G. On the other hand, if F → G and
F are both true under a particular interpretation w, then from the truth Table 2.1 we
have that G is true under w as well. So, G is a logical consequence of the two given
formulas: {F,F → G} � G.

The reverse property that by applying a particular collection of inference rules, each logical
consequence F of a given set of formulas S can be derived, is called the completeness of the
collection of inference rules:

if S � F then S ⊢ F .

EXAMPLE 2.19

The collection of inference rules only consisting of modus ponens is not complete for all
well-formed formulas in propositional logic. For example, it is not possible to derive the
formula P from ¬Q and P ∨Q, although P is a logical consequence of the two formulas.
However, by combining modus ponens with other inference rules, it is possible to obtain
a complete collection of inference rules.

The important question now arises if there exists a mechanical proof procedure, employing a
particular sound and complete collection of inference rules, which is capable of determining
whether or not a given formula F can be derived from a given set of formulas S. In 1936,
A. Church and A.M. Turing showed, independently, that such a general proof procedure does
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not exist for first-order predicate logic. This property is called the undecidability of first-order
predicate logic. All known proof procedures are only capable of deriving F from S (that is,
are able to prove S ⊢ F ) if F is a logical consequence of S (that is, if S � F ); if F is not a
logical consequence of S, then the proof procedure is not guaranteed to terminate.

However, for propositional logic there do exist proof procedures which always terminate
and yield the right answer: for checking whether a given formula is a logical consequence of a
certain set of formulas, we can simply apply truth tables. So, propositional logic is decidable.

The undecidability of first-order predicate logic has not refrained the research area of
automated theorem proving from further progress. The major result of this research has been
the development of an efficient and flexible inference rule being both sound and complete,
called resolution. However, the resolution rule is only suitable for manipulating formulas in
clausal form. Hence, to use this inference rule on a set of arbitrary logical formulas in first-
order predicate logic, it is required to translate each formula into the clausal form of logic by
means of the procedure discussed in Section 2.3. The formulation of resolution as a suitable
inference rule for automated theorem proving in the clausal form of logic has been mainly due
to J.A. Robinson, who departed from earlier work by D. Prawitz. The final working-out of
resolution in various algorithms, supplemented with specific implementation techniques, has
been the work of a large number of researchers. Resolution is the subject of the remainder of
this chapter.

2.5 Resolution and propositional logic

We begin this section with a brief, informal sketch of the principles of resolution. Consider a
set of formulas S in clausal form. Suppose we are given a formula G, also in clausal form, for
which we have to prove that it can be derived from S by applying resolution. Proving S ⊢ G
is equivalent to proving that the set of clauses W , consisting of the clauses in S supplemented
with the negation of the formula G, that is W = S ∪{¬G}, is unsatisfiable. Resolution on W
now proceeds as follows: first, it is checked whether or not W contains the empty clause �;
if this is the case, then W is unsatisfiable, and G is a logical consequence of S. If the empty
clause � is not in W , then the resolution rule is applied on a suitable pair of clauses from W ,
yielding a new clause. Every clause derived this way is added to W , resulting in a new set of
clauses on which the same resolution procedure is applied. The entire procedure is repeated
until some generated set of clauses has been shown to contain the empty clause �, indicating
unsatisfiability of W , or until all possible new clauses have been derived.

The basic principles of resolution are best illustrated by means of an example from propo-
sitional logic. In Section 2.6 we turn our attention to predicate logic.

EXAMPLE 2.20

Consider the following set of clauses:

{C1 = P ∨R,C2 = ¬P ∨Q}

These clauses contain complementary literals, that is, literals having opposite truth
values, namely P and ¬P . Applying resolution, a new clause C3 is derived being the
disjunction of the original clauses C1 and C2 in which the complementary literals have
been cancelled out. So, application of resolution yields the clause

C3 = R ∨Q
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which then is added to the original set of clauses.

The resolution principle is described more precisely in the following definition.

Definition 2.18 Consider the two clauses C1 and C2 containing the literals L1 and L2 re-
spectively, where L1 and L2 are complementary. The procedure of resolution proceeds as
follows:

(1) Delete L1 from C1 and L2 from C2, yielding the clauses C1prime and C2prime;

(2) Form the disjunction Cprime of C1prime and C2prime;

(3) Delete (possibly) redundant literals from Cprime, thus obtaining the clause C.

The resulting clause C is called the resolvent of C1 and C2. The clauses C1 and C2 are said
to be the parent clauses of the resolvent.

Resolution has the important property that when two given parent clauses are true under a
given interpretation, their resolvent is true under the same interpretation as well: resolution
is a sound inference rule. In the following theorem we prove that resolution is sound for the
case of propositional logic.

THEOREM 2.1 ( soundness of resolution) Consider two clauses C1 and C2 containing com-
plementary literals. Then, any resolvent C of C1 and C2 is a logical consequence of {C1, C2}.

Proof: We are given that the two clauses C1 and C2 contain complementary literals. So, it
is possible to write C1 and C2 as C1 = L∨C ′

1 and C2 = ¬L∨C ′
2 respectively for some literal

L. By definition, a resolvent C is equal to C ′
1 ∨ C ′

2 from which possibly redundant literals
have been removed. Now, suppose that C1 and C2 are both true under an interpretation w.
We then have to prove that C is true under the same interpretation w as well. Clearly, either
L or ¬L is false. Suppose that L is false under w, then C1 obviously contains more than one
literal, since otherwise C1 would be false under w. It follows that C ′

1 is true under w. Hence,
C ′

1 ∨ C ′
2, and therefore also C, is true under w. Similarly, it can be shown that the resolvent

is true under w if it is assumed that L is true. So, if C1 and C2 are true under w then C is
true under w as well. Hence, C is a logical consequence of C1 and C2. ♦

Resolution is also a complete inference rule. Proving the completeness of resolution is beyond
the scope of this book; we therefore confine ourselves to merely stating the property.

EXAMPLE 2.21

In the definition of a clause in Section 2.3, it was mentioned that a clause was not allowed
to contain duplicate literals. This condition appears to be a necessary requirement for
the completeness of resolution. For example, consider the following set of formulas:

S = {P ∨ P,¬P ∨ ¬P}

It will be evident that S is unsatisfiable, since P ∨P ≡ P and ¬P ∨¬P ≡ ¬P . However,
if resolution is applied to S then in every step the tautology P ∨ ¬P is derived. It is
not possible to derive the empty clause �.
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¬P ∨Q ¬Q P

¬P

�

Figure 2.2: A refutation tree.

Until now we have used the notion of a derivation only in an intuitive sense. Before giving
some more examples, we define the notion of a derivation in a formal way.

Definition 2.19 Let S be a set of clauses and let C be a single clause. A derivation of C
from S, denoted by S ⊢ C, is a finite sequence of clauses C1, C2, . . . , Cn, n ≥ 1, where each
Ck either is a clause in S or a resolvent with parent clauses Ci and Cj , i < k, j < k, i 6= j,
from the sequence, and C = Cn. If Cn = �, then the derivation is said to be a refutation of
S, indicating that S is unsatisfiable.

EXAMPLE 2.22

Consider the following set of clauses:

S = {¬P ∨Q,¬Q,P}

From C1 = ¬P ∨Q and C2 = ¬Q we obtain the resolvent C3 = ¬P . From the clauses
C3 and C4 = P we derive C5 = �. So, S is unsatisfiable. The sequence of clauses
C1, C2, C3, C4, C5 is a refutation of S. Note that it is not the only possible refutation of
S. In general, a set S of clauses may have more than one refutation.

Notice that by the choice of the empty clause � as a formula that is false under all interpre-
tations, which is a semantic notion, the proof-theoretical notion of a refutation has obtained
a suitable meaning. A derivation can be depicted in a graph, called a derivation graph. In the
case of a refutation, the vertices in the derivation graph may be restricted to those clauses and
resolvents which directly or indirectly contribute to the refutation. Such a derivation graph
has the form of a tree and is usually called a refutation tree. The leaves of such a tree are
clauses from the original set, and the root of the tree is the empty clause �. The refutation
tree for the derivation discussed in the previous example is shown in Figure 2.2. Note that
another refutation of S gives rise to another refutation tree.



2.6. Resolution and first-order predicate logic 35

2.6 Resolution and first-order predicate logic

An important feature of resolution in first-order predicate logic, taking place in the basic
resolution method, is the manipulation of terms. This has not been dealt with in the previous
section, where we only had atomic propositions, connectives and auxiliary symbols as building
blocks for propositional formulas. In this section, we therefore first discuss the manipulation
of terms, before we provide a detailed description of resolution in first-order predicate logic.

2.6.1 Substitution and unification

The substitution of terms for variables in formulas in order to make these formulas syntac-
tically equal, plays a central role in a method known as unification. We first introduce the
notion of substitution formally and then discuss its role in unification.

Definition 2.20 A substitution σ is a finite set of the form

{t1/x1, . . . , tn/xn}

where each xi is a variable and where each ti is a term not equal to xi, i = 1, . . . , n, n ≥ 0;
the variables x1, . . . , xn differ from each other. An element ti/xi of a substitution σ is called
a binding for the variable xi. If none of the terms ti in a substitution contains a variable, we
have a so-called ground substitution. The substitution defined by the empty set is called the
empty substitution, and is denoted by ǫ.

Definition 2.21 An expression is a term, a literal, a conjunction of literals or a disjunction
of literals; a simple expression is a term or an atom.

A substitution σ can be applied to an expression E, yielding a new expression Eσ which is
similar to E with the difference that the variables in E occurring in σ have been replaced by
their associated terms.

Definition 2.22 Let σ = {t1/x1, . . . , tn/xn}, n ≥ 0, be a substitution and E an expression.
Then, Eσ is an expression obtained from E by simultaneously replacing all occurrences of
the variables xi by the terms ti. Eσ is called an instance of E. If Eσ does not contain any
variables, then Eσ is said to be a ground instance of E.

EXAMPLE 2.23

Let σ = {a/x,w/z} be a substitution and let E = P (f(x, y), z) be an expression. Then,
Eσ is obtained by replacing each variable x in E by the constant a and each variable z
by the variable w. The result of the substitution is Eσ = P (f(a, y), w). Note that Eσ
is not a ground instance.

The application of a substitution to a single expression can be extended to a set of expressions,
as demonstrated in the following example.

EXAMPLE 2.24
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Application of the substitution σ = {a/x, b/z} to the set of expressions {P (x, f(x, z)),
Q(x,w)} yields the following set of instances:

{P (x, f(x, z)), Q(x,w)}σ = {P (a, f(a, b)), Q(a,w)}

The first element of the resulting set of instances is a ground instance; the second one
is not ground, since it contains the variable w.

Definition 2.23 Let θ = {t1/x1, . . . , tm/xm} and σ = {s1/y1, . . . , sn/yn}, m ≥ 1, n ≥ 1, be
substitutions. The composition of these substitutions, denoted by θσ, is obtained by removing
from the set

{t1σ/x1, . . . , tmσ/xm, s1/y1, . . . , sn/yn}

all elements tiσ/xi for which xi = tiσ, and furthermore, all elements sj/yj for which yj ∈
{x1, . . . , xm}

The composition of unifiers is idempotent and associative, that is for any expression E and
for substitutions φ, θ, σ we have E(σσ) = Eσ and E(φσ)θ = Eφ(σθ); the operation is not
commutative.

Note that the last definition gives us a means for replacing two substitutions by a single
one, being the composition of these substitutions. However, it is not always necessary to
actually compute the composition of two subsequent substitutions σ and θ before applying
them to an expression E: it can easily be proven that E(σθ) = (Eσ)θ. The proof of this
property is left to the reader as an exercise (see exercise 2.11); here, we merely give an
example.

EXAMPLE 2.25

Consider the expression E = Q(x, f(y), g(z, x)) and the two substitutions σ = {f(y)/x,
z/y} and θ = {a/x, b/y, y/z}. We compute the composition σθ of σ and θ: σθ =
{f(b)/x, y/z}. Application of the compound substitution σθ to E yields the instance
E(σθ) = Q(f(b), f(y), g(y, f(b))). We now compare this instance with (Eσ)θ. We first
apply σ to E, resulting in Eσ = Q(f(y), f(z), g(z, f(y))). Subsequently, we apply θ
to Eσ and obtain the instance (Eσ)θ = Q(f(b), f(y), g(y, f(b))). So, for the given
expression and substitutions, we have E(σθ) = (Eσ)θ.

In propositional logic, a resolvent of two parent clauses containing complementary literals,
such as P and ¬P , was obtained by taking the disjunction of these clauses after cancelling
out such a pair of complementary literals. It was easy to check for complementary literals
in this case, since we only had to verify equality of the propositional atoms in the chosen
literals and the presence of a negation in exactly one of them. Now, suppose that we want
to compare the two literals ¬P (x) and P (a) occurring in two different clauses in first-order
predicate logic. These two literals are ‘almost’ complementary. However, the first literal
contains a variable as an argument of its predicate symbol, whereas the second one contains
a constant. It is here where substitution comes in. Note that substitution can be applied to
make expressions syntactically equal. Moreover, the substitution which is required to obtain
syntactic equality of two given expressions also indicates the difference between the two. If
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we apply the substitution {a/x} to the example above, we obtain syntactic equality of the
two atoms P (x) and P (a). So, the two literals ¬P (x) and P (a) become complementary after
substitution.

The unification algorithm is a general method for comparing expressions; the algorithm
computes, if possible, the substitution that is needed to make the given expressions syntacti-
cally equal. Before we discuss the algorithm, we introduce some new notions.

Definition 2.24 A substitution σ is called a unifier of a given set of expressions {E1, . . . , Em}
if E1σ = · · · = Emσ,m ≥ 2. A set of expressions is called unifiable if it has a unifier.

Definition 2.25 A unifier θ of a unifiable set of expressions E = {E1, . . . , Em}, m ≥ 2, is
said to be a most general unifier (mgu) if for each unifier σ of E there exists a substitution λ
such that σ = θλ.

A set of expressions may have more than one most general unifier; however, a most general
unifier is unique but for a renaming of the variables.

EXAMPLE 2.26

Consider the set of expressions {R(x, f(a, g(y))), R(b, f(z,w))}. Some possible unifiers
of this set are σ1 = {b/x, a/z, g(c)/w, c/y}, σ2 = {b/x, a/z, f(a)/y, g(f(a))/w} and σ3 =
{b/x, a/z, g(y)/w}. The last unifier is also a most general unifier: by the composition
of this unifier with the substitution {c/y} we get σ1; the second unifier is obtained by
the composition of σ3 with {f(a)/y}.

The unification algorithm, more precisely, is a method for constructing a most general unifier
of a finite, non-empty set of expressions. The algorithm considered in this book operates in
the following manner. First, the left-most subexpressions in which the given expressions differ
is computed. Their difference is placed in a set, called the disagreement set. Based on this
disagreement set a (‘most general’) substitution is computed, which is subsequently applied
to the given expressions, yielding a partial or total equality. If no such substitution exists,
the algorithm terminates with the message that the expressions are not unifiable. Otherwise,
the procedure proceeds until each element within each of the expressions has been processed.
It can be proven that the algorithm either terminates with a failure message or with a most
general unifier of the finite, unifiable set of expressions.

EXAMPLE 2.27

Consider the following set of expressions:

S = {Q(x, f(a), y), Q(x, z, c), Q(x, f(a), c)}

The left-most subexpression in which the three expressions differ is in the second argu-
ment of the predicate symbol Q. So, the first disagreement set is {f(a), z}. By means of
the substitution {f(a)/z} the subexpressions in the second argument position are made
equal. The next disagreement set is {y, c}. By means of the substitution {c/y} these
subexpressions are also equalized. The final result returned by the unification algorithm
is the unifier {f(a)/z, c/y} of S. It can easily be seen that this unifier is a most general
one.
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The following section shows an implementation of the unification algorithm. In Section 2.6.3
we discuss the role of unification in resolution in first-order predicate logic.

2.6.2 Substitution and unification in LISP

The process of substitution as introduced in the previous section can be described in a natural
way by means of a recursive algorithm: the substitution algorithm operates on an expression
that itself is composed of subexpressions. This idea is the basis of a LISP program that will
be discussed below. The program accepts expressions in prefix form, such as (P (f x (g

a)) y) which stands for the atom P (f(x, g(a)), y). (We will see however, that the program
is a bit more general, and that expressions in infix or postfix form are also accepted.) LISP
atoms are used to represent predicate symbols, function symbols, constants and variables.

(defun Substitute (s expression)

(cond ((or (null expression)

(null s)) expression)

((Singleton? expression)

(let ((binding nil))

(if (Variable? expression)

(setq binding (LookUp expression s)))

(if (null binding)

expression

(Term binding))))

(t (cons (Substitute s (first expression))

(Substitute s (rest expression))))))

If either the given expression expression or the given substitution s is empty, the function
Substitute returns the unmodified expression as its function value. If this is not the case
then, by means of the function call (Singleton? expression), it is checked whether or not
the expression is a single symbol. Only if the symbol represents a variable, which is determined
by means of the call (Variable? expression), the substitution s is examined to find out
whether or not it contains a binding for that variable. The actual searching for such a binding
is carried out by means of the function LookUp. If a binding for the given variable is found in s,
the variable is replaced by its associated term by means of the function call (Term binding).
If however no binding is present for it, the variable is returned unmodified. Finally, if the
given expression is a compound one, then the substitution s is applied recursively to both
its first subexpression and its remaining subexpressions. The results of these two recursive
function calls are concatenated, thus yielding the required instance of the expression.

The program given above comprises calls to the functions Singleton?, Variable?, LookUp
and Term, which will be discussed presently. The function Singleton? investigates by means
of the call (atom expression) whether or not the expression expression is a LISP atom.
As stated above, a LISP atom represents either a predicate symbol, a constant, a function
symbol or a variable.

(defun Singleton? (expression)

(atom expression))
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If the LISP atom expression represents a variable, then the function Variable? returns
the truth value t. The function Variable? determines whether or not the expression is a
variable by checking if its name occurs in a list of reserved variable names:

(defun Variable? (expression)

(member expression ’(u v w x y z)))

The implementation of the functions Term and LookUp is dependent upon the data structures
chosen to represent a substitution. In the present program, a substitution is represented by
means of an a-list (association list). The following LISP expression gives the general form of
a substitution:

((t1 . x1)· · ·(tn . xn))

The first element of each pair, or binding, in the a-list is a term of the form ti; the second
element is a variable xi. The function Term enlisted below selects the term of a binding:

(defun Term (binding)

(first binding))

To conclude, the function LookUp searches for a binding for the variable var in the a-list
substitution:

(defun LookUp (var substitution)

(rassoc var substitution))

The actual searching is done using the primitive LISP function rassoc; for example, the
function call (rassoc ’x ’((a . x) (b . y))) returns the binding (a . x) as a function
value.

EXAMPLE 2.28

Consider the substitution s = ((a . x) ((f y) . z)) and the expression e = (Q x

(g z)). The function call (Substitute s e) yields the result (Q a (g (f y))).

As we have seen just now, the substitution algorithm can easily be expressed in the LISP
language, rendering a definition that looks quite natural. The same can be said of the LISP
program that implements the algorithm for computing the composition of two substitutions.
The composition algorithm has been implemented by means of the function Composition

shown below:

(defun Composition (r s)

(append (TermSubst r s)

(MemberCheck s r)))

This function contains calls to two other functions, TermSubst and MemberCheck, which we
now explain.

Consider the following two substitutions:

r = ((t1 . x1)· · ·(tm . xm))

s = ((u1 . y1)· · ·(un . yn))
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By means of the function call (TermSubst r s) the substitution s will be applied to the
terms tj of r, yielding the following result:

((t1s . x1). . .(tms . xm)).

The function TermSubst is defined as follows:

(defun TermSubst (r s)

(if r

(let* ((binding (first r))

(term (Substitute s (Term binding)))

(var (Variable binding)))

(if (eq term var)

(TermSubst (rest r) s)

(cons (cons term var)

(TermSubst (rest r) s))))))

From this function TermSubst, the function Substitute, which has been dealt with before,
is called to apply the given substitution s to a term which is selected from r by means of
the function call (Term binding). The last-mentioned function has already been described
in the discussion of the function Substitute. The variable in a binding is selected by calling
the function Variable:

(defun Variable (binding)

(rest binding))

Subsequently, in the function TermSubst it is checked, by calling the LISP function eq, if a
(possibly) new binding (tis . xsubi) is to be added to the computed composite substitution:
the binding is not added if (eq term var) returns the truth value t. The remaining bindings
of the substitution r then are processed by means of a recursive call to TermSubst. However,
if (eq term var) returns the value nil, the bindings resulting from the recursive call to
TermSubst and the binding just created are concatenated.

After the execution of the function call (TermSubst r s) has been completed, the function
MemberCheck tests which variables yk of the substitution s occur in the set of variables
{x1, . . . , xm} of the substitution r. MemberCheck returns a list of bindings from s, containing
variables not present in the set of variables of the substitution r:

(defun MemberCheck (v w)

(if v

(let ((binding (first v)))

(if (InsideSubst (Variable binding) w)

(MemberCheck (rest v) w)

(cons binding (MemberCheck (rest v) w))))))

From MemberCheck, the function InsideSubst is called. It tests whether or not the variable
var, selected from a binding from v by means of the function call (Variable binding),
belongs to the set of variables of the substitution w:

(defun InsideSubst (var w)

(if w

(or (eq var (Variable (first w)))

(InsideSubst var (rest w)))))
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To conclude, in the function Composition, the results of the function calls to TermSubst and
MemberCheck, both a-lists, are concatenated using the primitive LISP function append.

EXAMPLE 2.29

The function call (Composition ’(((f x) . x) (u . z)) ’((a . z) (b . x)

(z . u))) returns the value (((f b) . x) (z . u)).

Various versions are known of the unification algorithm. The one described in the following
LISP program presents the algorithm in a compact, recursive form. As before, expressions
entered to the program are supposed to be in prefix form. For example, the expression
P (x, f(a, y)) should be entered to the program as (P x (f a y)).

(defun Unify (exp1 exp2)

(cond ((or (atom exp1) (atom exp2)) ; exp1 or exp2 is a symbol

(Disagreement exp1 exp2))

otherwise: both exp1 and exp2 are compound

(t (let ((subexp1 (first exp1))

(remexp1 (rest exp1))

(subexp2 (first exp2))

(remexp2 (rest exp2))

(s1 nil))

(setq s1 (Unify subexp1 subexp2))

(if (eq s1 ’FAIL) ’FAIL

(let ((inst1 (Substitute s1 remexp1))

(inst2 (Substitute s1 remexp2))

(s2 nil))

(setq s2 (Unify inst1 inst2))

(if (eq s2 ’FAIL) ’FAIL

(Composition s1 s2))))))))

The function Unify first investigates if at least one of the expressions exp1 and exp2 is
an atomic symbol, representing either a constant, a predicate symbol, a function symbol
or a variable. If one of these expressions turns out to be an atomic symbol, the function
Disagreement is invoked to compute the disagreement set. The function Disagreement

furthermore examines if it is possible to construct a substitution from the elements in the
disagreement set to make the two expressions syntactically equal; if no such substitution exists,
the function value FAIL is returned. If both expressions exp1 and exp2 are compound, the
function Unify proceeds by first examining the left-most subexpressions subexp1 and subexp2

of exp1 and exp2 respectively. If unification of subexp1 and subexp2 succeeds yielding the
substitution s1 as its result, then the function Substitute, which has been described above,
is called to replace the variables occurring in the remaining parts of the expressions, remexp1
and remexp2 respectively, by their associated terms from s1; then, Unify is called recursively
to deal with the remaining subexpressions. Note that remexp1 and remexp2 are not examined
if unification of subexp1 and subexp2 has failed.

Before we describe the function Disagreement in more detail, we illustrate its behaviour
by means of an example.

EXAMPLE 2.30
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Let exp1 = x and exp2 = (f a). The function Disagreement returns as its value the
list (((f a) . x)). Note that this list can be used directly for the representation of
the necessary substitution to make the expressions exp1 and exp2 syntactically equal.

In the function Disagreement, it is first examined whether or not the expressions exp1 and
exp2 are syntactically equal:

(defun Disagreement (exp1 exp2)

(cond ((eq exp1 exp2) nil) ; return nil if both equal

((Variable? exp1) (OccurCheck exp1 exp2))

((Variable? exp2) (OccurCheck exp2 exp1))

(t ’FAIL))) ; not unifiable

If the expressions are already syntactically equal, then obviously no substitution is required.
So, in that case the empty substitution, represented in LISP by means of the symbol nil,
is returned. The function Variable? is used to investigate if one of the given expressions
exp1 and exp2 is a variable, again by examining a list of valid variable names, just as in the
program for substitution. If one of the expressions is a variable, it it necessary to check if the
other expression, now considered as the term in a new binding, contains that variable, since
naively adding the binding to the substitution could introduce cyclic dependencies between
bindings. This test, called the occur check, is performed in the function Disagreement by
means of a call to the function OccurCheck, which is implemented as follows:

(defun OccurCheck (var term)

(if (Inside var term) ’FAIL

(list (cons term var)))) ; return binding

The function Inside, called from OccurCheck, examines whether or not the variable var

occurs in the term term:

(defun Inside (x expression) ; does x occur inside

(cond ((null expression) nil) ; the expression?

((atom expression) (eq x expression))

(t (or (Inside x (first expression))

(Inside x (rest expression))))))

EXAMPLE 2.31

Consider the following set of expressions: {P (x, f(x), y), P (g(b), w, z)}. The call (Unify
’(P x (f x) y) ’(P (g b) w z)) to the function Unify then yields the following
result: (((g b) . x) ((f (g b)) . w) (z . y)).

In studying the function Unify, the attentive reader may have considered using the function
append rather then Composition for computing the composition of the (partial) substitutions
s1 and s2. The earlier mentioned property E(σθ) = (Eσ)θ where E is an expression and σ, θ
are substitutions, is used: immediately after the (partial) substitution s1 has been computed,
all variables in s1 which occur in the remaining subexpressions remexp1 and remexp2 are
replaced by their associated terms. However, we still need to update the bindings in the
subsitutions, and this is done at the end of the algorithm.
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2.6.3 Resolution

Now that we have dealt with the subjects of substitution and unification, we are ready for a
discussion of resolution in first-order predicate logic. We start with an informal introduction
to the subject by means of an example.

EXAMPLE 2.32

Consider the following set of clauses:

{C1 = P (x) ∨Q(x), C2 = ¬P (f(y)) ∨R(y)}

As can be seen, the clauses C1 and C2 do not contain complementary literals. However,
the atoms P (x), occurring in C1, and P (f(y)), occurring in the literal ¬P (f(y)) in the
clause C2, are unifiable. For example, if we apply the substitution σ = {f(a)/x, a/y}
to {C1, C2}, we obtain the following set of instances:

{C1σ = P (f(a)) ∨Q(f(a)), C2σ = ¬P (f(a)) ∨R(a)}

The resulting instances C1σ and C2σ do contain complementary literals, namely P (f(a))
and ¬P (f(a)) respectively. As a consequence, we are now able to find a resolvent of
C1σ and C2σ, being the clause

C ′
3 = Q(f(a)) ∨R(a)

The resolution principle in first-order predicate logic makes use of the unification algorithm
for constructing a most general unifier of two suitable atoms; the subsequent application of the
resulting substitution to the literals containing the atoms, renders them complementary. In
the preceding example, the atoms P (x) and P (f(y)) have a most general unifier θ = {f(y)/x}.
The resolvent obtained after applying θ to C1 and C2, is

C3 = Q(f(y)) ∨R(y)

The clause C ′
3 from the previous example is an instance of C3, the so-called most general

clause: if we apply the substitution {a/y} to C3, we obtain the clause C ′
3.

It should be noted that it is necessary to rename different variables having the same
name in both parent clauses before applying resolution, since the version of the unification
algorithm discussed in the previous section is not capable of distinguishing between equally
named variables actually being the same variable, and equally named variables being different
variables because of their occurrence in different clauses.

EXAMPLE 2.33

Consider the atoms Q(x, y) and Q(x, f(y)) occurring in two different clauses. In this
form our unification algorithm reports failure in unifying these atoms (due to the occur
check). We rename the variables x and y in Q(x, f(y)) to u and v respectively, thus
obtaining the atom Q(u, f(v)). Now, if we apply the unification algorithm again to com-
pute a most general unifier of {Q(u, f(v)), Q(x, y)}, it will come up with the (correct)
substitution σ = {u/x, f(v)/y}.
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We already mentioned in Section 2.3 that the meaning of a formula is left unchanged by
renaming variables. We furthermore recall that formulas only differing in the names of their
(bound) variables are called variants.

From the examples presented so far, it should be clear by now that resolution in first-order
predicate logic is quite similar to resolution in propositional logic: literals are cancelled out
from clauses, thus generating new clauses. From now on, cancelling out a literal L from a
clause C will be denoted by C\L.

Definition 2.26 Consider the parent clauses C1 and C2, respectively containing the literals
L1 and L2. If L1 and ¬L2 have a most general unifier σ, then the clause (C1σ\L1σ) ∨
(C2σ\L2σ) is called a binary resolvent of C1 and C2. Resolution in which each resolvent is a
binary resolvent, is known as binary resolution.

A pair of clauses may have more than one resolvent, since they may contain more than one
pair of complementary literals. Moreover, not every resolvent is necessarily a binary resolvent:
there are more general ways for obtaining a resolvent. Before giving a more general definition
of a resolvent, we introduce the notion of a factor.

Definition 2.27 If two or more literals in a clause C have a most general unifier σ, then
the clause Cσ is said to be a factor of C.

EXAMPLE 2.34

Consider the following clause:

C = P (g(x), h(y)) ∨Q(z) ∨ P (w, h(a))

The literals P (g(x), h(y)) and P (w, h(a)) in C have a most general unifier σ = {g(x)/w, a/y}.
So,

Cσ = P (g(x), h(a)) ∨Q(z) ∨ P (g(x), h(a)) = P (g(x), h(a)) ∨Q(z)

is a factor of C. Note that one duplicate literal P (g(x), h(a)) has been removed from
Cσ.

The generalized form of resolution makes it possible to cancel out more than one literal from
one or both of the parent clauses by first computing a factor of one or both of these clauses.

EXAMPLE 2.35

Consider the following set of clauses:

{C1 = P (x) ∨ P (f(y)) ∨R(y), C2 = ¬P (f(a)) ∨ ¬R(g(z))}

In the clause C1 the two literals P (x) and P (f (y)) have a most general unifier σ =
{f(y)/x}. If we apply this substitution σ to the clause C1, then one of these literals
can be removed:

(P (x) ∨ P (f(y)) ∨R(y))σ = P (f(y)) ∨ P (f(y)) ∨R(y)

= P (f(y)) ∨R(y)
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The result is a factor of C1. The literal P (f(y)) in C1σ can now be unified with the
atom P (f (a)) in the literal ¬P (f(a)) occurring in C2, using the substitution {a/y}. We
obtain the resolvent

C3 = R(a) ∨ ¬R(g(z))

Note that a total of three literals has been removed from C1 and C2. The reader can
easily verify that there are several other resolvents from the same parent clauses:

• By taking L1 = P (x) and L2 = ¬P (f(a)) we get the resolvent P (f(y)) ∨ R(y) ∨
¬R(g(z));

• Taking L1 = P (f(y)) and L2 = ¬P (f(a)) results in the resolvent P (x) ∨ R(a) ∨
¬R(g(z));

• By taking L1 = R(y) and L2 = ¬R(g(z)) we obtain P (x)∨P (f(g(z)))∨¬P (f(a)).

We now give the generalized definition of a resolvent in which the notion of a factor is incor-
porated.

Definition 2.28 A resolvent of the parent clauses C1 and C2 is one of the following binary
resolvents:

(1) A binary resolvent of C1 and C2;

(2) A binary resolvent of C1 and a factor of C2;

(3) A binary resolvent of a factor of C1 and C2;

(4) A binary resolvent of a factor of C1 and a factor of C2.

The most frequent application of resolution is refutation: the derivation of the empty clause �

from a given set of clauses. The following procedure gives the general outline of this resolution
algorithm.

procedure Resolution(S)
clauses ← S;
while � ∈ clauses do

{ci, cj} ← SelectResolvable(clauses);
resolvent ← Resolve(ci, cj);
clauses ← clauses ∪ {resolvent}

od

end

This algorithm is non-deterministic. The selection of parent clauses ci and cj can be done in
many ways; how it is to be done has not been specified in the algorithm. Several different
strategies have been described in the literature, each of them prescribing an unambiguous
way of choosing parent clauses from the clause set. Such strategies are called the control
strategies of resolution or resolution strategies. Several of these resolution strategies offer



46 Chapter 2. Logic and Resolution

particularly efficient algorithms for making computer-based theorem proving feasible. Some
well-known strategies are: semantic resolution, which was developed by J.R. Slagle in 1967,
hyperresolution developed by J.A. Robinson in 1965, and various forms of linear resolution,
such as SLD resolution, in the development of which R.A. Kowalski played an eminent role.
At present, SLD resolution in particular is a strategy of major interest, because of its relation
to the programming language PROLOG.

2.7 Resolution strategies

Most of the basic principles of resolution have been discussed in the previous section. However,
one particular matter, namely the efficiency of the resolution algorithm, has not explicitly
been dealt with as yet. It is needless to say that the subject of efficiency is an important one
for automated reasoning.

Unfortunately, the general refutation procedure introduced in Section 2.6.3 is quite in-
efficient, since in many cases it will generate a large number of redundant clauses, that is,
clauses not contributing to the derivation of the empty clause.

EXAMPLE 2.36

Consider the following set of clauses:

S = {P,¬P ∨Q,¬P ∨ ¬Q ∨R,¬R}

To simplify referring to them, the clauses are numbered as follows:

(1) P

(2) ¬P ∨Q

(3) ¬P ∨ ¬Q ∨R

(4) ¬R

If we apply the resolution principle by systematically generating all resolvents, without
utilizing a more specific strategy in choosing parent clauses, the following resolvents are
successively added to S:

(5) Q (using 1 and 2)

(6) ¬Q ∨R (using 1 and 3)

(7) ¬P ∨R (using 2 and 3)

(8) ¬P ∨ ¬Q (using 3 and 4)

(9) R (using 1 and 7)

(10) ¬Q (using 1 and 8)

(11) ¬P ∨R (using 2 and 6)

(12) ¬P (using 2 and 8)

(13) ¬P ∨R (using 3 and 5)

(14) ¬Q (using 4 and 6)

(15) ¬P (using 4 and 7)
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Q

R

R �

¬Q ¬P∨R ¬P ¬P∨R ¬Q ¬P R ¬P

¬Q∨R ¬P∨R ¬P∨¬Q

¬P∨Q ¬P∨¬Q∨R ¬RP

Figure 2.3: Refutation of {P,¬P ∨Q,¬P ∨ ¬Q ∨R,¬R}.

(16) R (using 5 and 6)

(17) ¬P (using 5 and 8)

(18) R (using 1 and 11)

(19) � (using 1 and 12)

This derivation of the empty clause � from S has been depicted in Figure 2.3 by means
of a derivation graph. As can be seen, by systematically generating all resolvents in a
straightforward manner, fifteen of them were obtained, while, for instance, taking the
two resolvents

(5′) ¬P ∨R (using 2 and 3)

(6′) R (using 1 and 5′)

would lead directly to the derivation of the empty clause:

(7′) � (using 4 and 6′)

In the latter refutation, significantly less resolvents were generated.

The main goal of applying a resolution strategy is to restrict the number of redundant clauses
generated in the process of resolution. This improvement in efficiency is achieved by in-
corporating particular algorithmic refinements in the resolution principle. Some important
resolution strategies will be discussed in the following two sections.
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2.7.1 Semantic resolution

Semantic resolution is the name of a class of resolution strategies all having in common
that the process of resolution is controlled by the declarative semantics of the clauses to
be processed. We will briefly introduce the general idea and present some special forms of
semantic resolution informally.

Consider an unsatisfiable set of clauses S. It is possible to divide the set of clauses S into
two separate subsets on the basis of a particular interpretation I: the subset S1 contains the
clauses from S which are false in I, and the subset S2 contains the clauses which are true in
I. Since S is unsatisfiable, no interpretation can ever make all clauses either true or false.
So, the clause set S is split into two non-empty subsets. This semantic splitting can be used
as the basis for a control strategy in which one of the parent clauses is chosen from S1, and
the other one from S2. The generated resolvent is either added to S1 or to S2, dependent
upon the interpretation I. In the next example, the particulars of this form of resolution are
illustrated.

EXAMPLE 2.37

Consider once more the following unsatisfiable set of clauses: S = {P,¬P ∨ Q,¬P ∨
¬Q ∨R,¬R}. Furthermore, consider the interpretation I, defined by

I(P ) = false,

I(Q) = false, and

I(R) = false.

Using this interpretation, we divide the set S into the following two subsets S1 and S2:

S1 = {P}

S2 = {¬P ∨Q,¬P ∨ ¬Q ∨R,¬R}

The reader can verify that using the control strategy mentioned above, only the resol-
vents Q, ¬Q ∨R, ¬P ∨R, R and � will successively be generated.

A further refinement of the described strategy can be obtained by assigning a particular order
to the literals in the clauses. For example, in propositional logic an ordering is imposed on
the propositional symbols occurring in the set of clauses. Resolution now is restricted not
only by requiring that the two parent clauses are selected from the different subsets S1 and S2

of S (obtained from an interpretation I), but in addition, by demanding that the literal from
the clause selected from S1 to be resolved upon, is in that clause the highest one according
to the ordering imposed.

Another form of semantic resolution is the set-of-support strategy. As we mentioned in
the foregoing, resolution is generally applied to prove that a specific clause G is the logical
consequence of a satisfiable set of clauses S. Usually such a proof is by refutation, that is, it
has the form of a derivation of the empty clause � from W = S ∪ {¬G}. The information
that the set of clauses S is satisfiable, is exploited in the set-of-support strategy to decrease
the number of resolvents generated. Obviously, it is not sensible to select both parent clauses
from S: since S is satisfiable, the resulting resolvent could never be the empty clause �. In
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the set-of-support strategy a given set of clauses W is divided into two disjoint sets: the set S
being the original satisfiable set of clauses and the set T initially only containing the clauses
to be proven. The set T is called the set of support. Now, in each resolution step at least one
of the parent clauses has to be a member of the set of support. Each resulting resolvent is
added to T . It is said that these clauses ‘support’ the clauses that were to be proven, hence
the name ‘set of support’. The set-of-support strategy is a powerful control strategy, which
prevents the generation of many resolvents not contributing to the actual proof. The strategy
is both sound and complete.

EXAMPLE 2.38

Consider the following set of clauses:

W = {P,¬P ∨Q,¬P ∨ ¬Q ∨R,¬R}

It can easily be seen that the following subset S ⊂W is satisfiable:

S = {P,¬P ∨Q,¬P ∨ ¬Q ∨R}

(For example, choose an interpretation I such that I(P ) = I(Q) = I(R) = true.) The
remaining clause from W constitutes the set of support T = {¬R}; so, S ∪T = W . For
ease of exposition, we again number the clauses in S and T :

(1) P

(2) ¬P ∨ ¬Q ∨R

(3) ¬P ∨Q

(4) ¬R

Resolution using the set-of-support strategy successively generates the following resol-
vents:

(5) ¬P ∨ ¬Q (using 2 and 4)

(6) ¬Q (using 1 and 5)

(7) ¬P (using 3 and 5)

(8) � (using 1 and 7).

Note that this strategy can be considered to be a form of top-down inference: the set of
support exploited in this strategy may be viewed as a set of goals.

2.7.2 SLD resolution: a special form of linear resolution

Linear resolution has been named after the structure of the derivation graph created by this
class of strategies: in every resolution step the last generated resolvent is taken as a parent
clause. The other parent clause is either a clause from the original set of clauses or a resolvent
that has been generated before. A special form of linear resolution is input resolution. In
this strategy, each resolution step, with the exception of the first one, is carried out on the
last generated resolvent and a clause from the original set of clauses. The former clauses are
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called goal clauses; the latter clauses are called input clauses, thus explaining the name of
the strategy. Input resolution is a complete strategy for Horn clauses; for the clausal form of
logic in general however, input resolution is not complete.

A variant of input resolution which currently attracts a great deal of attention is SLD
resolution for Horn clauses. In this resolution strategy, input resolution is extended with a
selection rule which determines at every step which literal from the goal clause is selected for
resolution. The remainder of this section discusses SLD resolution.

An SLD derivation is defined as follows:

Definition 2.29 Let {Ci} be a set of Horn clauses with

Ci = B ← B1, . . . , Bp

where p ≥ 0, and let G0 be a goal clause of the form

G0 =← A1, . . . , Aq

where q ≥ 0. An SLD derivation is a finite or infinite sequence G0, G1, . . . of goal clauses,
a sequence C1, C2, . . . of variants of input clauses and a sequence θ1, θ2, . . . of most general
unifiers, such that each Gi+1 is derived from Gi =← A1, . . . , Ak and Ci+1 using θi+1 if the
following conditions hold:

(1) Aj is the atom in the goal clause Gi chosen by the selection rule to be resolved upon,
and

(2) Ci+1 is an input clause of the form

Ci+1 = B ← B1, . . . , Bp

(in which variables have been renamed, if necessary), such that Ajθi+1 = Bθi+1, where
θi+1 is a most general unifier of Aj and B.

(3) Gi + 1 is the clause

Gi+1 =← (A1, . . . , Aj−1, B1, . . . , Bp, Aj+1, . . . , Ak)θi+1

If for some n ≥ 0, Gn = �, then the derivation is called an SLD refutation and the
number n is called the length of the refutation.

Note that a new goal clause Gi+1 is the resolvent of the last computed resolvent Gi and (a
variant of) an input clause Ci+1. Figure 2.4 shows the general form of a derivation tree by
SLD resolution. In this figure the sequence of successive goal clauses (resolvents) G0, G1, . . .
has been indicated.

EXAMPLE 2.39

Consider the following set of Horn clauses:

{R(g(x))← T (x, y, f(x)), T (a, b, f(a)), P (v,w) ← R(v)}
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G0 C1, θ1

G1

Gn−1 Cn, θn

Gn

Figure 2.4: Derivation tree of SLD resolution.

← P (u, b) P (v,w)← R(v), {u/v, b/w}

← R(u) R(g(x))← T (x, y, f(x)), {g(x)/u}

← T (x, y, f(x)) T (a, b, f(a)), {a/x, b/y}

�

Figure 2.5: An SLD refutation.

Furthermore, let the following goal clause be given:

← P (u, b)

The clause set obtained by adding the goal clause to the original set of clauses is un-
satisfiable. This can be proven using SLD resolution. Figure 2.5 depicts this proof by
SLD refutation as a derivation tree.

SLD resolution is both sound and complete for Horn clauses. It furthermore is similar to
the set-of-support strategy in the sense that it is also a resolution strategy controlled by
a set of goals. So, SLD resolution is a form of top-down inference as well. In general it
is advantageous to restrict applying the resolution principle to clauses satisfying the Horn
clause format: various resolution algorithms for propositional Horn clause logic are known to
have a worst-case time complexity almost linear in the number of literals. When applying
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← P (a) P (x)← P (f(x)), {a/x}

← P (f(a)) P (x)← P (f(x)), {f(a)/x}

← P (f(f(a))) P (x)← P (f(x)), {f(f(a))/x}

← P (f(f(f(a))))

Figure 2.6: Infinite derivation tree by SLD resolution.

some resolution strategy suitable for the clausal form of logic in general, we always have to
face the danger of a combinatorial explosion. Moreover, for systems based on SLD resolution
many efficient implementation techniques have been developed by now, one of which will
be discussed in the next section. But there definitely are problems for which a resolution
strategy applying some form of bottom-up inference turns out to be more efficient than SLD
resolution.

Before introducing the notion of a search space for SLD resolution, we give another ex-
ample.

EXAMPLE 2.40

Consider the following set of Horn clauses:

C1 = P (x)← P (f(x))

C2 = P (f(f(a)))←

If these clauses are ‘tried’ in the order in which they are specified, then for the goal
clause ← P (a) no refutation is found in a finite number of steps, although the resulting
set of clauses obviously is unsatisfiable. The corresponding derivation tree is shown in
figure 2.6. However, if the clauses C1 and C2 are processed in the reverse order C2, C1,
then a refutation will be found in finite time: the resulting refutation tree is shown in
Figure 2.6.

Now let the search space for SLD resolution for a given goal on a set of clauses be a graph
in which every possible SLD derivation is shown. Such a search space is often called an SLD
tree. The branches of the tree terminating in the empty clause � are called success branches.
Branches corresponding to infinite derivations are called infinite branches, and the branches
representing derivations which have not been successful and cannot be pursued any further
are called failure branches. The level of a vertex in an SLD tree is obtained by assigning the
number 0 to the root of the tree; the level of each other vertex of the tree is obtained by
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← P (a) P (x)← P (f(x)), {a/x}

← P (f(a)) P (x)← P (f(x)), {f(a)/x}

← P (f(f(a))) P (f(f(a))), ǫ

�

Figure 2.7: Refutation by SLD resolution.

← P (a)

← P (f(a))

← P (f(f(a)))

. . . �

C1

C1

C1 C2

Figure 2.8: An SLD tree.

incrementing the level of its parent vertex by 1. The use of level numbers will be discussed
further in the next section.

EXAMPLE 2.41

Figure 2.8 shows the SLD tree corresponding to SLD resolution on the set of clauses from
the previous example. The right branch of the tree is a success branch and corresponds
to the refutation depicted in Figure 2.7; the left branch is an example of a failure branch.

It can easily be seen that a specific, fixed order in choosing parent clauses for resolution such
as in the previous example, corresponds to a depth-first search in the search space. Note that
such a depth-first search defines an incomplete resolution procedure, whereas a breadth-first
search strategy defines a complete one. Although SLD resolution is both sound and complete
for Horn clauses, in practical realizations for reasons of efficiency, variants of the algorithm
are used that are neither sound nor complete. First of all, in many implementations the
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‘expensive’ occur check has been left out from the unification algorithm, thus destroying the
soundness; the lack of the occur check might lead to circular variable bindings and yield
‘resolvents’ that are no logical consequences of the set of clauses. Furthermore, often the
original clauses are ‘tried’ in some specific order, such as for example the order in which the
clauses have been specified; the next input clause is only examined after the previous one has
been fully explored. As a consequence, the algorithm might not be able to find a proof of a
given theorem: due to an inappropriate choice of the order in which the clauses are processed,
an infinite derivation tree can be created. This way, completeness of SLD resolution will be
lost.

We have mentioned before that SLD resolution is of major interest because of its relation
with the programming language PROLOG. In PROLOG, the control strategy employed is
roughly an implementation of SLD resolution; the variant used however, is neither sound
nor complete. In most (standard) PROLOG systems, the selection rule picks the leftmost
atom from a goal for resolution. A depth-first strategy for searching the SLD tree is used:
most PROLOG systems ‘try’ the clauses in the order in which they have been specified.
Furthermore, in many PROLOG systems, for efficiency reasons, the occur check has been left
out from the implementation.

The Horn clause subset of logic is not as expressive as the full clausal form of logic is. As
is shown in the following example, this might lead to problems when translating the logical
formulas into the Horn clause subset. We next show what solution PROLOG offers to this
problem.

EXAMPLE 2.42

In Section 2.2 we defined the following predicates with their associated intended mean-
ing:

Artery = ‘is an artery’
Large = ‘is a large artery’
Wall = ‘has a muscular wall’
Oxygenrich = ‘contains oxygen-rich blood’
Exception = ‘is an exception’

The formula ∀x(Artery(x)→Wall(x)) represents the knowledge that every artery has
a muscular wall. This formula is logically equivalent to ∀x(¬Artery(x) ∨Wall(x)) and
results in the following PROLOG clause:

wall(X) :- artery(X).

The knowledge that the aorta is an artery, is represented in PROLOG by a single fact:

artery(aorta).

The implication ∀x((Artery(x)∧¬Exception(x))→ Oxygenrich(x)) stating that almost
every artery contains oxygen-rich blood, except for instance the pulmonary artery,
which contains oxygen-poor blood. This formula is equivalent to ∀x(¬(Artery(x) ∧
¬Exception(x)) ∨ Oxygenrich(x)) and to the formula ∀x(¬Artery(x) ∨ Exception(x) ∨
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Oxygenrich(x)) in disjunctive normal form. Unfortunately, it is not possible to trans-
late this formula directly into PROLOG representation, since the clause contains two
positive literals instead of at most one.

However, it is possible to represent the knowledge expressed by the clause in PROLOG,
by means of the rather special programming trick offered by the meaning of the standard
predicate not, which will be discussed below. The PROLOG clause we arrive at is the
following:

oxygenrich(X) :-

artery(X),

not(exception(X)).

Note that in the analogous example in Section 2.2 it was necessary to specify that the
aorta is not an exception to the general rule that arteries contain oxygen-rich blood. In
fact, for a correct behaviour of a proof procedure it was necessary to specify for each
artery explicitly whether or not it is an exception to the rule. In most applications
however, it is unreasonable to expect users to explicitly express all negative information
relevant to the employed proof procedure. This problem can be handled by considering
a ground literal ¬P proven if an attempt to prove P using SLD resolution has not
succeeded. So, in the particular case of the example, it is assumed that the goal clause
not(exception(aorta)) is proven.

The inference rule that a negative literal is assumed proven when the attempt to prove the
complementary literal has failed is called negation as failure. Negation as failure is similar
to the so-called closed-world assumption which is quite common in database applications.
In PROLOG, an even stronger assumption, known as negation as finite failure, is made by
taking ¬P proven only if proving P using SLD resolution has failed in a finite number of
steps. The PROLOG predicate not is the implementation of this negation as finite failure
and therefore should not be taken as the ordinary negation: it is an extra-logical feature of
PROLOG.

2.8 Implementation of SLD resolution

The publication of the resolution principle in literature in 1965 was not followed immediately
by its application in practical problem solving, which was partly due to the inefficiency of the
original algorithm. Further research, aimed at making resolution more suitable for automated
theorem proving on a computer, was directed towards the development of control strategies,
several of which were mentioned in the previous section, and towards developing better tech-
niques for implementation. A particularly important implementation technique known as
structure sharing, was developed in 1972 by R.S. Boyer and J.S. Moore; it remedied part of
the efficiency problems. The basic idea of this method is to store and manipulate only a set of
variable bindings and pointers to parts of the original clauses, instead of adding the complete
data representation of a resolvent to the data representation of a set of clauses. So, the atoms
in the goal clauses are only represented once, namely in the original clauses. This improves
the space complexity of the program considerably. Any resolvent can be reconstructed, just
by using the created bindings and the pointers to the original set of Horn clauses.



56 Chapter 2. Logic and Resolution

← P (x, b)level 0: ω1

← Q(x, y), P (y, z)level 1: ω2

← P (y, z)level 2: ω′
3 ω3

← Q(x, y), P (y, z)�level 3:

2

4

23

Figure 2.9: SLD tree for structure sharing.

The variable bindings created during resolution are stored in a data structure which is
called an environment.

Definition 2.30 An environment of bindings ω, or for short an environment, is a set of the
following form:

ω = {〈n1, t1〉/〈m1, x1〉, . . . , 〈np, tp〉/〈mp, xp〉}

The elements 〈ni, ti〉/〈mi, xi〉 are called bindings. The elements 〈ni, ti〉, called terms, are
renamed terms ti and elements of the form 〈mi, xi〉, called variables, are renamed variables
xi, where ti and xi are from the original set of clauses. In a term 〈ni, ti〉 and a variable
〈mi, xi〉, ni and mi are natural numbers, indicating the level of the derivation at which the
particular term or variable has been introduced during resolution. The numbers ni and mi are
called level numbers; ti and xi are said to be names.

EXAMPLE 2.43

Consider the following goal clause

(1) ← P (x, b)

and the following ordered collection of Horn clauses:

(2) P (x, z)← Q(x, y), P (y, z)

(3) P (x, x)←

(4) Q(a, b)←

An application of ‘ordinary’ SLD resolution yields the following resolvents, all of which
are added to the given input set of Horn clauses:

(5) ← Q(x, y), P (y, b) (using 1 and 2)

(6) ← P (b, b) (using 4 and 5)

Now, if we proceed with the goal clause 6, there are two possible derivations between
which we have to choose. The first one containing the resolvent
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(7) ← Q(b, y), P (y, b) (via 2 and 6)

is not successful, since it is not possible to derive the empty clause from this goal clause;
it fact, it is even not possible at all to pursue resolution from clause 7. The second,
alternative derivation, obtained by proceeding with the clauses 3 and 6 as parents, leads
immediately to the derivation of the empty clause:

(7′) �

We now repeat the two derivations just described to illustrate the role the environment
of bindings plays in structure sharing. In Figure 2.9 both derivations have been depicted
by means of an SLD tree. For each of the two derivations an environment of bindings
is built. The atoms occurring in each goal clause originate from the original clauses 1
to 4. Notice that these atoms have not been modified by unification. Next to each goal
clause, the bindings of the variables in the particular clause created during resolution,
have been specified. Let us reconsider the resolvents that are generated:

(5) ← Q(x, y), P (y, z) (using 1 and 2) and the environment

ω1 = {〈1, x〉/〈0, x〉, 〈0, b〉/〈1, z〉}

The binding 〈1, x〉/〈0, x〉 contains the variable 〈0, x〉 having the name x at level 0. This
variable originates from goal clause 1, the root of the tree. The term in this binding,
〈1, x〉, comes from clause 2; it is bound to the variable 〈0, x〉 in the first resolution step,
through unification of the body of clause 1 and the head of clause 2. Note that the
different variables both named x in the clauses 1 and 2, have been renamed by means
of level numbers. Similarly, the binding 〈0, b〉/〈1, z〉 indicates that in the first resolution
step the variable named z in clause 2 is bound to the constant named b occuring in the
goal clause 1.

(6) ← P (y, z) (using 4 and 5 with ω1) and the environment

ω2 = {〈1, x〉/〈0, x〉, 〈0, b〉/〈1, z〉, 〈2, a〉/〈1, x〉, 〈2, b〉/〈1, y〉}

Note that ω1 is contained in ω2.

(7) ← Q(x, y), P (y, z) (using 2 and 6 with ω2) and the environment

ω3 = {〈1, x〉/〈0, x〉, 〈0, b〉/〈1, z〉, 〈2, a〉/〈1, x〉, 〈2, b〉/〈1, y〉, 〈1, y〉/〈3, x〉, 〈1, z〉/〈3, z〉}

(7′) � (using 3 and 6 with ω2) and the environment

ω′
3 = {〈1, x〉/〈0, x〉, 〈0, b〉/〈1, z〉, 〈2, a〉/〈1, x〉, 〈2, b〉/〈1, y〉, 〈2, b〉/〈3, x〉}

Both environments ω3 and ω′
3 evolve from resolution with clause 6. However, it is not

possible to proceed with resolution using clause 7. The environment ω′
3 is an alternative

extension of ω2, which, contrary to the other derivation, does lead to the derivation of
the empty clause �. In this successful derivation, the binding 〈2, b〉/〈3, x〉 is created by
resolving the goal ← P (y, z) with clause 3, P (x, x), in the environment ω2. Although
the variable 〈1, z〉 in ← P (y, z) is bound to the term 〈0, b〉 in the environment, and
the second argument of P (x, x), the variable 〈3, x〉, is already bound to the term 〈2, b〉,
these variables are unifiable: it is assumed that constants with equal names are equal,
independent of their level numbers. Now, to find for example the binding for the variable
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named x in the goal clause 1 after resolution, first the environment ω′
3 is searched for the

term associated with the variable 〈0, x〉, which is 〈1, x〉. Subsequently, the binding for
the variable 〈1, x〉 is looked up. The term bound to this variable is 〈2, a〉. We conclude
that the variable 〈0, x〉 has obtained the binding 〈2, a〉, that is, the constant with name
a. This binding has been created in two resolution steps.

It is not strictly necessary to use level numbers for the renaming of variables; every method
that systematically renames variables in clauses is adequate. However, in the case of SLD
resolution the application of level numbers offers a simple and elegant technique. Furthermore,
applying an environment of bindings in the resolution process turns out to be especially useful
in logic programming, since here the bindings created by resolution are viewed as the result
of the application of resolution.

After these introductory remarks concerning structure sharing in resolution, we will pro-
ceed by discussing how to implement SLD resolution in the LISP language. Structure sharing
will be one of the principal aspects of the program to be developed. In the sequel, the set of
Horn clauses is taken to be ordered according to the specification of its elements. We begin
our discussion by looking at the LISP implementations of several important data structures
used within the program, respectively for the representation of Horn clauses, for the represen-
tation of goals and subgoals in the derivation and for the representation of the environment
of bindings.

Each Horn clause is represented as a list of sublists representing atoms in prefix form.
The first element of the list representation of a clause corresponds to the head of the clause;
the remaining elements of the list constitute its body.

EXAMPLE 2.44

In the list ((P x z) (Q x y) (P y z)), the first element (P x z) represents the head
of the clause P (x, z)← Q(x, y), P (y, z); (Q x y) and (P y z) together form its body.

A set of Horn clauses is represented in LISP using a list and is entered to the program by
means of the global variable *clause-set*.

EXAMPLE 2.45

Consider the following ordered set of Horn clauses once more:

P (x, z)← Q(x, y), P (y, z)
P (x, x)←
Q(a, b)←

This set is represented in LISP as follows:

(setq *clause-set*

’(((P x z) (Q x y) (P y z))

((P x x))

((Q a b))))
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The goals and subgoals generated during a derivation, are represented in a list of sublists, in
which each sublist contains the subgoals originating from a single clause. Such a list of goals
has the following form:

( (G1,1 · · ·G1,p · · · (Gn,1 · · ·Gn,q) )

where each goal or subgoal Gi,j is represented in prefix form. Later on we will see that our
resolution program adds new subgoals, represented as lists of atoms, in front of the given list
of goals.

EXAMPLE 2.46

Consider the following list of goals which contains one goal clause consisting of two
atoms:

( ((P a x) (Q x b)) )

From the foregoing discussion it should be evident that this list corresponds with the
goal clause ← P (a, x), Q(x, b). Now, suppose that the following clause is one of the
input clauses:

((P x y) (Q x z) (P z y))

Then, applying resolution leads to the creation of the following, new list of goals:

( ((Q x z) (P z y)) ((Q x b)) )

and to a new environment. Note that the subgoal (P a x) has disappeared from the
list of goals.

In each step during a derivation, an atom is selected from the list of goals for unification with
the head of an input clause. Note that this is the selection rule mentioned earlier in Section
2.7. In the program, this atom is obtained by means of a call to the function FirstGoal

which can be viewed as the implementation of the selection rule:

(defun FirstGoal (x)

(caar x))

FirstGoal always selects the first atom of the first sublist of goals. The selected atom is
subsequently removed from this sublist by the function ButFirst:

(defun ButFirst (x)

(cons (cdar x) (rest x)))

If only one atom was present in the first sublist, then the whole sublist is replaced by the
empty list by the function ButFirst. In the other case, the selected atom will just be removed
from the first sublist. In the latter case, a new call to the function FirstGoal will yield the
next goal atom of this sublist.
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The selection and deletion of atoms from the goal list is employed as part of SLD resolution.
After selecting an atom, the algorithm investigates if the selected atom is unifiable with the
head of one of the clauses kept in the variable *clause-set*. The bindings created by
unification are added to the environment of bindings already constructed. For the purpose of
renaming variables before unification is carried out, both the selected atom and the head of
the clause which is being processed, are supplemented with a level number. The atoms then
have the following representation:

(n a)

where n is a level number and a an atom.
The environment of bindings is represented in the program by means of the following LISP

data structure, being an a-list:

(((n1 t1) . (m1 x1)) · · · ((np tp) . (mp xp)))

Furthermore, special functions are provided for searching the environment and for adding new
bindings to it. The function LookUp is used for looking up the binding for a given variable in
the environment environment:

(defun LookUp (x environment)

(cond ((null x) nil)

((Variable? x)

(let ((binding (Lookup (GetBinding x environment)

environment)))

(cond ((null binding) x)

(t binding))))

(t x)))

If the first argument of the function call is not a variable but instead is the empty list, then
LookUp yields the empty list. If the argument is neither the empty list nor a variable, then
the function returns the argument unmodified. The last situation occurs in the case of a
constant, a predicate symbol or a function term. If x however is a variable, then the func-
tion GetBinding is called for retrieving the binding the variable possibly already has in the
environment environment. It should be noted that the term of the binding returned by
GetBinding may in turn be a bound variable. In this case, the function LookUp is called re-
cursively to further search the environment until a binding is found which is either a constant,
a function term or an unbound variable.

The function GetBinding

(defun GetBinding (var environment)

(first (rassoc var environment :test #’equal)))

expects for its first argument a variable represented as (nx). Looking up a binding for a
variable in the environment environment is done by means of the primitive function rassoc.
(The specification ‘:test #’equal’ in the function call specifies that in comparing the first
argument of rassoc to the cdr of each successive association in the second argument, the
function equal will be used instead of the usual function eq. This specification is necessary
in this case, for we utilize a list instead of a symbol as a key in the search; contrary to the
function equal, the function eq does not examine its arguments on structural equality.)

A new binding is added to the environment by means of the function AddBinding. This
function returns the extended environment as its function value:
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(defun AddBinding (var term environment)

(cons (cons term var) environment))

We now have discussed the most important data structures with their associated functions.
It is time to turn our attention to the implementation of the resolution algorithm.

EXAMPLE 2.47

Consider the following set of Horn clauses once more:

P (x, z)← Q(x, y), P (y, z) P (x, x)← Q(a, b)←

and suppose that the goal clause ← P (x, b) is added to this set. The interface to the
SLD resolution program provided for the user, is by means of the function Prove, which
has to be called with a goal clause as an argument. For instance, the function call

(Prove ’((P x b)))

tries to refutate the goal clause← P (x, b) from the clauses in the variable *clause-set*.

To actually start the resolution process, the function Prove calls the function Resolution;
this function constitutes the actual kernel of the program.

(defun Prove (goals)

(Resolution (list goals) ’(0) 1 nil))

The first argument in the function call to Resolution is a list of goals. Note that the function
list is applied to construct a list of lists containing goals, the data structure for representing
goals as discussed above. The second argument is a list of level numbers. Each subsequent
level number in the list corresponds to a sublist of goals. The list of level numbers is initialized
with a list which only contains the level number 0, being the level of the root of the SLD
tree. The third argument specifies the level at which resolution might take place in the next
step. Finally, the fourth argument is the environment of bindings. Obviously, at the start
of the resolution process, there are no bindings present: it therefore is initialized with the
empty environment. The main function Resolution defining the top-level of the interpreter,
is given below:

(defun Resolution (goals level-list level environment)

(cond ((null goals) environment)

((null (first goals))

(Resolution (rest goals)

(rest level-list)

level

environment))

(t (let ((goal-atom (list (first level-list)

(FirstGoal goals)))

(rest-goals (ButFirst goals)))

(ResolveUnit goal-atom

rest-goals
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level-list

level

environment)))))

In the function Resolution it is first investigated if the list of goals is empty. In that
case, the environment which has been constructed so far and which is kept in the parameter
environment, is returned. If the first sublist of goals is empty, which is investigated by
means of the form (null (first goals)), Resolution is recursively invoked to process the
remaining goals. Since each level number corresponds to a sublist of goals, and since the
first sublist is empty in this case, we also remove the first level number from the list of level
numbers by means of the form (rest level-list). However, if the list of goals is neither
empty nor has an empty list as its first sublist, then the first atom, that is goal, in the list is
selected by means of the function FirstGoal, supplemented with a level number, and finally
assigned to the variable goal-atom. Moreover, the selected atom is removed from the list
of goals by means of the function ButFirst. The result of this function call is assigned to
the variable rest-goals. Finally, by calling the function ResolveUnit, a resolution step is
carried out with the selected atom.

(defun ResolveUnit (goal

rest-goals

level-list

level

environment)

(do ((clause (first *clause-set*)

(first rest-clauses))

(rest-clauses (rest *clause-set*)

(rest rest-clauses))

(result ’FAIL)

(env2 nil))

((or (null clause)

(not (eq result ’FAIL))) result)

(let ((head (first clause))

(body (rest clause)))

(setq env2 (Unify goal

(list level head)

environment))

(unless (eq env2 ’FAIL)

(setq result (Resolution (cons body rest-goals)

(cons level level-list)

(1+ level)

env2))))))

The function ResolveUnit examines whether the selected atom, goal, is unifiable with
one of the heads of the clauses from the variable *clause-set*. An applicable clause in
*clause-set* is found by traversing the set of clauses by means of an iterative do form.
Using the function Unify, which will be discussed shortly, it is investigated whether or not
the head of a specific clause and the atom goal are unifiable. In case this atom and the
head of the clause are not unifiable, the value FAIL is returned by Unify. In the other case,
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the possibly extended environment will be returned as a function value. If unification has
succeeded, then the function Resolution is called again recursively. In the argument list of
this recursive call, the body of the selected clause is inserted at the front of the goal list;
note that this imposes a depth-first search strategy. Furthermore, the level number that was
already reserved for the body of the clause, is added to the front of the list level-list, and
the current level number is incremented by 1 for the next derivation step.

The function Unify is quite similar to the unification algorithm described in Section
2.6.2. However, here we utilize an environment of bindings in computing a most general
unifier of a set of expressions, instead of substituting terms for variables right away in the
given expressions at every step. A further distinction is that in the present program the
expressions to be unified are supplemented with a level number. Other differences between
the two programs will become evident as we proceed with the discussion.

(defun Unify (x y environment)

(let ((x (LookUp x environment))

(y (LookUp y environment)))

(cond ((equal x y) environment)

((Variable? x) (AddBinding x y environment))

((Variable? y) (AddBinding y x environment))

((or (Constant? x)

(Constant? y))

(if (eq (Name x)

(Name y)) environment

’FAIL))

(t (setq environment

(Unify (FirstExpr x) (FirstExpr y) environment))

(if (eq environment ’FAIL) ’FAIL

(Unify (RestExpr x)

(RestExpr y) environment))))))

Upon entering the body of the function Unify, the function LookUp is called twice for looking
up possible bindings for the expressions x and y. The function LookUp has been discussed
above. If both x and y are bound, they are examined on equality by means of the call (equal x

y). In case one of the arguments is still unbound, the test yields the truth value nil, since then
we certainly have different level numbers supplied with the variables, although their names
may be equal. If at least one of the arguments x and y is a variable, or if we have found a
binding having a variable as its associated term, a new binding is added to the environment by
means of a call to the function AddBinding. Note that, contrary to the unification algorithm
discussed in Section 2.6.2, the occur check has been left out; so, it is possible to create cyclic
bindings, thus loosing soundness. If one of x and y is a compound expression, then Unify is
called recursively to examine the first subexpressions and successively the remainders of the
expressions if the first partial unification has succeeded.

As can be seen, the function Unify calls several simple functions, such as functions for
verifying if the argument of a function call is a variable or a constant symbol, and functions
that split expressions into two separate components. Every symbol is supplemented with a
level number. For selecting the name of the symbol the function Name is applied, which is
defined below:
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(defun Name (x)

(cadr x))

The function Variable? investigates whether or not its argument is a variable:

(defun Variable? (x)

(member (Name x) ’(u v w x y z)))

After extracting the name of the variable from x, it is checked whether or not the name occurs
in a list of predefined variable names. By means of the function Constant? it is investigated
if x is a predicate symbol, a function symbol, or a constant:

(defun Constant? (x)

(atom (Name x)))

The function FirstExpr selects by means of the function call (first x) the level number of
an expression x. This level number and the result of the call (caadr x), yielding the first
subexpression of x, are concatenated using the primitive function list:

(defun FirstExpr (x)

(list (first x) (caadr x)))

Finally, the function Unify uses the function RestExpr which only differs from FirstExpr

by selecting the remaining subexpressions instead of the first subexpression. The remaining
subexpressions are supplemented with the level number and returned as the function value
of RestExpr:

(defun RestExpr (x)

(list (first x) (cdadr x)))

We now have finished the description of the LISP program that implements SLD resolu-
tion. By means of the following example we illustrate how the program may be used. .sp
EXAMPLE 2.48

After evaluation of the assignment

(setq *clause-set*

’(((P x z) (Q x y) (P y z))

((P x x))

((Q a b))))

the function call

(Prove ’((P x b) (P a a)))

returns the following environment as its function value:

(((0 a) 4 x)

((2 b) 3 x)

((2 b) 1 y)

((2 a) 1 x)

((0 b) 1 z)

((1 x) 0 x))

It should be evident that after refutation, the variable x in the given goal clause is
bound to the constant a from level 2.
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2.9 Applying logic for building expert systems

In the preceding sections, much space has been devoted to the many technical details of
knowledge representation and automated reasoning using logic. In the present section, we
shall indicate how logic can actually be used for building a logic-based expert system.

In the foregoing, we have seen that propositional logic offers rather limited expressiveness,
which in fact is too limited for most real-life applications. First-order predicate logic offers
much more expressive power, but that alone does not yet render the formalism suitable
for building expert systems. There are some problems: any automated reasoning method
for full first-order logic is doomed to have a worst-case time complexity at least as bad as
that of checking satisfiability in propositional logic, which is known to be NP-complete (this
means that no one has been able to come up with a better deterministic algorithm than an
exponentially time-bounded one, although it has not been proven that better ones do not
exist). Furthermore, we know that first-order predicate logic is undecidable; so, it is not
even sure that an algorithm for checking satisfiability will actually terminate. Fortunately,
the circumstances are not always as bad as that. A worst-case characterization seldom gives
a realistic indication of the time an algorithm generally will spend on solving an arbitrary
problem. Moreover, several suitable syntactic restrictions on first-order formulas have been
formulated from which a substantial improvement of the time complexity of the algorithm is
obtained; the Horn clause format we have paid attention to is one such restriction.

Since syntactic restrictions are only acceptable as far as permitted by the problem domain,
we reconsider the area of cardiovascular disease introduced in Chapter 1 and use it as the
problem domain for our logic-based expert system. Of course, only a very small part of that
domain can be dealt with here. The SLD resolution program developed in the preceding
section will be taken as the point of departure for the inference engine of the system. This
program will turn out to be too simple to be applicable for our purposes. However, we show
that by adding a small number of features required by our knowledge base, the program can
indeed be used for consulting a logic knowledge base.

Consider again the problem area of cardiovascular disease as introduced in Chapter 1.
We formalize some of the knowledge from this problem area. For this purpose, we introduce
several predicate symbols, function symbols and so on; these should be interpreted as having
the meaning the symbols intuitively intend to. First of all, we would like to define the notion of
a ‘cardiovascular disease’. This notion may be formalized by the following logical implication:

∀x((Disorder (x, heart ) ∨Disorder(x, bloodvessels ))→ DiseaseNature(x, cardiovascular ))

The four specific cardiovascular diseases mentioned in Section 1.4 can now be represented as
follows:

Disorder (abdominal-aneurysm , bloodvessels)
Disorder (aortic-regurgitation, heart )
Disorder (arterial-stenosis, bloodvessels)
Disorder (atherosclerosis , bloodvessels)

This small set of definitions of some of the basic notions used in the domain of cardiovascular
disease now is extended with a collection of logical implications, expressing the diagnostic
knowledge described in Section 1.4:

∀x((Symptom(x, abdominal-pain) ∧
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Table 2.6: Two patient cases.
Systolic/
diastolic

Name Sex Age Symptoms Signs pressure

Ann female 12 fever diastolic murmur 150/60
John male 60 abdominal pain abdominal murmur 130/90

pulsating mass

Sign(x, abdominal-murmur) ∧
Sign(x, pulsating-mass)) →

SuffersFrom(x, abdominal-aneurysm))

∀x((Symptom(x, leg-cramp) ∧
Present(leg-cramp,walking) ∧
Absent(leg-cramp, rest)) →

SuffersFrom(x, arterial-stenosis))

∀x((SuffersFrom(x, arterial-stenosis) ∧
age(x) > 50) →

SuffersFrom(x, atherosclerosis ))

∀x((systolic-pressure(x) > 140 ∧
(Sign(x, diastolic-murmur)∨
Sign(x, enlarged-heart)) →

SuffersFrom(x, aortic-regurgitation))

Note that we have used function symbols such as age to express unique properties of individ-
uals in the domain of discourse. In addition, note that these implications contain an atom
in which a special binary predicate symbol is used in infix notation, instead of in the usual
prefix notation: the predicate >. In general, we allow for the equality predicate = and the
ordering predicates < and >. These predicates usually are specified in infix position, since
this is normal mathematical practice. Both the equality and the ordering predicates have a
special meaning, which is described by means of a collection of axioms. We will return to this
observation shortly.

In order to be able to show how this tiny knowledge base can be applied in a medical
diagnostic setting, let us consider a small number of patient cases. Table 2.6 lists all the
relevant information concerning two of our patients. This information may be specified in
first-order predicate logic as a set of (positive) atoms as follows:

name(patient) = Ann
sex (Ann) = female
age(Ann) = 12
Symptom(Ann, fever)
Sign(Ann, diastolic-murmur) systolic-pressure(Ann) = 150
diastolic-pressure(Ann) = 60

name(patient) = John
sex (John) = male
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age(John) = 60
Symptom(John , abdominal-pain)
Sign(John , abdominal-murmur)
Sign(John , pulsating-mass)
systolic-pressure(John) = 130
diastolic-pressure(John) = 90

This completes the specification of our small knowledge base.
We already mentioned that the equality and ordering predicates have special meanings.

These will now be discussed in some detail. The meaning of the equality predicate is defined
by means of the following four axioms:

E1 (reflexivity): ∀x(x = x)

E2 (symmetry): ∀x∀y(x = y → y = x)

E3 (transitivity): ∀x∀y∀z(x = y ∧ y = z → x = z)

E4 (substitutivity): ∀x1 . . . ∀xn∀y1 . . . ∀yn((x1 = y1 ∧ . . . ∧ xn = yn) → f(x1, . . . , xn) =
f(y1, . . . , yn)), and ∀x1 . . . ∀xn∀y1 . . . ∀yn((x1 = y1 ∧ . . . ∧ xn = yn ∧ P (x1, . . . , xn)) →
P (y1, . . . , yn))

Axiom E1 states that each term in the domain of discourse is equal to itself; axiom E2

expresses that the order of the arguments of the equality predicate is irrelevant. Axiom E3

furthermore states that two terms which are equal to some common term, are equal to each
other. Note that axiom E2 follows from the axioms E1 and E3; nevertheless, it is usually
mentioned explicitly. The three axioms E1, E2 and E3 together imply that equality is an
equivalence relation. Addition of axiom E4 renders it a congruence relation. The first part
of axiom E4 states that equality is preserved under the application of a function; the second
part expresses that equal terms may be substituted for each other in formulas.

EXAMPLE 2.49

Consider the following set of clauses S:

S = {¬P (f(x), y) ∨Q(x, x), P (f(a), a), a = b}

Suppose that, in addition, we have the equality axioms. If we add the clause ¬Q(b, b) to
S, the resulting set of clauses will be unsatisfiable. This can easily be seen informally as
follows: we have P (f(a), a) ≡ P (f(b), a) using the given clause a = b and the equality
axiom E4. Now, we replace the atom P (f(a), a) by the equivalent atom P (f(b), a) and
apply binary resolution.

The explicit addition of the equality axioms to the other formulas in a knowledge base suffices
for rendering equality available for use in an expert system. However, it is well-known that
proving theorems in the presence of the equality axioms can be very inefficient, since many
redundant clauses may be generated using resolution. Again, several refinements of the (ex-
tended) resolution principle have been developed to overcome the inefficiency problem. For
dealing with equality, the resolution principle has for example been extended with an extra
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inference rule: paramodulation. Informally speaking, the principle of paramodulation is the
following: if clause C contains a term t and if we have a clause t = s, then derive a clause by
substituting s for a single occurrence of t in C. Therefore, in practical realizations equality is
often only present implicitly in the knowledge base, that is, it is used as a ‘built-in’ predicate.

In many real-life applications, a universally quantified variable ranges over a finite domain
D = {ci | i = 1, . . . , n, n ≥ 0}. The following property usually is satisfied: ∀x(x = c1 ∨ x =
c2∨. . .∨x = cn), with ci 6= cj if i 6= j. This property is known as the unique name assumption;
from this assumption we have that objects with different names are different.

EXAMPLE 2.50

Consider the following set of clauses S:

S = {¬P (x) ∨ x = a}

We suppose that the equality axioms as well as the unique name assumption hold. Now,
if we add the clause P (b) to S, we obtain an inconsistency, since the derivable clause
b = a contradicts with the unique name assumption.

The ordering predicates ¡ and ¿ define a total order on the set of real numbers. They express
the usual, mathematical ‘less than’ and ‘greater than’ binary relations between real numbers.
Their meaning is defined by means of the following axioms:

O1 (irreflexivity): ∀x¬(x < x))

O2 (antisymmetry): ∀x∀y(x < y → ¬(y < x))

O3 (transitivity): ∀x∀y∀z((x < y ∧ y < z)→ x < z)

O4 (trichonomy law): ∀x∀y((x < y ∨ x = y ∨ x > y)

Axiom O1 states that no term is less that itself; axiom O2 expresses that reversing the order of
the arguments of the predicate ¡ reverses the meaning. Axiom O3 furthermore states that if a
term is less than some other term, and this term is less than a third term, then the first term
is less than the third one as well. Note that axiom O2 follows from O1 and O3. The axioms
O1, O2 and O3 concern the ordering predicate <. The axioms for the ordering predicate
> are similar to these: we may just substitute > for < to obtain them. Axiom O4 states
that a given term is either less than, equal to or greater than another given term. Again, in
practical realizations, these axioms usually are not added explicitly to the knowledge base,
but are assumed to be present implicitly as ‘built-in’ predicates.

We now would like to use the program for SLD resolution developed in the preceding
section for consulting the knowledge base in order to determine the disorders the given patients
are likely to be suffering from. To begin with, it is noted that all formulas can be translated
directly into the Horn clause format. In extending the program, we impose some restrictions
on the use of the equality and ordering predicates in Horn clauses:

• Only the equality predicate = and user-defined predicates are allowed in the conclusion
of a Horn clause.
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• The second arguments of the equality and ordering predicates are either variables or
(numeric) constants; function terms are not allowed as the second argument of an
equality and ordering predicate.

In addition, it is assumed that a knowledge base is consistent before adding the goal clause.
As we have pointed out in the previous Section, one of the difficulties with the LISP

program for SLD resolution is that it is neither sound nor complete. However, the program
can easily be extended to obtain a program which is both sound and complete; in the sequel,
it is assumed that the program has been modified accordingly. The extension is left to the
reader as an exercise. (See Exercise 2.15.) The implementation of the equality and ordering
predicates deserves some special attention. We will not add the axioms for these predicates
explicitly to our knowledge base. We have chosen for an approach in which atoms specifying
an equality or an ordering predicate will be treated as evaluable expressions if both arguments
are numeric constants, or properly bound to numeric constants. First of all we have to adapt
the unification algorithm for handling evaluable goals. We modify the function ResolveUnit

discussed in the preceding section by replacing the call to the function Unify by a call to the
function Match, to which the same arguments as before will be passed:

(defun Match (goal head environment)

(cond ((Evaluable? goal environment)

(EvalAtom goal head environment))

((and (OrderPred? goal)

(EqualityPred? head))

(let ((new-env (Unify (LevelFirstArg goal)

(LevelFirstArg head)

environment)))

(if (eq new-env ’FAIL)

new-env

(EvalAtom goal head new-env))))

(t (Unify goal head environment))))

In the function Match, the given goal atom is first examined upon its being an evaluable
expression, that is, it is investigated whether it contains an equality or ordering predicate,
and, if so, has arguments which are numbers or are properly bound to numeric constants.
This is done by means of the function Evaluable?:

(defun Evaluable? (atom environment)

(and (or (OrderPred? atom) (EqualityPred? atom))

(NumericInstance? atom environment)))

The functions OrderPred? and EqualityPred? test if the predicate of atom is either an
ordering or an equality predicate, respectively:

(defun OrderPred? (atom)

(member (Predicate atom) ’(< <= > >=)))

(defun EqualityPred? (atom)

(member (Predicate atom) ’(= !=)))

The function Predicate for selecting the predicate of an atom is defined by:
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(defun Predicate (atom)

(first (Name atom)))

The function Evaluable? furthermore checks if both arguments of an atom with a binary
predicate symbol are numeric constants or variables bound to numeric constants by means
of the function NumericInstance?. This function calls the function LookUp to search for
variable bindings in the given environment:

(defun NumericInstance? (atom environment)

(let ((arg1 (LookUp (LevelFirstArg atom) environment))

(arg2 (LookUp (LevelSecondArg atom) environment)))

(and (numberp (Name arg1)) (numberp (Name arg2)))))

The functions LevelFirstArg and LevelSecondArg yield the first and second argument,
respectively, of the equality or ordering predicate, supplemented with the level number of the
original atom atom:

(defun LevelFirstArg (atom)

(list (first atom) (FirstArg atom)))

(defun LevelSecondArg (atom)

(list (first atom) (SecondArg atom)))

The functions FirstArg and SecondArg are defined as follows:

(defun FirstArg (atom)

(cadr (Name atom)))

(defun SecondArg (atom)

(caddr (Name atom)))

If a goal has been shown to be an evaluable expression, then the function EvalAtom is called
from Match. This function evaluates the given atom, by first substituting the bindings for
the variables if these are present, and subsequently passing the resulting instance to the LISP
interpreter for evaluation by means of a call to the built-in function eval. The function
EvalAtom is also called from Match if we have a goal atom containing an ordering predicate,
and a head of a clause containing the equality predicate. We then apply the predicate in the
goal atom on the second argument of the head and the second argument of the given goal:

(defun EvalAtom (goal head environment)

(let ((goal (Instantiate goal environment))

(head (Instantiate head environment)))

(cond ((NumericInstance? goal environment)

(if (eval (Name goal)) environment

’FAIL))

(t (if (and (numberp (SecondArg goal))

(numberp (SecondArg head))

(funcall (Predicate goal)

(SecondArg head)

(SecondArg goal)))

environment

’FAIL)))))
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The process of substituting the bindings of the variables for the variables in a given atom is
done by the function Instantiate:

(defun Instantiate (atom environment)

(let ((arg1 (LookUp (LevelFirstArg atom) environment))

(arg2 (LookUp (LevelSecondArg atom) environment)))

(list (first atom) (list (Predicate atom)

(Name arg1) (Name arg2)))))

This completes our description of some extensions to the SLD resolution program. Let us now
study an example of how the program can be applied for consulting a logic expert system.

EXAMPLE 2.51

Consider again the partial formalization of the domain of cardiovascular disease we pre-
sented at the beginning of this section. To start with, the given formulas have to be
translated into clausal form of logic. The resulting clauses must then be translated into
the LISP representation of Horn clauses, as discussed in the previous section. The re-
sulting list of clauses is assigned to the variable *clause-set*. The following knowledge
base is obtained:

(setq *clause-set*

’(

; DATA FOR John

((= (name patient) John))

((= (age John) 60))

((= (sex John) male)

((Symptom John abdominal-pain))

((= (systolic-pressure John) 130))

((= (diastolic-pressure John) 90))

((Sign John abdominal-murmur))

((Sign John pulsating-mass))

; DATA FOR Ann

((= (name patient) Ann))

((= (age Ann) 12))

((= (sex Ann) female)

((Sign Ann diastolic-murmur))

((= (systolic-pressure Ann) 150))

((= (diastolic-pressure Ann) 60))

((Symptom Ann fever))

; KNOWLEDGE BASE

((DiseaseNature x cardiovascular) (Disorder x heart))

((DiseaseNature x cardiovascular) (Disorder x bloodvessels))

((Disorder aortic-regurgitation heart))

((Disorder abdominal-aneurysm bloodvessels))

((Disorder atherosclerosis bloodvessels))
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((Disorder arterial-stenosis bloodvessels))

((SuffersFrom x aortic-regurgitation)

(> (systolic-pressure x) 140)

(Sign x diastolic-murmur))

((SuffersFrom x aortic-regurgitation)

(> (systolic-pressure x) 140)

(Sign x enlarged-heart))

((SuffersFrom x abdominal-aneurysm)

(Symptom x abdominal-pain)

(Sign x abdominal-murmur)

(Sign x pulsating-mass))

((SuffersFrom x arterial-stenosis)

(Symptom x legg-cramp)

(Present legg-cramp walking)

(Absent legg-cramp rest))

((SuffersFrom x atherosclerosis)

(SuffersFrom x arterial-stenosis)

(> (age x) 50))))

We now may consult the knowledge base, by using the function Prove discussed in the
previous section. For example, to find out whether or not Ann is suffering from some
disease, and if she does, what the nature of her disease is, we may enter the following
query:

>(Prove ’((SuffersFrom Ann x) (DiseaseNature x y))))

(((4 cardiovascular) 0 y) ((1 aortic-regurgitation) 4 x)

((1 aortic-regurgitation) 0 x) ((0 Ann) 1 x))

The result tells us that Ann is suffering from aortic regurgitation, since the variable x at
level 0 is bound to the constant aortic-regurgitation. This appears to be a cardiovas-
cular disease, since the variable y at level 0 is bound to the constant cardiovascular.

The user interface of the program is rather crude; it is left as an exercise to the reader to
make the interaction to the program more enjoyable from a user’s point of view. (See Exercise
2.16.)

2.10 Logic as a representation formalism

Compared to other knowledge representation formalisms in artificial intelligence, logic has
the great advantage of having a clear syntax and semantics. A logical deductive system in
principle offers a set of inference rules, which is sound and complete: each formula derived
using such a set of inference rules has a meaning that is unique in terms of the meaning of the
formulas it was derived from. So, logic offers a starting point for studying the foundations of
knowledge representation and manipulation.
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First-order logic in its pure form however has hardly ever been used as a knowledge
representation formalism in expert systems. This is partly due to the difficulty of expressing
domain knowledge in logical formulas. When in a specific problem domain the knowledge is
not available in a form ‘close’ to logic, a lot of energy has to be invested into converting expert
knowledge to logical formulas, and in this process often valuable information is lost. Moreover,
the type of logic that has been dealt with in this chapter, which is sometimes called standard
logic, is not suitable for encoding all types of knowledge. For example, reasoning about
time, and reasoning about reasoning strategies to be followed, often called meta-inference,
cannot be represented directly in first-order predicate logic. Moreover, in standard logic it
is not possible to handle incomplete and uncertain information, or to deal adequately with
exceptional cases to general rules. Currently however, a lot of research is going on concerning
non-standard logics for expressing such concepts in a formal way. It seems likely that logic
will get a more prominent place in future generation expert systems.

Suggested reading

For a mathematical introduction to logic and logical deduction the reader is referred to [En-
derton72] and [Dalen83].

The computer program for theorem proving developed by M. Davis is described in [Davis57].
[Newell57] presents the Logic Theory Machine. These papers were reprinted in [Siekmann83a]
and [Siekmann83b], two highly interesting books containing classical papers on theorem prov-
ing. Early papers on the use of theorem-proving techniques in question-answering systems
are [Slagle65] and [Green68]. The original article by J.A. Robinson in which the resolution
principle was first introduced is [Robinson65].

[Wos84] gives an introductory overview of various resolution strategies, and describes
several interesting applications. Other books on resolution and resolution strategies are
[Chang73], [Loveland78] and [Robinson79]. [Gallier87] follows an approach to resolution dif-
ferent from the four books mentioned above: it treats resolution as a special Gentzen proof
system. [Kowalski79] is a readable account of using Horn clause logic for the representation
and manipulation of knowledge. [Lloyd87] discusses the declarative semantics of Horn clause
logic by means of Herbrand models and a fixed point operator, and also the operational
semantics of SLD resolution. [Boyer72] is the original paper concerning structure sharing.
[Nilsson84] offers a description of a LISP implementation of an interpreter that more closely
resembles a PROLOG interpreter than the program discussed in this book. A recent effi-
cient implementation of a resolution-based theorem prover which is available from Argonne
National Laboratory, is OTTER, [McCune89]. The system is highly recommended to those
interested in experimenting with theorem proving.

Books introducing a logic-based approach to artificial intelligence are [Thayse88] and
[Genesereth87]. To conclude with, [Smets88] presents an overview of non-standard logics.

Exercises

(2.1) Consider the interpretation v : PROP → {true , false} in propositional logic, which is
defined by v(P ) = false , v(Q) = true and v(R) = true. What is the truth value of the
formula ((¬P ) ∧Q) ∨ (P → (Q ∨R)) given this interpretation v?
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Table 2.7: Meaning of Sheffer stroke.
F G F |G

true true false
true false true
false true true
false false true

(2.2) For each of the following formulas in propositional logic determine whether it is valid,
invalid, satisfiable, unsatisfiable or a combination of these, using truth tables:

(a) P ∨ (Q→ ¬P )

(b) P ∨ (¬P ∧Q ∧R)

(c) P → ¬P

(d) (P ∧ ¬Q) ∧ (¬P ∨Q)

(e) (P → Q)→ (Q→ P )

(2.3) Suppose that F1, . . . , Fn, n ≥ 1, and G are formulas in propositional logic, such that
the formula G is a logical consequence of {F1, . . . , Fn}. Construct the truth table of the
implication F1 ∧ · · · ∧ Fn → G. What do you call such a formula?

(2.4) Prove the following statements using the laws of equivalence for propositional logic:

(a) P → Q ≡ ¬P → ¬Q

(b) P → (Q→ R ≡ (P ∧Q)→ R

(c) (P ∧ ¬Q)→ R ≡ (P ∧ ¬R)→ Q

(d) P ∨ (¬Q ∨R) ≡ (¬P ∧Q)→ R

(2.5) Prove that the proposition ((P → Q) → P ) → P , known as Peirce’s law, is a tautol-
ogy, using the laws of equivalence in propositional logic and the property that for any
propositions π and φ, the formula π ∨ ¬φ ∨ φ is a tautology.

(2.6) In each of the following cases, we restrict ourselves to a form of propositional logic only
offering a limited set of logical connectives. Prove by means of the laws of equivalence
that every formula in full propositional logic can be translated into a formula only
containing the given connectives:

(a) the connectives ¬ and ∨.

(b) the connective | which is known as the Sheffer stroke; its meaning is defined by the
truth table given in Table 2.7.

(2.7) Consider the following formula in first-order predicate logic: ∀x(P (x)∨Q(y)). Suppose
that the following structure

S = ({2, 3}, ∅, {A : {2, 3} → {true, false}, B : {2, 3} → {true, false})

is given. The predicates A and B are associated with the predicate symbols P and Q,
respectively. Now, define the predicates A and B, and a valuation v in such a way that
the given formula is satisfied in the given structure S and valuation v.
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(2.8) Consider the following statements. If a statement is correct, then prove its correctness
using the laws of equivalence; if it is not correct, then give a counterexample.

(a) ∀xP (x) ≡ ¬∃x¬P (x)

(b) ∀x∃yP (x, y) ≡ ∀y∃xP (x, y)

(c) ∃x(P (x)→ Q(x)) ≡ ∀xP (x)→ ∃xQ(x)

(d) ∀x(P (x) ∨Q(x)) ≡ ∀xP (x) ∨ ∀xQ(x)

(2.9) Transform the following formulas into the clausal form of logic:

(a) ∀x∀y∃z(P (z, y) ∧ (¬P (x, z)→ Q(x, y)))

(b) ∃x(P (x)→ Q(x)) ∧ ∀x(Q(x)→ R(x)) ∧ P (a)

(c) ∀x(∃y(P (y) ∧R(x, y))→ ∃y(Q(y) ∧R(x, y)))

(2.10) For each of the following sets of clauses, determine whether or not it is satisfiable. If
a given set is unsatisfiable, then give a refutation of the set using binary resolution;
otherwise give an interpretation satisfying it:

(a) {¬P ∨Q,P ∨ ¬R,¬Q,¬R}

(b) {¬P ∨Q ∨R,¬Q ∨ S,P ∨ S,¬R,¬S}

(c) {P ∨Q,¬P ∨Q,P ∨ ¬Q,¬P ∨ ¬Q}

(d) {P ∨ ¬Q,Q ∨R ∨ ¬P,Q ∨ P,¬P}

(2.11) Let E be an expression and let σ and θ be substitutions. Prove that E(σθ) = (Eσ)θ.

(2.12) For each of the following sets of expressions, determine whether or not it is unifiable. If
a given set if unifiable, then compute a most general unifier:

(a) {P (a, x, f(x)), P (x, y, x)}

(b) {P (x, f(y), y), P (w, z, g(a, b))}

(c) {P (x, z, y), P (x, z, x), P (a, x, x)}

(d) {P (z, f(x), b), P (x, f(a), b), P (g(x), f(a), y)}

(2.13) Use binary resolution to show that each one of the following sets of clauses is unsatisfi-
able:

(a) {P (x, y) ∨Q(a, f(y)) ∨ P (a, g(z)),¬P (a, g(x)) ∨Q(a, f(g(b))),¬Q(x, y)}

(b) {append (nil , x, x), append (cons(x, y), z, cons(x, u)) ∨ ¬append(y, z, u),
¬append(cons(1, cons(2,nil )), cons(3,nil ), x)}

(c) {R(x, x), R(x, y) ∨ ¬R(y, x), R(x, y) ∨ ¬R(x, z) ∨ ¬R(z, y), R(a, b),¬R(b, a)}

Remark. The first three clauses in exercise (c) define an equivalence relation.

(2.14) Consider the set of clauses {¬P,P ∨Q,¬Q,R}. We employ the set-of-support resolution
strategy. Why do we not achieve a refutation if we set the set of support initially to the
clause R?
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(2.15) Section 2.8 discusses an implementation of SLD resolution in COMMON LISP. This
implementation follows the strategy of the variant of SLD resolution employed in PRO-
LOG in the sense that the strategy is incomplete because of its using depth-first search
for finding a refutation, and in addition is not sound because of the absence of the occur
check in the unification algorithm. Modify this program in such a way that the resulting
resolution algorithm will be both sound and complete.

Hints. Use breadth-first search instead of depth-first search. The occur check can be
incorporated into the unification algorithm in a similar fashion as discussed in Section
2.6.2, but now we have to pass the environment of bindings to the function OccursCheck

as a third argument. Try also to develop a program where bounded depth-first search is
employed, in addition to the occur check. This means that you include in the program
in Section 2.8 the definition (defconstant *level-bound* ¡number¿) of a constant
*level-bound*. As the parameter level is incremented by one at each next recur-
sive call to Resolution, it is checked whether this parameter has surpassed the preset
maximal level number *level-bound*, in which case the function returns failure. An
alternative solution will then be looked for. Note that bounded depth-first search does
not yield full completeness. Experiment with the value assigned to *level-bound*.

(2.16) Develop a logic knowledge base for a problem domain you are familiar with. Use the
program discussed in Section 2.9 after extending it with a more user-friendly inter-
face, together with the knowledge base for answering certain questions concerning the
problem domain.
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In the early 1970s, A. Newell and H.A. Simon introduced the notion of a production system
as a psychological model of human behaviour. In this model, part of the human knowledge
is being represented in separate units called productions or production rules. These units
contain information concerning actions a person has to take upon the perception of certain
stimuli from the environment. Such actions may affect a person’s view on the environmental
reality, on the one hand because previous assumptions may have to be revised, and on the
other hand because possibly new phenomena have to be explained. The model of Newell
and Simon closely resembles the two-process theory of memory in cognitive psychology,
where two different mechanisms for the storage of incoming sensory information are
distinguished: the short-term memory, and the long-term memory, respectively. The
short-term memory only contains a limited amount of rapidly decaying information. It
corresponds to the part of a production system in which input and derived data are kept.
The long-term memory is for permanent storage of information, and corresponds to the rule
base of a production system in which the production rules are specified. The
production-rule formalism has been employed by many other researchers in addition to
Newell and Simon. Most of them, however, view the production-rule formalism merely as a
formal language for expressing certain types of knowledge. The formalism has for example
been used in the HEURISTIC DENDRAL system for predicting the molecular structure of
compounds, as has been discussed in Chapter 1. Part of the knowledge necessary for the
purpose of this system has been encoded by means of production rules. The greatest success
of the formalism, however, came with the building of the MYCIN and EMYCIN systems, in
which the suitability of production rules for building diagnostic expert systems was
convincingly shown. Another successful system, more directly employing the work of Newell
and Simon, is OPS5, which will be discussed in Chapter 7.

Many present-day expert systems use the production-rule formalism as a knowledge

77
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representation scheme. Practical experience with production rules has proven this formalism
to be particularly suitable in solving classification problems in which the available
knowledge takes the form of rules of thumb. In other types of applications, such as design
and planning, production rules have been applied with success as well. The suitability of the
production system approach for building certain types of expert systems not only depends
on the production-rule formalism itself, but also on the type of inference method employed
for rule-based reasoning.

In the present chapter, we closely look at a number of important notions from
production systems. Section 3.1 discusses the various schemes for representing knowledge a
production system offers. We proceed by discussing the two basic reasoning methods for
systems with production rules in Section 3.2. To conclude, Section 3.3 pays attention to a
technique for enlarging the expressive power of the production-rule formalism.

3.1 Knowledge representation in a production system

A production system offers a number of formalisms for representing expert knowledge. The
most important of these, of course, is the production-rule formalism, in which the actual
problem-solving knowledge is expressed. The entire set of production rules in a production
system is called its rule base. In addition to the production-rule formalism, a production
system provides a means for defining the objects referred to in the production rules, called the
domain declaration in this book. The rule base and the domain declaration together constitute
the knowledge base of the production system. These and other schemes for representing
knowledge will be discussed in detail in the subsequent sections.

3.1.1 Variables and facts

During a consultation of the knowledge base of a production system, information is constantly
being added, removed, or modified as a result of the application of production rules, of data
entered by the user, or as a result of querying some database. The facts that become known
to the system during a consultation, are stored in a so-called fact set, also known as the global
database or working memory of the system.

Factual information can be represented in a number of ways. One simple way is to
represent facts by means of variables which can take either a single constant or a set of
constants as a value. Note that the set of all variables defined in a production system together
with their possible values, presents a picture of the information which is relevant in the field
modelled in the system.

In general, two types of variable are discerned:

• single-valued variables, that is, variables which can take at most one constant value at
a time, and

• multi-valued variables, that is, variables which can take a set of constants for a value.

Single-valued variables are used to represent information which in the case under considera-
tion is unique; multi-valued variables are used for representing a collection of interrelated facts.

EXAMPLE 3.1



3.1. Knowledge representation in a production system 79

In a medical expert system, a variable with the name complaint may be used for storing
information about the complaints of a certain patient. This variable has to be multi-
valued, because a patient may have more than one complaint at the same time. An
example of a single-valued variable is the sex of the patient.

Properties of variables, such as whether they are single- or multi-valued, and usually also
information concerning the values a variable is allowed to take, are all described in the domain
declaration of a knowledge base. The following definition provides a formal description of such
a domain declaration.

Definition 3.1 Let τ denote a nonempty set of constants, called a type. A typed variable
declaration is an expression of one of the following forms:

• xs : τ , where xs is a single-valued variable;

• xm : 2τ , where xm is a multi-valued variable.

Untyped variable declarations are expressions of the form xs, in the single-valued case, or
xm, in the multi-valued case. A set D of variable declarations for all variables occurring in
the knowledge base is called the domain declaration of the knowledge base.

Examples of types are the set of integer numbers, denoted by int, the set of real numbers,
denoted by real, and finite sets of constants such as {fever , jaundice, headache}. Note that a
domain declaration is similar to a variable declaration part in, for instance, Pascal. It restricts
the values a variable may take.

A variable together with the value(s) it has adopted during a consultation is called a fact.

Definition 3.2 A fact is a statement having one of the following forms:

• xs = c, where c ∈ τ if xs is a single-valued variable declared as xs : τ ;

• xm = C, where C ⊆ τ if xm is a multi-valued variable declared as xm : 2τ .

A fact set has the following form:

{xs
1 = c1, . . . , x

s
p = cp, x

m
1 = C1, . . . , x

m
q = Cq}

where ci are constants and Cj are sets of constants. A variable may only occur once in a fact
set.

EXAMPLE 3.2

Consider the following domain declaration

D = sex : {female ,male},
age : int,

complaint : 2{fever ,abdominal-pain,headache},

disorder : 2{aortic-aneurysm,arterial-stenosis}
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of a knowledge base of a medical expert system. The following facts are typical elements
of a fact set after a specific consultation:

sex = male
age = 27
complaint = {fever, abdominal-pain}
disorder = {aortic-aneurysm}

The statement ‘xs = unknown ’ (or ‘xm = unknown ’, respectively) is used to indicate that the
variable xs (or xm, respectively) has not been assigned an actual value; xs (or xm) is then
called unknown. The constant unknown has a special meaning: it expresses that the inference
engine has not been able to derive one or more values for the variable. Since its meaning
goes beyond (that is, meta) the contents of the fact set and the knowledge base, the constant
unknown is called a meta-constant.

It must be emphasized that a fact set is not a part of a knowledge base, but instead is a
separate component of the system. A fact set comprises information which is specific for a
particular consultation, whereas a knowledge base only contains declarations of variables and
therefore does not specify consultation-dependent values. In the sequel, we will frequently as-
sume that suitable variable declarations are present in the domain declaration of a knowledge
base, without explicitly referring to them.

3.1.2 Conditions and conclusions

At the beginning of this chapter, we already mentioned that production rules are used for
representing the problem-solving knowledge from a specific problem domain. The major part
of this type of knowledge takes the form of heuristic rules or rules of thumb, which, as we
shall see, are the informal, real-life analogies of production rules. In a heuristic rule, several
conditions and conclusions are interrelated, as follows:

if
certain conditions are fulfilled,

then
certain conclusions may be drawn.

EXAMPLE 3.3

An example of a heuristic rule, taken from the domain of medical diagnosis in cardio-
vascular disease, is the following:

if
the patient suffers from abdominal pain, and
an abdominal murmur is perceived by auscultation, and
a pulsating mass is felt in the abdomen

then
the patient has an aortic aneurysm
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In the process of knowledge engineering, such heuristic rules have to be transformed into their
formal counterparts, that is, into production rules. A production rule just like a heuristic
rule, consists of a number of conditions and conclusions. In a production rule, which unlike
a heuristic rule is a formal statement, the conditions and conclusions comprise the following
elements:

• symbolic and numeric constant values;

• variables;

• predicates and actions.

An important part of the translation process therefore concerns the identification of the vari-
ables and constants which are relevant in the heuristic rules.

EXAMPLE 3.4

Consider the preceding heuristic rule once more. In the first condition a variable com-
plaint may be identified, the second condition concerns the findings by auscultation, the
third concerns the findings from physical examination by palpation, and, finally, the con-
clusion concerns the patient’s disorder. The following constant values may be introduced
to represent the information further comprised in the heuristic rule: abdominal-pain,
abdominal-murmur, pulsating-mass and aortic-aneurysm.

Several syntactic forms have been devised for the representation of production rules. In the
present book we employ the syntax described in the following definition.

Definition 3.3 A production rule is a statement having the following form:

〈production rule〉 ::= if 〈antecedent〉 then 〈consequent〉 fi
〈antecedent〉 ::= 〈disjunction〉 {and 〈disjunction〉}∗

〈disjunction〉 ::= 〈condition〉 {or 〈condition〉}∗

〈consequent〉 ::= 〈conclusion〉 {also 〈conclusion〉}∗

〈condition〉 ::= 〈predicate〉(〈variable〉,〈constant〉)
〈conclusion〉 ::= 〈action〉(〈variable〉,〈constant〉)
〈predicate〉 ::= same | notsame | greaterthan | . . .
〈action〉 ::= add | remove | . . .

In the production-rule formalism it is assumed that the or operator has a higher precedence
than the and operator. Note that the nesting of conjunctions and disjunctions is limited; this
is typical for production systems.

A condition is built from a predicate and two associated arguments: a variable and a con-
stant. By means of its predicate, a condition expresses a comparison between the specified
constant value and the actual value(s) the specified variable has adopted. In the context of
production systems, a predicate is a function which upon evaluation returns either the truth
value true or the value false. The way predicates are evaluated is illustrated by means of the
following example.

EXAMPLE 3.5
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Let F be the following fact set:

F = {age = 50, complaint = {abdominal-pain, fever}

where age is a single-valued variable and complaint is a multi-valued one. Now consider
the following condition:

same(complaint, abdominal-pain)

The predicate same returns upon evaluation the truth value true if abdominal-pain is one
of the constants in the set of constants adopted by the multi-valued variable complaint;
otherwise, the value false is returned. So, in the present example, the evaluation of
the condition will return the value true. In case of a single-valued variable, same tests
whether or not the constant specified as its second argument is equal to the constant
which the variable mentioned as its first argument has adopted. Given the present fact
set, the condition

same(age, 40)

therefore yields the value false upon evaluation.

A conclusion is built from an action and two associated arguments. An action can be con-
sidered to operate on a variable. The most frequently applied action is add, which adds the
constant specified as its second argument to the value set of the multi-valued variable men-
tioned in its first argument; in case of a single-valued variable, the action add assigns the
constant value from its second argument to the specified variable.

EXAMPLE 3.6

Consider the fact set F :

F = {disorder = {atherosclerosis}, sex = male, age = 76}

in which disorder is the only multi-valued variable. The action add in the conclusion

add(disorder, aortic-aneurysm)

adds the constant aortic-aneurysm to the set of constant values the variable disorder
already has adopted. So, after evaluation of this conclusion we have obtained the
following fact set F ′:

F ′ = {disorder = {atherosclerosis, aortic-aneurysm}, sex = male, age = 76}

A production rule is built from such conditions and conclusions.

EXAMPLE 3.7
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The heuristic rule informally introduced above can now be translated into the production-
rule formalism, for example as follows:

if
same(complaint, abdominal-pain) and
same(auscultation, abdominal-murmur) and
same(palpation, pulsating-mass)

then
add(disorder, aortic-aneurysm)

fi

EXAMPLE 3.8

In the informal heuristic rule

if
the systolic pressure exceeds 140 mmHg, and
the pulse pressure exceeds 50 mmHg, and
upon examination a diastolic murmur is perceived, or
an enlarged heart is observed

then
the patient suffers from an aortic regurgitation

the first two conditions concern the variables systolic-pressure and pulse-pressure, re-
spectively. In case the patient is suffering from an aortic regurgitation, either a diastolic
murmur may be perceived by auscultation, or an enlarged heart is observed by percus-
sion. It suffices to observe one of these signs, together with the other evidence mentioned
in the rule, to conclude that the patient has an aortic regurgitation. The variables that
can be distinguished in the last two constituent conditions are auscultation and percus-
sion, respectively. Finally, the conclusion states the disorder the patient is likely to be
suffering from, in case the mentioned conditions are true. This heuristic rule may now
be expressed in the production-rule formalism as follows:

if
greaterthan(systolic-pressure, 140) and
greaterthan(pulse-pressure, 50) and
same(auscultation, diastolic-murmur) or
same(percussion, enlarged-heart

then
add(disorder, aortic-regurgitation)

fi

To conclude, the following example discusses a production rule comprising more than one
conclusion.

EXAMPLE 3.9
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The following heuristic rule:

if
the patient experiences a pain in the calf when walking,
which disappears gradually in rest

then
a stenosis of one of the arteries in the leg, possibly
due to atherosclerosis, is conceivable

may be expressed in the production-rule formalism as follows:

if
same(complaint, calf-pain) and
same(presence,walking) and
same(absence, rest)

then
add(cause, arterial-stenosis) also
add(disorder, atherosclerosis)

fi

The only action we have considered up till now is the action add. If this action is the only
one specified in the consequent of a production rule, then the rule closely resembles a logical
implication, in which the conditions of the rule appear on the left of the implication symbol
and the conclusions are specified on the right of it. This interpretation, however, is no longer
valid when actions other than add have been specified in the consequent of a rule. Consider,
for example, the action remove which upon execution cancels the assignment of a specific
constant to a single-valued variable, or deletes a constant from the set of constants of a multi-
valued variable. A production rule in which this action has been specified cannot possibly be
viewed as a logical implication. More about the correspondence between the production-rule
formalism and logic will be said in Section 3.1.4.

In table 3.1 the semantics of some frequently used predicates and actions are described.
From the special meaning of the constant unknown as discussed in the preceding section, we
have that the predicates known and notknown mentioned in the table have a special meaning
as well: they express knowledge concerning the derivability of values for variables, which
again goes beyond the contents of the fact set and the rule base of a production system. We
call such predicates meta-predicates. In Section 3.2.1 we will turn again to the meanings of
the predicates and the effects the different actions have on a fact set.

3.1.3 Object-attribute-value tuples

The production-rule formalism introduced in the preceding section does not provide a means
for specifying formal relationships between the variables of concern. In many problem do-
mains to be modelled however, one can often discern separate subdomains, or objects, which
are interrelated in some way. Each subdomain then is described by a number of properties
or attributes which are specific for that subdomain. The idea is illustrated in the following
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Table 3.1: Some predicates and actions, and their meaning

Example Semantics for single-valued Semantics for multi-valued
variables variables

same(x, c) xs = c c ∈ xm

notsame(x, c) xs 6= c and xs 6= unknown c 6∈ xm and xm 6= unknown
lessthan(x, c) xs < c -
greaterthan(x, c) xs > c -
known(x) xs 6= unknown xm 6= unknown
notknown(x) xs = unknown xm = unknown
add(x, c) xs ← c xm ← xm ∪ {c}
remove(x, c) xs ← unknown if xm = {c} then xm ← unknown

else xm ← xm \ {c}

example.

EXAMPLE 3.10

In the heuristic rule from the last example, a description is given of the pain a patient
is suffering from. Pain is usually described by several criteria which are specific to the
notion of pain. We now may view pain as a separate object, and the site of the pain
and the character of the pain as attributes belonging to that object.

In production systems, objects are often used to explicitly group the properties which are
mentioned in the heuristic rules. The objects themselves are often even further exploited
for directing the inference process. If we extend the production-rule formalism to include
the specification of an object, predicates and actions have to be changed from binary, in
the previous case of variable-value pairs, to ternary operators. We call a tuple consisting of
an object, an attribute and a constant value, an object-attribute-value tuple, or o-a-v triple.
The following simple extension to the original syntax definition of production rules is thus
obtained:

〈condition〉 ::= 〈predicate〉(〈object〉,〈attribute〉,〈constant〉)
〈conclusion〉 ::= 〈action〉(〈object〉,〈attribute〉,〈constant〉)

Note that an object-attribute pair always explicitly indicates that the mentioned attribute
belongs to the specified object. The object-attribute pairs in an object-attribute-value tuple
just act like the variables discussed in the foregoing sections. The attributes of an object are
declared as being either single-valued or multi-valued, in a way resembling the declaration of
variables. In the sequel, we shall write o.as to denote the single-valued attribute as belonging
to the object o; we use o.am for the multi-valued case.

EXAMPLE 3.11

The following production rule
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if
same(patient, complaint, calf-pain) and
same(pain, presence,walking) and
same(pain, absence, rest)

then
add(pain, cause, arterial-stenosis) also
add(patient, disorder, atheroslerosis)

fi

concerns the objects patient and pain. Attributes of the object pain referred to in the
rule are presence, absence, and cause. The attributes of the object patient referred to
are complaint, and disorder.

The extension of the definitions of predicates and actions with the specification of an object
enables us to express relationships between objects and their attributes. However, it is still not
possible to explicitly express relationships between objects amongst themselves in a natural
way. Yet it may be desirable in an expert system to have this type of information available
as well. Therefore, in addition to the rule base, often an object schema is present in an
expert system; it is usually added to the domain declaration of a knowledge base. An object
schema defines the interrelationships between the objects, and the relationships between the
objects and their associated attributes. Figure 3.1 shows a portion of the object schema of
a system comprising information concerning the human cardiovascular system. An object is
represented by an ellipse. A solid line is used to represent a relationship between two objects.
In figure 3.1 the object pain is called a subobject of the object patient. A dashed line indicates
a relationship between an object and an associated attribute. We note that an object schema
is frequently used for storing meta-information, for example directives to the inference engine
to handle certain attributes in a special way.

patient

complaint

auscultation

percussion

pain

site

presence

absence

Figure 3.1: An object scheme.

3.1.4 Production rules and first-order predicate logic

In the preceding sections, we have informally discussed the meanings of predicates and actions
in a production system. In general, we can say that the semantics of production rules in a
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production system is described in terms of a specific inference method for applying the rules.
The only semantics for a production system available therefore is procedural in nature. This
is contrary to first-order logic which also has a neat declarative semantics. There is, however,
a strong relationship between the production-rule formalism and the formalism of first-order
logic, as we already briefly touched upon in Section 3.1.1. In most rule bases, at least part
of the production rules can be translated into first-order predicate logic in a straightforward
and natural way. This is fortunate, since it enables developing a rule base without precise
knowledge of the working of the inference engine: the declarative readings of the corresponding
logical formulas can thus be exploited.

Let us start by looking at the correspondence between conditions and conclusions in
production rules on the one hand and literals in first-order logic on the other hand. Without
loss of generality, we assume that the production system makes use of object-attribute-value
tuples. As we discussed above, the predicates same and notsame test whether the specified
attribute of some object has, respectively has not, the specified constant as a value or in its
set of values. Again, we distinguish between multi-valued and single-valued attributes. A
multi-valued attribute may be viewed as a relation A defined on the cartesian product of a
set of objects and a set of constants, that is, A ⊆ O × V , where O is the set of objects, and
V is the set of constant values. Recall that in first-order predicate logic, predicate symbols
may be employed for representing such relations. Conditions of the form same(o, am, v),
and notsame(o, am, v), containing a multi-valued attribute, may therefore be translated into
first-order logic in the literals a(o, v), and ¬a(o, v), respectively. In the single-valued case,
we have to take into account that the attribute may adopt at most one value at a time.
Single-valuedness is best expressed in first-order logic by using function symbols. Single-
valued attributes can therefore be viewed as functions a from the set of objects O to the
set of values V , that is, a : O → V . Note that for expressing the meaning of the predicate
same, we have the equality predicate = at our disposal. The following translation is now
rather straightforward: the condition same(o, as, v) is translated into the literal a(o) = v, and
the condition notsame(o, as, v) is translated into ¬a(o) = v. Many other predicates used in
production rules can be translated in much the same way. Table 3.2 summarizes some of these
translations. Note that the semantics of first-order logic implies that the unit clause a(o, v)
in the presence of the unit clause ¬a(o, v), leads to an inconsistency. In addition, the unit
clauses a(o) = v and a(o) = w, where v 6= w, are inconsistent in the presence of the equality
axioms. As can be seen from table 3.2, the action add is treated the same way as the predicate

Table 3.2: Translation of conditions and actions into first-order logic.

Example Logic representation for Logic representation for
single-valued attributes multi-valued attributes

same(o, a, v) a(o) = v a(o, v)
notsame(o, a, v) ¬a(o) = v ¬a(o, v)
equal(o, a, v) a(o) = v −
lessthan(o, a, v) a(o) < v −
greaterthan(o, a, v) a(o) > v −
add(o, a, v) a(o) = v a(o, v)
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same is; this reflects the transition from a procedural to a declarative semantics. The meta-
predicates known and notknown are not included in table 3.2, since it is not possible to express
meta-information in standard first-order logic. A similar remark can be made concerning the
action remove. It is noted that special non-standard logics in which such meta-predicates and
non-monotonic actions can be expressed, have been developed. The subject of non-standard
logic, however, goes beyond the scope of the present book.

Further translation of a production rule into a logical formula is now straightforward. The
general translation scheme is as follows:

if
c1,1 or c1,2 or . . . or c1,m and ((c′1,1 ∨ c′1,2 ∨ . . . ∨ c′1,m)∧

. . . . . .
cn,1 or cn,2 or . . . or cn,p ⇒ (c′n,1 ∨ c′n,2 ∨ . . . ∨ c′n,p))

then →
a1 also a2 also . . . also aq (a′1 ∧ a′2 ∧ . . . ∧ a′q)

fi

where conditions ci,j and actions ak are translated into literals c′i,j and a′k, respectively, as
prescribed by table 3.2. From the table it can readily be seen that the kind of production
rules we have looked at, are translated into ground logical implications.

The following example illustrates the translation scheme.

EXAMPLE 3.12

Consider the following production rule:

if
greaterthan(blood, systolic-pressure, 140) and
greaterthan(blood, pulse-pressure, 50) and
same(patient, auscultation, diastolic-murmur) or
same(patient, percussion, enlarged-heart)

then
add(patient, disorder, aortic-regurgitation)

fi

Translation of this rule into first-order logic yields the following implication:

(systolic-pressure(blood ) > 140 ∧
pulse-pressure(blood) > 50 ∧
(auscultation(patient, diastolic-murmur) ∨
percussion(patient, enlarged-heart)))
→
disorder(patient, aortic-regurgitation)

The formalism of first-order logic is in certain ways more flexible than the production-
rule formalism is. For instance, it is not restricted to the use of o-a-v triples only;
it allows, for example, to specify the literal systolic-pressure(patient, blood) > 140, in-
stead of the first literal in the implication shown above. The latter literal is more in
correspondence with the intended meaning of the original heuristic rule.
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To conclude, the fact set of a production system may be translated into the logic formal-
ism much in the same way as the rule base is. A fact o.as = v concerning a single-valued
attribute as is translated into a unit clause a(o) = v. Recall that in the presence of the
equality axioms single-valuedness is guaranteed. Now consider the multi-valued case. A fact
concerning a multi-valued attribute am is translated into a set of unit clauses a(o, vi) for each
vi in the set of constant values am has adopted. However, it is not sufficient to only add these
positive clauses: it is typical for production systems that values of multi-valued attributes
not explicitly entered into the fact set, are taken implicitly by the system as being not true.
This behaviour has been copied from human problem solving. For example, a medical doctor
usually only records in a patient report the symptoms and signs that have actually been
observed in the patient; all information not explicitly recorded for the specific patient is im-
plicitly assumed to be negative. This aspect of problem solving is reflected in the meaning of
the notsame predicate. Note that this way of dealing with negations is quite different from
the meaning of a negative literal in first-order logic which only holds in a model in which
it has actually been satisfied. For a correct meaning of the notsame predicate therefore we
have to add explicitly unit clauses ¬a(o, vi) for the remaining constants vi occurring in the
type τ of am, as soon as at least one positive unit clause a(o, vj), j 6= i, occurs in the fact set
(in case of an untyped variable, we add unit clauses ¬a(o, vi) for the remaining constants vi

mentioned in the rule base). The explicit addition of negative unit clauses is called negation
by absence. It is a special case of the closed world assumption mentioned before in Chapter
2.

EXAMPLE 3.13

Consider the following domain declaration:

D = {disorderm : 2{aortic−regurgitation,atherosclerosis}, ages : int}

and the fact set F = {disorderm = {atherosclerosis}, ages = 70}. We obtain the
following translation into first-order logic:

disorder(patient, atherosclerosis)
¬disorder(patient, aortic-regurgitation)
age(patient) = 70

3.2 Inference in a production system

Several inference methods have been devised for dealing with production rules. An inference
method in a production system explicitly exploits the difference between facts and rules: it
operates on the fact set, which can be looked upon as the global working memory for the
production rules. Note that in logic, such an explicit separation between facts (unit clauses)
and rules (implications) generally is not made, although it should be noted that several
inference methods, such as SLD resolution, make use of a similar distinction.
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Roughly speaking, an inference method selects and subsequently applies production rules
from a rule base. In applying the selected production rules, it executes the actions specified
in their conclusions. Execution of such actions may cause facts to be added to, to be modified
in, or to be deleted from the fact set. In this chapter we discuss the addition and deletion
of facts: a discussion of the modification of facts as a result of executing actions will be
postponed until Chapter 7, where we shall discuss the language OPS5. Figure 3.2 shows the
general idea of inference in a production system. The manipulation of production rules and
facts is depicted in the figure by means of arrows.

fact
set

rule
base

rule
evaluation

rule
selection

rule

facts

rules
add/

delete
facts

input

output

Figure 3.2: Global architecture of a production system.

The distinction between the two basic forms of inference mentioned in Chapter 1 is essen-
tial when considering production systems; they yield entirely different reasoning strategies.
Before discussing the two basic inference methods, top-down and bottom-up inference, in de-
tail, we introduce them informally with the help of a simplified example, in which we abstract
from the syntactical structure of conditions, conclusions, and facts. To simplify matters fur-
ther, we suppose that all conditions of the form c succeed upon evaluation in the presence of
the fact c. Now, consider table 3.3.

Table 3.3: Production system before and after execution.

State Component Top-down Inference Bottom-up Inference

Initial Goal g −
Facts {a} {a}
Rules R1 : if b then g fi R1 : if b then g fi

R2 : if g then c fi R2 : if g then c fi
R3 : if a then b fi R3 : if a then b fi

Final Facts′ {a, b, g} {a, b, c, g}

• Top-down inference starts with a statement of one or more goals to be achieved. In our
example, we have just the single goal g. A goal may match with a conclusion of one or
more production rules present in the rule base. All production rules thus matching with
a certain goal are selected for application. In the present case, the only rule selected is
R1. Each one of the selected production rules is subsequently applied by first considering
the conditions of the rule as the new subgoals to be achieved. Roughly speaking, if
there are facts present in the fact set which match with these new subgoals, then these
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subgoals are taken as been achieved; subgoals for which no matching facts can be found,
are matched against the conclusions of the production rules from the rule base. Again,
matching production rules are selected for application. In our example, we have from
the rule R1 the new subgoal b, which in turn causes the selection of the production rule
R3. This process is repeated recursively. Note that in top-down inference, production
rules are applied in a backward manner. When all the subgoals, that is, the conditions
of a selected production rule, have been achieved, then the actions in the conclusions of
the rule are executed, possibly causing changes in the fact set. Since the subgoal a of
the selected production rule R3 matches with the fact a, we have that the condition of
the rule is fulfilled. Subsequently, its action is executed, yielding the new fact b. This
new fact in turn fulfills the condition b of rule R1, which led to the selection of R3.
The inference process is terminated as soon as the initially specified goals have been
achieved. Note that only production rules relevant for achieving the initially given goals
are applied. This explains why the rule R2 in table 3.3 has not been used.

• Bottom-up inference starts with a fact set, in our example {a}. The facts in the fact
set are matched against the conditions of the production rules from the rule base. If for
a specific production rule all conditions are fulfilled, then it is selected for application.
The rule is applied by executing the actions mentioned in its conclusions. So, in our
example the rule R3 will be applied first. The application of the selected production
rules is likely to result in changes in the fact set, thus enabling other production rules to
be applicable. In the present case, after the application of rule R3, we have obtained the
new fact set {a, b}, which results in the rule R1 now being applicable. The fact g added
to the fact set as a result of executing the action of rule R1, results in the subsequent
application of R2. We therefore conclude that the final fact set is equal to {a, b, c, g}.
The inference process is terminated as soon as all applicable production rules have been
processed.

Note the difference in the resulting fact sets in table 3.3 obtained from applying top-down and
bottom-up inference, respectively. As a consequence of their different inference behaviour,
top-down and bottom-up inference are suitable for developing different kinds of expert sys-
tems. Top-down inference is often used in inference engines of diagnostic expert systems
in which the inference process is controlled by a specific goal and a small amount of data.
Bottom-up inference is most suitable for applications in which the interpretation of a vast
amount of data is important, and in which there are no preset goals. In the following sec-
tion, we first address top-down inference and its implementation in detail, before discussing
bottom-up inference in Section 3.2.4.

3.2.1 Top-down inference and production rules

As we discussed before, top-down inference usually is incorporated in diagnostic expert sys-
tems. If it employs the variable-value representation, such a system tries to derive facts
concerning one or more preset goal variables. In a typical medical diagnostic expert system
for example, one could think of a multi-valued variable diagnosis, for which we want to es-
tablish for a specific patient the set of values (that is, the possible disorders). So, in general,
top-down inference starts with a set of goals {G1, G2, . . . , Gm}, m ≥ 1, essentially being goal
variables. For this purpose, in the domain-declaration part of a knowledge base, the variable
declarations are extended to include a specification of whether or not they are goals. In the
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sequel, we shall use xs
g to denote a single-valued goal variable, and xm

g to denote a multi-
valued goal variable. The subset of all facts concerning the goal variables in the fact set after
applying the inference algorithm is called a solution.

The top-down inference algorithm used in this book for establishing the goals Gi from the
initial set of goals, informally amounts to the following. Suppose that we are given a fixed rule
base {R1, R2, . . . , Rn}, n ≥ 1, of production rules Ri. For deriving values for a multi-valued
variable, the inference engine will try and apply production rules as long as there are produc-
tion rules available which can extend the set of constants for the goal variable by adding new
ones to it. In the single-valued case, the inference engine proceeds until a single value has
been derived for the variable, and then it terminates. If the system has not been able to derive
values for the variable from the rule base, for instance because applicable production rules
are absent, then on some occasion it will turn to the user and ask for additional information.
For this purpose a distinction is made between variables for which values may be asked from
the user, these variables are called askable variables, and variables which may not be asked.
The askability of a variable is again denoted in the domain declaration of the variables, this
time by means of a subscript a; so, we have xm

a for askable multi-valued variables and xs
a for

askable single-valued ones.

EXAMPLE 3.14

In a medical expert system intended for diagnosing a patient’s disorder, it is rather
undesirable that the user is asked to specify the patient’s disorder when the system
has not been able to attain a diagnosis. Therefore, the variable disorder should not be
askable. On the other hand, complaint and sex are typical examples of askable variables:
these can usually not be derived using the production rules.

It will be evident that goal variables should never be askable.
The entire process of deriving values for a variable by applying the production rules, and

possibly asking the user for values for it, is called tracing the variable. In the sequel, we
abstract from the distinction between single- and multi-valued variables in the description
of the top-down inference algorithm, since the basic structure of the algorithm is the same
for both types of variable. The algorithm for tracing a variable pictured in the foregoing is
described by the following procedure:

procedure TraceValues(variable)

Infer(variable);

if not established(variable) and askable(variable) then
Ask(variable)

fi
end

The function call established(variable) is used to examine whether or not a value for
the variable variable has been obtained from the rule base by means of the procedure call
Infer(variable); askable(variable) is used to determine whether the variable concerned
is askable.

For deriving values for a variable from the rule base, called inferring the variable, the
procedure Infer is invoked. In the procedure Infer, a subset {Ri1 , Ri2 , . . . , Rik} of the
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production rules is selected; a rule Rj will be selected if the name of the given variable occurs
in one of the conclusions of the rule, in other words, if the given variable and the variable in
the conclusion match. The thus selected rules are then applied. The procedure for selecting
production rules and subsequently applying them is shown below:

procedure Infer(variable)

Select(rule-base, variable, selected-rules);

foreach rule in selected-rules do
Apply(rule)

od
end

The actual selection of the relevant production rules from the rule base is described in the
following procedure:

procedure Select(rule-base, variable, selected-rules)

selected-rules← ∅;

foreach rule in rule-base do
matched ← false;
foreach concl in consequent(rule) while not matched do

pattern ← variable(concl);

if Match(variable, pattern) then
selected-rules← selected-rules ∪ {rule};
matched ← true

fi
od

od
end

The set of selected production rules is called the conflict set. In the foreach statement in
the Infer procedure this conflict set is traversed: the rules from this set are applied one by
one by means of a call to the procedure Apply, which will be described shortly. Note that
this way the rules are applied exhaustively, that is, all rules concluding on the variable which
is being traced, are applied.

Neither the order in which the production rules from the conflict set are applied, nor the
order in which the conditions and the conclusions of the rules are evaluated, is fixed as yet.
If the order in applying the selected rules has not been fixed, we speak of nondeterminism
of the first kind. The evaluation order of the conditions and the conclusions in a rule not
being fixed is called nondeterminism of the second kind. Nondeterminism of the first kind
is resolved by using a so-called conflict-resolution strategy, which imposes some order on
the rules from the conflict set. The simplest conflict-resolution strategy is, of course, just
to apply the production rules in the order in which they have been selected from the rule
base (which is then viewed as a sequence of production rules instead of as a set). More
sophisticated conflict-resolution strategies order the conflict set using some context-sensitive
criterion. An example of such a strategy is ordering the rules according to the number of
conditions not yet fulfilled; this way, solutions which are ‘close’ to the information already
available to the system generally prevail over more remote solutions. From the user’s point
of view, a system provided with a context-sensitive conflict-resolution strategy behaves much
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more intelligently, since likely solutions are explored before unlikely ones. Nondeterminism of
the second kind is usually handled by evaluating the conditions and conclusions of a selected
production rule in the order of their appearance. However, more sophisticated techniques are
also possible. Sophisticated conflict-resolution strategies and evaluation ordering methods
are seldom used in expert systems using top-down inference, since the goal-directed nature
of top-down inference is itself an ‘intelligent’ control strategy, rendering additional ones less
necessary. As a consequence, most systems employing top-down inference use the simplest
strategies in solving the two types of nondeterminism, that is, they apply production rules,
and evaluate conditions and conclusions in the order of their specification. This particular
strategy will be called backward chaining.

The application of a selected production rule commences with the evaluation of its con-
ditions. If upon evaluation at least one of the conditions is found to be false, then the rule is
said to fail. If, on the other hand, all conditions evaluate to be true, then the rule is said to
succeed. The application of a production rule is described in the following procedure:

procedure Apply(rule)

EvalConditions(rule);

if not failed(rule) then
EvalConclusions(rule)

fi
end

The procedure Apply first evaluates the condition part of the rule by calling EvalConditions.
If this evaluation ends in success, then it evaluates the conclusions of the rule by means of
EvalConclusions.

Let us take a closer look at the procedure EvalConditions which checks whether all
conditions in the antecedent of the production rule yield the truth value true upon evaluation.
Beginning with the first condition, the procedure traces the variable occurring in the condition
by means of a recursive call to TraceValues. Subsequently, the test specified by means of the
predicate in the condition is executed. In the EvalConditions procedure presented below, we
have assumed, for simplicity’s sake, that the antecedent of a production rule only comprises
a conjunction of conditions.

procedure EvalConditions(rule)

foreach condition in antecedent(rule) do
var ← variable(condition);

TraceValues(var); indirect recursion
ExecPredicate(condition);

if condition failed then
return

fi
od

end

It should be noted that there are many ways to optimize the last procedure, several of which
will be discussed below. The ExecPredicate procedure executes the test denoted by the
predicate which has been specified in the condition under consideration. It compares the
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value the mentioned variable has with the constant specified in its second argument (if any).
This test yields either the truth value true or false. We have already seen an example of the
execution of such a predicate in the preceding section.

If all conditions of the production rule have been evaluated and have yielded the value
true, then the rule succeeds, and its conclusions are subsequently evaluated. The evaluation
of the conclusion part of a successful production rule merely comprises the execution of the
actions specified in its conclusions:

procedure EvalConclusions(rule)

foreach conclusion in consequent(rule) do
ExecAction(conclusion)

od
end

We have mentioned before that executing the action add results in the assignment of a constant
value to a single-valued variable, or in the addition of a constant value to the set of values of a
multi-valued variable. In Section 3.1.2, we also briefly discussed the action remove. Execution
of this action results in deleting the specified constant value from the fact concerning the
variable. Execution of this action can therefore disrupt the monotonicity of the reasoning
process, thus rendering it difficult to reconstruct the inference steps which have been carried
out. Furthermore, it is quite conceivable that the action is executed on a variable which has
not been traced as yet, in which case the continuation of the inference is undefined. Therefore,
in many expert systems this action is not allowed, in particular not in those systems employing
backward chaining.

It may happen that a certain variable is specified in one of the conditions as well as in
one of the conclusions of a production rule. Such a rule is called a self-referencing production
rule. When applying a self-referencing rule during a top-down inference process as discussed
above, the rule may occasion infinite recursion. For the moment, we therefore do not allow
self-referencing rules in a rule base. In the following, we shall return to these rules once more
in discussing some optimizations of the inference algorithm.

The procedures discussed in the foregoing together constitute the entire top-down infer-
ence algorithm. The following example demonstrates the behaviour of a system employing
this form of inference.

EXAMPLE 3.15

Let D = {xm
a , ym, zm

a , vm
g , ws

a} be the domain declaration of some knowledge base. As
can be seen, all variables except y and v are askable; v is the only goal variable. Suppose
that we initially have the following fact set:

F = {w = 5}

Now consider the following production rules:

R1 : if same(x, a) and same(x, b) then add(z, f) fi
R2 : if same(x, b) then add(z, g) fi
R3 : if same(x, d) and greaterthan(w, 0) then add(z, e) fi
R4 : if same(x, c) and lessthan(w, 30) then add(v, h) fi
R5 : if same(y, d) and lessthan(w, 10) then add(v, i) fi
R6 : if known(x) and notsame(z, e) then add(y, d) fi
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The backward-chaining algorithm starts with the selection of the two production rules
R4 and R5, since the goal variable v appears in their respective conclusions. The
production rule R4 will be the first one to be applied. Since there are no production
rules concluding on the variable x occurring in the first condition of rule R4, the user
is asked to enter values for x. We suppose that the user answers by entering x = {c}.
Evaluation of the first condition therefore yields the truth value true. It follows that R4

succeeds, since the evaluation of the second condition, lessthan(w, 30), yields the value
true as well. The evaluation of the conclusion of the rule results in the addition of the
fact v = {h} to the fact set. Next, rule R5 is applied. The first condition of this rule
mentions the variable y. Since the variable y occurs in the conclusion of rule R6, this
rule is the next to be applied in order to obtain a value for y. The first condition of
R6 upon evaluation yields the truth value true. Evaluation of the second condition of
rule R6 ultimately results in a request to the user to supply values for the variable z,
since the production rules R1, R2 and R3 fail to infer values for it. When the user, for
instance, provides the answer z = {i, j}, rule R6 will succeed and the fact y = {d} will
be added to the fact set. We recall that rule R6 was invoked during to the evaluation of
the first condition of rule R5. From the new fact y = {d} we have that the first condition
of rule R5 yields the truth value true upon evaluation. Since the second condition is
fulfilled as well, the action specified in the conclusion of the rule is executed: the value
i is inserted into the fact concerning the variable v. We conclude that the following fact
set F ′ has been obtained:

F ′ = {x = {c}, y = {d}, z = {i, j}, v = {h, i}, w = 5}

So, the solution arrived at is {v = {h, i}}.

An analysis of the search space generated by top-down inference can be instructive when
developing optimizations of the algorithm. The search space of the top-down inference al-
gorithm discussed in the foregoing is largely determined by the initial set of goals and the
rule base, and has the form of a tree. We start the analysis by taking the backward-chaining
strategy as a starting-point, and shall introduce several refinements to that algorithm. By
means of the following example, we demonstrate how the search space is structured.

EXAMPLE 3.16

Let D = {xm
a , ym, zs

g, u
m
a , vm, wm

a } be the domain declaration of a production system.
Note that the single-valued variable z is the only goal variable. The fact set initially is
empty. Consider the following set of production rules:

R1 : if same(w, a) and same(x, b) then add(v, c) fi
R2 : if same(w, d) and same(v, c) then add(y, e) fi
R3 : if same(v, c) then add(z, k) fi
R4 : if same(x, j) and same(y, e) then add(z, h) fi
R5 : if same(u, f) and same(x, g) then add(z, i) fi

The inference engine starts with the construction of the conflict set: {R3, R4, R5}. The
rule R3 is the first to be applied. The variable v mentioned in the first condition of
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rule R3 occurs in the conclusion of rule R1. This is the only rule in the new conflict
set. So, rule R1 is the next rule to be evaluated. Suppose that rule R1 fails; as a
consequence, no value will be inferred for v. The reader can easily verify that given this
set of production rules the variables w, x, and u will be asked from the user. The search

Infer(z)

Infer(v) Ask(x) Infer(y) Ask(u) Ask(x)

Ask(w) Ask(x) Ask(w) Infer(v)

Ask(w) Ask(x)

Figure 3.3: A search space generated using backward chaining.

space generated from the set of goals and the rules using backward chaining, takes the
form of a tree, as shown in figure 3.3. The label Infer indicates that the variable is
inferred from the rule base; Ask indicates that the variable is asked from the user. Now
note that the mere presence of a fact concerning a specific variable in the fact set, does
not guarantee that the variable has actually been traced by exhaustively applying the
production rules: the fact may have been entered into the fact set as a side-effect of the
application of a production rule having more than one conclusion when tracing another
variable. Therefore, the figure shows that the variable v has to be traced twice, even if
a fact concerning v already occurs in the fact set. Furthermore, it indicates that several
variables have to be asked from the user more than once.

In the preceding example, we showed that the process of tracing a specific variable may be
repeated unnecessarily: it will be evident that optimization is required here. We introduce
the notion of a ‘traced’ variable. A variable is marked as traced as soon as the process of
tracing the variable has been performed, independent of whether it has yielded a value for
the variable or not. We now modify the TraceValues procedure as follows:

procedure TraceValues(variable)

Infer(variable);

if not established(variable) and askable(variable) then
Ask(variable)

fi;
traced(variable)← true

end

Recall that in the foregoing, this procedure was invoked from the EvalConditions procedure.
The last-mentioned procedure is now modified in such a way that the TraceValues procedure
is invoked for a given variable only if the variable has not yet been marked as traced. This
simple refinement has a dramatic effect on the structure of the search space, as is shown in
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the following example.

EXAMPLE 3.17

Consider once again the production rules from the preceding example, and also the
search space for the set of goals and the rule base shown in figure 3.3. If we exploit the
refinement discussed in the foregoing and mark a variable as traced as soon as it has
been traced exhaustively, then several inference steps and several questions to the user
will have become superfluous. The resulting search space is considerably smaller than
the one depicted in figure 3.3, since now it suffices to represent each vertex only once.
The resulting search space therefore has the form of a graph; it is depicted in figure 3.4.
Note that it indicates the dependencies between the variables during the inference.

Infer(z)

Ask(x)

Infer(v)

Ask(w)

Infer(y)

Ask(u)

Figure 3.4: A search graph for backward chaining.

If a production rule contains two or more conclusions concerning different variables, then the
rule may be applied more than once by the top-down inference algorithm. However, if we
assume that production rules do not contain actions removing or modifying facts, then it
suffices to apply such a rule only once: applying such a rule a second time cannot result in
the addition of new facts to the fact set. To prevent a rule from being applied more than
once, each rule will be marked as been used as soon as the inference algorithm applies it.

procedure Infer(variable)

Select(rule-base, variable, selected-rules);

foreach rule in selected-rules with not used(rule) do
used(rule) ← true;
Apply(rule)

od
end

Moreover, marking a production rule before it is actually applied, has the further advantage
of preventing infinite recursion in case of self-referencing rules.

In the foregoing we have introduced two refinements of the basic backward-chaining (and
top-down) algorithm: the marking of a variable after its examination by the inference engine
as ‘traced’, and the marking of a production rule as ‘used’ upon its application. The last
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refinement we pay attention to is the so-called look-ahead facility. This facility yields under
certain circumstances a remarkable increase in efficiency, by pruning the search space in an
effective way. The general structure of the search space, however, is not changed. Let us first
study the following example illustrating the need for the look-ahead facility.

EXAMPLE 3.18

Consider the production rule:

if
same(x, a) and
same(y, b) and
notsame(z, c) and
lessthan(v, 40) and
greaterthan(w, 90)

then
add(u, 6)

fi

in which v and w are the only single-valued variables. Now, suppose that the fact
v = 80 is present in the fact set. This single fact provides us with enough information
to deduce that this rule will certainly fail due to its fourth condition. However, the
backward-chaining algorithm as introduced in the foregoing, will detect the failure only
when at least one (and possibly all three) of the variables x, y, and z from the first
three conditions has been traced.

The look-ahead facility now amounts to examining all conditions from a selected production
rule before it is actually applied. If a condition is encountered which already fails beforehand
using the information from the fact set, then the entire rule will fail; the inference engine
proceeds with the next rule. A possible algorithm for the look-ahead facility is shown below:

function LookAhead(rule)

foreach condition in antecedent(rule) do
var ← variable(condition);

if traced(var) then
ExecPredicate(condition);

if condition failed then
return(false)

fi
fi

od;
return(true)

end

Note that in the look-ahead facility only conditions specifying a traced variable are examined;
it just skips the other conditions. If look ahead returns with success, then the top-down
inference algorithm continues as usual. This function LookAhead is called from the procedure
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Infer just before calling Apply. The procedure Apply then is invoked only if LookAhead has
succeeded.

In the following diagram, the most important procedure and function calls are shown,
indicating the level at which they are introduced in the top-down inference algorithm:

TraceValues

Infer

Select

LookAhead

ExecPredicate

Apply

EvalConditions

TraceValues

ExecPredicate

EvalConclusions

ExecAction

Ask

This diagram depicts once more the indirect recursive call to the procedure TraceValues

from EvalConditions.
Note that only relatively slight modifications of the discussed algorithm are needed to

extend it to an object-attribute-value representation. We only have to add a procedure for
tracing the goal attributes of an object, a notion similar to the notion of a goal variable:

procedure Activate(object)

foreach attr in attributes(object) do
if goal(attr) then

TraceValues(object, attr)

fi
od

end

The other procedures only need slight alteration by adding the object as an extra argument
to the procedures, and by taking for a variable an attribute of the given object.

3.2.2 Top-down inference in PROLOG

The present as well as the following section pays attention to implementing top-down inference
along the lines set out in the foregoing. In this section, the implementation language will be
PROLOG; in Section 3.2.3 we shall demonstrate how to realize top-down inference in LISP.

Adhering to the basic formalisms for knowledge representation in a production system, the
PROLOG representation of a knowledge base consists of a domain declaration section and a
rule base, both stored as a file of Horn clauses. The PROLOG program discussed here makes
use of the variable-value representation, in which, for reasons of simplicity, single-valued and
multi-valued variables are not explicitly distinguished. Moreover, not all optimizations dealt
with in the preceding section are elaborated in the program. The remaining ones are left as
an exercise to the reader (see exercise 3.5).
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In the present implementation, the domain declaration only specifies explicitly the ques-
tions to be posed to the user. These questions are represented in Horn clauses having the
following general form:

prompt(<variable-name>) :-

write(<string>).

The presence of such a prompt for a variable indicates that the variable is askable; the absence
of a prompt indicates that the variable should not be asked from the user.

EXAMPLE 3.19

Consider the following clause:

prompt(complaint) :-

write(’Enter the complaints of the patient.’).

This clause defines the system’s question concerning the variable complaint. Note that
a production-system variable is represented in PROLOG as a constant.

Furthermore, it is assumed that initially there is only a single goal variable. However, it is
a relatively straightforward task to extend the program in such a way that it is also able to
deal with a set of goals.

In the program, production-system facts are represented as PROLOG facts concerning a
relation fact having two arguments.

EXAMPLE 3.20

A fact of the form

age = 27

is represented in the PROLOG program as

fact(age,27).

Notice once more that a production-system variable is not a variable in terms of the
implementation language, but a constant.

A fact concerning a multi-valued variable is represented in as many unit clauses as there are
values specified for the variable.

EXAMPLE 3.21

Consider the following fact:

disorder = {aortic-aneurysm, aortic-regurgitation}

It is represented in the following two clauses:
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fact(disorder,aortic_aneurysm).

fact(disorder,aortic_regurgitation).

The fact set is kept in the PROLOG database.
Production rules may be represented in PROLOG in a quite natural way: when we com-

pare the Horn clause formalism with the formalism of production rules, they appear to have
various properties in common. A production rule having a conjunction of conditions in the
antecedent and a single conclusion in its consequent can be translated directly into a Horn
clause of the following form:

〈action〉(〈variable〉,〈constant〉) :-
〈predicate1〉(〈variable1 >,〈constant1 >),

· · ·
〈predicaten〉(〈variablen〉,〈constantn〉).

The only syntactic changes necessary arise from adaptation to the PROLOG conventions.
Note that in the Horn clause representation of a production rule, the conclusion is mentioned
before the conditions.

EXAMPLE 3.22

Consider the following production rule:

if
same(complaint,abdominal-pain) and
same(auscultation,murmur) and
same(palpation,pulsating-mass)

then
add(disorder,aortic-aneurysm)

fi

This rule is translated into the following Horn clause:

add(disorder,aortic_aneurysm) :-

same(complaint,abdominal_pain),

same(auscultation,murmur),

same(palpation,pulsating_mass).

For the representation of the logical or between two conditions, we simply use the PROLOG
or operator, that is, the symbol ‘;’.

EXAMPLE 3.23

The production rule

if
greaterthan(systolic-pressure,140) and
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greaterthan(pulse-pressure,50) and
same(auscultation,diastolic-murmur) or
same(percutation,enlarged-heart)

then
add(disorder,aortic-regurgitation)

fi

is represented in PROLOG as follows:

add(disorder,aortic_regurgitation) :-

greaterthan(systolic_pressure,140),

greaterthan(pulse_pressure,50),

same(auscultation,diastolic_murmur);

same(percutation,enlarged_heart).

Recall that production rules may have more than one conclusion. However, the Horn clause
formalism only permits a single conclusion per clause. For the representation of a production
rule having more than one conclusion, we create as many Horn clauses as there are conclusions
in the rule. The antecedents of the Horn clauses created for a specific rule are all the same.

EXAMPLE 3.24

Consider the following production rule:

if
same(complaint,calf-pain) and
same(presence,walking) and
same(absence,rest)

then
add(cause,arterial-stenosis) also
add(disorder,atherosclerosis)

fi

This rule is represented by means of the two PROLOG clauses given below:

add(cause,arterial_stenosis) :-

same(complaint,calf_pain),

same(presence,walking),

same(absence,rest).

add(disorder,atherosclerosis) :-

same(complaint,calf_pain),

same(presence,walking),

same(absence,rest).

It should be remarked that the representation of production rules discussed here, is only one
of many possible ways for representing rules in PROLOG.
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The explicit separation of a knowledge base and the inference engine generally sought after
in expert system shells, is readily realized in PROLOG: the basic principles of this language
as a practical realization of logic programming, closely fits the paradigm of expert systems
stated in Chapter 1. Roughly speaking, the knowledge base of a production system is entered
into the PROLOG database and the PROLOG interpreter is taken to constitute the inference
engine. However, although the backtracking algorithm employed by the PROLOG interpreter
may be viewed as a possible realization of top-down inference, it is not possible to exploit the
PROLOG interpreter directly as a top-down inference engine. For this purpose, we have to
add some special features to it, such as for managing the fact set, for tracing of variables and
for querying the user. Furthermore, the predicates and actions used in production rules have
to be defined and added to the predefined system predicates. In the following we describe
how the PROLOG interpreter can be extended to a production-rule inference engine.

The first extension to the PROLOG interpreter we discuss, is the procedure for tracing a
variable. Recall that in tracing a variable, first all production rules relevant for the variable are
selected from the rule base. The selected production rules subsequently are applied one by one
by first evaluating their conditions. Before executing the predicate of a specific condition, it
is first checked whether the mentioned variable has been marked as traced. If the variable has
not yet been traced, then the inference engine generates a new subgoal, essentially being the
given variable to be inferred from the rule base. If no information can be inferred concerning
the given variable, then the system turns to the user with a request for information. This
process is described by means of the following two PROLOG clauses:

trace_values(Variable) :-

fact(Variable,_),!.

trace_values(Variable) :-

infer(Variable),

ask(Variable).

The first clause investigates if there are any facts concerning the variable Variable present in
the fact set. Note that this test now suffices for determining whether or not the variable has
already been traced. First of all, we only have single-conclusion production rules, so that facts
cannot be entered into the fact set merely as a side-effect. Furthermore, we shall see that if
inspecting the knowledge base and querying the user have not yielded values for the variable,
then a special fact indicating that the particular variable is unknown is added explicitly to
the fact set. We shall return to the latter observation when discussing the procedure ask.
If the first trace values clause succeeds, then the second clause will not be executed, thus
preventing needless examination of the rule base. If no fact concerning Variable occurs in the
fact set then the call fact(Variable, ) in the first clause fails, and the second clause will be
interpreted.

The two infer clauses:

infer(Variable) :-

select_rule(Variable),

fail.

infer(_).

describe the process of selecting and subsequently applying the relevant production rules from
the rule base. The selection and application of a single rule is accomplished by means of the
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procedure select rule; the built-in predicate fail forces backtracking to select all relevant
production rules:

select_rule(Variable) :-

add(Variable,Value),

asserta(fact(Variable,Value)).

The select rule procedure contains a call to add(Variable,Value) for selecting one produc-
tion rule from the rule base. Note that the entire selection process is executed by the PROLOG
interpreter: this call matches with a conclusion of a production rule having the instantiated
variable Variable at the first argument position of the predicate add. If a match is found,
then the conditions of the selected production rule are evaluated in the specified order: the
evaluation of a selected rule is entirely done by the PROLOG interpreter. So, the evaluation
algorithm described in the previous section in the procedure Apply is already present in PRO-
LOG itself. If the selected rule succeeds upon evaluation, then the variable Value will have
been instantiated to the constant specified in the conclusion of the rule. The fact inferred
from the rule is then added to the fact set which is kept in the PROLOG database, using the
built-in predicate asserta.

After the variable has been inferred by means of the infer procedure called from trace values,
the procedure ask is executed:

ask(Variable) :-

fact(Variable,_),!.

ask(Variable) :-

prompt(Variable),

read(Values),

add_facts(Variable,Values),!,

nl.

ask(Variable) :-

asserta(fact(Variable,unknown)).

The first clause in the procedure ask investigates by means of fact(Variable, ) whether or
not facts have been inferred for the variable Variable from the rule base. If there is not a
single fact present in the fact set for the particular variable, then the first ask clause fails,
and the second clause is interpreted, possibly prompting the user to enter information, by
means of the message printed on the screen by prompt(Variable). The input from the user is
subsequently read in using the built-in predicate read and entered into the fact set by means
of a call to the procedure add facts. If no prompt has been specified in the knowledge base
for the particular variable, indicating that it is not askable, then the second clause fails. The
third clause is then interpreted, which sets the value of the variable to unknown.

The user has to enter his or her answer as a list of constants, as is shown in the following
example. The user interface is rather crude and should be further elaborated for a more
serious application.

EXAMPLE 3.25

Suppose that the following prompt appears on the screen during a consultation:

Enter the complaints of the patient.
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This query indicates that the system has not been able to derive values for the variable
complaint from the rule base. The user now is requested to enter relevant values. If
we assume that the patient for which the system is being consulted, is suffering from
abdominal pain and fever, then the user has to enter this information in the following
way:

[abdominal_pain,fever].

Note the terminating dot.

The user’s input is entered into the fact set by means of the add facts procedure called from
the second ask clause. This procedure merely adds each constant from the list of constants
as a fact to the fact set:

add_facts(_,[]) :- !.

add_facts(Variable,[Value|Rest]) :-

asserta(fact(Variable,Value)),

add_facts(Variable,Rest).

We still have to discuss the PROLOG definitions of the predicates allowed in the conditions
of production rules. We refer to these predicates as system predicates, to distinguish them
from the built-in predicates provided by PROLOG itself. The most frequently used predicate
same is described by means of the following PROLOG clause:

same(Variable,Value) :-

trace_values(Variable),!,

fact(Variable,Value).

As can be seen from the first condition of this clause, the process of tracing a variable is
executed independent of the constant specified in the condition. Only after a variable has
been traced, it is checked whether or not the specified value has been found for the variable.
If the particular constant does not occur in the fact set as a value for the variable, then the
call to same fails. Note that the cut prevents a second call to trace values.

The system predicates greaterthan and lessthan may be implemented in PROLOG as
follows. Recall that numerical variables are always single-valued:

greaterthan(Variable,Value) :-

values_known(Variable,Knownvalue),!,

Knownvalue > Value.

lessthan(Variable,Value) :-

values_known(Variable,Knownvalue),!,

Knownvalue < Value.

values_known(Variable,Knownvalue) :-

trace_values(Variable),!,

fact(Variable,Knownvalue),

not(Knownvalue = unknown).
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Again, note the indirect recursive call to trace values.
To conclude, the clause

consultation(Goal_variable) :-

trace_values(Goal_variable),!,

output(Goal_variable),

nl.

starts the consultation by means of a call to trace values for the goal variable to which
Goal variable is instantiated; it prints the results on the screen. It is left as an exercise to
the reader to develop the relevant output clauses. Before starting the consultation, both the
knowledge base and the above-given extension onto the PROLOG interpreter must have been
loaded into the PROLOG database.

EXAMPLE 3.26

Consider the following tiny knowledge base, consisting of only two production rules:

% DOMAIN DECLARATION

prompt(complaint) :-

write(’Enter complaints of patient.’),

nl.

prompt(presence) :-

write(’When is the pain present?’),

nl.

prompt(absence) :-

write(’When does the pain disappear?’),

nl.

prompt(age) :-

write(’Enter age of the patient.’),

nl.

prompt(smokes) :-

write(’Does the patient smoke?’),

nl.

% RULE BASE

add(diagnosis,arterial_stenosis) :-

same(disorder,atherosclerosis),

same(complaint,calf_pain),

same(presence,walking),

same(absence,rest).

add(disorder,atherosclerosis) :-

greaterthan(age,60),

same(smokes,yes).

Application of the PROLOG program we have developed above yields the following
consultation:
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| ?- consultation(diagnosis).

Enter age of the patient.

|: [70].

Does the patient smoke?

|: [yes].

Enter complaints of patient.

|: [calf_pain].

When is the pain present?

|: [walking].

When does the pain disappear?

|: [rest].

The diagnosis is (are): arterial_stenosis

yes

3.2.3 Top-down inference in LISP

In the present section, we shall develop an implementation of the top-down inference algorithm
in the programming language LISP. We start with a description of the representation of
variable declarations and production rules in LISP, and then proceed with a discussion of the
basic inference algorithm. In developing the inference engine, we exploit the LISP interpreter
to a large extent by adding only a small number of extra features to it, just as we have done
in the PROLOG implementation.

The knowledge base of the LISP system consists of a collection of variable declarations
and production rules. A variable declaration has the following form:

(def <variable-name>

(prompt <string>)

(class <trace-class>))

The keyword def is followed by the variable name. If following the keyword prompt a question
to the user is specified, then the variable is askable. The empty prompt nil indicates that the
variable should never be asked from the user. A variable declaration furthermore contains a
so-called trace class which tells us whether or not the variable is a goal. If the keyword goal
is filled in after the keyword class, then the variable is a goal; nil indicates that it is not a
goal. Again, for ease of exposition, single-valued and multi-valued variables are not explicitly
distinguished in the present program. Moreover, some of the optimizations we discussed in
Section 3.2.1 have not been incorporated, but instead are left as an exercise to the reader (see
the exercises 3.5 and 3.6).

EXAMPLE 3.27
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Let complaint be an askable variable. Using the syntax of a variable declaration given
above, we obtain the following specification:

(def complaint

(prompt "Enter the complaints of the patient.")

(class nil))

For the goal variable diagnosis, we obtain the following specification:

(def diagnosis

(prompt nil)

(class goal))

Production rules are explicitly distinguished from variable declarations by means of the key-
word rule. The syntax used in the LISP program for representing production rules closely
resembles the representation defined in the first section of this chapter, as is shown in the
following example.

EXAMPLE 3.28

Consider the following production rule:

if
same(complaint,abdominal-pain) and
same(auscultation,murmur) and
same(palpation,pulsating-mass)

then
add(disorder,aortic-aneurysm)

fi

This rule is represented in LISP by means of the following expression:

(rule

(and (same complaint abdominal-pain)

(same auscultation abdominal-murmur)

(same palpation pulsating-mass))

(add disorder aortic-aneurysm))

Recall that a production rule may also contain a disjunction of conditions. The following
LISP expression represents such a rule:

(rule

(and (greaterthan systolic-pressure 140)

(greaterthan pulse-pressure 50)

(or (same auscultation diastolic-murmur)

(same percutation enlarged-heart)))

(add disorder aortic-regurgitation))
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A knowledge base has to be read in and parsed by the LISP program before it can be consulted.
The function ConsultationSystem shown below therefore first prompts the user to enter the
name of the file in which the knowledge base is kept, and then calls the function Parse for
analyzing the knowledge base:

(defun ConsultationSystem ( )

(terpri)

(princ "Name of the knowledge base: ")

(let ((knowledge-base (open (read-line))))

(setq *var-decls* nil

*rule-base* nil)

(Parse knowledge-base)

(close knowledge-base)

(Consultation *var-decls*)))

After the knowledge base has been parsed, all variables declared in the domain declaration
will have been stored in the global variable *var-decls*, and the set of production rules will
have been stored in the global variable *rule-base*. Note that since in COMMON LISP all
variables by default have a lexical scope, it is necessary to declare them as special to render
them globally accessible. This is achieved by means of the following declarations:

(defvar *var-decls*)

(defvar *rule-base*)

In parsing the knowledge base, the recursive function Parse examines the first element of each
expression expr read in to determine whether it is a keyword of a variable declaration or of a
production rule:

(defun Parse (knowledge-base)

(let ((exp (ReadExpression knowledge-base)))

(cond ((eq expr ’eof) nil)

(t (case (first expr)

(def (ParseDecl (rest expr)))

(rule (ParseRule (rest expr)))

(otherwise (error "Unknown keyword: ~A" (first expr))))

(Parse knowledge-base)))))

If a variable declaration is encountered, then the function ParseDecl is called; if the expression
read in represents a production rule, then Parse calls the function ParseRule. Note that a
variable declaration or production rule is stripped from its keyword before it is passed on to
the appropriate function. If the expression does not represent a variable declaration nor a
production rule, then it is an illegal expression.

An expression is read from file by means of a call to the function ReadExpression which
returns the function value eof after all expressions from the knowledge base have been read
in:

(defun ReadExpression (stream)

(read stream nil ’eof))
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Note that as soon as ReadExpression has returned the function value eof, the function Parse

terminates.
The function ParseDecl called from Parse translates a variable declaration into a LISP

symbol with a property list:

(defun ParseDecl (expr)

(let ((variable (first expr))

(spec (rest expr)))

(setf (get variable ’prompt) (Prompt spec)

(get variable ’class) (Class spec)

(get variable ’traced) nil) ; not traced

(set variable nil) ; value is unknown by default

(setq *var-decls* (append *var-decls*

(list variable)))))

The name of the variable is selected from the given expression by means of the function
call (first expr). Its prompt and trace class are extracted from the remainder of the
declaration and translated into properties of a LISP symbol having the same name as the
variable. The LISP functions setf and get are used for initializing the properties prompt,
class and traced of the symbol. The property traced is given the value nil to indicate that
the variable initially is untraced. Furthermore, the value of the variable is set to nil, using
the function set, to indicate that the variable has no value at the beginning of a consultation
of the knowledge base. The name of the variable is subsequently added to the list of variable
declarations in *var-decls*.

The selection of the prompt and the trace class belonging to a variable is accomplished
by means of the following functions Prompt and Class:

(defun Prompt (spec)

(cadr (assoc ’prompt spec)))

(defun Class (spec)

(cadr (assoc ’class spec)))

In various places in the program we shall need functions for accessing the property values in
the property list of a given symbol. For each property a corresponding function is defined:

(defun Goal? (var)

(eq (get var ’class) ’goal))

(defun Traced? (var)

(get var ’traced))

(defun GetPrompt (var)

(get var ’prompt))

These functions allow us to abstract in the program from the particular data structures used
for representing the features of a variable.

The last function to be discussed with respect to a variable declaration, is the function
SetTraced. Upon evaluation, this function assigns the value t to the property traced of the
specified variable:
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(defun SetTraced (var)

(setf (get var ’traced) t))

Recall that if a production rule is read in, the function ParseRule is called from Parse. This
function is similar in concept to the function ParseDecl: it adds an expression representing
a production rule to the global variable *rule-base*:

(defun ParseRule (expr)

(setq *rule-base* (cons expr *rule-base*)))

We now define several functions for selecting relevant production rules from a given rule base,
and for evaluating a selected rule. The functions FirstRule and RestRule yield the first rule
of the rule base and the remaining rules after removal of the first one, respectively:

(defun FirstRule (rule-base)

(first rule-base))

(defun RestRules (rule-base)

(rest rule-base))

The functions Antecedent and Consequent return the part of a given production rule indi-
cated by their respective function names:

(defun Antecedent (rule)

(first rule))

(defun Consequent (rule)

(rest rule))

For selecting parts of a consequent of a production rule, the functions FirstConclusion

and RestConclusions are provided. They yield the first conclusion and the remaining ones,
respectively:

(defun FirstConclusion (conseq)

(first conseq))

(defun RestConclusions (conseq)

(rest conseq))

Finally, the function Var is provided for selecting the name of a variable from a condition or
conclusion:

(defun Var (assertion)

(second assertion))

This concludes the description of the auxilliary functions used in the program. We now
have arrived at its kernel. Recall that after the variable declarations and production rules
have been read in and processed, the function Consultation is called from the function
ConsultationSystem for the actual consultation of the knowledge base:

(defun Consultation (var-decls)

(TraceGoals var-decls)

(PrintGoals var-decls))
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The function Consultation traces the goal variables occurring in var-decls one by one by
means of the function TraceGoals. After all goal variables have been traced, the values
established for them are printed on the screen by means of the function PrintGoals. We
show the PrintGoals function without further explanation:

(defun PrintGoals (var-decls)

(cond ((null var-decls) nil)

((Goal? (first var-decls))

(let ((var (first var-decls)))

(terpri)

(print var)

(princ (eval var)))

(PrintGoals (rest var-decls)))

(t (PrintGoals (rest var-decls)))))

The tracing of a goal variable is implemented by the function TraceGoals. For each variable
occurring in var-decls it is checked whether or not it is a goal; if it is, then the function
TraceValues is called for actually tracing it. The remaining goal variables are selected and
traced by means of a recursive call to TraceGoals:

(defun TraceGoals (var-decls)

(if var-decls

(let ((variable (first var-decls)))

(if (Goal? variable) ; is it a goal variable?

(TraceValues variable))

(TraceGoals (rest var-decls)))))

The function TraceValues, which is used for actually tracing a variable, is implemented just
as described in Section 3.2.1. It first tries to infer values for the variable from the rule base.
If the application of the production rules has not turned out to be successful, the user is
prompted to enter values for the variable:

(defun TraceValues (variable)

(if (not (Infer variable))

(Ask variable)))

(SetTraced variable))

Deriving one or more constant values for a variable using the production rules from the rule
base is done by means of the function Infer. This function first selects all relevant production
rules and then applies them one by one by calling ApplyRule:

(defun Infer (variable)

(dolist (rule (Select variable *rule-base* nil)

(eval variable))

(ApplyRule rule)))

The function value returned by Infer is a list of the constants which have been derived for
the variable after all applicable production rules have been applied. This value is obtained
from the evaluation of the form (eval variable).
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Note that in TraceValues the function Ask is called for a variable only if Infer has yielded
the function value nil, that is, only if no values have been inferred for the variable from the
rule base. After the call to Infer, and possibly also after the one to Ask, has been evaluated,
the variable has been traced, since all possible ways to obtain values have been tried. So, the
variable is marked as traced by means of a call to the function SetTraced.

The function Infer employes the recursive function Select for selecting applicable pro-
duction rules from the rule base. In Select, each production rule is examined on its relevance
to the variable being traced by means of a call to Occurs, which checks if one of its conclu-
sions contains the given variable. If the variable occurs in one of the conclusions, then the
production rule is added to the conflict set. The conflict set is kept in the variable selected:

(defun Select (variable rules selected)

(cond ((null rules) selected)

(t (let ((rule (FirstRule rules)))

(if (Occurs variable (Consequent rule))

(Select variable (RestRules rules)

(cons rule selected))

(Select variable (RestRules rules) selected))))))

The function Select returns the conflict set as its function value.
The function Occurs which is called from Select, examines the conclusions of the con-

sequent of a rule one by one until a conclusion has been found in which var occurs, or all
conclusions have been examined:

(defun Occurs (var conseq)

(cond ((null conseq) nil)

(t (if (eq (Var (FirstConclusion conseq)) var)

t

(Occurs var (RestConclusions conseq))))))

Recall that in the function Infer, each rule from the conflict set is applied by means of a call
to the function ApplyRule. The function ApplyRule applies a selected production rule by
first evaluating its conditions by means of EvalConditions?. If evaluation of the antecedent
of the rule has returned the truth value t, then its conclusions are evaluated by means of the
function EvalConclusions:

(defun ApplyRule (rule)

(if (EvalConditions? (Antecedent rule))

(EvalConclusions (Consequent rule))))

Most of the actual evaluation of a production rule is done by the standard interpreter pro-
vided by LISP. For example, within the function EvalConditions? shown below, the entire
antecedent of a production rule is passed on to the LISP interpreter for evaluation:

(defun EvalConditions? (antecedent)

(eval antecedent))

When discussing the representation of production rules by means of LISP expressions, we have
mentioned that the consequent of a production rule is represented as a list of subexpressions
each representing a conclusion. In EvalConclusions, the conclusions of a rule are evaluated
by calling the standard LISP function mapc for the entire consequent:
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(defun EvalConclusions (consequent)

(mapc #’eval consequent))

Note that this way the function eval is applied to each conclusion.
As we have mentioned before, most of the evaluation of a production rule is left to the

LISP interpreter. However, in order to be able to exploit the LISP interpreter in this way, the
standard evaluation rules adhered to in LISP have to be modified for predicates and actions.
The LISP interpreter for example evaluates the arguments of a function call before passing
them on. However, in case of predicates and actions we do not want to pass the values of the
arguments but the arguments themselves, that is, without evaluation. LISP offers a solution
to this problem in the form of macro’s: contrary to function calls the arguments of a macro
call are not evaluated beforehand.

The following macro Same now defines the predicate same. It checks whether the constant
specified in the condition which is being evaluated, occurs in the list of constants the variable
has as a value. If the constant occurs in the value set, then the truth value t is returned:

(defmacro Same (variable value)

‘(Compare #’member ’,variable ’,value))

The macro NotSame is almost complementary to Same; however, it has to reckon with the case
that the variable is unknown. We recall that a variable is unknown if it has been traced and
nevertheless has the value nil. In order to determine whether or not the variable is unknown,
NotSame first calls the function Known, as described below:

(defmacro NotSame (variable value)

‘(and (Known ,variable)

(not (Same ,variable ,value))))

The macro Known yields the truth value t if the variable which is passed as an argument has
a value different from nil, in other words, if the variable is known:

(defmacro Known (variable)

‘(not (Compare #’eq ’,variable nil)))

The following macro’s implement the various system predicates for numerical variables:

(defmacro LessThan (variable value)

‘(Compare #’> ’,variable ,value))

(defmacro Equals (variable value)

‘(Compare #’= ’,variable ,value))

(defmacro GreaterThan (variable value)

‘(Compare #’< ’,variable ,value))

From all macro’s defined so far, the function Compare is called. This function specifies the
indirect recursive call to TraceValues for tracing values for a yet untraced variable, as has
been discussed in Section 3.2.1:
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(defun Compare (operator variable value)

(cond ((Traced? variable)

(if (or (eval variable) ; variable has a value?

(eq operator #’eq))

(funcall operator value (eval variable)))

(t (TraceValues variable)

(Compare operator variable value))))

Finally, the action add is defined. Upon evaluation, it adds the specified constant to the list
of constants for a given variable.

(defmacro Add (variable value)

‘(set ’,variable (cons ’,value ,variable)))

It should be noted that in the present implementation, numerical variables are not allowed in
the conclusions of a production rule.

We still have to discuss one function, namely the function Ask which is called from
TraceValues. Recall that this function is only invoked if the inference engine has not been
able to derive values from the rule base by means of the function Infer. The function Ask

prompts the user to enter values for the variable. Input should be entered as a list of one
or more LISP atoms. By means of (unknown) the user may indicate that the values of the
variable are unknown:

(defun Ask (variable)

(when (GetPrompt variable)

(terpri)

(princ (GetPrompt variable))

(terpri)

(princ "-> ")

(let ((response (read)))

(unless (eq (first response) ’UNKNOWN)

(if (numberp (first response))

(set variable (first response))

(set variable response))))))

The entire program has now been discussed. As the reader may have noticed, the program
is not as efficient as it could be, since for example applicable production rules for a given
variable are selected by scanning the entire rule base. A more efficient search method will
be required when the rule base contains more than a hundred or so production rules. The
implementation, however, can easily be improved without much effort, by attaching to each
variable in *var-decls* a list of pointers to those production rules having the variable in
one of their conclusions; in that case, there is no need anymore for scanning the entire rule
base. This improvement is left to the reader as an exercise (see exercise 3.6). We finish this
section with a sample program run.

EXAMPLE 3.29

Consider the following LISP version of the tiny knowledge base we already encountered
in the section on the PROLOG implementation of top-down inference:
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; DOMAIN DECLARATION

(def complaint

(prompt "Enter complaints of patient.")

(class nil))

(def presence

(prompt "When is the pain present?")

(class nil))

(def absence

(prompt "When does the pain disappear?")

(class nil))

(def age

(prompt "Enter age of patient.")

(class nil))

(def smokes

(prompt "Does the patient smoke?")

(class nil))

(def diagnosis

(prompt nil)

(class goal))

(def disorder

(prompt nil)

(class nil))

; RULE BASE

(rule

(and (same disorder atherosclerosis)

(same complaint calf-pain)

(same presence walking)

(same absence rest))

(add diagnosis arterial-stenosis))

(rule

(and (greaterthan age 60)

(same smokes yes))

(add disorder atherosclerosis))

When applying the LISP program for top-down inference, we obtain the following tran-
script of a consultation:
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Name of the knowledge base: example

Enter age of patient.

-> (70)

Does the patient smoke?

-> (yes)

Enter complaints of patient.

-> (calf-pain)

When is the pain present?

-> (walking)

When does the pain disappear?

-> (rest)

diagnosis(arterial-stenosis)

NIL

3.2.4 Bottom-up inference and production rules

Broadly speaking, bottom-up inference with production rules differs from top-down inference
only by being controlled by the fact set instead of by goals and subgoals. As in top-down
inference, each time a set of relevant production rules is selected from a rule base; the re-
sulting set of applicable production rules in bottom-up inference again is called the conflict
set. Recall that in top-down inference, only production rules having a particular (sub)goal
variable in one of their conclusions were included in the conflict set. In bottom-up inference,
however, a production rule is entered into the conflict set if its conditions are fulfilled using
the information from the given fact set. In applying the rules from the conflict set, there
is also a difference between the two forms of inference. In top-down inference all produc-
tion rules from the conflict set are applied exhaustively. In bottom-up inference, however,
generally only one of them is applied. This difference arises from the action remove being
applied frequently in production systems employing bottom-up inference, in contrast with
top-down inference systems. It will be evident that the evaluation of this action may have
as an effect that certain conditions, which were true before evaluation of that specific action
took place, do not longer hold after its evaluation. As a consequence, all rules in the conflict
set have to be reconsidered, since some may specify conditions which fail upon evaluation
using the altered fact set. Furthermore, the changes in the fact set may render other rules
being successful, which should then be added to the conflict set. Therefore, after applying
a single rule from a specific conflict set, a new conflict set is selected. In practice, however,
many of the rules previously present in the conflict set will appear again in the new conflict
set in the next inference cycle. The entire process is repeated again and again, until some
predefined termination criterion is met; a frequently employed criterion is the emptiness of
the set of applicable rules. The inference is started just by the presence of initial facts in the
fact set. The general approach of bottom-up inference in a production system is described in
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the following procedure:

procedure Infer(rule-base, fact-set)

rules ← Select(rule-base, fact-set);

while rules 6= ∅ do
rule ← ResolveConflicts(rules);

Apply(rule);

rules ← Select(rule-base, fact-set)

od
end

The function Select is applied for selecting the applicable production rules from the rule
base. The function ResolveConflicts subsequently chooses from the resulting conflict set a
single rule for application: this function implements a conflict-resolution strategy, several of
which will be discussed below. The selected production rule is then applied by means of a
call to the procedure Apply. In bottom-up inference, the procedure Apply just evaluates the
actions of the conclusions specified in the consequent of the rule.

The selection of the relevant production rules from the rule base is described in the
following function Select. Again, for ease of exposition, we have assumed that the antecedent
of a production rule only comprises a conjunction of conditions:

function Select(rule-base, fact-set)

selected-rules← ∅;

foreach rule in rule-base do
failed ← false;
foreach cond in antecedent(rule) while not failed do

EvalCondition(cond, fact-set, failed)

od;
if not failed then

selected-rules← selected-rules ∪ {rule}
fi

od;
return(selected-rules)

end

The procedure EvalCondition evaluates a single condition of a production rule. It returns
failure if the variable mentioned in the condition does not occur in the fact set, or if the
specified predicate upon evaluation yields the truth value false; otherwise the procedure re-
turns success. Note that this evaluation differs from the evaluation described for top-down
inference, since here the evaluation of a condition does not lead to the generation of a new
subgoal.

The basic bottom-up inference algorithm is very simple. However, much more is still to
be said about incorporating control strategies into the basic bottom-up inference scheme.
The order in which the rule base is traversed nor the order in which the conditions and
conclusions of a selected rule are evaluated has been fixed in the procedure Select. As
in Section 3.2.1, we again call the non-fixed order in which production rules are selected
and applied, nondeterminism of the first kind, and the non-fixed order in which conditions
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and conclusions are evaluated, nondeterminism of the second kind. Nondeterminism of the
first kind is again resolved by means of a conflict-resolution strategy. These strategies are
much more often applied in systems with bottom-up inference than in systems using top-down
inference. If rules, and conditions and conclusions of rules, are evaluated in the order in which
they have been specified we speak of forward chaining ; this is the simplest possible form of
conflict-resolution. So, in forward chaining the first successful production rule encountered
will be selected for application. Note that the choice of the order in which the conditions
of the rules from the rule base are evaluated in bottom-up inference has no effect on the
resulting behaviour of the system. Only the order in which the rules are applied, and the
order in which the conclusions of the rules are evaluated, are of importance.

Many conflict-resolution strategies have been developed for bottom-up inference; here we
only discuss three more of them in addition to the earlier mentioned forward chaining. The
main reason for augmenting the basic inference algorithm with a conflict-resolution strategy
which is more sophisticated than simple forward chaining, is to obtain a more context-sensitive
and problem-directed reasoning behaviour, that is, to better control the inference. Since
bottom-up inference lacks the ‘intelligent’ goal-directed nature of top-down inference, conflict-
resolution strategies evidently are much more important in bottom-up inference than in top-
down inference. Possible conflict resolution strategies differing from forward chaining are:

• conflict resolution by prioritization, which for selecting a rule for application uses pri-
orities of the production rules which have been indicated explicitly by the knowledge
engineer;

• conflict resolution by specificity, which causes the system to prefer more strongly stated
production rules over weaker ones;

• conflict resolution by recency, which uses the most recently derived facts in selecting
a production rule for application, thus causing the system to pursue a single line of
reasoning.

Conflict resolution by production rule prioritization has the same advantages as forward
chaining: it is easy to implement and use, while being effective in many applications. However,
an obvious disadvantage of this strategy is the burden it places on the knowledge engineer
who has to impose an ordering on the production rules from the rule base explicitly.

Conflict resolution by specificity is based on some measure of specificity for production
rules, such as for example the number of tests specified in the conditions of the rules. A
production rule R1 is considered to be more specific than a production rule R2 if R1 contains
at least the same conditions as R2.

EXAMPLE 3.30

Consider the following two production rules:

R1: if
same(auscultation, diastolic-murmur)

then
add(disorder, cardiac-disorder)

fi
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R2: if
greaterthan(systolic-pressure, 140) and
same(auscultation, diastolic-murmur) and
same(percussion, enlarged-heart)

then
add(disorder, aortic-regurgitation)

fi

Production rule R2 is more specific than production rule R1, since it contains the
condition from R1 as well as some additional conditions. Furthermore, the conclusion of
R2 is more specific than the one from R1. It will be obvious that success of R2 will yield
a stronger result than success of rule R1. A specificity strategy will therefore choose R2

from the conflict set R1, R2 for application.

The use of a specificity strategy increases the extensibility of the rule base: a rule base can
easily be enlarged by adding new, more specific rules to it without our having to worry too
much about older rules, since more specific production rules prevail over the more general
ones. Note that most humans exhibit a similar behaviour. For example, when a person
encounters his friend in the street, he will not be inclined to think that this other person is a
mammal, but he will think instead that it is his friend John: he just applies the most specific
knowledge he has.

The last conflict-resolution strategy we pay attention to, the recency strategy, is undoubt-
edly the most complicated of the ones we have mentioned. This conflict-resolution strategy
requires that each fact in the fact set is supplemented with a so-called time tag, a unique
number indicating the ‘time’ the fact was derived. In the following definition, the notion of a
fact is redefined for the case of bottom-up inference using the recency strategy. We will only
deal with single-valued variables; the extension to multi-valued ones is straightforward.

Definition 3.4 A fact is an expression of the following form:

t : xs = c

where t ∈ IN is a time tag which uniquely identifies the fact; xs is a single-valued variable,
and c is a constant. A fact set has the following form:

{t1 : xs
1 = c1, . . . , tn : xs

m = cm}

Constants and variables may now occur more than once in the fact set. However, a time-tag
variable pair is unique. Each fact added to the fact set as a result of applying a production
rule, is assigned a new time tag t + 1 where t is the last assigned one.

EXAMPLE 3.31

Consider the following fact set:

{1 : x = a, 2 : x = b, 3 : y = c, 4 : z = d}

The variable x occurs twice amongst these facts, with different time tags. This should
be interpreted as follows: at time 1 the variable x has taken the value a, and at time 2
it has obtained the value b. Therefore, x has two values, one at time 1 and another one
at time 2.
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There are various ways in which time tags may be interpreted in the representation of facts.
Time tags for example may be taken to monitor progress in time of some parameter.

EXAMPLE 3.32

Consider the following fact set:

{1 : temp = 36.2, 2 : temp = 37, 3 : temp = 38}

Herein, time tags are used to indicate the change of the body temperature of some
person in time; each time tag for example indicates a day.

We recall that here we introduced time tags in order to enable conflict resolution by recency;
this is the main usage of time tags. After the applicable production rules have been selected
from the rule base, it is possible to order the conflict set using the time tags associated with
the individual facts from the fact set. With each rule in the conflict set a sequence of time tags
is associated, where each time tag originates from a fact matching with a condition of the spe-
cific rule. These time tags are then sorted in decreasing order. Each thus obtained sequence
of time tags is padded with as many as zero time tags as required to make all sequences of
equal length. This way, the production rules in the conflict set may be compared to each other.

EXAMPLE 3.33

Consider the following fact set:

{1 : x = a, 2 : x = b, 3 : y = c, 4 : z = d, 5 : w = e, 6 : z = f}

Now, suppose that the conflict set consists of the following three production rules:

R1: if same(z, f) then add(x, e) fi
R2: if same(x, b) and same(z, d) then add(y, f) fi
R3: if same(x, a) and same(y, c) and same(w, e) then add(x, d) fi

Rule R3 has the largest number of conditions, namely three. So, with each rule we
associate a sequence of time tags having length three:

R1: 6 0 0
R2: 4 2 0
R3: 5 3 1

The production rules in the conflict set are now ordered according to the lexicographical order
of their associated sequences of time tags: in the ordering, a rule R1 precedes a rules R2 if
the sequence of time tags associated with R1, read from left to right, is larger than the one
associated with rule R2. The order relation between members of the conflict set is denoted
by the symbol ≥. The relation ≥ is a total ordering, and has therefore the following four
properties:
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• Reflexivity: for each production rule R we have R ≥ R;

• Transitivity: for each three production rules R1, R2, and R3, satisfying R1 ≥ R2 and
R2 ≥ R3, we have that R1 ≥ R3;

• Anti-symmetry: for each pair of rules satisfying R1 ≥ R2 and R2 ≥ R1, we have that
R1 = R2;

• Totality: for each pair of production rules R1 and R2, we have either R1 ≥ R2 or
R2 ≥ R1.

EXAMPLE 3.34

Consider the following sequences of time tags, belonging to four production rules R1,
R2, R3 and R4, respectively:

R1: 6 0 0
R2: 4 3 2
R3: 5 3 1
R4: 6 1 0

For these rules we have that R4 ≥ R1 ≥ R3 ≥ R2.

This ordering of the rules from a conflict set enables us to give an algorithm for conflict
resolution based on recency; it is described in the following function ResolveConflicts:

function ResolveConflicts(rules)

if rules = ∅ then return(∅)

else
r ← Max-Time-tag-Subset(rules);

if r is singleton then return(r)
else

result ← ResolveConflicts(r)

fi;
if result = ∅ then return(first(r))
else

return(result)
fi

fi
end

The function Max-Time-tag-Subset called from ResolveConflicts selects from the conflict
set rules the rules with the highest time tag. If the resulting set r contains more than
one element, then, after the earlier examined time tags have been skipped, the function
ResolveConflicts is called recursively for this set r. Note that contrary to what has been
described before, the conflict set is not ordered entirely before it is examined: each time only
a subset of the rules relevant for conflict resolution is selected. The presented algorithm does
not always yield a single production rule, since it is possible to have two or more (different)
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production rules, having the same sequence of time tags. In this case, on arbitrary grounds
the first specified production rule is returned as a result.

As has been discussed above, a variable specified in a condition of a production rule may
have more than one occurrence in the fact set, although with different time tags. As a con-
sequence, a condition may match with more than one fact. So, a production rule may be
applied more than once, using different facts.

EXAMPLE 3.35

Consider the following fact set:

F = {1 : x = a}

and the conflict set consisting of the following two production rules:

R1: if same(x, a) then add(y, b) fi
R2: if same(y, b) then add(y, b) fi

Then, the application of rule R1 in the first inference step results in the following
modified fact set:

F ′ = {1 : x = a, 2 : y = b}

Subsequent application of rule R2 yields the following fact set:

F ′′ = {1 : x = a, 2 : y = b, 3 : y = b}

Rule R2 can now be applied again. In this example, the inference will not terminate;
rule R2 will be applied forever.

In the preceding example, we have shown that a production rule may be applied more than
once, using different facts. It is therefore necessary to specify in the conflict set all possible
applications of a rule, instead of the rule itself. For this purpose, we introduce the notion of
a rule instance.

Definition 3.5 Let F be a fact set, and R a production rule. Let M ⊆ F be a subset of
facts, such that each element f ∈ M matches with a condition of R, and each condition of
the production rule R matches with an element from M . Then, the pair (R,M) is called a
rule instance.

In other words, a rule instance consists of a production rule and the facts matching with its
conditions. It will be evident that although production rules may be applied several times,
it is undesirable that rule instances are applied more than once. Note that the conflict set
should now be taken as a set of rule instances. The basic algorithm for bottom-up inference
discussed in the foregoing has to be altered for dealing with such rule instances. Recall that
so far, we have treated four procedures which together constitute the bottom-up inference
algorithm:
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• the procedure Infer, which described the global inference process;

• the function Select, which was used for the selection of applicable rules from the rule
base;

• the function ResolveConflicts, which specified the conflict-resolution method;

• the procedure Apply, which applied the once selected production rule.

First, we reconsider the procedure Infer. Here, we have to record the rule instances which
have been applied, to prevent rule instances from being applied more than once:

procedure Infer(fact-set, rule-base)

applied-instances← ∅;

instances ← Select(rule-base, applied-instances, fact-set);

while instances 6= ∅ do
instance ← ResolveConflicts(instances);

Apply(instance);

applied-instances← applied-instances ∪ {instance};
instances ← Select(rule-base, applied-instances, fact-set)

od
end

The function Select now has to generate rule instances from the production rules in the rule
base instead of the production rules themselves:

function Select(rule-base, applied, fact-set)

selected-instances← ∅;

foreach rule in rule-base do
failed ← false;
rule-instances← (rule, ∅);

foreach cond in antecedent(rule) while not failed do
ModifyInstances(cond, rule-instances, fact-set, failed)

od;
if not failed then

selected-instances← selected-instances ∪
(rule-instances \ applied)

fi
od;
return(selected-instances)

end

Note that the second argument of Select now contains a set of rule instances. The procedure
ModifyInstances called from Select, evaluates a given condition cond using the fact set.
Each different matching fact gives rise to the creation of a new rule instance. Of course,
if a condition fails then no rule instance will be created. Since the rule instances are built
recursively, evaluation of subsequent conditions of a production rule may lead to discarding
rule instances under construction from the set rule-instances:
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procedure ModifyInstances(condition, rule-instances, fact-set, failed)

relevant-facts← EvalCondition(condition, fact-set);

failed ← relevant-facts = ∅;

new-instances← ∅;

if not failed then
foreach fact in relevant-facts do

foreach rule-inst in rule-instances do
new-instances← new-instances ∪ Add(rule-inst, fact)

od
od

fi;
rule-instances← new-instances

end

After the conflict set has been created, the next step in Infer is to select a single rule instance
from it by conflict resolution. This is achieved by means of the procedure ResolveConflicts
which already has been discussed. Finally, the procedure Apply is called to evaluate the
conclusions of the selected rule instance. Recall that evaluation of the action add adds a new
fact to the fact set, which is assigned a new time tag. Evaluation of the action remove deletes
a fact from the fact set; the fact to be deleted is selected either by explicitly referring to its
time tag, or simply by matching.

We conclude this section with an example.

EXAMPLE 3.36

Consider the following fact set F :

F = {1 : x = a, 2 : x = b, 3 : y = 4}

Furthermore, let us have the following set of production rules:

R1: if same(x, a) and same(x, b) then add(z, e) fi
R2: if same(z, e) and same(w, g) then add(z, f) fi
R3: if lessthan(y, 10) and same(x, a) or same(x, b) then add(w, g) fi

The given fact set F gives rise to the creation of the following rule instances, together
constituting the conflict set:

(R1, {1 : x = a, 2 : x = b})
(R3, {3 : y = 4, 1 : x = a})
(R3, {3 : y = 4, 2 : x = b})

Note that two rule instances of R3 have been created. Using the recency conflict-
resolution strategy, the second instance of R3 is selected for evaluation, since the time
tag of its second matching fact is larger than the time tag of the second matching fact
of the first instance of R3. Evaluation of the instance (R3, {3 : y = 4, 2 : x = b}) causes
the fact 4 : w = g to be added to the fact set, resulting in:

F ′ = {1 : x = a, 2 : x = b, 3 : y = 4, 4 : w = g}
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The inference is now repeated; the instance (R3, {3 : y = 4, 2 : x = b}) however is no
longer applicable.

The algorithm discussed in this section provides a more or less complete description of the
bottom-up inference method. However, an inference engine implementing this algorithm will
be quite inefficient, since at every inference step all instances are created all over again. A first
step towards improving the efficiency of the algorithm is to save the instances between two
consecutive inference steps. Such an algorithm already exists, it is called the rete algorithm,
and has been developed by C.L. Forgy as part of the system OPS5. We shall return to this
rete algorithm and OPS5 in Chapter 7.

3.3 Pattern recognition and production rules

Various means for representing knowledge in a production system have been discussed in the
preceding sections, such as using variable-value pairs and object-attribute-value tuples in facts
and production rules. In this section, we introduce a more expressive means for representing
facts in the fact set, and conditions and conclusions in production rules. Instead of a single
variable-value pair or an object-attribute-value tuple, conditions and conclusions may now
contain an arbitrary number of variables and constants. In the sequel, such a collection of
variables and constants will be called a pattern. An important operation in a production
system incorporating such pattern representations is (pattern) matching, that is, informally
speaking, to make a pattern in a production rule and a fact syntactically equal by binding
variables to constants. Matching closely resembles the process of unification, we discussed in
Chapter 2. We first introduce some terminology with respect to patterns, facts and matching,
before we proceed with patterns in production rules.

3.3.1 Patterns, facts and matching

The following definition introduces the kind of patterns which will be dealt with in this section.

Definition 3.6 A pattern is a finite, ordered sequence of elements of the following form:

(e1 · · · en)

where each element ei, i = 1, . . . , n, n ≥ 1, is a constant or a variable. An element ei in a
pattern is called a pattern element. A variable in a pattern will be called a pattern variable.

Pattern variables will be distinguished from other pattern elements by having names starting
with a question mark or an exclamation mark. In the following, a variable having a name
starting with a question mark will denote a single-valued pattern variable; a variable having
a name starting with an exclamation mark denotes a multi-valued pattern variable.

EXAMPLE 3.37

The names

?a, ?patient, !xy, ?, !

are all legal names of pattern variables.
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The syntax of a fact is similar to that of a pattern; however, a fact may not contain any
variables.

Definition 3.7 A fact is a finite, ordered sequence of elements of the following form:

(f1 · · · fn)

where each element fi, i = 1, . . . , n, n ≥ 1, is a constant.

It will be evident that patterns and facts share the same basic structure, thus making it
possible to examine them on equality.

The pattern variables occurring in a pattern may be replaced by one or more constants
depending on the type of the variable: for a single-valued pattern variable only a single
constant may be filled in, whereas for a multi-valued pattern variable we may fill in a sequence
of constants. A constant or a sequence of constants which is filled in for a variable is called the
binding for the variable. The replacement of a variable by its binding is called a substitution.
If a single-valued variable ?x is bound to the constant d, then this will be denoted by ?x = d; if
a variable !y is bound to a sequence of constants (c1 · · · cn), then the binding for !y is denoted
by !y = (c1 · · · cn).

Definition 3.8 Let P be a pattern and F be a fact. It is said that the pattern P and the fact
F match if there exists a binding for the variables occurring in P such that after substitution
of the variables by their bindings, P and F are syntactically equal.

Variables having a name which just is a question mark or an exclamation mark are special
by being allowed to be bound to any constant, or any sequence of constants, respectively;
however, they do not preserve their bindings. These variables are called don’t-care variables.
Note the analogy with the don’t-care variable in PROLOG.

EXAMPLE 3.38

Consider the following pattern P and the following fact F :

P : (? ? a b)
F : (a d a b)

It is readily seen that the given pattern and fact match, since the don’t-care variable
? matches with the first element a as well as with the second element d in F . If the
don’t-care variable is replaced by an ordinary single-valued variable ?x, which preserves
its bindings, then the new pattern P and the fact F do not match:

P : (?x ?x a b)
F : (a d a b)

It is not possible to find a binding for ?x making P and F syntactically equal: the first
possible binding ?x = a obtained from the first element position, renders the pattern
and the fact different in the second element position, whereas the other possible binding
?x = d obtained from the second element position causes a difference in the first element
position.
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The following example illustrates the use of multi-valued pattern variables.

EXAMPLE 3.39

Consider the following pattern P and fact F :

P : (?x ? a ? !x a !x)
F : (g b a c c d a c d)

Note that ?x and !x indicate different variables. It will be evident that the pattern P
and the fact F match for the bindings ?x = g and !x = (c d).

3.3.2 Patterns and production rules

In the present section we shall briefly discuss how pattern matching may be employed as part
of the inference in a production system. We now take production rules to have conditions and
conclusions specifying patterns. Note that this goes beyond the use of variable-value pairs
and object-attribute-value tuples. A variable-value pair may be represented by a pattern
consisting of two constants, and an object-attribute-value tuple may be represented by a
pattern consisting of three constants; the production rules introduced in this section therefore
are more general than rules employing variable-value or object-attribute-value representations,
since these may be viewed as special cases of a pattern representation. As a consequence, the
present rule formalism has more expressive power than the ones discussed in the preceding
sections.

In the sequel, it is assumed that conditions and conclusions in rules adhere to the following
syntax:

〈condition〉 ::= 〈predicate〉 〈pattern〉
〈predicate〉 ::= same | notsame | lessthan | · · ·
〈conclusion〉 ::= 〈action〉 (〈pattern〉)
〈action〉 ::= add | remove | write | · · ·

where 〈pattern〉 is a pattern as defined in Section 3.3.1. We have defined three predicates.
The predicate same compares a given pattern with the facts in the fact set. If the pattern
matches with at least one fact, then the predicate returns the truth value true. The behaviour
of the predicate notsame again is complementary to that of the predicate same. The predicate
lessthan may only be applied to a pattern in which all variables have been bound to constants
before the predicate is being evaluated; the predicate lessthan then investigates if the obtained
sequence of numbers is strictly increasing.

We also have defined three actions. The action add adds a new fact to the fact set; if the
pattern in a conclusion contains variables, then these should all be bound to constants before
the action add is executed.

EXAMPLE 3.40

Consider the following fact set, containing just a single fact:

F = {(person name John age 10)}
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and the following production rule:

if
same(person name ?x age?y) and
lessthan(?y 20)

then
add(?x is a teenager)

fi

Upon application, this rule adds the fact (John is a teenager) to the fact set.

The action remove deletes a fact from the fact set which matches with the pattern in the
conclusion in which it has been specified. The action write prints the values of the successive
elements of its pattern to the screen. For both actions, all variables should be bound to
constants before execution.

We conclude this section with a simple example demonstrating the use of the production-
rule formalism containing patterns in conditions and conclusions.

EXAMPLE 3.41

Consider the following fact set:

F = {(list a bf g h), (element g)}

The first fact represents a list containing five elements; the second fact represents a single
element. By means of production rules we like to check whether the single element g
represented in the second fact occurs among the elements of the list represented in the
first fact. Now, consider the following three production rules:

R1: if
same(list ?x !y) and
notsame(element ?x)

then
remove(list ?x !y) also
add(list !y)

fi

R2: if
same(list ?x) or
same(list ?x !) and
same(element ?x)

then
write(?x ”belongs to the list”)

fi

R3: if
same(list ?x) and
notsame(element ?x)

then
write(”The element” ? ”x does not belong to the list”)

fi
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The first condition in rule R1, same(list ?x !y), investigates whether there exists a fact
in the fact set having as its first element the constant list, and at least two additional
constants. If this is the case, then the variable ?x will be bound to the second constant
of the matching fact; the variable !y will be bound to the sequence of its remaining
constants. In the second condition of R1 it is checked whether or not the fact set
contains a fact having as its first element the constant element and as its second element
a constant equal to the binding obtained for ?x. If so, then the rule fails; otherwise a
new fact is added to the fact set, having as its first element the constant list, followed
by the collection of constants the pattern variable !y has been bound to. As long as the
fact set does not contain a fact which binds ?x to the constant g and as long as the fact
set contains list facts containing at least two more contants following the constant list,
the rule R1 will succeed. The second rule investigates whether the fact set contains a
pattern in which the first element following the constant list equals g. Note that, as a
consequence of the disjunction in the condition part of the rule, all facts containing one
or more constants following the constant list are examined. The last rule handles the
situation that the only constant in the list fact is not equal to g. It is readily seen that
given the present fact set and rule base the production rule R2 will succeed in finding
the element g in the fact (list a b f g h).

As we have argued, the production-rule formalism in which conditions and conclusions may
contain arbitrary patterns, is more expressive than the formalisms in which only variable-value
pairs or object-attributes-value tuples are allowed. The problem described in the example
above cannot be formulated in as compact a way using the simpler representation formalisms.
In Chapter 7 we shall return to using patterns in production rules in relation with OPS5.

3.3.3 Implementation of pattern matching in LISP

In this section we present an implementation of a pattern-matching algorithm in LISP. The
algorithm we shall develop closely resembles the unification algorithm as discussed in Section
2.8. However, there are some important differences between unification and pattern matching
which justify treatment of the pattern-matching algorithm. In the first place, whereas uni-
fication is a symmetrical operation in which expressions to be unified may be interchanged
without effect, pattern matching is asymmetrical. The asymmetrical nature of matching may
be exploited for efficiency purposes. In the second place, in pattern matching usually various
kinds of variables are distinguished and explicitly treated in a different way.

The pattern-matching algorithm is described by the function Match given below, which
compares a pattern and fact in a given environment of variable bindings. It is supposed that
the pattern as well as the fact are represented as a list of symbols; for example, the list (?x !y
one) is a pattern containing the variables ?x and !y, and the constant one. The environment
of variable bindings has been implemented using an a-list, where each element contains as its
first element the name of a variable and as its remaining element(s) the constant(s) to which
the variable has been bound.

(defun Match (pattern fact environment)

(cond ((and (null pattern) (null fact)) environment)

((or (null pattern) (null fact)) ’FAIL)

(t (let ((fp (first pattern))
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(rp (rest pattern))

(ff (first fact))

(rf (rest fact)))

(case (Type fp)

(const (if (eq fp ff)

(Match rp rf environment)

’FAIL))

(?-dcv (Match rp rf environment))\\

(!-dcv (let ((result (Match rp rf environment)))

(if (eq result ’FAIL)\\

(Match pattern rf environment)

result)))

(?-var (let ((new-env (Bind? fp ff environment)))

(if (eq new-env ’FAIL) ’FAIL

(Match rp rf new-env))))

(!-var (let ((binding (LookUp fp environment)))

(if (null binding)

(Bind! fp rp fact environment)

(Match (Replace binding pattern)

fact environment)))))))))

In the function Match it is first investigated if pattern and fact both are empty. In this case,
the environment of variable bindings environment is returned. If only one of the arguments
pattern and fact is empty, then it evidently is not possible to find a match, and the value FAIL
is returned. In all other cases, the elements of pattern and fact will be examined recursively
given the environment of bindings.

For this purpose, the type of the first element of the pattern is obtained by means of the
function call (Type fp). Five different types are distinguished: a pattern element is either a
constant (const), a single-valued don’t-care variable (?-dcv), a multi-valued don’t-care variable
(!-dcv), a single-valued variable (?-var), or a multi-valued variable (!-var). For each possible
type an entry has been included in the case form indicating how to proceed with the matching
process. If the first element of the pattern, fp, is a constant, then pattern and fact match if fp
and the first element of the fact, ff, represent the same constant, and if the remainder of the
pattern, rp, and the remainder of the fact, rf, match. The latter condition is investigated by
means of a recursive call to the function Match. If fp is a single-valued don’t-care variable,
then pattern and fact match in the environment environment if rp and rf match in that same
environment. Note that in this case it suffices to compare rp and rf in the same environment,
since a single-valued don’t-care variable matches with any constant without adding a variable
binding to the environment. If fp is a single-valued variable, then the function Bind? is called.
This function either yields a new environment in which a binding for the single-valued variable
has been added, or returns the function value FAIL, indicating that the constant found for the
variable in the environment of bindings does not match with the constant ff in the given fact.
If the first element in pattern turns out to be a multi-valued don’t care variable, then it is
first investigated whether rp and rf match in the given environment of bindings. In case this
match fails, the original pattern is passed along to a recursive call to Match in an attempt to
extend the ‘binding’ for the don’t care variable. To conclude, if fp is an ordinary multi-valued
variable, then the function LookUp is invoked to find out whether the variable already occurs
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in environment. If a binding has been found in environment, then the variable in pattern is
replaced by its binding. This is accomplished by means of a call to Replace. Subsequently,
the function Match is called for this modified pattern and once more the entire fact. If on
the other hand the variable is still unbound, then the function Bind! determines for which
binding for the variable a match results for the remaining elements of pattern and fact.

Let us give an example before we discuss the functions called from Match.

EXAMPLE 3.42

Consider the following pattern P and the fact F :

P : (?x ? b !x a !x)
F : (d a b c b a c b)

The function call (Match ’(?x ? b !x a !x) ’(d a b c b a c b) nil) binds the parameters in
Match to the corresponding arguments. The first element in pattern is a single-valued
variable ?x. The part of the case form following the entry ?-var applies to this type of
variable:

(let ((new-env (Bind? fp ff environment)))

(if (eq new-env ’FAIL) ’FAIL

(Match rp rf new-env)))

As a result of a call to Bind?, the variable ?x will be bound to the first element d of the
fact fact. This binding is subsequently added to the environment of variable bindings;
the variable new-env therefore is bound to the a-list ((?x d)). The function Match is
then called recursively for processing the remainder of the pattern, (? b !x a !x), and the
remainder of the fact, (a b c b a c b), given this new environment of variable bindings.
The next element in the pattern is a single-valued don’t-care variable which will match
with any constant without extending the environment. Hence, the function Match is
recursively called for the remainder of the pattern, (b !x a !x), the remainder of the fact,
(b c b a c b), and the old environment ((?x d)). The next element in the pattern is the
constant b, which is equal to the next element in the given fact. So, the then part of
the following if form will be executed for the remainder of the pattern, (!x a !x), the
remainder of the fact, (c b a c b), and the environment ((?x d)):

(if (eq fp ff)

(Match rp rf environment)

’FAIL)

The next element encountered in the pattern is the multi-valued variable !x, which is
processed by the entry in the case form following the symbol !-var:

(let ((binding (LookUp fp environment)))

(if (null binding)

(Bind! fp rp fact environment)

(Match (Replace binding pattern)

fact environment))))))))
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The environment does not yet contain a binding for !x. A new binding is created by
means of a call to Bind!. In Bind!, the first attempt is to add the binding (!x c) to the
environment of bindings. It is then investigated whether the pattern (!x a !x) matches
with the fact (c b a c b) in this new environment. This match fails, and the binding for
!x is extended with the next element b from the fact. It is then checked if the pattern
(!x a !x) matches with the fact (c b a c b) in the new environment ((!x c b)(?x d)). This
last match will succeed, and the function Match yields the environment ((!x c b)(?x d))
as a result.

This section is concluded with a discussion of the remaining functions. Recall that the function
Type determines whether a pattern element is a single-valued don’t-care variable, a single-
valued variable, a multi-valued don’t-care variable, a multi-valued variable, or a constant:

(defun Type (x)

(let* ((name (symbol-name x))

(indicator (char name 0)))

(cond ((char= indicator #?)

(if (= (length name) 1)

’?-dcv

’?-var))

((char= indicator #!)

(if (= (length name) 1)

’!-dcv

’!-var))

(t ’const))))

The call (char name 0) selects the first character of the name of x. It then depends upon the
particular character obtained and the length of the name, which type is returned.

The function Bind? first examines whether there already exists a binding for the single-
valued variable var in the given environment of variable bindings env. To this end, it calls the
function LookUp which either returns the binding or returns nil if no binding is present:

(defun Bind? (var data env)

(let ((binding (LookUp var env)))

(if (null binding)

(cons (list var data) env) ; no binding in environment

(if (eq binding data)

env ; binding equal to data

’FAIL)))) ; not equal, return failure

If LookUp has returned a binding, then Bind? checks whether this binding for var equals the
constant in data. In case of equality the environment env is returned unaltered, otherwise
the function returns the value FAIL. If on the other hand LookUp has returned the value
nil, indicating that no binding for the variable was present in the environment env, the new
binding (var data) will be added to it.

The function Bind! adds a binding for the multi-valued variable var to the environment:

(defun Bind! (var rpattern fact env)
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(if (null fact) ’FAIL

(let* ((ff (first fact))

(rf (rest fact))

(new-env1 (Add var ff env))

(new-env2 (Match rpattern rf new-env1)))

(if (eq new-env2 ’FAIL)

(Bind! var rpattern rf new-env1)

new-env2))))

The extended environment new-env1, which is returned by the function Add, is passed as an
argument to the function Match. If this call yields the value FAIL, then the function Bind!
investigates if a match can be produced for the pattern rpattern and the fact rf, that is, the
original fact after removal of the first element. Note that this first element is already part of
the binding for the multi-valued variable var in the environment.

The function Add adds a new binding for a variable to the environment of variable bindings
env, or extends an already existing binding by means of the built-in function rplacd:

(defun Add (var data env)

(let ((binding (assoc var env)))

(cond ((null binding) (cons (list var data) env))

(t (rplacd binding

(append (rest binding) (list data)))

env))))

The function LookUp has already been mentioned several times. This function searches for
bindings for both single-valued and multi-valued variables in the environment of variable
bindings. Since the environment has been implemented using an a-list, the built-in function
assoc serves well for this purpose:

(defun LookUp (key a-list)

(rest (assoc key a-list)))}

Finally, the function Replace is defined for replacing a multi-valued variable in a pattern by
its associated binding:

(defun Replace (binding pattern)

(append binding (rest pattern)))

An interesting question is how this pattern-matching algorithm can be integrated in for exam-
ple bottom-up inference. The following example illustrates its use. The actual implementation
is left to the reader (see exercise 3.11).

EXAMPLE 3.43

Consider the example from the preceding section once more. The following fact set was
given:

F = {(person name John age10)}

and the following single production rule:
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if
same(person name ?x age ?y) and
lessthan(?y 20)

then
add(?x is a teenager)

fi

The forward-chaining algorithm first evaluates the first condition of the rule given the
fact set. As part of the evaluation of the first condition, the pattern (person name ?x age ?y)
is matched against the fact set, yielding the environment ((?y 10)(?x John)). The pred-
icate same returns the truth value true upon evaluation. Subsequently, the second con-
dition is evaluated in this new environment of variable bindings ((?y 10)(?x John)). It
will succeed as well. The evaluation of the conclusion of the rule will take the computed
environment into account. It results in the addition of the fact (John is a teenager) to
the fact set.

3.4 Production rules as a representation formalism

In this chapter we have discussed several forms of knowledge representation and inference used
in production systems. Various attempts in the past in using production rules for building
expert systems have proven the production system approach to be a flexible one, and is
suitable for many problem areas. In fact, many of the expert systems mentioned in Chapter
1 are examples of rule-based systems. In addition, several large expert systems have been
and still are being developed using the techniques discussed in this chapter. However, some
disadvantages and restrictions of the formalism have also been recognized:

• Descriptive knowledge cannot be represented in the formalism in a natural way. An
example of descriptive knowledge has been given in Chapter 1 where we described the
cardiovascular system. We shall see in the following chapter that the frame formalism
is much more suitable for representing this type of knowledge.

• The different types of knowledge encountered in a problem area, such as problem-
dependent knowledge, problem-independent knowledge, and knowledge used for exerting
control on the inference process (often called meta-knowledge) have to be expressed
using one and the same formalism and therefore cannot be distinguished explicitly.

• The production rule formalism has a strong operational flavour. As a consequence,
some knowledge of the underlying execution model of the inference engine is required
for adequately representing a problem domain in a knowledge base. Compare this
situation with the one in logic, where no knowledge concerning inference is required for
specifying a correct knowledge base; familiarity with the declarative semantics of logic
suffices in this case.

• A more involved application generally leads to a large rule base, which is difficult to
develop and maintain. So, for developing large applications the necessity of partitioning
a large rule base into smaller modules arises. However, the production rule formalism
offers no direct means for explicitly indicating and exploiting such a modularization.
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Some of these problems may be solved by combining production rules with some other formal-
ism, such as for example a frame formalism, or with other programming paradigms such as
object-oriented programming. Chapter 7 discusses several solutions that have been proposed
and incorporated in actual systems.

Suggested reading

The work of Newel and Simon on human problem solving is described in [Newell72]. In
[Newell73] the formalism of production rules is presented from the perspective of a psycholog-
ical model of human behaviour. [Waterman78] reviews some of the principles of production
systems which in this book are called pattern-directed inference systems. In [Buchanan83] the
two basic forms of inference, that is top-down and bottom-up inference, are discussed. A typ-
ical system based on top-down inference is MYCIN, [Shortliffe76]. OPS5 is a typical example
of a system employing bottom-up inference, [Forgy81]. [Brownston85] discusses the kind of
forward chaining employed in OPS5. The two mentioned systems use object-attribute-value
tuples for representing facts. The representation of knowledge in object-attribute-value tu-
ples in production rules is discussed in [Buchanan84] in relation with the MYCIN system.
[Sauers88] describes the application of control strategies in production systems.

[Bratko86] and [Sterling86] present alternative techniques for implementing a rule-based
expert system in PROLOG. In [Winston89] a LISP program based on production rules and
forward chaining is discussed, which uses streams for the representation of facts; [Luger89]
contains an implementation of backward-chaining also using streams.

Exercises

(3.1) Consider the knowledge base containing the following domain declaration

D = {xs
a, y

s, zs
a, w

m
g }

and the following rule base:

{R1: if lessthan(z, 20) and notknown(y) then add(w, b) fi,
R2: if same(x, c) and known(y) then add(w, d) fi,
R3: if notsame(x, b) and greaterthan(z, 100) then add(y, f) fi}

The variables xs
a, ys and zs

a are single-valued, and the variable wm
g is multi-valued. As

can be seen, wm
g is a goal variable, and the variables xs

a and zs
a are askable. Furthermore,

let the following fact set be given:

F = {x = c, z = 5}

(a) Determine the fact set F ′ which results from applying backward chaining on this
set of production rules. Which production rules will have succeeded, and which
ones have failed?

(b) Suppose that the following self-referencing production rule is added to the three
rules listed above:

R4: if notknown(y) then add(y,A) fi
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Again we employ backward chaining, starting with the same initial fact set F as
given above. Which fact set F ′′ do we now obtain?

(3.2) Has the choice of the conflict-resolution strategy employed in top-down inference with
the look-ahead facility, any effect on the values inferred for a multi-valued goal vari-
able? Motivate your answer. Now answer the same question for an arbitrary (subgoal)
variable.

(3.3) A production rule can be translated into a collection of PROLOG clauses by generating
one clause for each conclusion of the rule. This translation has been discussed in detail
in Section 3.2.2. Recall that the resulting clauses all have a different conclusion and
the same condition part. What is the advantage of this translation scheme compared
to translating a rule into a single PROLOG fact, expressing a relation between the
condition part and the conclusion part of the rule?

( 3.4) Reconsider the PROLOG program for top-down inference developed in Section 3.2.2
and the LISP program in Section 3.2.3. In these programs we have only made limited
use of the domain declaration as defined in Section 3.1.

(a) In both programs no distinction is made between single-valued and multi-valued
variables. Extend one of the programs in such a way that single-valued and multi-
valued variables are distinguished and handled in a semantically satisfactory way.

(b) The domain declarations employed in the programs do not comprise type decla-
rations for the variables. Extend either the presented PROLOG program or the
LISP program in such a way that a domain declaration may include a specification
of the datatype for a variable. Note that this type information may be used to
inform the user which values may be entered for a variable.

(3.5) In Section 3.2.1 we have discussed several ways of optimizing the top-down inference
algorithm. Not all these optimizations have been incorporated in the implementations
of the algorithm in PROLOG and LISP.

(a) Extend one of these implementations with the notion of a used production rule.

(b) Implement the look-ahead facility in one of the programs.

(3.6.) Improve the LISP program discussed in Section 3.2.3 by incorporating an indexing
method for direct access to production rules concluding on a particular variable.

Hint. Add to each production rule definition a unique rule name, and extend the variable
declarations by specifying for each variable the names of the rules in which the variable
appears in the conclusion part. An example of such a variable declaration is:

(define diagnosis

(prompt nil)

(class goal)

(rules rule1 rule2 rule5 rule7))}

Assign pointer references to the rules during the parsing phase. The resulting imple-
mentation is quite typical for efficient LISP programs, and applies methods taken from
imperative programming languages such as C.
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(3.7) Consider the following knowledge base, containing the domain declaration

D = {xs, ys, zs, us}

and the rule base:

{R1: if same(x,a) and known(y) then add(y, b) fi,
R2: if same(x, c) and lessthan(z, 15) then add(u, d) fi,
R3: if same(y, b) and lessthan(z, 5) then add(u, f) fi}

Furthermore, consider the following fact set:

F = {1 : x = a, 2 : y = b, 3 : z = 10, 4 : x = c}

Bottom-up inference is employed to derive new facts from the given rule base and the
facts present in the fact set.

(a) Give all rule instances created by matching the initial fact set F and the rule base
given above. This set of instances is the conflict set.

(b) Order the conflict set obtained in (a), using conflict resolution by recency. Which
one of the rule instances will then be selected for application?

(c) Give the fact set which results after evaluation of the rule instance chosen in
(b). Will the inference eventually terminate? Motivate your answer by giving the
successive changes which take place in the fact set.

(3.8) Consider the following knowledge base, containing the domain declaration

D = {xs, ys, zs}

and the rule base:

{R1: if same(x, a) and equal(y, 10) then add(z, b) fi,
R2: if same(z, c) and lessthan(y, 20) then add(x, a) fi}

Furthermore, consider the following fact set:

F = {1 : x = A, 2 : z = C, 3 : y = 10, 4 : z = C}

Bottom-up inference is employed for inferring new facts from the given rule base and
the fact set.

(a) Which rule instances will be created in the first inference step, and which one of
these will be selected for application if we apply conflict resolution by recency?
Give the new fact set obtained after evaluation of the chosen rule instance. Will
the inference eventually terminate?

(b) Suppose that we add the following production rule to the ones shown above, before
consulting the knowledge base.

R3 : if same(z, b) then add(z, c) fi

We start with the same inititial fact set F as in (a). Give the fact set that eventually
results. Will the inference terminate? Explain your answer by comparing the
results with those of (a).



140 Chapter 3. Production Rules and Inference

(3.9) Develop data structures and an algorithm for bottom-up inference such that the selection
of production rules for the conflict set is optimized.

(3.10) Recall that two types of nondeterminism are distinguished in production systems due
to the need to specify: (1) the order in which applicable rules are selected from the
rule base, and (2) the order in which conditions and conclusions are evaluated. If we
take a particular conflict-resolution strategy in bottom-up inference, which choice(s) for
resolving nondeterminism do(es) influence the behaviour of the system?

(3.11) In Section 3.3 we have discussed the role of pattern matching in production systems.
Develop a LISP program for bottom-up inference along the lines sketched, applying the
pattern-matching algorithm given in Section 3.3.3 as part of the entire program.
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Representing knowledge in graph-like structures has a rich tradition in philosophy and
psychology. At the end of the nineteenth century, the philosopher C.S. Peirce used a
graph-like notation for the representation of logical sentences. This approach to representing
human knowledge has been further pursued since by many researchers, yielding explicit
psychological models of human memory and intellectual behaviour. In particular the area of
natural language processing has contributed much to the research on the representation of
information in graph-like structures, there called semantic nets or associative nets; in fact,
the earliest use of graph-based representations in computers was for machine translation. In
the early 1960s, R. Quillian for example used the semantic net formalism for representing
meanings of English words in terms of associative links to other words, yielding a
dictionary-like representation; he developed a program for finding relationships between
words by traversing the net. Through this work, R. Quillian has given a major impetus to
the research on graph-based representations and their use in AI systems; he is generally
credited with the development of the semantic net in its original form.

For handling more complicated problem domains and for dealing with more sophisticated
forms of inference, the semantic net formalism as devised by R. Quillian soon proved to be
too limited. Much of the later work on semantic nets therefore has been directed towards
more structured formalisms, again mostly for natural language processing. Semantic nets
have seldom been used for building expert systems. Nevertheless, we shall briefly discuss
some characteristics of the formalism, since the semantic net is often viewed as a precursor
of the frame formalism, which is much more frequently applied within expert systems.

The basic idea underlying the notion of frames has already been posed at the beginning
of this century by the psychologist O. Selz. He considered human problem solving as the
process of filling in the gaps of partially completed descriptions. The present notion of
frames was introduced half-way the 1970s by M. Minsky for exerting semantic control in a
pattern-recognition application. Since its introduction, however, the frame formalism has

141
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been employed in several other kinds of knowledge-based systems as well. The general idea
of a frame-based system is that all knowledge concerning individuals or classes of individuals
including their interrelationships, is stored in a complex entity of representation, called a
frame. Instead of the term frame, the terms unit, object, and concept are also often used in
literature. A set of frames representing the knowledge in a domain of interest, is organized
hierarchically in what is called a taxonomy. Such a taxonomy forms the basis of a method of
automated reasoning called inheritance. The frame formalism and its associated inheritance
are the primary topics of this chapter. To prepare for a thorough treatment of these
subjects, we shall first discuss the semantic net formalism briefly in Section 4.1.

4.1 Semantic Nets

A semantic net is usually depicted as a labelled directed graph, consisting of vertices and
labelled arcs between vertices; such a graph is sometimes further restricted by requiring its
being acyclic. Several disciplines have influenced the original idea of a semantic net as it was
introduced in the 1960s: each discipline has brought its own interpretation of the vertices
and arcs, and each discipline has adapted the notion of the semantic net in certain ways to
arrive at a more structured formalism suitable for its own purposes. As a consequence, there
is hardly any consensus as to what a semantic net is, nor is there any consensus as to what
meaning should be ascribed to the basic elements of such a semantic net. Since the semantic
net formalism is seldom used in expert systems, we will introduce it in a simple form, just to
give the reader an idea about what graph-based representations are like.

4.1.1 Vertices and labelled arcs

We have mentioned before that a semantic net is usually depicted as a labelled, directed
graph. Each vertex in the graphical representation of a semantic net is taken to represent a
concept. The arcs of the graph represent binary relations between concepts. Let us give some
informal examples of how knowledge is represented in a semantic net.

EXAMPLE 4.1

Consider the following statement concerning the human body:

‘The heart is part of the cardiovascular system’

This statement comprises two concepts: the concept ‘heart’ and the concept ‘cardio-
vascular system’. These concepts are related in the sense that the first concept, the
‘heart’, forms an anatomical part of the second concept, the ‘cardiovascular system’.
This knowledge is represented by means of the graph shown in Figure 4.1. The con-
cepts are depicted by ellipses, labelled heart and cardiovascular system; the relation
between the concepts is represented by means of an arc labelled part-of.

EXAMPLE 4.2

In the semantic net depicted in Figure 4.2, two different kinds of relation are used in
representing information concerning the cardiovascular system of the human body: the
‘part-of’ relation and the ‘is-a’ relation.



4.1. Semantic Nets 143

heart cardiovascular
system

part-of

Figure 4.1: A graphical representation of a semantic net.

cardiovascular
system

artery

large
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heart

is-a

is-a

part-of part-of

Figure 4.2: Some information concerning the cardiovascular system in a semantic net.

In the preceding example we encountered the is-a relation. This is a quite common relation
between concepts. It reflects the two different senses in which a concept can be used; in this
book, the term concept is used to denote either an individual object or a class of objects. The
is-a relation may be used as follows:

• To express that a class of objects is a subclass of another class of objects, such as in the
statement

‘A large artery is an artery’.

This statement is depicted in a semantic net as follows:

large
artery

artery
is-a

In this case, the is-a part of the statement defines a set inclusion relation.

• To express that a specific object is a member of a certain class of objects, such as in
the statement

‘The aorta is a large artery’.

This statement is depicted as follows:

aorta large
artery

is-a
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Figure 4.3: Counting specific objects.

Here, the is-a part of the statement defines a membership relation between an element
and a set of elements.

In the early semantic net formalism, no explicit distinction was made between the different
uses of the is-a relation, called the is-a link in semantic net terminology: individual objects
and classes of objects were handled identically. The following example illustrates that this
may lead to problems.

EXAMPLE 4.3

In Figure 4.3 some information concerning the arteries of the cardiovascular system is
represented. Now consider a knowledge-based system comprising the information as
shown. Suppose that we ask this system on how many specific arteries information is
available. If we assume that the system ‘knows’ that information on individual objects
is contained in the leaves of the net, the system will answer 3: the aorta, the left brachial
artery, and the small artery. The system is not able to distinguish between the small
artery representing a class of objects, and the individual objects aorta and left brachial
artery.

The preceding example gives us a valid reason for distinguishing between different types of
is-a link. From now on, we distinguish between the subset-of link and the member-of link.

Before proceeding, we define the notion of a semantic net more formally.

Definition 4.1 A semantic net S is a labelled graph S = (V (S), A(S), λ) where V (S) is the
set of vertices of S and A(S) ⊆ V (S) × V (S) is the set of arcs of S; λ is the labelling
function λ : A(S)→ L(S) associated with S where L(S) is the set of arc labels.

EXAMPLE 4.4

Consider the semantic net from Figure 4.1 once more. This net is defined by S =
(V (S), A(S), λ) where

V (S) = {heart, cardiovasculari-system}
A(S) = {(heart, cardiovascular -system)}
λ(heart, cardiovascular -system ) = part-of
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In the preceding, we have defined a semantic net as a mere syntactical object: it has no
meaning as yet. In order to assign a meaning to a semantic net, we have to define a proper
interpretation for it. Note the analogy with a logical formula being a syntactical object and
its interpretation (see the Sections 2.1 and 2.2).

We start by giving an example of a possible interpretation for the subset-of link. We
assign to the relation defined by the subset-of links the meaning of the usual set inclusion
relation ⊆. The relation ⊆ has the following properties:

• Reflexivity : for each X, we have X ⊆ X.

• Anti-symmetry : for each X,Y , if X ⊆ Y and Y ⊆ X, then X = Y .

• Transitivity : for each X,Y,Z, if X ⊆ Y and Y ⊆ Z, then X ⊆ Z.

Any binary relation having these properties is called a partial order. With each vertex
x ∈ V (S) taking part in a subset-of link — note that from this observation we have that
the vertex represents a class of objects — we associate a set of elements I(x) from a (seman-
tic) domain of discourse D, that is, I(x) ⊆ D. We now may interpret λ(x, y) = subset-of as
I(x) ⊆ I(y). From the reflexivity of the set inclusion relation we have that we may add to or
delete from a semantic net arcs of the form (x, x) for which λ(x, x) = subset-of :

x

subset-of

This is called a trivial cycle. From the transitivity of the set inclusion relation it furthermore
follows that if we have λ(x, y) = subset-of and λ(y, z) = subset-of in a specific net, then we
may add λ(x, z) = subset-of to the net without changing its meaning: the two nets

x y z
subset-of subset-of

and

x y z
subset-of subset-of

subset-of

therefore express the same information.
Similar to the interpretation of the subset-of link, vertices u ∈ V (S) taking part in the

left-hand side of a member-of link — from this we have that u represents an individual object
— have associated an element I(u) from the domain D, that is, I(u) ∈ D. The relation
defined by the member-of links now is assigned the meaning of the usual membership relation
∈; that is, we interpret λ(u, v) = member-of as I(u) ∈ I(v).

It will be evident that for a semantic net to have a neat semantics we have to define a
proper interpretation for each type of link used in the net. Especially if no restrictions have
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Figure 4.4: Inheritance.

been imposed on the types of links, this will be a cumbersome endeavour. It is no wonder
therefore that since the introduction of the semantic net idea, researchers have sought after
more restricted special-purpose net formalisms. Here, we do not pursue the subject of the
declarative semantics of a semantic net any further.

4.1.2 Inheritance

The subset-of and member-of links of a semantic net may be exploited to derive new infor-
mation from it, that is, they may be used as the basis for an inference engine. We illustrate
the use of these links in reasoning with the help of an example.

EXAMPLE 4.5

Consider the semantic net shown in Figure 4.4. Among others, the following two state-
ments are represented in the net:

‘A large artery is an artery’
‘An artery is a blood vessel’

From these two statements we may derive the statement

‘A large artery is a blood vessel’

exploiting the transitivity of the relation defined by the subset-of links. Furthermore,
the statement

‘The aorta is an artery’

can be derived from the net using the semantics of both the member-of and subset-of
link.
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Figure 4.5: An exception to a general property.

Exploiting the semantics of the member-of and subset-of links in the manner discussed infor-
mally in the preceding example forms the basis of a reasoning mechanism called (property)
inheritance: a concept inherits the properties of the concepts ‘higher’ in the net through these
member-of and subset-of links. The general idea is demonstrated in the following example.

EXAMPLE 4.6

Consider the semantic net shown in Figure 4.4 once more. Using property inheritance,
we may derive from it the following statement:

‘The aorta contains oxygen-rich blood’

The concept ‘aorta’ has inherited the property ‘contains oxygen-rich blood’ from the
concept ‘artery’ which is found higher in the net.

In Section 4.3 we shall discuss the principle of inheritance more formally.
The semantic net is a natural formalism for expressing knowledge in which the basic

concepts are organized in a hierarchical manner. Several problems, however, arise from the
rigidity of the principle of inheritance as introduced above. We give two examples to illustrate
some of these problems.

EXAMPLE 4.7

Consider Figure 4.5, again showing some information concerning the arteries. Among
other information, it has been specified that arteries in general have muscular walls
and transport oxygen-rich blood. An exception to the latter property of arteries is for
example the left pulmonary artery which is an artery containing oxygen-poor blood.

Using the member-of and subset-of links shown in the net the aorta inherits the prop-
erties of the arteries: the aorta has a muscular wall and transports oxygen-rich blood.
Using a similar argument, the left pulmonary artery inherits these two properties as well.
The left pulmonary artery, however, transports oxygen-poor blood! So, the property
that arteries transport oxygen-rich blood should not be inherited by the left pulmonary
artery. When employing the principle of inheritance discussed so far, the inheritance
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of this property cannot be prevented. A possible solution to this problem is to store
the information that an artery contains oxygen-rich blood explicitly with each artery
for which this property holds. This is shown in figure 4.6. A major drawback of this
solution is that the general property has been lost.

aorta left pulmon-
ary artery

large
artery

member -of member -of

artery

subset-of

muscular
wall

oxygen-rich oxygen-poor
blood blood

Figure 4.6: Loss of a general property.

EXAMPLE 4.8

In the foregoing examples we have discussed properties which are relevant to individual
objects. In the semantic net shown in Figure 4.7 some information has been stored that
is relevant to a class of objects as a whole and not to the individuals belonging to it. For
example, in the net we have represented the information that the large arteries together
contain approximately 11% of all the blood the human body contains. This information
is only relevant to the class as a whole and not to a single large artery. So, this property
should not be inherited by the aorta and the left brachial artery. Furthermore, the
information that all arteries together contain 20% of the total blood volume should not
be inherited by the class of the small arteries: the latter class only contains 7% of the
total blood volume. Again, inheritance cannot be prevented.

It has been mentioned before that the semantic net formalism has undergone many changes
since its introduction. The resulting formalisms on the one hand are more restricted: only

aorta left brachial
artery

large
artery

member -of member -of

11
percentage

blood volume

artery

subset-of

20
percentage

blood volume

small
artery

subset-of

7
percentage

blood volume

left ulnar
artery

subset-of

Figure 4.7: Inheritance of properties relevant to a class as a whole.
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a limited number of predefined link-types is allowed, each having a clear semantics. On
the other hand, many new features have been added to the formalism. In particular the
principle of inheritance has been revised in order to make inheritance of properties more
flexible. Furthermore, some facilities for representing procedural knowledge have been added
to the semantic net. Many of these extensions bear a close resemblance to features of frames.
Therefore, we shall not discuss these features in relation to semantic nets here, but only in
relation to the frame formalism in Section 4.2.

4.1.3 The extended semantic net

Before we turn our attention to knowledge representation in frames, we conclude this section
with a discussion of an interesting type of semantic net: the extended semantic net. The
extended semantic net was developed by A. Deliyanni and R.A. Kowalski as an alternative
representation formalism for the clausal form of logic with a restriction to binary predicate
symbols. It should be noted that the restriction to binary predicates is not an essential one:
any atom containing an n-placed predicate symbol can be replaced by a conjunction of atoms
involving binary predicates only. If n > 2, n + 1 new predicates are needed to represent the
original information; if n = 1, only a single new predicate is required.

EXAMPLE 4.9

Consider the three-placed predicate symbol Bloodpressure, which is supposed to have
the following intended meaning:

Bloodpressure(x, y, z) = ‘the mean blood pressure in x lies between
y mmHg and z mmHg’

The clause

Bloodpressure(artery, 40, 80) ←

for example, can be replaced by the following four clauses

Info(fact, bloodpressure)←
Subject(fact, artery)←
Lowerbound(fact, 40)←
Upperbound(fact, 80)←

in which only binary predicate symbols have been used to express the same information.
We have introduced the new constants fact and bloodpressure; the new binary predicate
symbols should be read as

Info(w, bloodpressure) = ‘w is information about blood pressure’
Subject(w, x) = ‘x is the subject of the information w’
Lowerbound(w, y) = ‘y is the lower bound of w’
Upperbound(w, z) = ‘z is the upper bound of w’

EXAMPLE 4.10
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x artery
Isa

muscular

Wall

Figure 4.8: The extended semantic net for the clause Wall(x,muscular)← Isa(x, artery).

Consider the unary predicate symbol Artery with the following intended meaning:

Artery(x) = ‘x is an artery’

The clause

Artery(aorta)←

may be replaced by the clause

Isa(aorta, artery)←

We have mentioned before that the extended semantic net provides an alternative syntax for
the clausal form of logic: the arguments to the predicate symbols occurring in a set of clauses
are taken as the vertices, and the binary predicate symbols themselves are taken as the labels
of the arcs of a directed graph. The direction of the arc expresses the order of the arguments
to the predicate symbol. The conclusions and conditions of a clause are represented by dif-
ferent types of arcs: conditions are denoted by pulled arcs and conclusions are indicated by
dashed arcs.

EXAMPLE 4.11

The extended semantic net shown in Figure 4.8 represents the clause

Wall(x,muscular)← Isa(x, artery)

A particular constant may occur in more than one clause. If we represent all occurrences of
a constant by means of a single vertex, then it is not always apparent in the representation
discussed above to which clauses a particular vertex belongs. This is why an extended seman-
tic net representing a set of clauses is divided into a number of subnets, each representing a
single clause.

EXAMPLE 4.12
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The following set of clauses

{Wall(x,muscular)← Isa(x, artery), Isa(y, artery)← Isa(y, large-artery )}

has been represented in Figure 4.9. The net is partitioned into two subnets: for each
clause from the given clause set we have one corresponding subnet. Note that if a similar
situation arises concerning a variable, we can simply rename the variables to avoid the
problem.

Isa

IsaWall

Isa

artery
largeymuscular

arteryx

Figure 4.9: Partition of an extended semantic net into subnets.

A pleasant consequence of the syntactical correspondence between the clausal form of logic
and the extended semantic net is that the inference rules that are defined for the clausal form
of logic can be applied for manipulation of arcs and vertices in an extended semantic net.

4.2 Frames and single inheritance

In a frame-based system all knowledge relevant to a concept is stored in a complex entity
of representation called a frame. Frames provide a formalism for explicitly grouping all
knowledge concerning the properties of individual objects or classes of objects. Within a
frame, part of the properties is specified as reference information to other, more general
frames. This reference information is represented by means of is-a links which are quite
similar in concept to the is-a links in a semantic net. This way, the knowledge in a domain
of interest is organized hierarchically in what is called a frame hierarchy, frame taxonomy, or
taxonomy for short. A taxonomy often is depicted graphically as a directed, acyclic graph once
more bearing a close resemblance to a semantic net. However, in the graph representation of a
frame taxonomy only the is-a links are shown (as was true for the semantic net, trivial cycles
are not shown in the graph since they do not represent additional information); the knowledge
concerning an individual object or a class of objects itself is part of the internal structure of
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Figure 4.10: A tree-like taxonomy.

the vertices of the graph. In contrast with the semantic net, in a frame representation different
components are distinguished, all having a special status allowing them to be treated explicitly
as such. For example, the is-a links in a frame taxonomy are represented and treated in a
way different from other components.

4.2.1 Tree-like frame taxonomies

As has been mentioned above, frames are organized in a taxonomy in which the vertices
represent frames and in which every arc denotes an is-a link between two frames. In the
frame formalism which will be used in this book, two types of frames are distinguished:

• class frames, or generic frames, which represent knowledge concerning classes of objects;

• instance frames, which represent knowledge concerning individual objects.

Class frames have much in common with the record datatype as, for example, provided in the
Pascal programming language, and instances are similar to filled-in record variables.

Since there are two types of frames, we also distinguish two types of is-a links by means
of which a frame indicates its relative position in the frame taxonomy:

• an instance-of link, which is an is-a link between an instance frame and a class frame;

• a superclass link, which is an is-a link between two class frames defining a partial order
on the set of class frames in a frame taxonomy.

These is-a links are similar in meaning to the member-of and subset-of links, respectively,
distinguished for semantic nets in the previous section. Their formal meaning will be discussed
in the following.

In the present section, we consider frame taxonomies that can be represented as trees.
Section 4.3 discusses the more general graph-like taxonomies. An example of a tree-like tax-
onomy is shown in Figure 4.10. In this figure, a frame is represented as an ellipse; the internal
structure of a frame is not shown. In a tree-like frame taxonomy capturing knowledge con-
cerning a given domain, the root of the tree represents the most general description of the
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domain: the other frames represent descriptions of concepts that are more specific. The de-
scendants of a certain frame in the taxonomy therefore are often called specializations of that
frame. The ancestors of a frame in the taxonomy are called its generalizations. When we
restrict the discussion to classes of objects only, specializations are generally called subclasses
and generalizations are called superclasses. We shall use the terms superframe and subframes
for the parent and children of a given frame, respectively.

EXAMPLE 4.13

Consider the frame taxonomy shown in Figure 4.10 once more. The vertex representing
the frame with the name blood vessel is the father (and therefore ancestor) of the vertices
representing the frames artery and vein. So, the frame with the name blood vessel is
the generalization of the frames artery and vein; it equally is a generalization of the
frame with the name aorta. The frame with the name small artery is a specialization
of the artery frame.

A frame representing an individual object cannot be specialized any further. Therefore, in a
tree-like frame taxonomy an instance is always a leaf of the tree.

EXAMPLE 4.14

Consider Figure 4.10 once more. The frames with the names aorta and left brachial
artery cannot be specialized any further, since these frames represent individual objects
and therefore are instances. Except for the vertices representing these two frames, the
tree has another two leaves: the frames small artery and vein. These two frames are
generic: the descriptions given in these frames may be further specialized. Note that
although an instance is always a leaf of the tree, not every leaf is an instance.

We shall now turn our attention to the internal structure of a frame. We assume that each
frame in a taxonomy has a unique name. The information specific to the concept represented
by a frame is laid down in so-called attributes or slots. So, attributes offer a means for repre-
senting the properties of individual objects or classes of objects. In the following definition,
we shall present a syntax of a language for the representation of frames; from then on we
shall be able to be more precise in discussing frames and their formal meaning.

Definition 4.2 A frame is a statement having the following form:

〈frame〉 ::= 〈class〉 | 〈instance〉

〈class〉 ::= class 〈class-name〉 is
superclass 〈super-specification〉;
〈class-attributes〉

end

〈instance〉 ::= instance 〈instance-name〉 is
instance-of 〈super-specification〉;
〈instance-attributes〉
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end

〈super-specification〉 ::= 〈class-name〉 | nil

〈class-attributes〉 ::= 〈declaration〉 {; 〈declaration〉}∗ | 〈empty〉

〈instance-attributes〉 ::= 〈attribute-value-pair〉 {; 〈attribute-value-pair〉}∗ | 〈empty〉

〈declaration〉 ::= 〈attribute-type-pair〉 | 〈attribute-value-pair〉

〈attribute-type-pair〉 ::= 〈attribute-name〉 : 〈type〉

〈attribute-value-pair〉 ::= 〈attribute-name〉 = 〈value〉

〈type〉 ::= int | real | string | 〈set〉 | 〈class-name〉

〈value〉 ::= 〈elementary-constant〉 | 〈instance-name〉

〈empty〉 ::=

A 〈super-specification〉 equal to the special symbol nil is used to indicate that the frame con-
cerned is the root of the tree-like taxonomy. As a type, a 〈set〉 consists of elementary con-
stants and instance names, separated by comma’s and enclosed in curly brackets. An elemen-
tary constant is either a real or integer constant, or a string of non-blank characters, that
is, an instance of one of the predefined (or standard) classes real, int, and string. The
〈instance-name〉 value of an attribute refers to a uniquely defined instance in the taxonomy.

For the moment we assume that an attribute-type or attribute-value pair for an attribute only
occurs once in a frame taxonomy. Later on we shall drop this restriction. In the preceding
definition, we have stated for ease of exposition that a class frame is the root of a tree-like
taxonomy if it has a super-specification equal to nil, where it actually is a subclass of the
most general class nil. This more accurate interpretation of the symbol nil, however, is only
important in frame taxonomies in which more than one most general class frame not equal to
nil occurs; if we did not consider nil as the most general class, then the graph representation
of such taxonomy would be a forest of trees instead of just a tree.

As can be seen in the preceding definition, the definition of an instance frame is com-
posed of the specification of the class to which the instance belongs followed by a collection of
attribute-value pairs. Together they give a description of an individual concept in the domain
of discourse. Let us give an example of such an instance.

EXAMPLE 4.15

We consider the left brachial artery which is one of the arteries in the human body. It
is known that the left brachial artery has an approximate diameter of 0.4 cm, that it is
localized in the upper arm, and that it contains oxygen-rich blood. All this information
is captured by the following instance frame:

instance left-brachial-artery is
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instance-of artery;
diameter = 0.4;
location = arm;
blood = oxygen-rich

end

We have used the attributes diameter, location, and blood for the representation of the
mentioned properties of the individual concept ‘left brachial artery’. Note that all three
attributes have been assigned actual values. The values 0.4 and oxygen-rich are assumed
to be elementary constants. The value arm of the attribute location is an instance of
the class frame limb:

instance arm is
superclass limb;
position = superior

end

The value superior again is an elementary constant.

The information specified in the attribute parts of instance frames has to accord with the
following rules. All attributes occurring in the instances of a class frame must have been
declared in the attribute part of that class or in one of its generalizations; the values which
have been filled in for the attributes in the instance must be of the appropriate attribute type
as defined by the classes in the taxonomy. Note that these rules provide part of the meaning
of the instance-of link.

EXAMPLE 4.16

Consider the instance left-brachial-artery from the preceding example once more. The
class to which left-brachial-artery belongs is defined as follows:

class artery is
superclass blood-vessel;
location : {arm,head,leg,trunk}

end

This class frame provides a type declaration for the attribute location: it indicates that
the location attribute is only allowed to take a value from the set {arm,head,leg,trunk}.
Note that the value arm given for the location attribute in the left-brachial-artery in-
stance is indeed of the correct type. Not all attributes occurring in the instance have
been declared in the class frame artery; so, the diameter and blood attributes must have
been declared in some of the generalizations of the artery class. In the previous example
we have mentioned that the instance frame arm belongs to the class limb. This class
frame for example is defined as follows:

class limb is
superclass nil;
position : {inferior,superior}

end
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From the superclass specification nil we have that this class is the root of a tree-like
taxonomy.

In the preceding example, the class frames we considered had attribute-type pairs only in their
declaration part. However, the syntax definition indicates that also attribute-value pairs are
allowed in the declaration part of a class frame. The following example illustrates this idea.

EXAMPLE 4.17

Consider the previous examples once more. Since most arteries contain oxygen-rich
blood, there is no purpose in repeating this information for all individual arteries sep-
arately. In this case, it appears to be convenient to fix the value oxygen-rich for the
attribute blood in advance in the class frame artery. We then obtain the following
alternative definition for the artery frame:

class artery is
superclass blood-vessel;
location : {arm,head,leg,trunk};
blood = oxygen-rich

end

The instance frame left-brachial-artery may now be simplified to

instance left-brachial-artery is
instance-of artery;
diameter = 0.4;
location = arm

end

without affecting the intended meaning.

Although only informally, we have now fully described the meaning of the instance-of link.
We turn our attention to the superclass link. Recall that we have distinguished two different
types of attribute information in a frame taxonomy: information about attribute types and
information about attribute values. Accordingly, in assigning a meaning to the superclass link
we have to distinguish between these different types of attribute information. First of all, the
superclass link defines a partial order on the class frames in a taxonomy and may be applied
for reasoning about attribute values much in the same way we have seen for semantic nets.
Secondly, however, the superclass link may be viewed as defining a relation which restricts the
semantic contents of the frame taxonomy as we have shown in the preceding example. This
is essentially a higher-order relation. These two different ways of interpreting the superclass
link are best treated separately. We shall therefore first study the meaning of attribute values
in a tree-like taxonomy and show how it is possible to reason about such attribute values.
From now on, we shall, for ease of exposition, completely disregard the fact that classes may
contain type information until Section 4.2.7 in which we shall return to attribute types.

We have mentioned before that the semantic net formalism we have briefly discussed in
Section 4.1 may be viewed as a precursor of the frame formalism. We take a closer look at the
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end

diameter = 2.5

instance aorta is

end

wall = fibrous

class vein is

end

wall = muscular

superclass blood-vessel;

class artery is

end

contains = blood-fluid

form = tubular;

superclass nil;

class blood-vessel is

instance-of

superclasssuperclass

superclass blood-vessel;

instance-of artery;

Figure 4.11: A tree-like taxonomy showing the internal structure of the frames.

relationship between the two formalisms. This relationship can be examined more readily if
we depict a frame taxonomy in a graph as we have done with the semantic net. The following
example shows the general idea.

EXAMPLE 4.18

Figure 4.11 shows four frames in a tree-like taxonomy. The frames are represented as
boxes; the internal structure of each of the frames is depicted. The arcs in the graph
represent the instance-of and superclass links between the frames. Note that the frames
themselves already indicate their position in the taxonomy explicitly; the graphical
representation of the taxonomy therefore contains redundant information. From a graph
representing a frame taxonomy we can easily derive an equivalent semantic net. Figure
4.12 shows the semantic net equivalent to the taxonomy depicted in figure 4.11. Note
that although the corresponding semantic net essentially comprises the same information
as the original frame taxonomy, the apparent modularity of the taxonomy has been lost.



158 Chapter 4. Frames and Inheritance

blood-vessel tubular

blood-fluid

artery veinmuscular fibrous

aorta 2.5

form

contains

superclass superclass

wall

instance-of

wall

diameter

Figure 4.12: The semantic net corresponding to the taxonomy shown in figure 4.11.

Based on the frame formalism defined above we shall discuss the meaning that can be asso-
ciated with the frame formalism. The discussion takes the following example for a starting
point.

EXAMPLE 4.19

Suppose that we want to represent in a frame the following information concerning the
vascular system: the aorta is an artery having a diameter of 2.5 cm. Using our frame
formalism, this information may be represented as follows:

instance aorta is
instance-of artery;
diameter = 2.5

end

The information that an artery is a blood vessel having a muscular wall is represented
in the following class frame:

class artery is
superclass blood-vessel;
wall = muscular

end

To conclude, the following class frame shows that a blood vessel is tubular in form and
contains blood:

class blood-vessel is
superclass nil;
form = tubular;
contains = blood-fluid

end
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The last frame furthermore indicates that the blood-vessel frame is the root of the
taxonomy concerned.

The information that is specified in a frame taxonomy can also be expressed in first-order
predicate logic, roughly by complying with the following directions:

• take the names of the instances as constants;

• take the names of the class frames as unary predicate symbols;

• translate an instance-of link into a predicate symbol having a constant for an argument;

• translate a superclass link into a logical implication;

• take the attribute names as unary function symbols;

• translate an attribute-value pair into an equality between a function term and a con-
stant.

EXAMPLE 4.20

Assuming a suitable interpretation, the following formulas represent the same informa-
tion as the frames in the foregoing example do:

artery(aorta)
diameter(aorta) = 2.5

∀x(artery(x)→ blood-vessel(x))
∀x(artery(x)→ wall(x) = muscular)

∀x(blood-vessel(x)→ form(x) = tubular)
∀x(blood-vessel(x)→ contains(x) = blood-fluid)

The semantics of first-order predicate logic may now be exploited to define a semantics for
the frame formalism. Under the assumption that each attribute only occurs once in the
taxonomy, we may ascribe a meaning based on first-order predicate logic to the set of frames
of this taxonomy using the following general translation scheme:

class C is
superclass S; ∀x(C(x)→ S(x))
a1 = b1; ⇒ ∀x(C(x)→ a1(x) = b1)
...

...
an = bn ∀x(C(x)→ an(x) = bn)

end

instance I is
instance-of C; C(I)
a1 = b1; ⇒ a1(I) = b1
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...
...

an = bn an(I) = bn

end

Under the mentioned assumption we have that there always exists an interpretation I of the
thus obtained logical formulas which is a model. In the next section we shall study the case
in which the restriction that an attribute-value pair for an attribute occurs only once in a
taxonomy has been dropped.

We conclude this section with a discussion of the inference method associated with the
frame formalism. We start by examining the derivations that can be made from the corre-
sponding logical formulas by means of a sound and complete collection of inference rules.

EXAMPLE 4.21

Consider the formulas given in the previous example once more. From the formulas

artery(aorta)
∀x(artery(x)→ wall(x) = muscular)

we can derive the formula

wall(aorta) = muscular

using modus ponens. Similarly, from the set of formulas in the preceding example the
following formula can be derived:

blood-vessel(aorta)

When closely examining these derivations, we see that the information holding for ar-
teries in general is explicitly said to hold for the aorta in particular: since we know that
the aorta is an artery, the aorta inherits this information from the arteries. Similarly,
the aorta inherits the information specific to blood vessels.

In the foregoing example we have demonstrated the reasoning behaviour with logical formulas
representing the information stored in a given frame taxonomy. This reasoning behaviour is
modelled in an inference method for frames called single inheritance. In case of a tree-like
taxonomy, we speak of single inheritance to stress the fact that each frame has at most
one superframe. In contrast, the inference method associated with more general, graph-like
taxonomies is called multiple inheritance; we shall discuss multiple inheritance in Section
4.3. Informally speaking, in single inheritance all information that holds for a particular
frame is determined by traversing the taxonomy from the frame itself to the root of the
taxonomy, that is, the most general frame, and successively collecting the attributes with
their associated value that are found in the encountered frames. This may be viewed as
exploiting the transitivity property of the superclass relation. This procedure terminates as
soon as the information in the root of the taxonomy has been processed. The function shown
below describes the recursive inference procedure:

function Inherit(frame, attribute-value-pairs)

if frame = nil then
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return(attribute-value-pairs)
end;
attribute-value-pairs← attribute-value-pairs ∪ AttributePart(frame);

return(Inherit(Superframe(frame), attribute-value-pairs))

end

The parameters frame and attribute-value-pairs take as values a frame name and a col-
lection of attribute-value pairs, respectively. If the parameter frame equals nil, then either
the taxonomy is empty or the root of the taxonomy has been reached: in both cases all
attribute-value pairs holding for the frame concerned have been collected in the second argu-
ment attribute-value-pairs. If the parameter frame differs from the value nil, then all
attribute-value pairs specified in the frame frame are extracted from it using the function
AttributePart and added to attribute-value-pairs. The information holding for the su-
perframe of the given frame frame is subsequently determined by means of a recursive call to
the Inherit function.

EXAMPLE 4.22

Consider figure 4.11 again. In the instance frame with the name aorta the attribute-
value pair

diameter = 2.5

has been specified. Using the Inherit function described in the foregoing, the instance
inherits the attribute-value pair

wall = muscular

from its superframe artery. From the superframe blood-vessel of the frame artery, the
instance inherits the following two attribute-value pairs:

contains = blood-fluid
form = tubular

4.2.2 Exceptions

In the previous section we have introduced a semantics for the frame formalism based on
first-order predicate logic. To this end, we assumed that attributes occurred only once in a
frame taxonomy. This assumption, however, renders the frame formalism not flexible enough
for coping with all practical applications. In this section we therefore abandon this rather
restrictive assumption and investigate the problems that arise from doing so; we will assume,
however, that in a given frame an attribute can only take one value at a time. Allowing
attributes to occur more than once in a frame taxonomy increases the expressive power of
the formalism: it has become possible to state exceptions to information that holds in gen-
eral but for some special cases. The following example shows the way an exception may be
represented; it furthermore discusses the consequence of the introduction of exceptions into
the formalism with respect to its semantics.

EXAMPLE 4.23
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We have said in the preceding section that most arteries contain oxygen-rich blood. The
following class frame captures this knowledge:

class artery is
superclass blood-vessel;
blood = oxygen-rich

end

However, it is known that the left and right pulmonary arteries are exceptions to this
property of arteries: the pulmonary arteries have almost all properties arteries have
but, opposed to arteries in general, they transport oxygen-poor blood. Restricting the
discussion to the left pulmonary artery only, this information has been specified in the
following instance frame:

instance left-pulmonary-artery is
instance-of artery;
blood = oxygen-poor

end

We now have expressed that the value oxygen-poor of the attribute blood is an exception
to the value oxygen-rich of the attribute blood that has been specified in the superframe
artery of the instance: informally speaking, the ‘general’ value has been surpassed. Note
that the attribute blood is no longer unique in the taxonomy.

Applying the general translation scheme for converting these two frames into formulas
in first-order predicate logic, we obtain the following set of formulas:

artery(left-pulmonary-artery)
blood(left-pulmonary-artery) = oxygen-poor

∀x(artery(x)→ blood-vessel(x))
∀x(artery(x)→ blood(x) = oxygen-rich)

This set of logical formulas is inconsistent, since by means of modus ponens we can
derive the following logical consequences:

blood(left-pulmonary-artery) = oxygen-poor
blood(left-pulmonary-artery) = oxygen-rich

The inconsistency now follows from the equality axioms (these are assumed to be im-
plicitly present). We assume that the unique name assumption holds, that is, symbols
(function symbols, predicate symbols, and constants) with different names are assumed
to be different. Now observe that in any model for the logical formulas shown above the
constants oxygen-rich and oxygen-poor are equal. This, however, contradicts the unique
name assumption.

In the foregoing example we have demonstrated that in the frame formalism exceptions are
represented by locally surpassing attribute values. Furthermore, it has been shown that in
case we allow multiple occurrences of attributes the translation of the frame formalism into
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first-order predicate logic may render an inconsistent set of formulas; it is not possible to
fully capture the notion of exceptions by standard first-order predicate logic. The meaning of
the frame formalism allowing for exceptions, however, can be described using a non-standard
logic, such as for example the non-monotonic logic developed by D. McDermott and J. Doyle,
or by the default logic developed by R. Reiter. We do not enter into these theories in detail;
we merely give a sketch of their respective general idea.

We first consider the non-monotonic logic of McDermott and Doyle. In non-monotonic
logic, first-order predicate logic is extended with a special modal operator M . The truth
of a formula M(f(x) = c) now means that the formula f(x) = c is possibly true; in other
words, it is not possible to derive from the given set of formulas, formulas f(x) = d with
d 6= c. In our example, the formula blood(left-pulmonary-artery) = oxygen-poor must be true
in all models for our set of logical formulas. It therefore is undesirable that the formula
blood(left-pulmonary-artery) = oxygen-rich can be derived, since this would lead to an incon-
sistency. Using the modal operator M we can block the derivation of the latter formula. The
new formulas representing the given information now are as follows:

artery(left-pulmonary-artery)
blood(left-pulmonary-artery) = oxygen-poor

∀x(artery(x)→ blood-vessel(x))
∀x(artery(x) ∧M(blood(x) = oxygen-rich)→ blood(x) = oxygen-rich)

Informally speaking, these formulas state that for a constant e the formula blood(e) =
oxygen-rich can only be derived if no other formula blood(e) = c with c 6= oxygen-rich can
be derived. So, the formula blood(left-pulmonary-artery) = oxygen-rich no longer is a logical
consequence of the above-given set of formulas.

The default logic developed by R. Reiter equally provides a way of handling exceptions but
from a different perspective than non-monotonic logic does. In default logic, special inference
rules, called defaults, are added to first-order predicate logic. The translation of the frame
formalism into default logic now yields a set of logical formulas and a set of defaults. In the
present case, we obtain the following set of logical formulas

artery(left-pulmonary-artery)
blood(left-pulmonary-artery) = oxygen-poor

∀x(artery(x)→ blood-vessel(x))

and the following default

artery(x) : blood(x) = oxygen-rich

blood(x) = oxygen-rich

A default consists of a prerequisite, in our case the formula artery(x), and a set of so-called
justifications, here the formula blood(x) = oxygen-rich; these are specified above the line. It
furthermore contains a consequent, here blood(x) = oxygen-rich, specified below the line. In
this example, the default expresses that given the satisfiability of the prerequisite artery(x) for
some x in the domain and given that there are no formulas which contradict the justification
blood(x) = oxygen-rich, then the consequent blood(x) = oxygen-rich may be derived. So,
in the present case blood(left-pulmonary-artery) = oxygen-rich cannot be derived. This is
precisely what we wanted to achieve.
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We conclude this section by introducing an inheritance procedure that respects the in-
tuitive meaning of a frame formalism allowing for exceptions. It is obvious that the inheri-
tance procedure described in the previous section cannot be applied in case attributes occur
more than once in a taxonomy: this procedure might come up with conflicting information.
However, only a minor modification of the procedure suffices to let it cope with exceptions.
The general idea of the alteration of the inheritance procedure is as follows. Just before
an attribute-value pair is added to the set of collected attribute-value pairs, it is examined
whether the attribute name concerned already occurs in this set: in that case, the attribute
value has been surpassed by an exception somewhere lower in the taxonomy. An attribute-
value pair is only then added to the set of collected attribute values if the attribute name
is not present as yet in this set. The following function describes the altered inheritance
procedure more formally:

function Inherit(frame, attribute-value-pairs)

if frame = nil then
return(attribute-value-pairs)

end;
pairs ← AttributePart(frame);

attribute-value-pairs← attribute-value-pairs ∪
NewAttributes(pairs, attribute-value-pairs);

return(Inherit(Superframe(frame), attribute-value-pairs))

end

The function NewAttributes is used to delete from pairs those attribute-value pairs of which
the attribute name already occurs in attribute-value-pairs.

The intuitive idea of this new inheritance function is that the value which holds for an
attribute is given in the frame itself or in the nearest frame higher in the taxonomy providing
a value for the attribute.

4.2.3 Single inheritance in PROLOG

In the previous section, we have described an algorithm for single inheritance with exceptions.
Implementing this algorithm is a relatively straightforward task. We shall discuss two imple-
mentations of it. In the present section, we shall develop a PROLOG program for inheritance;
in Section 4.2.4 the same will be done using the LISP programming language.

Before we discuss our implementation of inheritance with exceptions in PROLOG, we have
to consider the representation of frames in the Horn clause formalism. In the foregoing, two
types of frames have been distinguished: instance frames and class frames. In the PROLOG
representation we have to distinguish between the two types explicitly. For this purpose, we
introduce the predicates instance and class. The three-placed predicate instance is used for
representing an instance frame:

instance(〈instance-name〉,
instance of = 〈superframe〉,
〈attributes〉).

The first argument to instance, 〈instance-name〉, specifies the name of the instance frame.
In the second argument, the instance-of link of the frame is specified by means of the

term instance of = 〈superframe〉 in which 〈superframe〉 denotes the name of the superclass to
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which the instance belongs. The third argument, 〈attributes〉, contains a list of terms of the
form 〈attribute-name〉 = 〈attribute-value〉. We give an example.

EXAMPLE 4.24

Consider the following instance frame. It describes part of the characteristics of the left
pulmonary artery:

instance left-pulmonary-artery is
instance-of artery;
blood = oxygen-poor

end

This instance is represented in a Horn clause as follows:

instance(left_pulmonary_artery,

instance_of = artery,

[blood = oxygen_poor]).

A class frame is represented in a Horn clause in much the same way as an instance is:

class(〈class-name〉,
superclass = 〈superframe〉,
〈attributes〉).

If the class frame with the name <class-name> is the root of the represented tree-like taxon-
omy, then the second argument in the Horn clause representation of the frame specifies the
term superclass = nil.

EXAMPLE 4.25

Consider the following formal description of the class of arteries:

class artery is superclass blood-vessel; wall = muscular; blood = oxygen-rich end

This class frame is represented in PROLOG as follows:

class(artery,

superclass = blood_vessel,

[wall = muscular,blood = oxygen_rich]).\fR

The following PROLOG clause describes the class of blood vessels:

class(blood_vessel,

superclass = nil,

[contains = blood_fluid,structure = tubular]).

Now suppose that the PROLOG database contains a set of Horn clauses representing a frame
taxonomy. The following procedure query taxonomy now allows for querying this taxonomy:
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query_taxonomy(Frame) :-

inherit(Frame,Attributes),

print_info(Frame,Attributes).

query_taxonomy(_) :-

nl,

write(’The specified frame is not present in the taxonomy’).

The user can pose a query to the taxonomy by means of a call to query taxonomy in which
the variable Frame must be instantiated to the frame of interest. The procedure inherit called
from query taxonomy takes care of the actual inheritance of all properties that hold for the
frame of concern. The print info procedure just prints the derived information onto the screen;
the implementation of this procedure will not be shown here and is left to the reader.

The algorithm for single inheritance with exceptions can be specified in PROLOG quite
tersely; our implementation comprises six Horn clauses only. The following three clauses of
the procedure inherit together govern the process of inheritance in a tree-like taxonomy. Note
that in the call to the procedure inherit from query taxonomy, the variable Frame has been
instantiated to a frame name. The variable Attributes is initially uninstantiated; it will be
used for collecting the attribute-value pairs that hold for the given frame.

inherit(Frame,Attributes) :-

class(Frame,superclass = nil,Attributes).

inherit(Frame,Attribute_list) :-

class(Frame,superclass = Superframe,Attributes),

inherit(Superframe,Superattributes),

new_attributes(Attributes,Superattributes,Attribute_list).

inherit(Frame,Attribute_list) :-

instance(Frame,instance_of = Superframe,Attributes),

inherit(Superframe,Superattributes),

new_attributes(Attributes,Superattributes,Attribute_list).}

The first inherit clause states the termination criterion of the recursion: the inheritance process
is terminated as soon as the root of the taxonomy has been reached. Note that the termination
condition is tested by means of a call to class in which the term superclass = nil has been
specified as a second argument. If the root of the tree has been reached, then as a result of the
match found for the class call, the variable Attributes will have been instantiated to the list of
attribute-value pairs present in the root frame. However, if the root of the taxonomy has not
been reached as yet, then the first inherit clause fails and the PROLOG interpreter tries to
find a match with the second one. In this second inherit clause, the list of attribute-value pairs
of the frame that is being investigated is extracted from it, again by means of a call to class;
subsequently the list of all attribute-value pairs inherited by the superframe Superframe of the
current frame is determined through a recursive call to inherit. The two thus obtained lists
then are concatenated by means of a call to the new attributes procedure in which exceptions
are handled properly if necessary. The third inherit clause deals with instances instead of
classes. This clause has been specified as the last of the three inherit clauses for reasons
of efficiency; since the third clause will only be used at most once in a specific inheritance
process, many needless invocations of this clause are prevented by specifying this clause as
the last one.

The three clauses given below give shape to the procedure new attributes. This procedure
takes three arguments. In the call to the new attributes procedure from inherit, the second
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argument is instantiated to the list of all attribute-value pairs inherited by the superframe
of the current frame, while the first argument is the list of attribute-value pairs specified
in the frame itself. Initially, the third argument is uninstantiated; after the execution of
new attributes it will have been instantiated to the list of all attribute-value pairs that hold
for the given frame.

new_attributes(Attributes,[],Attributes).

new_attributes(Attributes,[X = Value|Rest],

[X = Value|Rest_attributes]) :-

not(member(X = _,Attributes)),

new_attributes(Attributes,Rest,Rest_attributes).

new_attributes(Attributes,[_|Rest],Attribute_list) :-

new_attributes(Attributes,Rest,Attribute_list).

The approach to handling exceptions employed in new attributes is the following: for each
attribute-value pair in the second argument, it is examined if it concerns an attribute for
which already some information is present in the list of attribute-value pairs in the first
argument. The occurrence of the attribute name in that list indicates that another attribute-
value pair concerning the same attribute has been specified lower in the taxonomy, that is,
that an exception has been specified for the attribute. In that case, the new attribute-value
pair will not be added to the list of all attribute-value pairs applicable to the frame. This
process is described in a recursive manner. In studying the new attributes procedure the
reader should bear in mind that this procedure is called from inherit after the recursive call
to itself, that is, after all information higher in the taxonomy has been collected. The first
new attributes clause states the termination criterion of the recursion: as soon as all elements
in the second argument have been examined, the attribute-value pairs from the frame itself
are added to the list of inherited information collected in the third argument. The second
clause tests if the first attribute-value pair of the list in its second argument specifies an
attribute name which occurs in the list of attribute-value pairs from the frame itself, that is,
in its first argument. If the attribute is not present in that list in the first argument, then
no exception has been specified for it, and the attribute-value pair concerned is added to the
third argument in the head of the clause. If on the other hand the attribute specified in the
attribute-value pair under consideration is present in the list of attribute-value pairs from
the frame itself, then the second clause fails; that specific attribute-value pair is subsequently
disregarded in favour of the exception by means of the third new attributes clause.

EXAMPLE 4.26

Consider once more the frames described in the Horn clauses from the preceding exam-
ple. Suppose that we enter the following query:

?- query_taxonomy(left_pulmonary_artery).

The PROLOG interpreter then returns the following answer:

left_pulmonary_artery

[contains = blood_fluid,

structure = tubular,

wall = muscular,

blood = oxygen_poor]
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4.2.4 Single inheritance in LISP

In this section we shall pay attention to an implementation of single inheritance in the LISP
programming language. First of all, we have to discuss a representation for frames in terms
of LISP expressions. Our LISP representation of frames stays close to the syntax defined in
Section 4.2.2; the general idea is demonstrated in the following example.

EXAMPLE 4.27

Consider once more the class of arteries. The information that an artery is a blood vessel
which contains blood that is oxygen-rich and flows from the heart to the tissues, and
which furthermore has a muscular wall, is represented in the following LISP expression:

(CLASS artery

(SUPERCLASS blood-vessel)

(wall . muscular)

(blood . oxygen-rich)

(blood-flow . away-from-heart))

The class frame with the name blood-vessels specifies the information that blood vessels
are tubular structures filled with blood:

(CLASS blood-vessel

(SUPERCLASS nil)

(contains . blood-fluid)

(structure . tubular))

In this class definition, it is indicated by means of the subexpression (SUPERCLASS
nil) that the blood-vessel class frame is the root of the tree-like taxonomy. Analogously,
we represent the information that the left pulmonary artery is an artery containing
oxygen-poor blood in the expression shown below:

(INSTANCE left-pulmonary-artery

(INSTANCE-OF artery)

(blood . oxygen-poor))

The keyword INSTANCE is used to indicate that the expression concerned defines an
instance frame. Note that the attribute value oxygen-poor specified for the blood at-
tribute in the instance left-pulmonary-artery is an exception to the attribute value for
the same attribute specified in the artery class. Together, these frames will serve as an
input example to our program.

The expressions representing the frames of a given taxonomy will have to be read in by the
program at the beginning of a consultation and translated into internal data structures. We
shall see that in this process, each frame results in a fill-in for the following structure:

(defstruct (frame)

(name nil)
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(type nil)

(superframe nil)

(attributes nil))}

After the structure has been filled in, the field name contains the frame name, the field with the
name type specifies the type of the frame which is either class or instance, and the superframe
field contains a reference to the superframe of the represented frame or nil if the frame is the
root of the taxonomy. The field with the name attributes then contains the attribute part of
the given frame. The attribute part is a list of pairs consisting of an attribute name and a
value. Such a pair is represented internally by means of a fill-in for the following structure:

(defstruct (attribute)

(name nil)

(value nil))

The following recursive function ParseFrames parses the frame expressions which are stored
in the file in-stream, and translates them into appropriate fill-ins for the structures described
above:

(defun ParseFrames (in-stream taxonomy)

(let ((frame (ReadExpression in-stream)))

(cond ((eq frame ’eof) taxonomy)

(t (ParseFrames in-stream

(cons (ConstructFrame frame) taxonomy))))))

The frame expressions are read in by means of the function ReadExpression. This function has
already been dealt with before in Section 3.2.3 concerning the implementation of top-down
inference; we shall not repeat its definition here. One by one the read-in expressions are
bound to the local variable frame and subsequently translated into a structure by means of
a call to the function ConstructFrame. The result of this function call is concatenated with
the list of previously created frame structures in taxonomy. As soon as all frames have been
parsed, the variable frame is bound to the symbol eof and the test (eq frame ’eof) returns the
truth value t. The function ParseFrames then yields the value of the parameter taxonomy as
its function value.

In the process of translating the frame expressions into LISP structures several functions
are employed. We discuss these functions in detail before we show the ConstructFrame func-
tion. The function Type is used for selecting the type of a frame. Recall that a frame is either
of type class or of type instance:

(defun Type (frame)

(first frame))}

Similarly, the function Name selects the frame name from a given frame expression:

(defun Name (frame)

(second frame))}

For selecting from a frame expression the reference to the superframe of the frame concerned,
the function Superframe is used:
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(defun Superframe (frame)

(let ((frm-rest (cddr frame)))

(or (cadr (assoc ’superclass frm-rest))

(cadr (assoc ’instance-of frm-rest)))))

Finally, the function SelectAttributes governs the translation of the attribute part of a frame
into appropriate attribute structures:

(defun SelectAttributes (frame)

(ConstructAttributes (cdddr frame)))

The last function calls the recursive function ConstructAttributes for creating the necessary
attribute structures:

(defun ConstructAttributes (attr-list)

(cond ((null attr-list) nil)

(t (let ((attribute (first attr-list))

(rest-attr (rest attr-list)))

(cons (make-attribute :name (first attribute)

:value (second attribute))

(ConstructAttributes rest-attr))))))

The function make-attribute creates the proper attribute structure for a given attribute-value
pair. The created structure subsequently is added to the beginning of the list of attribute
structures processed earlier by means of the primitive function cons.

The functions described above are invoked from the function ConstructFrame; recall that
this function is applied for the creation of an entire frame data structure.

(defun ConstructFrame (frame)

(set (Name frame)

(make-frame :name (Name frame)

:type (Type frame)

:superframe (Superframe frame)

:attributes (SelectAttributes frame))))

Note that the set form is applied for creating an association between the frame name and the
data structure in which the frame is stored internally.

The function Consultation shown below is the top-level function of the program:

(defun Consultation ( )

(terpri)

(princ "Name of the frame taxonomy: ")

(let ((file (open (read-line))))

(QueryTaxonomy (ParseFrames file nil))

(close file)))}

The function Consultation calls the function ParseFrames dealt with above for creating the
frame taxonomy. Subsequently, the user is given the opportunity to query the taxonomy: the
call to the function QueryTaxonomy allows for queries to be entered. This function prints a
prompt and then reads the query entered by the user:
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(defun QueryTaxonomy (taxonomy)

(print ’query=>)

(let ((query (read)))

(cond ((eq query ’exit) (print ’bye))

(t (GetAnswer query taxonomy)

(QueryTaxonomy taxonomy)))))}

A query consists of either a particular frame name or the keyword exit which is made available
to the user for immediately quitting the consultation. Now consider the case in which the
user has specified a frame name. The function GetAnswer is called with the query specified
by the user substituted for the parameter query and the created frame taxonomy substituted
for the parameter taxonomy. This function looks up all attribute-value pairs which hold for
the frame with the given name. To this end, the function GetAnswer recursively searches the
list of frames in taxonomy until a frame having a name equal to the specified one has been
found:

(defun GetAnswer (query taxonomy)

(let ((frame (first taxonomy)))

(cond ((null frame) (princ "Frame not present."))

(t (if (Match query frame)

(pprint (Inherit nil frame))

(GetAnswer query (rest taxonomy)))))))

Each frame in taxonomy is compared with the query entered by the user by means of the
function Match:

(defun Match (query frame)

(eq query (frame-name frame)))

As soon as a match has been found, in GetAnswer the function Inherit is called. This function
implements the actual inheritance algorithm. After the execution of Inherit has been finished,
the gathered attribute-value pairs are printed to the screen by means of the primitive function
pprint. The user then is offered the opportunity of entering a new query.

As has been mentioned before, the actual algorithm for single inheritance is implemented
by the function Inherit. Informally speaking, this function just traverses the is-a links in the
taxonomy; recall that an is-a link is specified in the superframe field of a frame structure.

(defun Inherit (attrs frame)

(let ((collected-attr (NewAttributes attrs

(frame-attributes frame)))

(superframe (frame-superframe frame)))

(cond ((null superframe) collected-attr)

(t (Inherit collected-attr

(symbol-value superframe))))))}

Within the cond form it is investigated whether the name of the superframe of the given
frame equals nil. If this test succeeds, then the inheritance process has reached the root of the
tree-like taxonomy; the process then terminates and returns with the value of collected-attr,
that is, with the list of collected attribute-value pairs. In the other case, the process continues
by recursively collecting attribute-value pairs for the given frame.
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The function NewAttributes called from Inherit investigates whether or not the attribute-
value pairs that have been found in the frame frame should be added to the list of previously
collected attribute-value pairs. To this end, NewAttributes examines the new attribute-value
pairs one by one by recursively traversing the list frame-attr:

(defun NewAttributes (old-attr frame-attr)

(let ((attribute (first frame-attr)))

(cond ((null attribute) old-attr)

(t (if (MemberOf attribute old-attr)

(NewAttributes old-attr (rest frame-attr))

(NewAttributes (cons (AttrValuePair attribute)

old-attr)

(rest frame-attr)))))))}

For each attribute-value pair in frame-attr it is determined by means of the function MemberOf
whether or not the attribute name specified in the pair already occurs in the list of attribute-
value pairs old-attr. If the attribute name occurs in old-attr, then the attribute-value pair
being investigated is disregarded and the function NewAttributes is called recursively for the
remaining attribute-value pairs. However, if the attribute name does not as yet occur in
old-attr, then the pair is added as a dotted pair to the beginning of the list of inherited
attribute-value pairs.

Within the function MemberOf the primitive function assoc is used for checking if an
attribute name occurs in a given list of attribute-value pairs:

(defun MemberOf (attribute a-list)

(assoc (attribute-name attribute) a-list))

The function AttrValuePair which is equally called from NewAttributes returns a dotted pair of
which the first element is an attribute name and the second element is the associated value:

(defun AttrValuePair (attribute)

(cons (attribute-name attribute)

(attribute-value attribute)))

We finish this section by giving an example of the use of the program discussed.

EXAMPLE 4.28

Consider once more the frame expressions that have been shown in the last example.
We suppose that these frame expressions are contained in the file named vessels. A
possible consultation of this tiny knowledge base is shown below:

> (Consultation)

Name of frame taxonomy: vessels

query=> left-pulmonary-artery

((structure . tubular)

(contains . blood-fluid)

(blood-flow . away-from-heart)

(wall . muscular)
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(blood . oxygen-poor))

query=> artery

((structure . tubular)

(contains . blood-fluid)

(blood-flow . away-from-heart)

(blood . oxygen-rich)

(wall . muscular))

.

query=> exit

bye

4.2.5 Inheritance and attribute facets

In our treatment of inheritance of attribute values in the preceding sections, we did not pay
any attention to the way in which these values were obtained. In many practical applications,
however, it may be important to know whether an attribute value for a given instance has
been obtained by inheritance or has been explicitly specified in some way: in the latter case,
the user is likely to have more confidence in the accurateness of the value than in the former
case where the value has only been stated for an entire class of instances. Furthermore, it
often is desirable to be able to compute attribute values based on the values of some other
attributes which have been obtained during a consultation. The frame formalism discussed in
the preceding sections is not able to cope with such situations. It is not surprizing therefore
that most frame formalisms that are employed in systems which are actually used in practical
applications, offer special language constructs, called facets, for the purpose of handling the
situations mentioned above. In this section, we shall discuss some of the facets that are most
frequently met in literature.

A facet may be viewed as a property associated with an attribute. The most common facet
is the value facet referring to the actual value of the attribute. The value stored in a value
facet of an attribute is assumed to have been established with absolute certainty. Since it is
often difficult to specify with certainty in advance the values attributes of instances of a class
will adopt, the initial values for class attributes are often specified in default facets. These
default values may be overridden as the consultation proceeds. Note that our algorithm for
single inheritance with exceptions already exhibited this behaviour; the difference, however,
is that when facets are used, an inherited default attribute value is still marked as being a
default value. In general, it depends on the characteristics of the problem area which part of
the attribute values will be specified in a default facet and which part is specified in a value
facet. The values specified in the default facets of attributes in a frame taxonomy together
offer a typical picture of the domain of discourse.

The third facet we discuss is the demon facet, or demon for short. A demon is a procedure
that will be invoked at a particular time during the manipulation of the frame in which it
has been specified. The condition under which a demon is activated depends upon the type
of the demon. An if-needed demon is activated the moment an attribute value is needed but
not yet known for the attribute it is attached to. An if-added demon is activated the moment
a value is entered into the value facet of the attribute concerned. An if-removed demon is
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invoked the moment a value is removed from the value facet of the attribute it is attached to.
This way of integrating procedural and declarative knowledge is called procedural attachment.
The frame formalism gains enormously in expressive power by the incorporation of demons.
Using demons and attribute values, it for example is possible to represent local state changes
due to computation: the state of the computation at a certain moment during a consultation
is described by the values the attributes have at that moment.

So far, we have discussed inheritance as the only method for frame manipulation. It will
be evident, however, that inheritance alone does not render a full inference engine: inheri-
tance accounts for only a small portion of the inference engine of most frame-based systems.
In many systems, demons are used to influence the overall control exerted in manipulating
the frame taxonomy: an if-added demon for instance may be used to direct the control to a
particular frame as a side-effect. However, great care must be taken in applying such tech-
niques: when such side-effects are applied very often, the behaviour of the system will become
difficult to fathom. This, however, is not true for every use of demons. An if-needed demon
for instance can be an algorithm for asking the user for further information or for calculating
a value for example in handling time-dependent information.

EXAMPLE 4.29

Consider a real-time expert system for controlling some ongoing process that has the
possibility to read off several gauges indicating the status of this process. The activation
of an if-needed demon may result in reading off some of the gauges as soon as information
concerning the status of the process is required.

To conclude this informal introduction to demons, we observe that frames are often used as
a means of partitioning a given set of production rules: each frame then has command of a
certain partition of the set of rules. In a frame taxonomy supporting this idea, a demon is
used to initiate the consultation of such a partition. An example of such a use of a demon
will be discussed in Chapter 7 in connection with the CENTAUR system, the development of
which has been based on some of the principles discussed here. In the same chapter LOOPS
will be treated: LOOPS is an environment for object-oriented programming in which frames
are considered as being autonomous objects that are able to communicate with each other
by means of demons (then called methods). Besides the three general facets discussed in
the foregoing it is of course possible to define several domain-dependent facets for a given
application where appropriate.

With reference to the foregoing discussion, the following definition states a simple, imple-
mentation-oriented formalism for frames allowing for facets to be attached to attributes; once
more we have refrained from type information.

Definition 4.3 A frame is an expression of the following form:

〈frame〉 ::= 〈class〉 | 〈instance〉

〈class〉 ::= class 〈class-name〉 is
superclass 〈super-specification〉;
〈attributes〉

end
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〈instance〉 ::= instance 〈instance-name〉 is
instance-of 〈super-specification〉;
〈attributes〉

end

〈super-specification〉 ::= 〈class-name〉 | nil

〈attributes〉 ::= 〈attribute-facet-pair〉 {; 〈attribute-facet-pair〉}∗ | 〈empty〉

〈attribute-facet-pair〉 ::= 〈attribute-name〉 = (〈facet〉 {, 〈facet〉}∗)

〈facet〉 ::= 〈facet-name〉〈value〉 | demon 〈demon-type〉〈demon-call〉

〈facet-name〉 ::= value | default

〈demon-type〉 ::= if-needed | if-added | if-removed

〈value〉 ::= 〈elementary-constant〉 | 〈instance-name〉

〈empty〉 ::=

Again, a class specification equal to the special symbol nil is used to indicate that the frame
concerned is the root of the tree-like taxonomy.

EXAMPLE 4.30

The frame shown below describes the class of arteries which is a subclass of the class of
blood-vessels:

class artery is
superclass blood-vessel;
wall = (value muscular);
blood = (default oxygen-rich);
blood-pressure = (default 20);
blood-flow = (default 4);
resistance = (demon if-needed R(blood-pressure, blood-flow))

end

The frame has five attributes. For the attribute with the name wall a value facet has
been specified, since we are absolutely certain that all arteries have a muscular wall. For
the three attributes with default facets things are different. We already know that not
all arteries contain oxygen-rich blood, hence the default facet for the blood attribute.
The attribute blood-pressure represents the difference in blood pressure between the
pressure at beginning and at the end of an artery. The value specified for this attribute
as well as the value for the blood-flow attribute are average values for middle-sized ar-
teries. Evidently, such knowledge is best represented in default facets. Finally, we have
one attribute, the resistance attribute, for which an if-needed demon has been specified
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for calculating a value upon request. The demon call R(blood-pressure, blood-flow) rep-
resents the call to the procedure R for computing the resistance to the blood flow in
the given artery using the formula

resistance =
blood-pressure

blood-flow

The values of the attributes blood-pressure and blood-flow are passed to the procedure.

Since we now allow for various facets to be attached to attributes, it has become necessary
to incorporate information concerning the order in which such facets are considered in our
algorithm for single inheritance. Basically, there are two types of inheritance of attributes
with facets, only differing in the order in which the facets are dealt with:

• N-inheritance, and

• Z-inheritance.

These types of inheritance owe their respective names to the way the taxonomy is traversed.
The intuition underlying N -inheritance is that any value in a value facet appearing in

a frame or in one of its generalizations is closer to the real value than any value obtained
from a default facet or from invoking a demon. As usual, of all the values of an attribute
stored in value facets in the various frames in the frame taxonomy the most specific one will
be inherited by the frame of concern. The basic idea underlying the use of Z -inheritance is
that any specific attribute value, whether obtained from a value facet, from invoking a demon
or from a default facet, is more reliable than any more general attribute value no matter in
which facet it has been specified; however, within a given frame, values specified in a value
facet are preferred over those computed by a demon or provided by a default facet.

The procedures for N - and Z -inheritance can now be described informally as follows.
Applying N -inheritance, an attribute value is determined by first examining the value facet
of the frame concerned. If no value facet has been specified, then the value facet attached
to the corresponding attribute in the superframe of the frame is examined. This process is
repeated until in a frame higher in the taxonomy a value facet has been found or the root of
the taxonomy has been reached. If the process has not yielded an attribute value as yet, then
the control is returned to the frame of interest, and the process is repeated for the if-needed
demons. Finally, if this process has still not yielded an attribute value, the default facets will
be examined in a similar way. Figure 4.13 depicts the behaviour of N -inheritance graphically.
Applying Z -inheritance, an attribute value is determined by successively examining the value
facet, the if-needed demon and the default facet of the frame concerned before the frames
higher in the taxonomy are considered. Figure 4.14 shows the behaviour of Z -inheritance.

4.2.6 Z-inheritance in PROLOG

In this section we shall develop a simple PROLOG program that implements Z-inheritance.
The representation of frames used in this section closely resembles the Horn clause representa-
tion for frames chosen in Section 4.2.3. However, in this Section we extend our representation
to allow for facets of attributes. Recall the following Horn clause description of a class frame:

class(〈class-name〉, superclass =〈superframe〉, 〈attributes〉).
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Figure 4.14: Z -inheritance.
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The predicate class has the same meaning as before, just as the first two arguments of class
do. However, the third argument ¡attributes¿ which again is supposed to contain a list of
attributes, now differs from the previous representation by allowing for facets to be attached
to the specified attributes. The following example illustrates the chosen representation.

EXAMPLE 4.31

Consider the following class frame which gives a description of the class of arteries:

class artery is
superclass blood-vessel ;
wall = (value muscular);
blood = (default oxygen-rich);
resistance = (demon if-needed R(blood-pressure, blood-flow))

end

where R(blood-pressure, blood-flow) is a demon call for computing the resistance to the
blood flow in the given artery just as we have discussed in the previous example. Note
that contrary to that example, we have not specified the attributes blood-pressure and
blood-flow in this class. These attributes therefore have to be specified in all instances
of the class separately. The class frame shown above is represented in a Horn clause as
follows:

class(artery,

superclass = blood_vessel,

[wall = (value,muscular),

blood = (default,oxygen_rich),

resistance = (if_needed,r(blood_pressure,blood_flow))]).

The Horn clause representation for instances discussed in section 4.2.3 is extended in a similar
way to allow for facets.

We now turn our attention to a possible implementation of Z-inheritance with exceptions
in PROLOG. The program is developed along the same lines as the program in Section 4.2.3.
The main procedure of the program is the inherit procedure which upon invocation starts a
search process for a value for the specified attribute:

inherit(Frame,Attribute) :-

get_facet(Frame,Attribute,Value,Frame),

print_value(Attribute,Value).

inherit(_,_) :-

nl,

write(’No value has been found for the specified attribute.’).}

In a call to inherit, the variables Frame and Attribute have to be instantiated to a frame name
and an attribute name, respectively. The procedure get facet called from inherit takes care of
the actual inheritance. The print value procedure just prints the value found for the specified
attribute to the screen; the implementation of this output procedure is left to the reader.
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The actual searching for a value for the attribute of concern is done by the recursive
procedure get facet. This procedure is called from inherit with an extra fourth argument;
we shall see that this fourth argument is needed in case one of the superframes of the given
frame specifies a demon for the attribute of concern which requires for its proper execution a
number of attribute values from the frame that started the inference.

get_facet(Frame,Attribute,Value,_) :-

get_attributes(Frame,List_of_attributes),

search(Attribute,List_of_attributes,Value,value).

get_facet(Frame,Attribute,Value,Parameter_frame) :-

get_attributes(Frame,List_of_attributes),

search(Attribute,List_of_attributes,Demon,if_needed),

Demon =.. [X|L],!,

get_actual_values(Parameter_frame,L,Value_list),

Parameter_demon =.. [X,Value|Value_list],

call(Parameter_demon).

get_facet(Frame,Attribute,Value,_) :-

get_attributes(Frame,List_of_attributes),

search(Attribute,List_of_attributes,Value,default).

get_facet(Frame,Attribute,Value,Parameter_frame) :-

get_superframe(Frame,Superframe),

get_facet(Superframe,Attribute,Value,Parameter_frame).

The first get facet clause investigates whether the frame Frame contains a value facet for
the attribute Attribute. For this purpose, the list of attributes is selected from the frame
by means of get attributes; this list is traversed by means of the procedure search. Both
procedures will be described shortly. Here we only note that the last argument to the call to
search indicates by means of the keyword value that this procedure only has to examine the
value facet. If in the frame Frame a value facet is found for the attribute, then the variable
Value will be instantiated to the value specified in that facet. If the frame Frame does not
contain a value facet for the attribute Attribute, then the first get facet clause fails and the
second one is tried. This second clause investigates whether the frame concerned contains an
if-needed demon for the specified attribute. If indeed a demon is present for the attribute,
then the demon is executed in the context of the frame for which the inherit procedure was
invoked initially. Note that the name of that frame is specified in the fourth argument of
the clause. The correct demon call is created in the third, fourth and fifth condition of the
clause. By means of the built-in predicate call the demon is actually executed. The third
get facet clause has a meaning similar to that of the first clause with the only difference
that it deals with the default instead of with the value facet. If these three clauses fail to
return a value for the given attribute Attribute, then the fourth get facet clause is executed.
By means of the get superframe procedure the superframe of the frame Frame is determined.
The procedure get facet is then called recursively for that superframe. Note that the fourth
argument of get facet is passed unchanged: the variable Parameter frame is still instantiated
to the initially specified frame.

We now consider the procedure get actual values which is called from the second get facet
clause. First, however, we take a closer look at the creation of the proper demon call. After
execution of Demon =.. [X|L] we have that X is instantiated to the name of the procedure
to be invoked, and furthermore that L is instantiated to a list of the attributes of which the
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values have to be passed to the procedure with the name X. The procedure get actual values
now finds the values of the attributes named in L by means of a recursive call to inherit for
each of them, beginning with the frame that started the computation:

get_actual_values(_,[],[]).

get_actual_values(Frame,[Attribute|L],[Value|Value_list]) :-

get_facet(Frame,Attribute,Value,Frame),!,

get_actual_values(Frame,L,Value_list).

From the get facet procedure three more procedures are invoked. The procedure get superframe
finds the superframe of a given frame in the taxonomy:

get_superframe(Frame,Superframe) :-

class(Frame,superclass = Superframe,_),!,

not(Superframe = nil).

get_superframe(Frame,Superframe) :-

instance(Frame,instance_of = Superframe,_),!,

not(Superframe = nil).

The first get superframe clause finds the superframe of a class frame; the second clause does
the same for an instance frame. Note that a call to get superframe fails if the root of the
taxonomy has been reached.

The procedure get attributes selects the list of attributes from a give frame:

get_attributes(Frame,List_of_attributes) :-

class(Frame,_,List_of_attributes),!.

get_attributes(Frame,List_of_attributes) :-

instance(Frame,_,List_of_attributes),!.

The procedure search still remains to be discussed. It merely traverses a given list of attributes
with associated facets. This procedure takes four arguments. The first argument passed to
search from the inherit procedure is instantiated to an attribute name, the second argument
contains a list of attributes with facets, and the fourth argument indicates the facet type to
be looked for. The third argument initially is uninstantiated.

search(_,[],_,_) :- !,fail.

search(Attribute,[Attribute = (Facet,Value)|_],Value,Facet) :- !.

search(Attribute,[_|Rest],Value,Facet) :-

search(Attribute,Rest,Value,Facet).

The first and second search clause together define the termination criterion for the recursion.
If the list of attributes is empty, then apparently no appropriate value is found for the given
attribute. In this case, the call to search fails. The second clause describes the situation in
which the attribute Attribute occurs in the head of the list of attributes with the indicated
facet. The variable Value then is instantiated to the attribute value found in the facet. The
third clause specifies the recursive call to search for the remainder of the attribute list.

EXAMPLE 4.32

Consider the following frame taxonomy represented in PROLOG clauses:
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class(artery,

superclass = blood_vessel,

[wall = (value,muscular),

blood = (default,oxygen_rich),

resistance = (if_needed,r(blood_pressure,blood_flow))]).

instance(left_brachial_artery,

instance_of = artery,

[blood_pressure = (value 4),

blood_flow = (value 20)]).

r(Value,Pressure,Flow) :- Value is Pressure / Flow.

The value for the attribute resistance is now obtained from the following query:

?- inherit(left_brachial_artery,resistance).

The PROLOG interpreter returns with:

resistance = 0.20

4.3 Frames and multiple inheritance

So far, we have only dealt with tree-like frame taxonomies and single inheritance. In this
section, we introduce more general frame taxonomies. The frame formalism that has been
defined in Section 4.2.1 is extended by admitting in class frames more than one class name in
the superclass link field; this way, it is possible for a class to have more than one superclass.
The graphical representation of such a taxonomy then takes the form of a general directed
graph instead of a tree. In the following, we shall restrict the discussion to acyclic directed
graphs, because trivial cycles obtained from the reflexivity property of the subclass relation,
which are the only cycles that can be constructed when the superclass relation is viewed
as a partial order, will not be explicitly indicated. The inheritance algorithm associated
with graph-like frame taxonomies is known as multiple inheritance. In discussing multiple
inheritance, we assume that more than one value for an attribute may have been specified in
a frame taxonomy, that is, we allow for exceptions; however, we shall restrict the discussion to
value facets of attributes only. Note that the theory developed in this section should hold for
tree-shaped frame taxonomies and general graph-shaped taxonomies alike, since the former
is just a special case of the latter.

4.3.1 Subtyping in tree-shaped taxonomies

In Section 4.2.1 we have introduced a syntax for a frame formalism which allowed for dec-
larations of attribute types. Until now we have disregarded such type information. In the
present section, however, we shall pay attention to type information and discuss the proper-
ties of the relation defined by the superclass links now viewed as a relation between attribute
types. In discussing this relation in the context of type information, it is more common to
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speak of the supertype relation, or reversely of the subtype relation; exploiting the subtype
relation is known as subtyping. In the present section, we study subtyping in tree-shaped
frame taxonomies in which attribute-type pairs for a particular attribute may occur more
than once.

It will be evident that it is desirable to have type information available in a fame taxonomy:
attribute types may be exploited for checking entered values on being of the proper type. This
way, an ‘unexpected’ attribute value can be detected as soon as it is entered into the attribute
concerned; in that case, the attribute value is considered to be erroneous.

EXAMPLE 4.33

Consider a frame taxonomy representing information concerning the human cardiovas-
cular system. We assume that the class frame with the name artery has an attribute
mean-blood-pressure that describes the mean blood pressure in mmHg in the arteries in
a normal, healthy human being. In the arteries the mean blood pressure ranges from
30 mmHg to 100 mmHg. This information may be stored as type information for the
mean-blood-pressure attribute. When in a patient for a specific artery, say the ulnar
artery, a mean blood pressure of 10 mmHg is found, then this is an unexpected value
and probably some action has to be taken upon this event. The specification of an
attribute type can be further specialized, that is, narrowed down, as the frame it is
specified in is further specialized. Suppose for example that the artery class has three
specializations: the large-artery, the small-artery, and the arteriole class. In the class
representing the large arteries, the information for the mean-blood-pressure attribute is
further specialized to the range 90 – 100 mmHg, in the small-artery class to the range
60–90 mmHg and in the arteriole class to 30–60 mmHg.

We give a more formal example in which we have specified some type information in the
manner prescribed by the frame formalism.

EXAMPLE 4.34

Consider again the class of blood vessels. The following class representation shows some
attribute types for this class of objects:

class blood-vessel is
superclass nil;
blood : {oxygen-rich, oxygen-poor};
wall : {muscular,fibrous,mixed}

end

The class of arteries is a subclass of the class of blood-vessels. It is represented in the
following class frame:

class artery is
superclass blood-vessel ;
wall : {muscular,mixed};
wall-thickness : real

end
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Every attribute type specified in the class frame with the name blood-vessel now is taken
to apply to the class artery as well, as long as it has not been further specialized in the
artery class itself. Note that both classes contain a type declaration for the attribute
with the name wall. The type declaration included in the blood-vessel class is more
general than the one in the artery class.

From these two examples, we may conclude that subtyping involves the relationship between
attributes occurring in the classes as well as the relationship between the types of those
attributes. Before going into more detail, we first introduce some new notions that will
be used in formalizing subtyping in a tree-shaped frame taxonomy. We shall see that it is
convenient to have some representation of the set of attribute names that are of concern to a
specific class. Since an attribute type may itself be a class, it does not suffice to simply enlist
the attribute names actually occurring in a class. Therefore, we associated with a class a set
of so-called attribute sequences.

Definition 4.4 Let A be the set of all attribute names occurring in a frame taxonomy. An
attribute sequence a is a string of the form a1 : · · · : an, where ai ∈ A, i = 1, . . . , n, n ≥ 0,
that is, an attribute sequence is composed of elements from A separated by semicolons. The
attribute sequence comprising no elements at all, that is, for which n = 0, is called the empty
attribute sequence and is denoted by ǫ. From now on, we shall use A∗ to denote the (infinite)
set of all attribute sequences constructed from A.

Note that we have not imposed any restriction on for example the order in which attribute
names are allowed to occur in an attribute sequence. With every class frame in a frame
taxonomy we now associate a subset of the set of attribute sequences.

Definition 4.5 Let A∗ be a set of attribute sequences associated with a frame taxonomy as
defined above. Let y be a class frame in the taxonomy. With y we associate the set D(y) ⊆ A∗,
called the domain for y, defined by:

(1) ǫ ∈ D(y);

(2) For every attribute name a specified in y, we have that a ∈ D(y);

(3) For every attribute with the name a of type w specified in y, D(y) contains the attribute
sequences a : b for all elements b ∈ D(w);

(4) The set D(z) of attribute sequences associated with the superframe z of y is a subset of
D(y).

We give an example.

EXAMPLE 4.35

Consider the following class frame with the name blood-vessel :

class blood-vessel is
superclass nil;
volume : cubic-measure

end
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This frame specifies an attribute volume providing information concerning the blood
volume for the specializations of the class. The type cubic-measure of this attribute is
a class frame itself. This class is defined as follows:

class cubic-measure is
superclass nil;
size : real;
unit : {mm3, cm3, dm3,m3}

end

The set of attribute names in the taxonomy consisting of these two frames is equal to
A = {volume, size, unit}. The set of attribute sequences associated with the class frame
blood-vessel is the set D(blood-vessel) = {ǫ, volume, volume : size, volume : unit}; the
domain for the cubic-measure class is the set D(cubic-measure) = {ǫ, size, unit}.

In the following definition we introduce the notion of a type function for computing the types
of the attribute sequences associated with a given frame.

Definition 4.6 Let A∗ be the set of attribute sequences in a frame taxonomy. Let K be
the set of class names in that frame taxonomy (including the standard classes and the most
general class nil). For each class yi ∈ K, let D(yi) ⊆ A∗ be the set of attribute sequences
associated with yi as in the preceding definition. Now, for each yi ∈ K, we define a type
function τi : A∗ → K as follows:

(1) For the empty attribute sequence ǫ, we have that τi(ǫ) = yi;

(2) For each attribute sequence a = a1 : · · · : an ∈ D(yi), n ≥ 1, we have that τi(a) = t
where t is the type of the attribute with the name an.

(3) For each a ∈ A∗\D(yi), we have τi(a) = nil.

EXAMPLE 4.36

Consider the frame taxonomy consisting of the two class frames from the previous
example. The set K of classes in this taxonomy equals

K = {nil, blood-vessel, cubic-measure, real, {mm3, cm3, dm3,m3}}

Let D(blood-vessel) be the set of attribute sequences associated with the blood-vessel
class as in the previous example. For this class, the type function τ1 : A∗ → K is
defined by

τ1(ǫ) = blood-vessel
τ1(volume) = cubic-measure
τ1(volume : size) = real

τ1(volume : unit) = {mm3, cm3, dm3,m3}
τ1(a) = nil for all a ∈ A∗\D(blood-vessel)

Let D(cubic-measure) be the domain for the class frame cubic-measure. For this class,
the type function τ2 : A∗ → K is defined as follows:



4.3. Frames and multiple inheritance 185

τ2(ǫ) = cubic-measure
τ2(size) = real
τ2(iunit) = i{mm3, cm3, dm3,m3}
τ2(a) = nil for all a ∈ A∗\D(cubic-measure)

We now are ready to consider a type semantics for the superclass links in a taxonomy. We
introduce the notion of a subtype.

Definition 4.7 Let y1 and y2 be two class frames in a tree-shaped frame taxonomy. Let
A∗ be the set of attribute sequences in the taxonomy. Furthermore, let D(yi) be the set of
attribute sequences associated with the class frame yi, i = 1, 2. Now, let τi be the type function
associated with yi. We say that y1 is a subtype of y2, denoted by is y1 ≤ y2, if the following
two properties hold:

(1) D(y2) ⊆ D(y1);

(2) For each attribute sequence a ∈ A∗, we have that τ1(a) ≤ τ2(a).

We say that a taxonomy is correctly typed if the superclass links in the taxonomy satisfy the
properties of the relation ≤ from the previous definition. Note that we now have that the
meaning of the subtype relation can be described in terms of set inclusion ⊆: we associate
with each type t a subset I(t) of elements from a domain of discourse U , such that if for two
types t1 and t2 we have that t1 ≤ t2, then we have that the property I(t1) ⊆ I(t2) holds.

EXAMPLE 4.37

Consider the second example from this section once more. We have that the artery
class is a superframe of the blood-vessel class. The set of attribute sequences associated
with the class blood-vessel is equal to the set

D(blood-vessel) = {ǫ, blood,wall}

the domain for the artery class is equal to

D(artery) = {ǫ, blood,wall,wall-thickness}

So, the first condition in the preceding definition is satisfied since we have that
D(blood-vessel) ⊆ D(artery). The type function τ1 : A∗ → K associated with the
class artery is defined by:

τ1(ǫ) = artery
τ1(blood) = {oxygen-rich, oxygen-poor}
τ1(wall) = {muscular,mixed}
τ1(a) = nil for all a ∈ A∗\D(artery)

The type function τ2 : A∗ → K associated with the class blood-vessel is defined by:

τ2(ǫ) = blood-vessel
τ2(blood) = {oxygen-rich, oxygen-poor}
τ2(wall) = {muscular,fibrous,mixed}
τ2(a) = nil for each a ∈ A∗\D(blood-vessel)
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The reader can easily verify that τ1(a) ≤ τ2(a) for each a ∈ A∗. We conclude that the
frame taxonomy is correctly typed.

4.3.2 Multiple inheritance of attribute values

Multiple inheritance differs from single inheritance mainly in the way it handles attributes
occurring more than once in a taxonomy with different values. As in Section 4.2.2, we
shall call such attribute values exceptions. Recall that when exceptions have been specified,
conflicting information may be derived due to the inheritance of mutually exclusive values. In
Section 4.2.2, however, we have seen that the problem of handling exceptions is easily solved
in the case of single inheritance in a tree-like taxonomy: inheritance is taken as a process
for finding a value for an attribute that starts with a given vertex in the tree, which moves
along the branches of the tree towards the root and stops as soon as a value for the attribute
of concern has been obtained. This algorithm always finds at most one attribute value.
Unfortunately, the problem is much more complicated in the case of multiple inheritance in a
general graph-like taxonomy. The algorithm for multiple inheritance in graph-like taxonomies
in which exceptions occur has to incorporate a method for explicitly deciding which value of
an attribute is to be preferred; we speak of multiple inheritance with exceptions. The main
part of this section will be devoted to the development of such an algorithm for multiple
inheritance with exceptions.

To start with, some new notions and notational conventions are introduced, including
a more compact notation for the representation of frame information which has a stronger
mathematical flavour than the implementation-oriented syntax introduced in the preceding
section. From now on, K = {y1, y2, . . . , yn}, n ≥ 0, will denote a fixed set of class frames,
and I = {x1, x2, . . . , xm}, m ≥ 0, will denote a fixed set of instance frames; the sets I and K
are disjoint. The set of frames F is equal to I ∪K.

In a frame taxonomy, the superclass links are viewed as members of a relation between
class frames. In the following definition we indicate that this relation may be viewed as a
partial order.

Definition 4.8 Let K denote the fixed set of class frames. The subclass relation ≤ is a
binary relation on K, that is ≤ ⊆ K × K, that defines a partial order on the set K. For a
pair (x, y) ∈ ≤, denoted by x ≤ y, it is said that x is a subclass of y.

Recall that, since the subclass relation ≤ defines a partial order on the set of class frames K,
it satisfies the properties mentioned in Section 4.1.1.

The instance-of links are viewed as members of a relation between the set of instance
frames I and the set of class frame K. We assume that an instance belongs to exactly one
class. The instance-of links therefore are best formalized by means of a function.

Definition 4.9 Let I denote the fixed set of instance frames and K the fixed set of classes.
The instance-of function ≪: I → K is a mapping from I to K. In the sequel, we shall denote
≪(x) = y by x≪ y; we say that x is an instance of y.

The subclass relation and the instance-of function introduced in the two preceding definitions
only describe reference information. The following definition introduces another relation
meant to arrive at a full language for the specification of frame information.
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Definition 4.10 Let F be the set of frames such that F = I ∪ K, where I is the set of
instance frames in F , and K the set of class frames in F . Let A be a fixed set of attribute
names and let C be a fixed set of constants. Then, a triple (x, a, c) ∈ F ×A× C, denoted by
x[a = c], is called an attribute-value specification. An attribute-value relation Θ is a ternary
relation on F , A and C, that is, Θ ⊆ F ×A× C.

In the previous definition we have explicitly specified a set of constants C. Note, however,
that this set of constants may be identified with the set of instances I, as we have done in the
preceding sections. An attribute-value specification x[a = c] expresses that in the frame x
the attribute a has the constant value c. The notions introduced in the foregoing definitions
are now used to formally define a frame taxonomy.

Definition 4.11 Let I be the set of instances and K the set of classes. Furthermore, let A
be the set of attribute names and C the set of constants. I, K, A and C are disjoint. Now,
let N be the quadruple N = (I,K,A,C). Furthermore, let the relations ≤ and Θ, and the
function ≪ be defined as above. Then, a taxonomy T is a quadruple T = (N,Θ,≪,≤).

We give an example of the frame formalism we have just defined and its relation with the
frame formalism introduced in Section 4.2.1.

EXAMPLE 4.38

Consider the information specified in the following three classes represented in the frame
formalism from Section 4.2.1:

class blood-vessel is
superclass nil;
contains = blood-fluid

end

class artery is
superclass blood-vessel;
blood = oxygen-rich;
wall = muscular

end

class vein is
superclass blood-vessel;
wall = fibrous

end

instance aorta is
instance-of artery;
diameter = 2.5

end

In the specified taxonomy, we have that I = {aorta} is the set of instance frames and
that K = {artery, vein, blood-vessel} is the set of classes. Furthermore, we have that A =
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{contains, blood,wall, diameter}, and C = {blood-fluid, oxygen-rich,muscular,fibrous, 2.5}.
We have the following set of attribute-value specifications:

Θ = {blood-vessel[contains = blood-fluid],
artery[blood = oxygen-rich],
artery[wall = muscular],
vein[wall = fibrous],
aorta[diameter = 2.5]}

The function ≪ and the relation ≤ are defined by

aorta≪ artery
artery ≤ blood-vessel
vein ≤ blood-vessel

Now, T = (N,Θ,≪,≤) is the taxonomy shown above, this time represented using our
new formalism.

Just as before, a taxonomy T = (N,Θ,≪,≤) can be represented graphically by means of an
acyclic directed graph in which the vertices represent the frames in I and K, and the arcs
represent the relation ≤ and the function≪. A vertex is assumed to have an internal structure
representing the collection of attribute-value specifications associated with the frame by the
relation Θ. In the graphical representation, an attribute-value specification is depicted next
to the vertex it belongs to; only the attribute and constant of an attribute-value specification
are shown. We indicate the relation ≤ by means of a pulled arrow; and the function ≪ will
be depicted by means of a dashed arrow. In the graphical representation of a taxonomy, arcs
expressing the reflexivity and transitivity of the subclass relation will be left out in most cases.
The omission of the arcs representing reflexivity, has no effect on the inheritance of attribute
values, and is therefore permitted. However, leaving out arcs representing the transitivity
property of the subclass relation, is one of the causes of problems concerning the inheritance
of mutually exclusive attribute value, since this may alter the meaning of a taxonomy. Most
of the remainder of this section is therefore devoted to an investigation of the consequences
of this decision. Figure 4.15 shows the taxonomy from the previous example.

The relation ≤ defined above is now taken as the basis for reasoning with frames. We
shall define so-called inheritance chains for the representation of the reasoning process that

blood-vessel [contains = blood-fluid]

vein artery
[blood = oxygen-rich]

[wall = muscular]

aorta [diameter = 2.5]

[wall = fibrous]

Figure 4.15: A taxonomy consisting of three classes and one instance.
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takes place in a frame taxonomy. These chains will constitute our principal device for dealing
with exceptions in multiple inheritance. In the following two definitions the syntactic form of
such inheritance chains and a procedure for their construction is presented. We shall first be
concerned with inheritance of attribute values for classes only; later on we turn to inheritance
of attribute values for instances.

Definition 4.12 Let T = (N,Θ,≪,≤) be a taxonomy having the usual meaning, where N =
(I,K,A,C). An inheritance chain in T is an expression having one of the following forms:

y1 ≤ . . . ≤ yn

y1 ≤ . . . ≤ yn[a = c]

where yi ∈ K, i = 1, . . . , n, n ≥ 1, are class frames, and yn[a = c] ∈ Θ is an attribute-value
specification.

Note that attribute-value specifications are allowed only in isolation, or at the end of an
inheritance chain. Furthermore, we observe that inheritance chains of the form y1 ≤ . . . ≤ yn

are just another way of characterizing the subclass relation, obtained from its satisfying the
properties of reflexivity and transitivity. Although we allow inheritance chains in which the
reflexivity of the subclass relation ≤ is exploited, we shall not show such chains in our examples
since they do not contribute to the notions we want to illustrate.

The set of all possible inheritance chains in a given frame taxonomy is constructed as
described in the next definition.

Definition 4.13 Let T = (N,Θ,≪,≤) be a taxonomy where N = (I,K,A,C). The set ΩT

of inheritance chains in T is defined as follows:

• For each y ∈ K, we have y ∈ ΩT .

• For each y[a = c] ∈ Θ where y ∈ K, we have y[a = c] ∈ ΩT .

• For each pair (y1, y2) ∈ ≤ we have y1 ≤ y2 ∈ ΩT .

• For each y1 ≤ . . . ≤ yk ∈ ΩT and yk ≤ . . . ≤ yn ∈ ΩT , 1 ≤ k ≤ n, n ≥ 1, where yi ∈ K,
i = 1, . . . , n, we have that y1 ≤ . . . ≤ yn ∈ ΩT .

• For each y1 ≤ . . . ≤ yn ∈ ΩT and yn[a = c] ∈ ΩT , where yi ∈ K, i = 1, . . . , n, n ≥ 1, we
have that y1 ≤ . . . ≤ yn[a = c] ∈ ΩT .

EXAMPLE 4.39

Consider the taxonomy T = (N,Θ,≪,≤) in which

I = {aorta}
K ={large-artery, artery, blood-vessel}
Θ ={aorta[diameter = 2.5], artery[wall = muscular],

large-artery[mean-pressure = 100], blood-vessel[contains = blood-fluid]}

The function ≪ is defined by aorta ≪ large-artery, and the relation ≤ is defined by
large-artery ≤ artery and artery ≤ blood-vessel. Recall that inheritance chains in which
the reflexivity of the subclass relation ≤ is used, will not be shown; to give an impression
of how such chains look like we show one of them:
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artery ≤ artery ≤ artery

Now, the set of inheritance chains ΩT consists of the following elements:

artery
large-artery
blood-vessel
artery[wall = muscular]
large-artery[mean-pressure = 100]
blood-vessel[contains = blood-fluid]
large-artery ≤ artery
large-artery ≤ artery[wall = muscular]
large-artery ≤ artery ≤ blood-vessel
large-artery ≤ artery ≥ blood-vessel[contains = blood-fluid]
artery ≤ blood-vessel
artery ≤ blood-vessel[contains = blood-fluid]

Inheritance chains are viewed as descriptions of which attribute-value specifications may pos-
sibly be inherited by the frames in the taxonomy. We shall see shortly that in multiple inher-
itance with exceptions certain combinations of attribute-value specifications when actually
inherited represent contradictory information. Under suitable conditions, however, certain
inheritance chains may be cancelled from the set of all inheritance chains in the taxonomy,
thus preventing the occurrence of a contradiction. Before discussing this idea in further detail,
we introduce the notion of the conclusion of an inheritance chain which is an explicit means
for establishing which attribute-value specification may be inherited from the chain.

Definition 4.14 Let T = (N,Θ,≪<,≤) be a taxonomy where N = (I,K,A,C). Let ΩT be
the set of inheritance chains in T . The conclusion c(ω) of an inheritance chain ω ∈ ΩT is
defined as follows:

• For each ω ≡ y1 ≤ . . . ≤ yn[a = c], we have that c(ω) = y1[a = c].

• For all other ω, we have that c(ω) is not defined.

The conclusion set C(ΩT ) of ΩT is defined as the set of conclusions of all elements from ΩT ,
that is, C(ΩT ) = {c(ω) | ω ∈ ΩT }.

When the attribute-value specification z[a = c] is obtained as the conclusion of an inheritance
chain, we say that the value c of the attribute a has been inherited by z.

EXAMPLE 4.40

Consider again the set ΩT of inheritance chains from the preceding example. The
conclusion set C(ΩT ) of ΩT then consists of the following attribute-value specifications:

large-artery[mean-pressure = 100]
large-artery[wall = muscular]
large-artery[contains = blood-fluid]
artery[wall = muscular]
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artery[contains = blood-fluid]
blood-vessel[contains = blood-fluid]

The conclusion set C(ΩT ) of a given set of inheritance chains ΩT may contain attribute-value
specifications which only differ in their specified constant. We have already encountered the
notion of exception and its related problems in Section 4.2.2. In the following example, we
restate the problem in terms of inheritance chains.

EXAMPLE 4.41

In the foregoing, it has frequently been pointed out that the left and right pulmonary
arteries have much in common with arteries except that they contain oxygen-poor in-
stead of oxygen-rich blood. Now, consider the set Ω of inheritance chains containing,
among other ones, the following two chains:

pulmonary-artery[blood = oxygen-poor]
pulmonary-artery ≤ artery[blood = oxygen-rich]

The conclusion set constructed from Ω contains at least the following two attribute-value
specifications:

pulmonary-artery[blood = oxygen-poor]
pulmonary-artery[blood = oxygen-rich]

Clearly, if a sensible meaning is to be associated with the frame formalism, only one of
these conclusions should be satisfied.

We call a conclusion set C(ΩT ) inconsistent if it contains contradictory information such as in
the previous example. In the following definition the notions of consistency and inconsistency
of a conclusion set are defined more formally.

Definition 4.15 Let T = (N,Θ,≪,≤) be a taxonomy where N = (I,K,A,C). Let ΩT be
the set of inheritance chains in T . Furthermore, let C(ΩT ) be the conclusion set of ΩT .
The conclusion set C(ΩT ) is called inconsistent if it contains attribute-value specifications
y[a = c1] and y[a = c2], c1, c2 ∈ C, such that c1 6= c2. Otherwise, the conclusion set C(ΩT ) is
said to be consistent.

Inconsistency of the conclusion set of a taxonomy indicates that inheritance in the taxonomy
is not defined uniquely: only if the conclusion set is consistent, the instances of the tax-
onomy inherit unambiguous information from the classes they belong to. We now consider
inheritance of attribute values for instances in more detail. Informally speaking, the attribute-
value specifications that hold for an instance of a specific class frame are the attribute-value
specifications explicitly specified in the instance itself supplemented with the attribute-value
specifications holding for the class it belongs to that do not contradict the attribute-value
specifications from the instance. This is defined more formally below.
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Definition 4.16 Let T = (N,Θ,≪,≤) be a taxonomy where N = (I,K,A,C). Let ΩT be the
set of inheritance chains in T and let C(ΩT ) be the conclusion set of ΩT . For each instance
frame x ∈ I, the set eC(x) is defined by eC(x) = {x[a = c] | x[a = c] ∈ Θ} ∪ {x[a = c] | x ≪
y, y ∈ K, y[a = c] ∈ C(ΩT ) and for all c 6= d, x[a = d] 6∈ Θ} if C(ΩT ) is consistent; eC(x) is
undefined otherwise. The extension of ΩT , denoted by EC(ΩT ), is defined by

EC(ΩT ) =
⋃

x∈I

eC(x)

if C(ΩT ) is consistent; EC(ΩT ) is undefined otherwise.

EXAMPLE 4.42

Consider the taxonomy T from the first example of this section once more. Let ΩT

be the set of inheritance chains in T and let C(ΩT ) be the conclusion set of ΩT . The
extension of ΩT is equal to the following set of attribute-value specifications:

EC(ΩT ) = {aorta[contains = blood-fluid],
aorta[mean-pressure = 100],
aorta[wall = muscular],
aorta[diameter = 2.5]}

A taxonomy that is inconsistent in the sense of its having an inconsistent conclusion set can
sometimes be ‘made’ consistent by cancelling some of the inheritance chains from the set of
inheritance chains in the taxonomy by using knowledge concerning the hierarchical ordering of
the frames. As a consequence, certain conclusions are cancelled from the conclusion set of the
taxonomy as well, thereby preventing the occurrence of some contradictory attribute values.
Note that this way non-monotonic reasoning is introduced within the frame formalism.

For cancelling inheritance chains, we shall exploit the notion of an intermediary, which is
introduced in the following definition.

Definition 4.17 Let T = (N,Θ,≪,≤) be a taxonomy where N = (I,K,A,C). Let ΩT be
the set of inheritance chains in T . A class y ∈ K is called an intermediary to an inheritance
chain y1 ≤ . . . ≤ yn ∈ ΩT , yi ∈ K, i = 1, . . . , n, n ≥ 1, if one of the following conditions is
satisfied:

• We have y = yi for some i, 1 ≤ i ≤ n.

• There exists a chain y1 ≤ . . . ≤ yp ≤ z1 ≤ . . . ≤ zm ≤ yq ∈ ΩT , for some p, q,
1 ≤ p ≤ q ≤ n, where zj 6= yi, i = 1, . . . , n, zj ∈ K, j = 1, . . . ,m, m ≥ 1, such that
y = zk, for some k, 1 ≤ k ≤ m.

EXAMPLE 4.43

Consider the taxonomy T = (N,Θ,≪,≤), where I = ∅, K = {blood-vessel, artery,
oxygen-poor-artery, pulmonary-artery}, Θ is empty, and the relation ≤ is defined by

pulmonary-artery ≤ oxygen-poor-artery
pulmonary-artery ≤ artery
artery ≤ blood-vessel
oxygen-poor-artery ≤ artery
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The graphical representation of the taxonomy is shown in figure 4.16. The set of inher-
itance chains in T contains, among other ones, the following two chains:

pulmonary-artery ≤ artery ≤ blood-vessel
pulmonary-artery ≤ oxygen-poor-artery ≤ artery

It will be evident that the class oxygen-poor-artery is an intermediary to both chains.

pulmonary-
artery

oxygen-poor-
artery

artery

blood-vessel

Figure 4.16: A taxonomy with an intermediary.

Figure 4.16 introduced in the foregoing example is useful for gaining some intuitive feeling
concerning the notion of an intermediary.

We shall see that intermediaries may be applied for solving part of the problem of multiple
inheritance with exceptions. We take a closer look at the figure. It seems as if the arc between
the vertices pulmonary-artery and artery, an arc resulting from the transitivity property of
the subclass relation, is redundant, since all attribute-value specification from the classes
artery and blood-vessel can be inherited for pulmonary-artery via the vertex oxygen-poor-
artery. Therefore, the removal of this arc from the taxonomy should not have any influence
on the result of multiple inheritance. Whether or not this is true is, of course, dependent on
our formalization of multiple inheritance. Therefore, let us investigate whether the notion of
conclusion set defined in the foregoing renders a suitable means for dealing with exceptions.
We do so by means of an example.

EXAMPLE 4.44

Consider figure 4.16 once more. Figure 4.17 shows the taxonomy from figure 4.16 after
removal of the seemingly redundant arc. Now, suppose that the following attribute-value
specifications are given:

oxygen-poor-artery[blood = oxygen-poor]
artery[blood = oxygen-rich]

Furthermore, suppose that no attribute-value specifications have been given for pulmonary-
artery. In the taxonomy shown in figure 4.17, the frame pulmonary-artery inherits only
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pulmonary-
artery

oxygen-poor-
artery

artery

blood-vessel

Figure 4.17: The taxonomy after removal of the redundant arc.

the value oxygen-poor for the attribute blood; note that this is a consequence of the
way exceptions are handled in tree-like taxonomies. However, in figure 4.16 the frame
pulmonary-artery inherits both values oxygen-poor and oxygen-rich for the attribute
blood, leading to an inconsistent conclusion set. The conclusion set of the taxonomy in
figure 4.16 therefore differs from the one obtained for the taxonomy shown in figure 4.17,
using the algorithm for single inheritance with exceptions discussed in Section 4.2.2 in
the last case.

It turns out that a conclusion set only reveals the presence of exceptions in a taxonomy.
We shall see that the notion of an intermediary is more useful in dealing with exceptions in
multiple inheritance. In figure 4.16 we have that the class oxygen-poor-artery lies in between
the classes pulmonary-artery and artery, and is an intermediary to the inheritance chains in
which the class pulmonary-artery and either or both the classes artery and oxygen-poor-artery
occur. As we have suggested before, by means of intermediaries some of the inheritance chains
may be cancelled rendering a different set of conclusions of the taxonomy. Such cancellation
of inheritance chains is called preclusion and is defined more formally below.

Definition 4.18 Let T = (N,Θ,≪,≤) be a taxonomy where N = (I,K,A,C). Let ΩT be
the set of inheritance chains in T . A chain y1 ≤ . . . ≤ yn[a = c1] ∈ ΩT , where n ≥ 1, is said
to preclude a chain y1 ≤ . . . ≤ ym[a = c2] ∈ ΩT , where m ≥ 1, m 6= n, and c1, c2 ∈ C with
c1 6= c2, if yn is an intermediary to y1 ≤ . . . ≤ ym.

EXAMPLE 4.45

Consider the set ΩT of inheritance chains consisting of the following elements:

ω1: pulmonary-artery ≤ oxygen-poor-artery
ω2: pulmonary-artery ≤ artery
ω3: pulmonary-artery ≤ oxygen-poor-artery ≤ artery
ω4: pulmonary-artery ≤ oxygen-poor-artery[blood = oxygen-poor]
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x

y1

y2

y3

[a1 = c1]

[a2 = c2]

[a3 = c4]

[a3 = c3]

Figure 4.18: A taxonomy having a consistent inheritable conclusion set.

ω5: pulmonary-artery ≤ artery[blood = oxygen-rich]
ω6: pulmonary-artery ≤ oxygen-poor-artery ≤ artery[blood = oxygen-rich]

The reader can easily verify that the inheritance chain ω4 precludes both chains ω5 and
ω6 since oxygen-poor-artery is an intermediary to the chains ω2 and ω3.

The notion of preclusion is used for introducing a new type of conclusion set of a set of
inheritance chains.

Definition 4.19 Let T = (N,Θ,≪,≤) be a taxonomy. Let ΩT be the set of inheritance
chains in T . An inheritance chain ω ∈ ΩT is said to be inheritable if there exists no other
inheritance chain ω′ ∈ ΩT which precludes ω. The set of conclusions of all inheritable chains
ω ∈ ΩT is called the inheritable conclusion set of ΩT and is denoted by H(ΩT ).

From now on we take the notions of consistency and inconsistency defined for a conclusion
set to apply to inheritable conclusion sets as well. We give some (more abstract) examples.

EXAMPLE 4.46

Consider the taxonomy T = (N,Θ,≪,≤) where I = {x} is the set of instances and
K = {y1, y2, y3} is the set of classes; furthermore, Θ is defined by

Θ = {x[a1 = c1], y1[a2 = c2], y2[a3 = c3], y3[a3 = c4]}

Herein a1, a2, and a3 are distinct attribute names and c1, c2, c3, and c4 are different
constants. In addition, the relation ≤ is defined by y1 ≤ y2, y1 ≤ y3 and y2 ≤ y3; the
function ≪ is defined by x≪ y1. This taxonomy is depicted in figure 4.18. The set of
inheritance chains ΩT consists of the following elements:

1. y1

2. y2

3. y3

4. y1[a2 = c2]
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5. y2[a3 = c3]

6. y3[a3 = c4]

7. y1 ≤ y2

8. y1 ≤ y3

9. y2 ≤ y3

10. y1 ≤ y2 ≤ y3

11. y1 ≤ y2[a3 = c3]

12. y1 ≤ y3[a3 = c4]

13. y2 ≤ y3[a3 = c4]

14. y1 ≤ y2 ≤ y3[a3 = c4]

The conclusion set of ΩT is equal to C(ΩT ) = {y1[a2 = c2], y1[a3 = c3], y1[a3 =
c4], y2[a3 = c3], y2[a3 = c4], y3[a3 = c4]}. Note that C(ΩT ) is inconsistent.

Consider the set ΩT once more. We investigate which attribute-value specifications are
in the inheritable conclusion set. As stated in the previous definition, an inheritance
chain ω ∈ ΩT is inheritable if it is not precluded by any other chain from ΩT . Since
only a chain ending in an attribute-value specification can be precluded by another
chain also ending in an attribute-value specification, examination of chains of such a
form will suffice. So, we consider the following inheritance chains:

4. y1[a2 = c2]

5. y2[a3 = c3]

6. y3[a3 = c4]

11. y1 ≤ y2[a3 = c3]

12. y1 ≤ y3[a3 = c4]

13. y2 ≤ y3[a3 = c4]

14. y1 ≤ y2 ≤ y3[a3 = c4]

Chain 12 is precluded by chain 11 because y2 is an intermediary to y1 ≤ y3. Furthermore,
inheritance chain 13 is precluded by 5. The reader may verify that chain 14 is precluded
by 11. The inheritable conclusion set H(ΩT ) of ΩT therefore is equal to H(ΩT ) =
{y1[a2 = c2], y1[a3 = c3], y2[a3 = c3], y3[a3 = c4]}. We conclude that the inheritable
conclusion set is consistent.

In the next example, it will be shown that even if we apply preclusion it still is possible to
obtain an inheritable conclusion set specifying contradictory information.

EXAMPLE 4.47

Consider the taxonomy T = (N,Θ,≪,≤) where the set I is empty, and K = {y1, y2, y3, y4}.
The attribute-value relation Θ is defined by Θ = {y2[a = c1], y3[a = c2]} where a is an
attribute, and c1 and c2 are distinct constants. Furthermore, the relation ≤ is defined
by the following elements:
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y1

y2 y3

y4

[a = c1] [a = c2]

Figure 4.19: A taxonomy having an inconsistent inheritable conclusion set.

y1 ≤ y2

y1 ≤ y3

y2 ≤ y4

y3 ≤ y4

This taxonomy is depicted graphically in figure 4.19. The inheritable conclusion set of
the set of inheritance chains in this taxonomy is equal to H(ΩT ) = {y1[a = c1], y1[a =
c2], y2[a = c1], y3[a = c2]}. Note that H(ΩT ) is inconsistent.

From the foregoing example we have that the application of multiple inheritance using preclu-
sion may still lead to the derivation of contradictory information. From now on, such a
taxonomy will be called inconsistent.

Definition 4.20 Let T = (N,Θ,≪,≤) be a taxonomy, and let ΩT be the set of inheritance
chains in T . Furthermore, let H(ΩT ) be the inheritable conclusion set obtained from ΩT .
The taxonomy T is said to be consistent if H(ΩT ) is consistent; otherwise T is said to be
inconsistent.

We conclude this section by introducing the refined notion of an inheritable extension of a
set of inheritance chains.

Definition 4.21 Let T = (N,Θ,≪,≤) be a taxonomy. Let ΩT be the set of inheritance
chains in T and let H(ΩT ) be the inheritable conclusion set of ΩT . For each instance frame
x ∈ I, the set eH(x) is defined by eH(x) = {x[a = c] | x[a = c] ∈ Θ} ∪ {x[a = c] | x ≪
y, y ∈ K, y[a = c] ∈ H(ΩT ) and for all c 6= d, x[a = d] 6∈ Θ} if H(ΩT ) is consistent; eH(x) is
undefined otherwise. The inheritable extension of ΩT , denoted by EH(ΩT ), is defined by

EH(ΩT ) =
⋃

x∈I

eH(x)

if H(ΩT ) is consistent; EH(ΩT ) is undefined otherwise.

EXAMPLE 4.48

Consider the taxonomy T from the second last example once more. The inheritable
extension of ΩT equals EH(ΩT ) = {x[a1 = c1], x[a2 = c2], x[a3 = c3]}.
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4.3.3 Subtyping in graph-shaped taxonomies

In Section 4.2.7 we have discussed the subject of subtyping in tree-shaped frame taxonomies.
In the present section, we extend the theory developed in that section to graph-shaped tax-
onomies. Recall that the subtype relation ≤ defines a partial order on a set of types. Before
we treat subtyping in graph-shaped taxonomies in more detail, we review some properties of
partially ordered sets.

Definition 4.22 Let S = {t1, t2, . . . , tn}, n ≥ 1, be a set on which we have a partial order
≤. An upper bound to a subset X ⊆ S is an element v ∈ S such that for each x ∈ X we
have that x ≤ v; the least upper bound to X is an upper bound u for which we have that u
≤ v for each upper bound v to X. Similarly, a lower bound to a subset X ⊆ S is an element
m ∈ S such that for each x ∈ X we have that m ≤ x; the greatest lower bound to X is a
lower bound l for which we have that m ≤ l for each lower bound m to X.

There may be more than one lower or upper bound to a subset of a partially ordered set, or
even none at all. However, if lower and upper bounds do exist, then the least upper bound
and the greatest lower bound are unique.

EXAMPLE 4.49

Consider the following set S = {{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {2, 3}, {2, 3, 4}} having
elements which again are sets; on S we have the partial order induced by the set inclusion
relation between its elements. We consider the subset X = {{1, 2, 3}, {1, 2, 3, 4}} of S.
It will be evident that we have the following lower bounds to X: {1}, {1, 2}, {1, 2, 3}
and {2, 3}, since these sets are subsets of all elements of X. The greatest lower bound
is equal to {1, 2, 3}: every other lower bound is a subset of this lower bound. In this
example, we only have one upper bound, namely the set 1,2,3,4: each element of X is
a subset of this upper bound. Note that this upper bound therefore at the same time
is the least upper bound to X.

In Section 4.2.7 we have seen that type information in a correctly typed tree-shaped taxonomy
may be considered to be a set of types which is ordered partially by the subtype relation
≤. For correctly typed graph-shaped taxonomies an even stronger property holds: in such
taxonomies, the type information constitutes a so-called type lattice.

Definition 4.23 A type lattice S is a set of types with a partial order ≤ such that for every
two types t1, t2 ∈ S there exist in S a least upper bound and a greatest lower bound. The
greatest lower bound of t1 and t2 is denoted by t1 ∧ t2 and is usually called the meet of t1 and
t2. Furthermore, the least upper bound of t1 and t2 is denoted by t1 ∨ t2 and is usually called
the join of t1 and t2. The universal lower bound of S, denoted by ⊤, is an element of S such
that for each type t ∈ S we have that t ≤ ⊤. The universal lower bound of S, denoted by ⊥,
is an element of S such that for each type t ∈ S we have that ⊥ ≤ t.

We shall see that for assigning a suitable meaning to type information, the types in a graph-
shaped taxonomy should constitute a type lattice. First, we give an example of a type lattice.

EXAMPLE 4.50
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Consider the graphical representation of a type lattice shown in Figure 4.20. This type
lattice contains the type vessel having the type blood-vessel as a specialization. The
blood-vessel type itself is considered to be subdivided into the types vein and artery. The
type lattice furthermore specifies a kind of blood vessel, called AV-anastomosis, being
a subtype of both the vein and artery type. Furthermore, the type lattice contains
the type blood which describes the characteristics of blood. Two kinds of blood are
distinguished: oxygen-rich blood and oxygen-poor blood having different characteristics
(think for example of the range of the typical oxygen pressure in oxygen-rich and oxygen-
poor blood, and of the colour of the blood which is typically darker in oxygen-poor than
in oxygen-rich blood). The type mixed-blood describes blood having characteristics
lying in between those of oxygen-poor and oxygen-rich blood. Now, note that from
the type lattice we have vein ∨ artery = blood-vessel, in other words, the type blood-
vessel is the meet of the types vein and artery. Note that the type vessel is an upper
bound for the vein and artery types, but not the least one. Furthermore, the join
of the types vein and artery is equal to the type AV-anastomosis, that is, we have
vein ∧ artery = AV-anastomosis.

Now recall from Section 4.2.7 that in a correctly typed tree-shaped taxonomy, the relation
defined by the superclass links in the taxonomy coincides with the partial order ≤ on the set of
types specified by it. Similarly, we have that we may view a graph-shaped taxonomy as a type
lattice (including the predefined classes), and vice versa. Furthermore, recall the definitions
of the notions of attribute sequence, domain, and type function, presented in Section 4.2.7.
Informally speaking, we now take these notions to apply to graph-shaped taxonomies.

In Section 4.2.7 we interpreted types as sets. Here, we do so likewise: consider two
types t1 and t2. We associated with these types the set I(t1) and I(t2), respectively, where
I(ti) ⊆ U , i = 1, 2, for some domain of discourse U . As we have mentioned before, in a
graph-shaped frame taxonomy having the form of a lattice there exists a meet and a join
for every pair of types. The set associated with the meet t1 ∧ t2 now has to satisfy the
property I(t1 ∧ t2) = I(t1) ∩ I(t2); the set associated with the join t1 ∨ t2 has to satisfy
I(t1 ∨ t2) = I(t1) ∪ I(t2). We conclude this section with an example giving a sketch of sub-
typing in a graph-shaped taxonomy.

EXAMPLE 4.51

Consider the type lattice from Figure 4.20 once more; we look upon it as a taxonomy.
Suppose that the class frames blood-vessel, vein, artery and AV-anastomosis all con-
tain an attribute-type specification concerning an attribute named contains, in which
the specified type is one of the classes blood, oxygen-rich-blood, oxygen-poor-blood, and
mixed-blood :

claiss blood-vessel is
superclass vessel ;
contains : blood

end

class vein is
superclass blood-vessel ;
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⊤
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Figure 4.20: A type lattice.
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contains : oxygen-poor-blood
end

class artery is
superclass blood-vessel ;
contains : oxygen-rich-blood

end

class AV-anastomosis is
superclass {artery,vein};
contains : mixed-blood

end

Furthermore, the classes blood, oxygen-rich-blood, oxygen-poor-blood and mixed-blood
specify a single attribute named colour :

class blood is
superclass nil;
colour : {blue, dark-red, red, bright-red}

end

class oxygen-rich-blood is
superclass blood ;
colour : {dark-red, red, bright-red}

end

class oxygen-poor-blood is
superclass blood ;
colour : {blue, dark-red, red}

end

class mixed-blood is
superclass {oxygen-rich-blood,oxygen-poor-blood};
colour : {dark-red, red}

end

In the present example, the set of attributes A in the frame taxonomy is equal to A =
{contains, colour}. Let A∗ be the set of attribute sequences. We now have eight domains
to consider; they are denoted by D1 up to D8 for the classes in the order shown above.
The domains for the first four classes are all equal to {ǫ, contains, contains : colour}. The
domains D5 to D8 for the classes starting with the class blood are equal to {ǫ, colour}.
The reader can easily verify that the properties required for these domains for subtyping
hold. For simplicity’s sake we now only consider the type functions associated with the
first four classes. The type functions associated with the classes blood-vessel, vein,
artery, AV-anastomosis are denoted by τ1 up to τ4, respectively. Recall from Section
4.2.7 that we have to verify that for all a ∈ A∗ we have:

τ2(a) ≤ τ1(a)
τ3(a) ≤ τ1(a)
τ4(a) ≤ τ2(a)
τ4(a) ≤ τ3(a)
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We only discuss some of these properties in detail. We start by noting that the type
for the attribute contains in the class blood-vessel equals the join of the types oxygen-
rich-blood and oxygen-rich-blood given for the classes artery and vein, respectively.
Furthermore, the meet of the types oxygen-poor-blood and oxygen-rich-blood for the
attribute contains in the classes vein and artery respectively is equal to mixed-blood. It
will be evident that we have the following properties:

τ3(contains) ≤ τ1(contains)
τ2(contains) ≤ τ1(contains)
τ4(contains) ≤ τ3(contains)
τ4(contains) ≤ τ2(contains)

Furthermore, note that we not only have that blood-vessel = vein∨ artery, but in addi-
tion that τ1(contains) = τ2(contains) ∨ τ3(contains), since blood = oxygen-poor-blood ∨
oxygen-rich-blood that is: the subtyping of classes is extended from the classes to the at-
tributes of the classes. Similarly, we have that τ4(contains) = τ2(contains)∧τ3(contains).
Furthermore, we have that

τ4(contains : colour) ≤ τ3(contains : colour
τ4(contains : colour) ≤ τ2(contains : colour)
τ4(contains : colour) = τ2(contains : colour) ∧ τ3(contains : colour)

Checking the remaining properties is rather straightforward and is left to the reader.
We conclude that the shown taxonomy is correctly typed.

4.4 Frames as a representation formalism

Frames (and semantic nets) provide a knowledge-representation formalism in which hierarchi-
cally structured knowledge can be specified in a natural way. Especially for the representation
of knowledge of a descriptive nature, such as the knowledge concerning the cardiovascular sys-
tem used in the examples in this chapter, the frame formalism appears to be highly suitable.
The advantage of frames when compared to for example Horn clauses or production rules lies
in the ease with which distinct types of knowledge can be distinguished and handled as such,
and in the fact that an explicit hierarchical organization of knowledge is obtained.

In this chapter the only means of knowledge manipulation discussed was the method
of inheritance. We stress once more that this knowledge-manipulation scheme in itself is
not sufficient as an inference engine for all applications: is often turns out to be necessary to
develop a more elaborate inference engine for the manipulation of frames in which inheritance
only is part of a set of knowledge-manipulation methods. In Chapter 7 we shall discuss some
examples of such inference engines. For many non-trivial applications it will be necessary to
use a enriched frame formalism, for example by procedural components. We have suggested
before that an often employed hybrid knowledge-representation scheme is that of frames
containing demons for invoking small sets of production rules. Instead of integrating frames
with production rules, one could also think of a more declarative extension to the frame
formalism for example by Horn clauses in combination with SLD resolution. This way a
hybrid system is obtained that still has a clear declarative semantics. Most present-day frame-
based systems are more alike programming languages than alike languages for knowledge-
representation. A major disadvantage of many of these systems is the loss of a neat declarative
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semantics. Furthermore, working with these systems often requires a lot from the knowledge
engineer such as a store of programming tricks.

Suggested reading

For the work of C.S. Peirce the reader is referred to [Burk60]. The original paper in which
the notion of a semantic net was introduced is [Quillian68]. The views of O. Selz on human
problem solving are presented in [Selz22]. [Sowa84] is an interesting book on using graph-
like structures for representing knowledge. The book also contains an excellent summary of
philosophical, linguistic, and psychological views on human cognition. [Brachman83] offers
an extensive discussion of the is-a link and its possible meaning. [Findler79] describes various
extensions to the original semantic net idea. KL-ONE is one of several systems in which
the notion of a semantic net is further elaborated [Brachman85b]; KL-ONE incorporates a
number of ideas which were not part of the original formalism. In [Deliyanni79] the extended
semantic net is treated.

Frames were introduced in [Minsky75]. [Fikes85] gives an introduction to frame-based
systems using the programming environment KEE as an example. Two other well-known
frame-based systems, CENTAUR and LOOPS, will be discussed in Chapter 7.

Non-monotonic logic is discussed in the paper [McDermott80] and [McDermott82a]. A
clear paper on default logic is [Reiter80]. [Touretzky86] and [Froidevaux88] give a math-
ematical treatment of inheritance with exceptions. We note that our approach to handling
exceptions in frame taxonomies is only one of many possible varieties. [Touretzky87] discusses
various other views on inheritance and exceptions in semantic nets. [Lucas89a] gives a more
elaborate mathematical treatment of multiple inheritance with exceptions in frame systems
than the present book; the report also discusses various algorithms for multiple inheritance.
Our approach to subtyping has been based on [Aı̈t-Kaci86], which discusses an interesting
algorithm for multiple inheritance for a typed PROLOG-like language, incorporated into the
unification algorithm.

Exercises

(4.1) Use the semantic net formalism to represent information concerning a problem domain
you are familiar with. Try to define a neat semantics for the types of links you have
used. What information can you derive from the net by property inheritance?

(4.2) Write a program that implements property inheritance in semantic nets. The program
should be able to find for a specific object all properties that can be derived for it.

(4.3) Consider the following three frames:

class computer-program is
superclass nil

end

class expert-system is
superclass computer-program;
synonym = knowledge-system;

contains = expert-knowledge
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end

instance MYCIN is
instance-of expert-system;
implementer = Shortliffe

end

(a) Translate the knowledge specified in the three frames shown above into standard
first-order logic with equality.

(b) Suppose that the following frame

instance Internist-I is
instance-of expert-system;
contains = medical-knowledge;

implementer = Pople
end

is added to the three frames given above. Discuss the problem that arises if we
translate this frame together with the three frames shown above into standard
first-order predicate logic with equality. Give a possible solution to the problem.

(4.4) Consider the following two frames:

class automobile is
superclass nil;
wheels = 4;
seats = 4

end

instance Rolls-Royce is
instance-of automobile;

max -velocity = enough
end

Translate the knowledge specified in these two frames into a semantic net representation.

(4.5) Consider the algorithm for single inheritance with exceptions in a tree-shaped taxonomy
discussed in Section 4.2.2 once more. Extend this algorithm in a straightforward manner
to render it applicable to graph-shaped taxonomies. Show by means of an example that
your algorithm may produce results that are incorrect from a semantic point of view.

(4.6) Develop an algorithm for N -inheritance and implement your algorithm in a program-
ming language (for example Prolog, Lisp or Haskell).

(4.7) Try to represent a problem domain you are familiar with using the frame formalism
introduced in Section 4.2.5. Experiment with the PROLOG program for Z-inheritance
discussed in Section 4.2.6 and the LISP or PROLOG program for N -inheritance devel-
oped in the preceding exercise, and study their difference in behaviour.

(4.8) Develop a LISP or PROLOG program for determining whether or not a given tree-
shaped taxonomy is correctly typed.
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(4.9) Extend the LISP program discussed in Section 4.2.4 in such a way that it offers an
interface to the SLD resolution program discussed in the Sections 2.8 and 2.9. The
resulting program should be able to handle a demon call to the SLD resolution program,
by taking a demon call as a goal clause.

(4.10) Consider the following frame taxonomy T = (N,Θ,≪,≤) where N = (I,K,A,C) We
have that K = {x, y, z} is the set of classes, I = {w} is the set of instances and
Θ = {x[a = 1], y[b = 2], z[b = 4]} is the set of attribute-value specifications. The
relation ≤ and the function ≪ are defined by:

x ≤ y
z ≤ x
z ≤ y
w ≪ z

First, determine the set ΩT of inheritance chains in T . Subsequently, compute the
conclusion set and inheritable conclusion set of ΩT . Is the taxonomy T consistent? If
so, what is the inheritable extension of ΩT ?

(4.11) Consider the following taxonomy T = (N,Θ,≪,≤) where N = (I,K,A,C). We have
that K = {u, x, y, z} is the set of classes, I = {w} is the set of instances and Θ = {u[a =
1], x[b = 2], y[c = 10], z[c = 20]}. The relation ≤ and the function ≪ are defined as
follows:

x ≤ y
y ≤ z
u ≤ x
u ≤ y
w ≪ u

Answer the same questions as in Exercise 4.10.

(4.12) Read [Touretzky87] which discusses several possible intuitions underlying the definition
of multiple inheritance with exceptions. Explain which view on inheritance appeals to
you most.

(4.13) Study Example 4.51. Specify the type function associated with the classes blood, oxygen-
rich-blood, oxygen-poor-blood and mixed-blood. Check that the properties of these func-
tions for subtyping are satisfied.
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Chapter 5

Reasoning with Uncertainty

5.1 Production rules, inference 5.5 The certainty factor model in
and uncertainty PROLOG

5.2 Probability theory 5.6 The Dempster-Shafer theory
5.3 The subjective Bayesian 5.7 Network models

method Suggested reading
5.4 The certainty factor model Exercises

In the early 1960s, researchers in applied logic assumed that theorem provers were powerful
and general enough to solve practical, real-life problems. In particular, the introduction of
the resolution principle by J.A. Robinson led to this conviction. By and by however it
became apparent that the appropriateness of mathematical logic for solving practical
problems was highly overrated. One of the complications with real-life situations is that the
facts and experience necessary for solving the problems often are typified by a degree of
uncertainty; moreover, often the available information is imprecise and insufficient for
solving the problems. Yet human experts are able to form judgements and take decisions
from uncertain, incomplete and contradictory information. To be useful in an environment
in which only such imprecise knowledge is available, an expert system has to capture and
exploit not only the highly specialized expert knowledge, but the uncertainties that go with
the represented pieces of information as well. This observation has led to the introduction of
models for handling uncertain information in expert systems. Research into the
representation and manipulation of uncertainty has grown into a major research area called
inexact reasoning or plausible reasoning.

Probability theory is one of the oldest mathematical theories concerning uncertainty, so
it is no wonder that in the early 1970s this formal theory was chosen as the first point of
departure for the development of models for handling uncertain information in rule-based
expert systems. It was soon discovered that this theory could not be applied in such a
context in a straightforward manner; in Section 5.2 we shall discuss some of the problems
encountered in a straightforward application of probability theory. Research then centred
for a short period of time around the development of modifications of probability theory
that should overcome the problems encountered and that could be applied efficiently in a
rule-based environment. Several models were proposed, but neither of these presented a
mathematically well-founded solution to these problems. This observation explains why we

207
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use the phrase quasi-probabilistic models to denote all models developed in the 1970s for
rule-based systems. In this chapter, two quasi-probabilistic models will be discussed in some
detail:

• the subjective Bayesian method, which was developed for application in the expert
system PROSPECTOR;

• the certainty factor model which was designed by E.H. Shortliffe and B.G. Buchanan
for the purpose of dealing with uncertain information in MYCIN.

The treatment of these models will not only comprise a discussion of their basic notions but
will also include an outline of their application in a rule-based expert system. In preparation
for this, Section 5.1 shows which components should be present in a model for handling
uncertainty in such an expert system.

The incorrectness of the quasi-probabilistic models from a mathematical point of view
and an analysis of the problems the researchers were confronted with, led to a world-wide
discussion concerning the appropriateness of probability theory for handling uncertain
information in a knowledge-based context. This discussion has on the one hand yielded
other points of departure, that is, other (more or less) mathematical foundations for models
for handling uncertainty, and on the other hand new, less naive applications of probability
theory. In Section 5.6 we shall present an introduction to the Dempster-Shafer theory, a
theory which has largely been inspired by probability theory and may be considered to be
an extension of it. We conclude this chapter with a discussion of two so-called network
models which have resulted from a more recent probabilistic trend in plausible reasoning in
which graphical representations of problem domains are employed.

5.1 Production rules, inference and uncertainty

In Chapter 3 we have seen that in a rule-based expert system the specialized domain knowledge
an expert has, is modelled in production rules having the following form:

if e then h fi

The left-hand side e of such a rule is a combination of atomic conditions which are interrelated
by means of the operators and and or. In the sequel such a combination of conditions will
be called a (piece of ) evidence. The right-hand side h of a production rule in general is
a conjunction of conclusions. In this chapter we assume production rules to have just one
conclusion. Notice that this restriction is not an essential one from a logical point of view.
Henceforth, an atomic conclusion will be called a hypothesis. Furthermore, we will abstract
from actions and predicates, and from variables and values, or objects, attributes, and values:
conditions and conclusions will be taken to be indivisible primitives. A production rule now
has the following meaning: if evidence e has been observed, then the hypothesis h is confirmed
as being true.

In this Section we depart from top-down inference as the method for applying production
rules, and from backward chaining as described in Chapter 3, more in specific. The application
of production rules as it takes place in top-down inference, may be represented graphically in
a so-called inference network. We introduce the notion of an inference network by means of
an example.

EXAMPLE 5.1
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Consider the following production rules:

R1: if a and (b or c) then h fi
R2: if d and f then b fi
R3: if f or g then h fi
R4: if a then d fi

In the following, the goal for consulting a specific rule base will be called the goal
hypothesis. We suppose that h is the goal hypothesis for consulting the set of production
rules shown above. The first production rules that are selected for evaluation, are the
rules R1 and R3. Of these, rule R1 is evaluated first. The piece of evidence a mentioned
in the left-hand side of the rule now becomes the current goal hypothesis. Since none of
the production rules concludes on a, the user is requested to supply further information
on a. We assume that the user confirms a being true. Subsequently, b becomes the new
goal hypothesis. Since rule R2 concludes on the hypothesis b, this rule is now selected
for evaluation. The first piece of evidence mentioned in rule R2 is d; the truth of d will
be derived from rule R4. The success of rule R4 is depicted as follows:

a d

In the evaluation of rule R2 it remains to be examined whether or not the piece of
evidence f has been observed. We assume that upon a request for further information,
the user confirms the truth of f . So, rule R2 succeeds; the success of rule R2 is shown
in the following figure:

d

f

b

Success of rule R3 is depicted as follows:

f

g

h

The three figures shown above are the basic building blocks for constructing an inference
network from a given set of production rules and a given goal hypothesis. The inference
network resulting from a consultation of the four production rules of this example with
h as the goal hypothesis is shown in Figure 5.1.
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d

f

g

b

c

a

h

Figure 5.1: An inference network.

Up to now a production rule if e then h fi has been interpreted as stating: if evidence e
has been observed, then the hypothesis h is confirmed as being true. In practice, however,
a hypothesis seldom is confirmed to absolute certainty by the observation of a certain piece
of evidence. Therefore, the notion of a production rule is extended by allowing for a mea-
sure of uncertainty : with the hypothesis h of the production rule if e then h fi a measure of
uncertainty is associated indicating the degree to which h is confirmed by the observation of e.

EXAMPLE 5.2

The measure of uncertainty x being associated with the hypothesis h in the rule

if e1 and e2 then h fi

is denoted as follows:

if e1 and e2 then hx fi

In an inference network an associated measure of uncertainty is shown next to the arrow
in the graphical representation of the rule. So, success of the production rule shown
above is represented in an inference network as follows:

e1

e2

h
x

A model for handling uncertain information therefore provides an expert with a means for
representing the uncertainties that go with the pieces of information he has specified; so, the
model provides a means for knowledge representation.
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The purpose of employing a model for dealing with uncertain information is to associate
a measure of uncertainty with each conclusion the system arrives at. Such a measure of
uncertainty is dependent upon the measures of uncertainty associated with the conclusions
of the production rules used in deriving the final conclusion, and the measures of uncertainty
the user has specified with the information he has supplied to the system. For this purpose,
a model for handling uncertainty provides a means for reasoning with uncertainty, that is, it
provides an inference method. Such an inference method consists of several components:

• Because of the way production rules of the form if e then hy fi are applied during a
top-down inference process, the truth of the evidence e (that is, whether or not e has
actually been observed) can not always be established with absolute certainty: e may
itself have been confirmed to some degree by the application of other production rules.
In this case, e acts as an intermediate hypothesis that in turn is used as evidence for
the confirmation of another hypothesis. The inference network shown below depicts the
situation where the hypothesis e has been confirmed to the degree x on account of some
prior evidence e′:

e′ e h
x y

Note that the left half of this figure shows a compressed inference network whereas the
right half represents a single production rule. We recall that the measure of uncertainty
y associated with the hypothesis h in the rule if e then hy fi indicates the degree to
which h is confirmed by the actual observation, that is, the absolute truth of e. It will
be evident that in the situation shown above, we cannot simply associate the measure of
uncertainty y with the hypothesis h. The actual measure of uncertainty to be associated
with h depends upon y as well as on x, the measure of uncertainty associated with the
evidence e used in confirming h: the uncertainty of e has to be propagated to h. A
model for handling uncertainty provides a function for computing the actual measure of
uncertainty to be associated with h on account of all prior evidence. In the sequel, such
a function will be called the combination function for (propagating) uncertain evidence;
the function will be denoted by fprop. The inference network shown above can now be
compressed to:

e′ h
fprop(x, y)

where e′ denotes all prior evidence (now including e).

• The evidence e in a production rule if e then hz fi in general is a combination of
atomic conditions which are interrelated by means of the operators and and or. For
instance, the production rule may have the form if e1 and e2 then hz fi as depicted
in the inference network below. Each of the constituent pieces of evidence of e may
have been derived with an associated measure of uncertainty. The inference network,
for example, shows that e1 and e2 are confirmed to the degrees x and y, respectively,
on account of the prior evidence e′:
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e1

e2

e′

e′

x

y

h
z

To be able to apply the combination function for propagating uncertain evidence, a
measure of uncertainty for e has to be computed from the measures of uncertainty that
have been associated separately with the constituent pieces of evidence of e. For this
purpose, a model for handling uncertainty provides two functions which will be called
the combination functions for composite hypotheses; they will be denoted by fand and
for. The inference network shown above is now compressed to:

e′ e1 and e2
fand(x, y)

• The occurrence of different production rules if ei then h fi (that is, rules with different
left-hand sides ei) concluding on the same hypothesis h in the rule base, indicates
that the hypothesis h may be confirmed and/or disconfirmed along different lines of
reasoning. The following inference network, for example, shows the two production
rules if e1 then hx2

fi and if e2 then hy2
fi concluding on the hypothesis h, the first

of which uses the prior evidence e′1 in (dis)confirming h and the second of which uses
the prior evidence e′2:

e1

e2

h

x2

y2

e′1

e′2

x1

y1

The combination function for propagating uncertain evidence is applied to compute two
partial measures of uncertainty x and y for h such that:

e′1

e′2

h

x

y

The total or net measure of uncertainty to be associated with h depends upon the
partial measures of uncertainty that have been computed for h from the two different
lines of reasoning. A model for handling uncertain information therefore provides a
function for computing the net measure of uncertainty for h in the inference network
shown above. Such a function will be called the combination function for co-concluding
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production rules; it will be denoted by fco:

e′ = e′1 co e′2 h
fco(x, y)

To summarize, we have introduced four combination functions:

• the function for propagating uncertain evidence: fprop;

• the functions for composite hypotheses: fand and for;

• the function for co-concluding production rules: fco.

It will be evident that a model for handling uncertainty in a rule-based expert system has to
provide fill-ins for these combination functions.

5.2 Probability theory

Probability theory is one of the earliest methods for associating with a statement a measure
of uncertainty concerning its truth. In this section several notions from probability theory
are introduced briefly, before we discuss the problems one encounters in applying this theory
in a rule-based expert system in a straightforward manner.

5.2.1 The probability function

The notions that play a central role in probability theory have been developed for the descrip-
tion of experiments. In empirical research a more or less standard procedure is to repeatedly
perform a certain experiment under essentially the same conditions. Each performance yields
an outcome which cannot be predicted with certainty in advance. For many types of experi-
ments, however, one is able to describe the set of all possible outcomes. The nonempty set of
all possible outcomes of such an experiment is called its sample space; it is generally denoted
by Ω. In the sequel, we shall only be concerned with experiments having a countable sample
space.

EXAMPLE 5.3

Consider the experiment of throwing a die. The outcome of the experiment is the
number of spots up the die. The sample space of this experiment therefore consists of
six elements: Ω = {1, 2, 3, 4, 5, 6}

A subset e of the sample space Ω of a certain experiment is called an event. If upon perfor-
mance of the experiment the outcome is in e, then it is said that the event e has occurred. In
case the event e has not occurred, we use the notation ē, called the complement of e. Note
that we have ē = Ω \ e. The event that occurs if and only if both events e1 and e2 occur,
is called the intersection of e1 and e2, and will be denoted by e1 ∩ e2. The intersection of n
events ei will be denoted by

n
⋂

i=1

ei
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The event occurring if at least one of e1 and e2 occurs is called the union of e1 and e2, and
will be denoted by e1 ∪ e2. The union of n events ei will be denoted by

n
⋃

i=1

ei

EXAMPLE 5.4

Consider the experiment of throwing a die and its associated sample space Ω once more.
The subset e1 = {2, 4, 6} of Ω represents the event that an even number of spots has
come up the die. The subset e2 = ē1 = Ω \ e1 = {1, 3, 5} represents the event that an
odd number of spots has come up. The events e1 and e2 cannot occur simultaneously: if
event e1 occurs, that is, if an even number of spots has come up, then it is not possible
that in the same throw an odd number of spots has come up. So, the event e1∩e2 cannot
occur. Note that the event e1 ∪ e2 occurs in every performance of the experiment. The
subset e3 = {3, 6} represents the event that the number of spots that has come up is a
multiple of three. Note that the events e1 and e3 have occurred simultaneously in case
six spots are shown up the die: in that case the event e1 ∩ e3 has occurred.

Definition 5.1 The events e1, . . . , en ⊆ Ω, n ≥ 1, are called mutually exclusive or disjoint
events if ei ∩ ej = ∅, i 6= j, 1 ≤ i, j ≤ n.

We assume that an experiment yields an outcome independent of the outcomes of prior per-
formances of the experiment. Now suppose that a particular experiment has been performed
N times. If throughout these N performances an event e has occurred n times, the ratio n

N
is

called the relative frequency of the occurrence of event e in N performances of the experiment.
As N increases, the relative frequency of the occurrence of the event e tends to stabilize about
a certain value; this value is called the probability that the outcome of the experiment is in e,
or the probability of event e, for short.

In general, the notions of a probability and a probability function are defined axiomatically.

Definition 5.2 Let Ω be the sample space of an experiment. If a number P (e) is associated
with each subset e ⊆ Ω, such that

• P (e) ≥ 0,

• P (Ω) = 1, and

• P (
⋃n

i=1 ei) =
∑n

i=1 P (ei), if ei, i = 1, . . . , n, n ≥ 1, are mutually exclusive events,

then P is called a probability function on the sample space Ω. For each subset e ⊆ Ω, the
number P (e) is called the probability that event e will occur.

Note that a probability function P on a sample space Ω is a function P : 2Ω → [0, 1].

EXAMPLE 5.5

Consider the experiment of throwing a die once more, and its associated sample space
Ω = {1, 2, 3, 4, 5, 6}. The function P such that P ({1}) = P ({2}) = · · · = P ({6}) = 1

6
is a probability function on Ω. Since the sets {2}, {4}, and {6} are disjoint, we have
according to the third axiom of the preceding definition that P ({2, 4, 6}) = 1

2 : the
probability of an even number of spots coming up the die, equals 1

2 .
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THEOREM 5.1 Let Ω be the sample space of an experiment and P a probability function
on Ω. Then, for each event e ⊆ Ω, we have

P (ē) = 1− P (e)

Proof: We have Ω = e∪ ē. Furthermore, e∩ ē = ∅ holds since e and ē are mutually exclusive
events. From the axioms 2 and 3 of the preceding definition we have that P (Ω) = P (e∪ ē) =
P (e) + P (ē) = 1. ♦

5.2.2 Conditional probabilities and Bayes’ theorem

We consider the case in which probability theory is applied in a medical diagnostic expert
system. One would like to know for example the probability of the event that a specific patient
has a certain disease. For many diseases, the prior probability of the disease occurring in a
certain population is known. In the case of a specific patient, however, information concerning
the patient’s symptoms, medical history, etc. is available that might be useful in determining
the probability of the presence of the disease in this specific patient.

So, in some cases we are interested only in those outcomes which are in a given nonempty
subset e of the entire sample space which represents the pieces of evidence concerning the
final outcome that are known in advance. Let h be the event we are interested in, that is,
the hypothesis. Given that the evidence e has been observed, we now are interested in the
degree to which this information influences P (h), the prior probability of the hypothesis h.
The probability of h given e is defined in the following definition.

Definition 5.3 Let Ω be the sample space of a certain experiment and let P be a probability
function on Ω. For each h, e ⊆ Ω with P (e) > 0, the conditional probability of h given e,
denoted by P (h | e), is defined as

P (h | e) =
P (h ∩ e)

P (e)

A conditional probability P (h | e) often is called a posterior probability.
The conditional probabilities given a fixed event e ⊆ Ω with P (e) > 0, again define a

probability function on Ω since the three axioms of a probability function are satisfied:

• P (h | e) =
P (h ∩ e)

P (e)
≥ 0, since P (h ∩ e) ≥ 0 and P (e) > 0;

• P (Ω | e) =
P (Ω ∩ e)

P (e)
=

P (e)

P (e)
= 1;

• P (

n
⋃

i=1

hi | e) =
P ((
⋃n

i=1 hi) ∩ e)

P (e)
=

P (
⋃n

i=1(hi ∩ e))

P (e)
=

∑n
i=1 P (hi ∩ e)

P (e)
=

n
∑

i=1

P (hi ∩ e)

P (e)
=

n
∑

i=1

P (hi | e), for mutually exclusive events hi, i = 1, . . . , n, n ≥ 1.
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This probability function is called the conditional probability function given e.
In real-life practice, the probabilities P (h | e) cannot always be found in the literature or

obtained from statistical analysis. The conditional probabilities P (e | h), however, often are
easier to come by: in medical textbooks for example, a disease is described in terms of the
signs likely to be found in a typical patient suffering from the disease. The following theorem
now provides us with a method for computing the conditional probability P (h | e) from the
probabilities P (e), P (h), and P (e | h); the theorem may therefore be used to reverse the
‘direction’ of probabilities.

THEOREM 5.2 (Bayes’ theorem) Let P be a probability function on a sample space Ω. For
each h, e ⊆ Ω such that P (e) > 0 and P (h) > 0, we have:

P (h | e) =
P (e | h) · P (h)

P (e)

Proof: The conditional probability of h given e is defined as

P (h | e) =
P (h ∩ e)

P (e)

Furthermore, we have

P (e | h) =
P (e ∩ h)

P (h)

So,

P (e | h) · P (h) = P (h | e) · P (e) = P (h ∩ e)

The property stated in the theorem now follows from these observations. ♦

EXAMPLE 5.6

Consider the problem domain of medical diagnosis. Let h denote the hypothesis that
a patient is suffering from liver cirrhosis; furthermore, let e denote the evidence that
the patient has jaundice. In this case, the prior probability of liver cirrhosis, that
is, P (liver-cirrhosis), is known: it is the relative frequency of the disease in a par-
ticular population. If the prior probability of the occurrence of jaundice in the same
population, that is, P (jaundice), is likewise available and if the probability that a pa-
tient suffering from liver cirrhosis has jaundice, that is, the conditional probability
P (jaundice | liver-cirrhosis), is known, then we can compute the probability that a
patient showing signs of jaundice suffers from liver cirrhosis, that is, using Bayes’ theo-
rem we can compute the conditional probability P (liver-cirrhosis | jaundice). It will be
evident that the last-mentioned probability is of importance in medical diagnosis.

To conclude, we define the notions of independence and conditional independence. Intuitively
speaking, it seems natural to call an event h independent of an event e if P (h | e) = P (h):
the prior probability of event h is not influenced by the knowledge that event e has occurred.
However, this intuitive definition of the notion of independency is not symmetrical in h and
e; furthermore, the notion is defined this way only in case P (e) > 0. By using the definition
of conditional probability and by considering the case for n events, we come to the following
definition.
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Definition 5.4 The events e1, . . . , en ⊆ Ω are (mutually) independent if

P (ei1 ∩ · · · ∩ eik) = P (ei1) · · ·P (eik)

for each subset {i1, . . . , ik} ⊆ {1, . . . , n}, 1 ≤ k ≤ n, n ≥ 1. The events e1, . . . , en are
conditionally independent given an event h ⊆ Ω if

P (ei1 ∩ · · · ∩ eik | h) = P (ei1 | h) · · ·P (eik | h)

for each subset {i1, . . . , ik} ⊆ {1, . . . , n}.

Note that if the events h and e are independent and if P (e) > 0, we have that the earlier
mentioned, intuitively more appealing notion of independency

P (h | e) =
P (h ∩ e)

P (e)
=

P (h) · P (e)

P (e)
= P (h)

is satisfied.

5.2.3 Application in rule-based expert systems

We have mentioned before in our introduction that probability theory was chosen as the first
point of departure in the pioneering work on automated reasoning under uncertainty. During
the 1960s several research efforts on probabilistic reasoning were undertaken. The systems
constructed in this period of time were primarily for (medical) diagnosis. Although these
systems did not exhibit any intelligent reasoning behaviour, they may now be viewed as the
precursors of the diagnostic expert systems developed in the 1970s.

Let us take a closer look at the task of diagnosis. Let H = {h1, . . . , hn} be a set of n
possible hypotheses, and let E = {e1, . . . , em} be a set of pieces of evidence which may be
observed. For ease of exposition, we assume that each of the hypotheses is either true or false
for a given case; equally, we assume that each of the pieces of evidence is either true (that is,
it is actually observed in the given case) or false. The diagnostic task now is to find a set of
hypotheses h ⊆ H, called the (differential) diagnosis, which most likely accounts for the set
of observed evidence e ⊆ E. If we have observed a set of pieces of evidence e ⊆ E, then we
can simply compute the conditional probabilities P (h | e) for each subset h ⊆ H and select
the set h′ ⊆ H with the highest probability. We have mentioned before that since for real-
life applications, the conditional probabilities P (e | h) often are easier to come by than the
conditional probabilities P (h | e), generally Bayes’ theorem is used for computing P (h | e).
It will be evident that the task of diagnosis in this form is computationally complex: since
a diagnosis may comprise more than one hypothesis out of n possible ones, the number of
diagnoses to be investigated, that is, the number of probabilities to be computed, equals 2n.
A simplifying assumption generally made in the systems for probabilistic reasoning developed
in the 1960s, is that the hypotheses in H are mutually exclusive and collectively exhaustive.
With this assumption, we only have to consider the n singleton hypotheses hi ∈ H as separate
possible diagnoses. Bayes’ theorem can easily be reformulated to deal with this case.

THEOREM 5.3 (Bayes’ theorem) Let P be a probability function on a sample space Ω.
Let hi ⊆ Ω, i = 1, . . . , n, n ≥ 1, be mutually exclusive hypotheses with P (hi) > 0, such that
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⋃n
i=1 hi = Ω (that is, they are collectively exhaustive). Furthermore, let e ⊆ Ω such that

P (e) > 0. Then, the following property holds:

P (hi | e) =
P (e | hi) · P (hi)

∑n
j=1 P (e | hj) · P (hj)

Proof: Since h1, . . . , hn are mutually exclusive and collectively exhaustive, we have that P (e)
can be written as

P (e) = P ((

n
⋃

i=1

hi) ∩ e) = P (

n
⋃

i=1

(hi ∩ e)) =

n
∑

i=1

P (hi ∩ e) =

n
∑

i=1

P (e | hi) · P (hi)

Substitution of this result in the before-mentioned form of Bayes’ theorem yields the property
stated in the theorem. ♦

For a successful application of Bayes’ theorem in the form mentioned in the previous theorem,
several conditional and prior probabilities are required. For example, conditional probabilities
P (e | hi) for every combination of pieces of evidence e ⊆ E, have to be available; note
that in general, these conditional probabilities P (e | hi) cannot be computed from their
‘component’ conditional probabilities P (ej | hi), ej ∈ e. It will be evident that exponentially
many probabilities have to be known beforehand. Since it is hardly likely that for practical
applications all these probabilities can be obtained from for example statistical analysis, a
second simplifying assumption was generally made in the systems developed in the 1960s:
it was assumed that the pieces of evidence ej ∈ E are conditionally independent given any
hypothesis hi ∈ H. Under this assumption Bayes’ theorem reduces to the following form.

THEOREM 5.4 (Bayes’ theorem) Let P be a probability function on a sample space Ω. Let
hi ⊆ Ω, i = 1, . . . , n, n ≥ 1, be mutually exclusive and collectively exhaustive hypotheses as
in the previous theorem. Furthermore, let ej1 , . . . , ejk

⊆ Ω, 1 ≤ k ≤ m, m ≥ 1, be pieces
of evidence such that they are conditionally independent given any hypothesis hi. Then, the
following property holds:

P (hi | ej1 ∩ · · · ∩ ejk
) =

P (ej1 | hi) · · ·P (ejk
| hi) · P (hi)

∑n
i=1 P (ej1 | hi) · · ·P (ejk

| hi) · P (hi)

Proof: The theorem follows immediately from the preceding theorem and the definition of
conditional independence. ♦

It will be evident that with the two assumptions mentioned above only m · n conditional
probabilities and n− 1 prior probabilities suffice for a successful use of Bayes’ theorem.

The pioneering systems for probabilistic reasoning constructed in the 1960s which basically
employed the last-mentioned form of Bayes’ theorem, were rather small-scaled: they were
devised for clear-cut problem domains with only a small number of hypotheses and restricted
evidence. For these small systems, all probabilities necessary for applying Bayes’ theorem
were acquired from a statistical analysis of the data of several hundred sample cases. Now
recall that in deriving the last-mentioned form of Bayes’ theorem several assumptions were
made:

• the hypotheses h1, . . . , hn, n ≥ 1, are mutually exclusive;
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• the hypotheses h1, . . . , hn furthermore are collectively exhaustive, that is,

n
⋃

i=1

hi = Ω;

• the pieces of evidence e1, . . . , em, m ≥ 1, are conditionally independent given any hy-
pothesis hi, 1 ≤ i ≤ n.

These conditions, which have to be satisfied for a correct use of Bayes’ theorem, generally
are not met in practice. But, in spite of these (over-)simplifying assumptions underlying
the systems from the 1960s, they performed considerably well. Nevertheless, interest in this
approach to reasoning with uncertainty faded in the early 1970s. One of the reasons for this
decline in interest is that the method informally sketched in the foregoing is feasible only
for highly restricted problem domains: for larger domains or domains in which the above-
mentioned simplifying assumptions are seriously violated, the method inevitably will become
demanding, either computationally or from the point of view of obtaining the necessary
probabilities: often a large number of conditional and prior probabilities is needed, thus
requiring enormous amounts of experimental data.

At this stage, the first diagnostic rule-based expert systems began to emerge from the
early artificial intelligence research efforts. As a consequence of their ability to concentrate
only on those hypotheses which are suggested by the evidence, these systems in principle were
capable of dealing with larger and complexer problem domains than the early probabilistic
systems were. At least, they were so from a computational point of view: the problem that
a large number of probabilities was required still remained. In many practical applications,
the experimental data necessary for computing all probabilities required simply were not
available. In devising a probabilistic reasoning component to be incorporated in a rule-based
system, the artificial intelligence researchers therefore had to depart from subjective probabil-
ities which had been assessed by human experts in the field. Human experts, however, often
are uncertain and uncomfortable about the probabilities they are providing. The difficulty
of assessing probabilities is well-known as a result of research on human decision making and
judgement under uncertainty. We do not discuss this issue any further; we merely depart
from the observation that domain experts generally are unable to fully and correctly specify a
probability function on the problem domain. In a rule-based context, an expert now typically
is asked to associate probabilities only with the production rules he has provided.

Recall that the production rule formalism is defined in terms of expressions more or less
resembling logical formulas, whereas the notion of a probability function has been related to
sets. Therefore, we have to have a mapping that transforms logical propositions into sets and
that preserves probability, for then we have that the probability of an event is equivalent to
the probability of the truth of the proposition asserting the occurrence of the event. A more
or less standard translation of sets into logical formulas is the following: if Ω is a sample space,
then we define for each event e ⊆ Ω a predicate e′ such that e′(x) = true if and only if x ∈ e.
The intersection of two events then corresponds with the conjunction of two corresponding
propositions; the union of two events translates into the disjunction of the corresponding
propositions.

With each production rule if e then h fi an expert now associates a conditional probabil-
ity P (h | e) indicating the influence of the observation of evidence e on the prior probability
P (h) of the hypothesis h:
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e h
P (h | e)

The last-mentioned form of Bayes’ theorem now provides us with a method for computing the
probability of a certain hypothesis when several pieces of evidence have been observed. Bayes’
theorem therefore can be taken as the combination function for co-concluding production rules
when probability theory is viewed as a method for handling uncertainty as discussed in Section
5.1. Consider the following inference network:

e1

em

hi

P (hi | e1)

P (hi | em)

...

Using Bayes’ theorem we can compute the combined influence of the pieces of evidence
e1, . . . , em on the prior probability of the hypothesis hi such that:

⋂m
j=1 ej hi

P (hi|
⋂m

j=1 ej)

(Note that some prior probabilities have to be known to the system as well).
In a rule-based expert system, the production rules are used for pruning the search space

of possible diagnoses; in this pruning process, heuristic as well as probabilistic criteria are
employed. It therefore is necessary to compute the probabilities of all intermediate results de-
rived using the production rules. However, these probabilities generally cannot be computed
from the probabilities associated with the rules only: probability theory does not provide an
explicit combination function for propagating uncertain evidence nor does it provide combi-
nation functions for composite hypotheses in terms of the available probabilities. We have
suggested before that the quasi-probabilistic models do offer explicit combination functions.
From the previous observation it will be evident that these functions cannot accord with the
axioms of probability theory. Therefore, they can only be viewed as approximation functions
rendering the models to some extent insensitive to the lack of a fully specified probability
function and erroneous probability assessments.

5.3 The subjective Bayesian method

In the preceding section we have highlighted some of the problems one encounters when apply-
ing probability theory in a rule-based expert system. R.O. Duda, P.E. Hart, and N.J. Nilsson
have recognized these problems and have developed a new method for handling uncertainty in
PROSPECTOR, an expert system for assisting non-expert field geologists in exploring sites.
Part of the knowledge incorporated in PROSPECTOR is represented in production rules.
The model of Duda, Hart, and Nilsson is based on probability theory but provides solutions
to the problems mentioned in the previous section.
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5.3.1 The likelihood ratios

As has been mentioned before, the subjective Bayesian method is a modification of probability
theory. However, the model uses the notion of ‘odds’ instead of the equivalent notion of
probability.

Definition 5.5 Let P be a probability function on a sample space Ω. Furthermore, let h ⊆ Ω
such that P (h) < 1. The prior odds of the event h, denoted by O(h), is defined as follows:

O(h) =
P (h)

1− P (h)

Note that conversely

P (h) =
O(h)

1 + O(h)

In probability theory the notion of conditional or posterior probability is used. The subjective
Bayesian method uses the equivalent notion of posterior odds.

Definition 5.6 Let P be a probability function on a sample space Ω. Let h, e ⊆ Ω such that
P (e) > 0 and P (h | e) < 1. The posterior odds of a hypothesis h, given evidence e, denoted
by O(h | e), is defined as follows:

O(h | e) =
P (h | e)

1− P (h | e)

We introduce another two notions: the positive and the negative likelihood ratios.

Definition 5.7 Let P be a probability function on a sample space Ω. Furthermore, let h, e ⊆
Ω such that 0 < P (h) < 1 and P (e | h̄) > 0. The (positive) likelihood ratio λ, given h and
e, is defined by

λ =
P (e | h)

P (e | h̄)

The likelihood ratio λ often is called the level of sufficiency ; it represents the degree to which
the observation of evidence e influences the prior probability of hypothesis h. A likelihood
ratio λ > 1 indicates that the observation of e tends to confirm the hypothesis h; a likelihood
ratio λ < 1 indicates that the hypothesis h̄ is confirmed to some degree by the observation
of e, or in other words that the observation of e tends to disconfirm h. If λ = 1, then the
observation of e does not influence the prior confidence in h.

Definition 5.8 Let P be a probability function on a sample space Ω. Let h, e ⊆ Ω be such
that 0 < P (h) < 1 and P (e | h̄) < 1. The (negative) likelihood ratio λ̄, given h and e, is
defined by

λ̄ =
1− P (e | h)

1− P (e | h̄)



222 Chapter 5. Reasoning with Uncertainty

The negative likelihood ratio λ̄ often is called the level of necessity. A comparison of the
likelihood ratios λ and λ̄ shows that from λ > 1 it follows that λ̄ < 1, and vice versa;
furthermore we have λ = 1 if and only if λ̄ = 1.

When applying the subjective Bayesian method in a production system, a positive like-
lihood ratio λ and a negative likelihood ratio λ̄ have to be associated with each production
rule if e then h fi:

e h
λ, λ̄

Furthermore, the prior probabilities P (h) as well as P (e) have to be known to the system.
Note that this information is not sufficient for uniquely defining a probability function on the
sample space: the expert has provided probabilities for only a few events occurring in the
specified production rules.

In the following section, in some cases the conditional probabilities P (h | e) and P (h | ē)
will be preferred to λ and λ̄: we then assume that with each production rule these conditional
probabilities are associated. We note that the probabilities P (h | e) and P (h | ē) can be
computed uniquely from λ, λ̄, P (h) and P (e). The reader may for example verify that the
following property holds:

P (e | h) = λ ·
1− λ̄

λ− λ̄

Bayes’ theorem can subsequently be applied to compute the probability P (h | e).

5.3.2 The combination functions

Recall that a model for dealing with uncertainty provides means for representing and rea-
soning with uncertainty. The purpose of applying such a model is to compute a measure of
uncertainty for each goal hypothesis. If a probability function on the domain were known,
then the probabilities of these goal hypotheses could simply be calculated from the probability
function. However, as we have argued before, such a probability function is virtually never
available in practical applications. The required probabilities therefore are approximated
from the ones that actually are known to the system.

In a rule-based expert system using top-down inference, several intermediate hypotheses
are confirmed or disconfirmed to some degree. We have seen before that these uncertain
hypotheses may in turn be used as pieces of evidence in other production rules. In Section
5.1 a combination function for propagating such uncertain evidence has been introduced: the
function fprop. Recall that probability theory does not provide an explicit filling-in for this
function fprop in terms of the probabilities that are known to the system. The subjective
Bayesian method, however, does provide such a combination function.

Suppose that the intermediate hypothesis e is used as evidence in confirming hypothesis h
by applying the production rule if e then h fi. We suppose that the intermediate hypothesis
e has been confirmed by the observation of some prior evidence e′, and that for e the posterior
probability P (e | e′) has been computed.

e′ e h
P (e | e′) P (h | e), P (h | ē)
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0
1P (e)

P (h|ē)

P (h)

1

P (h|e)

P (e|e′)

P (h|e′)

Figure 5.2: P (h | e′) as a linear interpolation function in P (e | e′).

After application of the rule, we are interested in the probability P (h | e′) such that

e′ h
P (h | e′)

Note that in general the probability P (h | e′) will not have been assessed by the expert and
cannot be computed from the probability function P since P has not been fully specified.
Therefore, it has to be approximated. In general, we have

P (h | e′) = P (h ∩ e | e′) + P (h ∩ ē | e′)

=
P (h ∩ e ∩ e′)

P (e′)
·
P (e ∩ e′)

P (e ∩ e′)
+

P (h ∩ ē ∩ e′)

P (e′)
·
P (ē ∩ e′)

P (ē ∩ e′)

=
P (h ∩ e ∩ e′)

P (e ∩ e′)
·
P (e ∩ e′)

P (e′)
+

P (h ∩ ē ∩ e′)

P (ē ∩ e′)
·
P (ē ∩ e′)

P (e′)

= P (h | e ∩ e′)P (e | e′) + P (h | ē ∩ e′)P (ē | e′)

We assume that if we know e to be absolutely true (or false), then the observations e′ relevant
to e do not provide any further information on the hypothesis h. This assumption can be
taken into account into the formula given above as follows:

P (h | e′) = P (h | e)P (e | e′) + P (h | ē)P (ē | e′)

= (P (h | e)− P (h | ē)) · P (e | e′) + P (h | ē)

We have that P (h | e′) is a linear interpolation function in P (e | e′) (since the function has
the form f(x) = ax + b). In Figure 5.2 such an interpolation function for the situation of the
production rule if e then h fi shown above, is depicted. This interpolation function has two
extreme values: for P (e | e′) = 0 we have the extreme value P (h | e′) = P (h | ē), and for
P (e | e′) = 1 we have the extreme value P (h | e′) = P (h | e). For any P (e | e′) between 0 and
1 the corresponding value for P (h | e′) can be read from the figure. For instance, if evidence
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Pc(e)P (e)

P (h|ē)

P (h)

1

P (h|e)

P (e|e′)

P (h|e′)

0
1

Figure 5.3: Inconsistent prior probabilities P (h) and P (e).

e′ has been observed confirming e, that is, if P (e | e′) > P (e), we find that the probability of
h increases from applying the production rule if e then h fi: P (h | e′) > P (h). Notice that
this effect is exactly what is meant by the rule. In the special case where P (e | e′) = P (e),
we have

P (h | e′) = P (h | e)P (e) + P (h | ē)P (ē) = P (h)

In principle, this interpolation function offers an explicit computation rule for propagating
uncertain evidence. Duda, Hart, and Nilsson however have observed that when an expert is
asked to assess for each rule if e then h fi the four probabilities P (h), P (e), P (h | e), and
P (h | ē), the specified values are likely to be inconsistent, in the sense that there is not an
underlying actual probability function. More in specific, the relation between P (h) and P (e)
as shown in Figure 5.2 will be violated. We show to which problems such an inconsistency may
lead. Consider Figure 5.3. The assessed probabilities P (h), P (e), P (h | e) and P (h | ē) shown
in the figure are inconsistent; the consistent value for P (e | e′) corresponding with P (h) is
indicated as Pc(e). Now suppose that evidence e′ has been observed confirming e to a degree
P (e | e′) such that P (e) < P (e | e′) < Pc(e). From Figure 5.3 we have that P (h | e′) < P (h).
The production rule if e then h fi however was meant to express that confirmation of e
leads to confirmation of h: due to the inconsistency the reverse has been achieved! A natural
solution to this problem would be to reassess P (e) by choosing P (e) = Pc(e) (or, in case the
assessment of P (h) is less certain than the assessment of P (e), to reassess P (h) by choosing a
consistent value for P (h)). The hypotheses h and e however may occur in several places in a
given set of production rules and each reassessment affects all these occurrences. Reassessing
prior probabilities therefore is not a feasible solution to the problem we have discussed.

Duda, Hart, and Nilsson have developed several methods for employing inconsistently
specified probabilities, one of which has been implemented as the function for propagating
uncertain evidence in PROSPECTOR. The basic idea of the method that has been chosen for
implementation is shown in Figure 5.4. The original interpolation function is splitted in two
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P (h|ē)

P (h)

1

P (h|e)

P (e|e′)

P (h|e′)

0
1P (e)

Figure 5.4: A consistent interpolation function.

separate interpolation functions on the intervals [0, P (e)] and (P (e), 1], respectively, so as to
enforce the property P (h | e′) = P (h) if P (e | e′) = P (e). Note that the closer the function
value for P (e) is to the value for P (e) from the original interpolation function, the better the
initial assessments of P (e) and P (h) are. The resulting interpolation function is defined as
follows:

P (h | e′) =

{

P (h | ē) + P (h)−P (h|ē)
P (e) · P (e | e′) if 0 ≤ P (e | e′) ≤ P (e)

P (h) + P (h|e)−P (h)
1−P (e) · (P (e | e′)− P (e)) if P (e) < P (e | e′) ≤ 1

Recall that the conditional probabilities P (h | e) and P (h | ē) used in this function are
obtained from the likelihood ratios λ en λ̄ provided by the expert.

We have mentioned before that with each production rule if e then h fi the two likelihood
ratios λ and λ̄ have been associated: λ stands for the influence of the observation of evidence e
on the prior probability of the hypothesis h, and λ̄ indicates the degree to which observation of
ē changes the probability of h. The ratios λ and λ̄ can be viewed as the bounds of an interval in
which lies a value indicating the degree to which evidence e, which has been (dis)confirmed to
some degree by some prior evidence e′, really influences the prior probability of h. This value
is called the effective likelihood ratio, and will be denoted by λ′. The ratio λ′ is computed
from the value P (h | e′) according to the following definition.

Definition 5.9 Let P be a probability function on a sample space Ω, and let O be the corre-
sponding odds as defined in the foregoing. Furthermore, let h, e′ ⊆ Ω. The effective likelihood
ratio λ′, given h and e′, is defined as follows:

λ′ =
O(h | e′)

O(h)

The effective likelihood ratio λ′ lies between λ and λ̄. λ′ will be closer to λ if e has been
confirmed to some degree by the observation of the evidence e′; conversely, λ′ will be closer
to λ̄ if e has been disconfirmed to some degree by the prior evidence e′.
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Until now we have only considered production rules if e then h fi in which e is an atomic
piece of evidence. In the foregoing we have seen that the condition part of a production
rule may be a combination of atomic pieces of evidence which are interrelated by means of
the logical operators and and or. In the inference network shown below, for example, the
evidence e1 or e2 is depicted; the constituting pieces of evidence have been obtained from
prior observations e′:

To be able to propagate the uncertainty of the composite evidence e1 or e2, we have to
know the probability P (e1 or e2 | e

′) such that:

e′ e1 or e2
P (e1 or e2|e

′)

Note that the exact probability cannot be computed from the probabilities P (e1 | e′) and
P (e2 | e

′) of the separate components. Again, we have to approximate the required probability
using a combination function.

Let evidence e be composed of a number of atomic pieces of evidence ei, i = 1, . . . , n, n ≥ 2,
which are interrelated by means of and and or. In PROSPECTOR, the probability P (e | e′)
of e given the prior observations e′ is approximated from the separate probabilities P (ei | e

′) of
the constituting pieces of evidence ei in e by recursively applying the following two functions:

P (e1 and e2 | e
′) = min{P (e1 | e

′), P (e2 | e
′)}

P (e1 or e2 | e
′) = max{P (e1 | e

′), P (e2 | e
′)}

These functions therefore fulfill the role of the combination functions for composite hypothe-
ses, that is, of fand and for, respectively. Note that the order in which the constituting pieces
of evidence have been specified does not influence the resulting probability of a composite
hypothesis.

The combination function which still remains to be discussed is the function for co-
concluding production rules if ei then h fi, that is, we still have to discuss the function
fco. If the pieces of evidence ei specified in a number of co-concluding production rules have
been obtained from prior observations e′i, respectively, then the uncertainty of these pieces
of evidence ei given e′i can be propagated to h in the manner described above. For two
co-concluding production rules, the resulting inference network is the following:

e′1

e′2

h

λ′
1

λ′
2

Recall that in probability theory Bayes’ theorem may be used as the combination function fco.
In the subjective Bayesian method, Bayes’ theorem is used as well, however, in a somewhat
different form in terms of the odds.

THEOREM 5.5 Let P be a probability function on a sample space Ω, and let O be the
corresponding odds as defined in the foregoing. Let h,e⊆ Ω. Furthermore, let the likelihood
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ratio λ be defined as above. Then, the following property holds:

O(h | e) = λ ·O(h)

Proof: From Bayes’ theorem we have

P (h | e) =
P (e | h)P (h)

P (e)

For the complement of h we have, again from Bayes’ theorem,

P (h̄ | e) =
P (e | h̄)P (h̄)

P (e)

Dividing the first equation by the second one results in the following equation:

P (h | e)

P (h̄ | e)
=

P (e | h)P (h)

P (e | h̄)P (h̄)

from which we have

P (h | e)

1− P (h | e)
=

P (e | h)

P (e | h̄)
·

P (h)

1− P (h)

From this observation it follows that O(h | e) = λ ·O(h). ♦

This alternative form of Bayes’ theorem is called odds-likelihood form of the theorem.
The theorem stated above concerns the situation where evidence e has been obtained with

absolute certainty. In case we have that e has definitely not occurred, that is, in case ē has
been observed with absolute certainty, we obtain a similar formula.

THEOREM 5.6 Let P be a probability function on a sample space Ω, and let O be the
corresponding odds as defined in the foregoing. Let h, e ⊆ Ω. Furthermore, let the negative
likelihood ratio λ̄ be defined as above. Then, the following property holds:

O(h | ē) = λ̄ ·O(h)

The above theorems apply to the case of a single production rule. In the situation where
several production rules if ei then h fi conclude on the same hypothesis h, the results from
these production rules have to be combined into a single measure of uncertainty for h. Again,
we first consider the case where all ei’s have been obtained with absolute certainty. It should
be evident that by assuming that the ei’s are conditionally independent given h we have that
the following property holds:

O

(

h |
n
⋂

i=1

ei

)

=
n
∏

i=1

λiO(h)

where λi = P (ei|h)

P (ei|h̄)
. Similarly, for the case where all ēi’s have been obtained with absolute

certainty, we have:

O

(

h |
n
⋂

i=1

ēi

)

=
n
∏

i=1

λ̄iO(h)
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We have argued before that in general the ei’s (or ēi’s respectively) will not have been obtained
with absolute certainty, but with a probability P (ei | e′i) given some prior observations e′i.
From the probabilities P (ei | e′i) the posterior odds O(h | e′i) are obtained from applying
the combination function for propagating uncertain evidence. From these posterior odds we
then compute the effective likelihood ratios λ′

i. Again under the assumption that the e′i’s are
conditionally independent given h we obtain:

O

(

h |
n
⋂

i=1

e′i

)

=
n
∏

i=1

λ′
iO(h)

Since multiplication is commutative and associative, we have that the order in which the
co-concluding production rules are applied, will be irrelevant for the resulting uncertainty for
h. This finishes our discussion of the subjective Bayesian method.

5.4 The certainty factor model

The certainty factor model has been developed by E.H. Shortliffe and B.G. Buchanan for the
purpose of introducing the notion of uncertainty in the MYCIN system. The development
of the model was motivated, just as the subjective Bayesian method was, by the problems
encountered in applying probability theory in production systems in a straightforward man-
ner. We have suggested before that the model is unfounded from a theoretical point of
view. Nevertheless, the model has since its introduction enjoyed widespread use in rule-based
expert systems built after MYCIN: the model has been used, and is still being used, in a
large number of rule-based expert systems. Even though it is not well-founded, in practice it
seems to behave ‘satisfactorily’. The relative success of the model can be accounted for by
its computational simplicity.

5.4.1 The measures of belief and disbelief

In Section 5.1 it has been argued that when modeling knowledge in production rules of the
form if e then hx fi, a measure of uncertainty x is associated with the hypothesis h expressing
the degree to which the observation of evidence e influences the confidence in h. In developing
the certainty factor model Shortliffe and Buchanan have chosen two basic measures of uncer-
tainty: the measure of belief expressing the degree to which an observed piece of evidence
increases the belief in a certain hypothesis, and the measure of disbelief expressing the degree
to which an observed piece of evidence decreases the belief in a hypothesis. Although both
measures are probability based, they model a notion of uncertainty conceptually different
from probabilities. According to Shortliffe and Buchanan the need for new notions of uncer-
tainty arose from their observation that an expert often was unwilling to accept the logical
implications of his probabilistic statements, such as: if P (h | e) = x, then P (h̄ | e) = 1 − x.
They state that in the mentioned case an expert would claim that ‘evidence e in favour of
hypothesis h should not be construed as evidence against the hypothesis as well’. The reason
that the logical implication concerning P (h̄ | e) may seem counterintuitive is explained by J.
Pearl as follows. The phrase ‘evidence e in favour of hypothesis h′ is interpreted as stating
an increase in the probability of the hypothesis from P (h) to P (h | e), with P (h | e) > P (h):
P (h | e) is viewed relative to P (h). On the other hand, in the argument of Shortliffe and
Buchanan P (h̄ | e) seems to be taken as an absolute probability irrespective of the prior P (h̄).
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This somehow conveys the false idea that P (h̄) increases by some positive factor. However
if for example P (h̄) = 0.9 and P (h̄ | e) = 0.5, then no expert will construe this considerable
decrease in the probability of h̄ as supporting the negation of h!

Anyhow, Shortliffe and Buchanan concluded from their observation that the number at-
tached by an expert to a production rule is not a probability, but a measure of belief or
disbelief in the hypothesis concerned.

Definition 5.10 Let P be a probability function defined on a sample space Ω, and let h, e ⊆ Ω
such that P (e) > 0. The measure of (increased) belief MB is a function MB : 2Ω×2Ω → [0, 1],
such that

MB(h, e) =







1 if P (h) = 1

max

{

0,
P (h | e)− P (h)

1− P (h)

}

otherwise

The measure of (increased) disbelief MD is a function MD : 2Ω × 2Ω → [0, 1], such that

MD(h, e) =







1 if P (h) = 0

max

{

0,
P (h)− P (h | e)

P (h)

}

otherwise

The measure of belief can be accounted for intuitively as follows. Let us depict the prior
probability of the hypothesis h, that is, P (h), on a scale from 0 to 1:

P (h | e)

P (h) 10

The maximum amount of belief that can still be added to the prior belief in h, equals 1−P (h).
If a piece of evidence e is observed confirming h, that is, such that P (h | e) > P (h), then this
observation results in adding the amount of belief P (h | e) − P (h) to the prior belief in h.
The belief in h therefore has been increased to the degree

P (h | e)− P (h)

1− P (h)

The measure of disbelief can be accounted for similarly.
From the previous definition, it can readily be seen that for a given hypothesis h and

a given piece of evidence e only one of the functions MB and MD attains a function value
greater than zero. If MB(h, e) > 0, we have either P (h | e) − P (h) > 0 or P (h) = 1. If
P (h | e) − P (h) > 0 then we have P (h) − P (h | e) < 0 and consequently MD(h, e) = 0. In
case P (h) = 1, we have that P (h | e) = 1, hence P (h) − P (h | e) = 0 and MD(h, e) = 0.
Similarly, it can be shown that MB(h, e) = 0 if MD(h, e) > 0. This corresponds explicitly
with the idea that a particular piece of evidence may not be used both for as well as against
a hypothesis. For evidence e neither confirming nor disconfirming the hypothesis h, that is,
evidence e for which P (h | e) = P (h) holds, we have MB(h, e) = MD(h, e) = 0.

We now associate a measure of belief MB(h, e) and a measure of disbelief MD(h, e) with
a hypothesis h in a production rule if e then h fi, as follows:
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e h
MB(h, e), MD(h, e)

In this rule, the numbers MB(h, e) and MD(h, e) have the following meaning: an MB(h, e) > 0
(and hence MD(h, e) = 0) means that the observation of evidence e increases the confidence in
h. MB(h, e) = 1 means that the hypothesis h has been fully confirmed by e. An MD(h, e) >
0 (and hence MB(h, e) = 0) indicates that the observation of e tends to disconfirm the
hypothesis h. Note that the measures of belief and disbelief MB and MD generally are
specified by the domain expert only for a selection of the arguments in their domain. If a
probability function on the domain were known, then the other function values of MB and
MD could be computed using the respective definitions of these functions. However, we
have argued before that such a probability function is virtually never known in practical
applications. Similar to the subjective Bayesian method, the certainty factor model therefore
offers a number of combination functions for approximating the function values of MB and
MD that were not specified beforehand by the expert.

5.4.2 The combination functions

As we have seen before, when applying production rules various intermediate results are
derived with a certain measure of uncertainty, which in turn are used as evidence in other
production rules. The combination function which will be considered first, is the one for
propagating such uncertainty in evidence. Suppose that an intermediate result e has been
obtained from earlier evidence e′ with a measure of belief MB(e, e′) and a measure of disbelief
MD(e, e′). This e is subsequently used as evidence in the production rule if e then h fi:

e′ e h
MB(e, e′), MD(e, e′) MB(h, e),MD(h, e)

Note once more that the left half of the figure shows a compressed network whereas the right
half represents a single production rules. After applying the rule, we are interested in the
measure of belief MB(h, e′) and the measure of disbelief MD(h, e′) such that:

e′ h
MB(h, e′),MD(h, e′)

The following combination functions prescribe that the measure of belief of e given e′ will be
used as a scaling factor for the measures of belief and disbelief associated with the production
rule:

MB(h, e′) = MB(h, e) ·MB(e, e′)
MD(h, e′) = MD(h, e) ·MB(e, e′)

Herein, MB(h, e) is the measure of belief to be assigned to the hypothesis h if the piece of
evidence e has been fully confirmed; it is the measure of belief associated with h in the pro-
duction rule if e then h fi. The meaning of MD(h, e) is analogous. Note that the production
rule does not contribute to the belief nor to the disbelief in h if e has been disconfirmed to
some extent by evidence e′, in other words if the condition e has failed. The certainty factor
model in this respect differs conceptually from the subjective Bayesian method.
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The condition part of a production rule generally consists of a number of constituent
pieces of evidence which are interrelated by means of the operators and and or. For exam-
ple, the following inference network represents the composite evidence e1 and e2 where the
constituent pieces of evidence e1 and e2 have been derived from some prior evidence e′:

e′

e′

e1

e2

MB(e1, e
′),MD(e1, e

′)

MB(e2, e
′),MD(e2, e

′)

The certainty factor model comprises a number of combination functions for computing the
measure of belief and the measure of disbelief for certain combinations of pieces of evidence.
These combination functions are equivalent to the corresponding functions in the subjective
Bayesian method:

MB(e1 and e2, e
′) = min{MB(e1, e

′),MB(e2, e
′)}

MB(e1 or e2, e
′) = max{MB(e1, e

′),MB(e2, e
′)}

MD(e1 and e2, e
′) = max{MD(e1, e

′),MD(e2, e
′)}

MD(e1 or e2, e
′) = min{MD(e1, e

′),MD(e2, e
′)}

The combination functions given above are commutative and associative in the first argument;
so, the order in which two constituent pieces of evidence in the condition part of a production
rule have been specified, has no influence on the resulting measures of belief and disbelief.

Until now, a production rule has been considered in isolation from the other production
rules in a rule base. It is however possible that more than one production rule if ei then h fi
concludes on the same hypothesis h. Each of these different rules results in a separate measure
of belief and disbelief for the same hypothesis h. We suppose that the pieces of evidence ei

specified in the co-concluding production rules have been derived from prior evidence e′i.
The uncertainty of the pieces of evidence ei may be propagated to h in the manner described
earlier in this section. For two co-concluding production rules the inference network looks as
follows:

e′1

e′2

h

MB(h, e′1),MD(h, e′1)

MB(h, e′2),MD(h, e′2)

These partial measures of belief and disbelief each contribute to the total belief and disbelief
in h. The combination functions for co-concluding production rules combine these partial
measures of belief and disbelief in order to obtain the total belief and disbelief in h:

MB(h, e′1 co e′2) =

{

0 if MD(h, e′1 co e′2) = 1
MB(h, e′1) + MB(h, e′2)(1 −MB(h, e′1)) otherwise

MD(h, e′1 co e′2) =

{

0 if MB(h, e′1 co e′2) = 1
MD(h, e′1) + MD(h, e′2)(1−MD(h, e′1)) otherwise
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These combination functions are commutative and associative in the second argument, so the
order in which the production rules are applied has no effect on the final result.

It should be remarked that the formulas given by Shortliffe and Buchanan as shown above
suggest a number of properties of the measures of belief and disbelief which do not hold in
general. For instance, it is possible that the measure of belief in h as well as the measure
of disbelief in h given prior evidence e′ are greater than zero after applying the combination
functions for co-concluding production rules, which is contradictory to the original definitions
of the functions MB and MD. Only in a small number of special cases under rigorous condi-
tions concerning the interrelationships between the pieces of evidence and the hypotheses, do
the properties suggested in the formulas hold. In general, however, the combination functions
are not correct with respect to the probabilistic foundation of the model.

5.4.3 The certainty factor function

In the original formulation of the certainty factor model, computation took place in terms
of the measures of belief and disbelief; the uncertainties were propagated through the infer-
ence network obtained from top-down inference on a set of production rules by using the
combination functions discussed above. Soon, however, the need arose to express the finally
derived measures of belief and disbelief for a certain hypothesis in a single number. For this
purpose, Shortliffe and Buchanan have introduced a new measure derived from the two basic
ones mentioned: the certainty factor function.

Definition 5.11 Let Ω be a sample space, and let h, e ⊆ Ω. Let MB and MD be defined as
in Section 5.4.1. The certainty factor function CF is a function CF : 2Ω× 2Ω → [−1, 1], such
that:

CF(h, e) =
MB(h, e) −MD(h, e)

1−min{MB(h, e),MD(h, e)}

The ‘scaling factor’ 1 − min{MB(h, e),MD(h, e)} has been incorporated into the model for
pragmatic reasons. This scaling factor has no influence on the certainty factor when consider-
ing only one piece of evidence, since then we have 1−min{MB(h, e),MD(h, e)} = 1. However,
when we consider more than one piece of evidence or more than one hypothesis, this is not
always the case as has been mentioned before.

Note that for given h and e, a certainty factor is a number between −1 and +1; this is
contrary to the measures of belief and disbelief, each lying in the closed interval [0, 1]. It can
easily be seen from the definition given above that a negative certainty factor indicates that
the hypothesis is disconfirmed by the evidence and that a positive certainty factor indicates
that the hypothesis is confirmed by the evidence. A certainty factor equal to zero indicates
that the evidence does not influence the belief in the hypothesis.

In present implementations of the certainty factor model, the measures of belief and
disbelief are no longer used in the computation: only the certainty factor is applied instead of
the two measures of belief and disbelief MB(h, e) and MD(h, e). With each production rule
if e then h fi now is associated a certainty factor CF(h, e):

e h
CF(h, e)



5.4. The certainty factor model 233

For manipulating these certainty factors, Shortliffe and Buchanan have defined new combina-
tion functions expressed in terms of certainty factors only. A small calculation effort suffices
to prove that these combination functions can be derived from the corresponding ones for the
measures of belief and disbelief.

The combination function for propagating uncertain evidence is the following:

CF(h, e′) = CF(h, e) ·max{0,CF(e, e′)}

Here, CF(h, e) is the certainty factor associated with the hypothesis h by the production rule
if e then h fi if the evidence e has been observed with absolute certainty; CF(e, e′) indicates
the actual confidence in e based on some prior evidence e′.

The function for combining two certainty factors CF(e1, e
′) and CF(e2, e

′) of two consti-
tuting pieces of evidence e1 and e2 to obtain a certainty factor for the conjunction e1 and e2

of these pieces of evidence is the following:

CF(e1 and e2, e
′) = min{CF(e1, e

′),CF(e2, e
′)}

For the disjunction of these pieces of evidence, we have the following formula:

CF(e1 or e2, e
′) = max{CF(e1, e

′),CF(e2, e
′)}

Finally, the combination function for combining two certainty factors CF(h, e′1) and CF(h, e′2)
which have been derived from two co-concluding production rules if ei then h fi, i = 1, 2, is
as follows:

CF(h, e′1 co e′2) =































CF(h, e′1) + CF(h, e′2)(1 − CF(h, e′1)) if CF(h, e′i > 0, i = 1, 2

CF(h, e′1) + CF(h, e′2)

1−min{|CF(h, e′1)|, |CF(h, e′2)|}
if − 1 ≤ CF(h, e′1) · CF(h, e′2) ≤ 0

CF(h, e′1) + CF(h, e′2)(1 + CF(h, e′1)) if CF(h, e′i) < 0, i = 1, 2

The following example demonstrates how these combination functions for certainty factors
can be applied.

EXAMPLE 5.7

Consider the following five production rules:

R1 : if a and (b or c) then h0.80 fi
R2 : if d and f then b0.60 fi
R3 : if f or g then h0.40 fi
R4 : if a then d0.75 fi
R5 : if i then g0.30 fi

The expert has associated with the conclusion h of rule R1 the certainty factor CF(h, a and
(b or c)) = 0.80, with the conclusion b of rule R2 the certainty factor CF(b, d and f) =
0.60, and so on. We suppose that h is the goal hypothesis. When applying backward
chaining, the user will be asked to provide further information on a, c, f and i. We
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assume that using his prior knowledge e′, the user associates the following certainty
factors with his answers:

CF (a, e′) = 1.00
CF (c, e′) = 0.50
CF (f, e′) = 0.70
CF (i, e′) = −0.40

Using backward chaining, R1 will be the first rule selected for application. Note that this
rule will eventually yield a partial certainty factor for h. It will be evident that we cannot
simply associate the certainty factor 0.80 with h after application of R1: this number
only indicates the certainty of h in case of absolute certainty of a and (b or c). Recall
that for computing the actual certainty of h from this rule, we first have to compute the
actual certainty of a and (b or c) and then propagate it to h using the combination
function for uncertain evidence. However, the actual certainty of a and (b or c) is not
known: we have to compute it from the separate certainty factors for a, b, and c using
the combination functions for composite hypotheses. The actual certainty factors of a
and c are known: the user has specified the certainty factors 1.00 and 0.50 for these
pieces of evidence. For b, however, we still have to compute a certainty factor. We select
the production rule R2 for doing so. The combination function for uncertain evidence
now prescribes that we have to multiply the certainty factor 0.60 for b mentioned in the
rule by the actual certainty factor of the evidence d and f . Again, we have to obtain
separate certainty factors for d and f . The user has associated the certainty factor 0.70
with f ; by applying rule R4 we find for d the certainty factor 1.00 · 0.75 = 0.75. Using
the combination function for composite hypotheses we arrive at the following certainty
factor for d and f (we use e′1 to denote all evidence used in this particular reasoning
chain):

CF(d and f, e′1) = min{CF(d, e′1),CF(f, e′1)} = 0.70

Subsequently, the combination function for uncertain evidence is applied to compute
the actual certainty factor for b:

CF(b, e′1) = CF(b, d and f) ·max{0,CF(d and f, e′1)} =
= 0.60 · 0.70 = 0.42

Recall that we had to compute certainty factors for a, b, and c separately in order to be
able to compute a certainty factor for the composite evidence a and (b or c). All the
required certainty factors are now available. We apply the combination function for a
disjunction of hypotheses to compute:

CF(b or c, e′1) = max{CF(b, e′1),CF(c, e′1)} = 0.50

And, subsequently, the combination function for a conjunction of hypotheses to com-
pute:

CF(a and (b or c), e′1) = min{CF(a, e′1),CF(b or c, e′1)} = 0.50
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From the production rule R1 we therefore obtain the following (partial) certainty factor
for h:

CF(h, e′1) = CF(h, a and (b or c)) ·max{0,CF(a and (b or c), e′1)} =
= 0.80 · 0.50 = 0.40

Similarly, from the other production rule concluding on h, that is, rule R3, the following
certainty factor is obtained:

CF(h, e′2) = CF(h, f or g) ·max{0,CF(f or g, e′2)} =
= 0.40 · 0.70 = 0.28

In the course of this computation a certainty factor equal to zero is associated with
g due to CF(i, e′) = −0.40. The net certainty factor for h is computed from the two
partial ones by applying the combination function for co-concluding production rules:

CF(h, e′1 co e′2) = CF(h, e′1) + CF(h, e′2) · (1− CF(h, e′1)) =
= 0.40 + 0.28 · 0.60 = 0.568

Note that this net certainty factor is greater than each of the certainty factors for h
separately.

5.5 The certainty factor model in PROLOG

Due to its simplicity, the certainty factor model has been employed in many rule-based expert
systems as a means for representing and reasoning with uncertainty. In this section we shall
see that the model is rather easy to implement: we shall discuss an implementation of the
model in the PROLOG language. The point of departure for this program will be the top-
down inference program as discussed in Chapter 3. In the preceding sections dealing with the
certainty factor model no explicit distinction was made between facts and production rules,
and no attention was paid to the way in which the predicates and actions in the conditions
and conclusions of a production rule deal with certainty factors. In the next section, we shall
concentrate on these two issues before discussing the actual implementation of the model in
Section 5.5.2.

5.5.1 Certainty factors in facts and rules

In an expert system using production rules as a knowledge-representation formalism, a dis-
tinction is made between facts and production rules. In Chapter 3 we have introduced nota-
tional conventions for the representation of facts and production rules. Now, recall that when
employing the certainty factor model, each conclusion of each production rule is assigned a
certainty factor. To this end, we extend the syntax of a production rule. In the following
definition, this extended formalism is introduced.
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Definition 5.12 A production rule is a statement of the following form:

〈production rule〉 ::= if 〈antecedent〉 then 〈consequent〉 fi
〈antecedent〉 ::= 〈disjunction〉 { and 〈disjunction〉}∗

〈disjunction〉 ::= 〈condition〉 { or 〈condition〉}∗

〈consequent〉 ::= 〈conclusion〉 with 〈cf〉
〈condition〉 ::= 〈predicate〉(〈object〉,〈attribute〉,〈constant〉)
〈conclusion〉 ::= 〈action〉(〈object〉,〈attribute〉,〈constant〉)
〈predicate〉 ::= same | greaterthan | · · ·
〈action〉 ::= add
〈cf〉 ::= cf = 〈real with range [−1, 1]〉

In the previous definition we have restricted ourselves to production rules containing precisely
one conclusion in their consequent; furthermore, only the action add has been specified. In
addition, note that we have chosen for a representation in object-attribute-value tuples in-
stead of the variable-value representation.

EXAMPLE 5.8

Consider the following production rule:

if
same(patient, complaint, abdominal-pain) and
same(patient, auscultation,murmur) and
same(patient, palpation, pulsating-mass)

then
add(patient, disorder, aortic-aneurysm) with cf = 0.8

fi

In this rule, three pieces of evidence have been specified: the patient suffers from ab-
dominal pain, upon auscultation a murmur is perceived, and upon palpation a pulsating
mass is felt. If these three pieces of evidence have been observed in a particular patient,
then the hypothesis that the patient has an aortic aneurysm will be confirmed to a
degree 0.8 in the range of −1 to +1.

In Chapter 3 we have seen that facts are derived from applying the production rules; recall that
a fact is considered to be an object-attribute pair with the value(s) the attribute has adopted.
It will be evident that if we employ the certainty factor model, values may be derived which
have not necessarily been established with absolute certainty. During the inference therefore,
each value gets assigned an appropriate certainty factor. For this purpose, the representation
formalism for facts introduced in Chapter 3 has to be extended with the notion of a certainty
factor as well.

Definition 5.13 A fact is a statement of one of the following forms:

• o.as = ccf , where o is an object, as is a single-valued attribute, c is a constant, and cf
is a certainty factor in the closed interval [−1, 1], or
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• o.am = {ci
cf i

, i ≥ 1}, where am is a multi-valued attribute, ci is a constant, and cfi is a
certainty factor.

EXAMPLE 5.9

Consider the production rule from the preceding example once more. If all three pieces
of evidence mentioned in the condition part of the rule have been observed with absolute
certainty, then by applying the production rule, the hypothesis that the patient suffers
from an aortic aneurysm will be confirmed with a certainty factor equal to 0.8. Appli-
cation of this rule therefore results in the fact (we assume that the attribute disorder is
single-valued):

patient.disorder = aortic-aneurysm0.8

In Chapter 3 we have described that a predicate in a condition of a production rule specifies
a comparison of the actual value(s) the attribute mentioned in the condition has obtained
with the constant specified in the condition. Recall that such a predicate yields one of the
truth values true or false. Now, when applying the certainty factor model we not only have
to consider the values the attribute has adopted, but we also have to take into account the
certainty factors associated with these values. Most system predicates therefore also test if
the certainty factor associated with the attribute value of interest lies within a certain range.

EXAMPLE 5.10

In the condition:

same(patient, complaint, abdominal-pain)

the predicate same compares the constant abdominal-pain with the actual complaints of
the patient. Only if the attribute value abdominal-pain has been found for the attribute
complaint of the object patient with a certainty factor greater than 0.2, evaluation of
the condition yields the truth value true. For example, if the fact set contains the fact:

patient.complaint = {abdominal-pain0.15}

then evaluation of the above-given condition yields the truth value false. However,
should the fact set contain the following fact:

patient.complaint = {abdominal-pain0.8}

then evaluation of the mentioned condition would have yielded the value true. The 0.2
threshold employed by the predicate same was chosen by Shortliffe and Buchanan to
prevent MYCIN from pursuing hypotheses for which there was only limited, insufficient
evidence.
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Table 5.1: Behaviour of some predicates with respect to certainty factors

Predicate name Returns true if Returned
(o.a, v) satisfies certainty factor

same(o, a, v) cf (o.a, v) > 0.2 cf (o.a, v)
notsame(o, a, v) cf (o.a, v) ≤ 0.2 1
known(o, a, v) ∃v[cf (o.a, v)] > 0.2 1
notknown(o, a, v) ∀v[cf (o.a, v)] ≤ 0.2 1

A predicate not only returns a truth value, but in case of success it returns a certainty factor
for the particular piece of evidence as well; the predicate same for example just returns the
certainty factor found in the fact set for the attribute value concerned.

EXAMPLE 5.11

Consider once more the condition:

same(patient, complaint, abdominal-pain)

and the fact set:

patient.complaint = {abdominal-pain0.8}

Evaluation of the condition not only yields the value true but a certainty factor as well;
in this case the certainty factor 0.8 is returned.

Table 5.1 summarizes the behaviour of a number of frequently used predicates. In this table
(o.a, v) denotes the object-attribute-value tuple specified in the condition; cf (o.a, v) denotes
the certainty factor for the value v in the fact concerning the object-attribute pair o.a. The last
line in the table should now be read as follows: upon evaluation the condition notknown(o.a, v)
yields the truth value true if all attribute values in the fact concerning the object-attribute
pair o.a have a certainty factor less than or equal to 0.2. In that case, the predicate returns
the certainty factor 1.

5.5.2 Implementation of the certainty factor model

In this section, the certainty factor model for reasoning with uncertainty is integrated into
the PROLOG implementation of top-down inference, as discussed in Section 3.2.2.

The first thing we have to do is to extend the representation of a production rule in a Horn
clause with the notion of a certainty factor. To start with, we restrict ourselves to production
rules having only conjunctions in their condition part; we shall deal with disjunctions later
on in this section.

EXAMPLE 5.12
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We recall from Section 3.2.2 that a production rule is represented in a Horn clause of
the following form:

add(patient,disorder,aortic_aneurysm) :-

same(patient,complaint,abdominal_pain),

same(patient,auscultation,murmur),

same(patient,palpation,pulsating_mass).

Recall that the representation of a production rule in a Horn clause illustrated in the preceding
example has the advantage that the production rule itself may be looked upon as a procedure
for its own evaluation: the actual evaluation is performed by the PROLOG interpreter. In
accord with this idea, the production rule could also take care of computing the appropriate
certainty factor to be associated with the fact which is derived by the rule in case evaluation
of its conditions has succeeded. However, we have mentioned before that a major objective
in designing knowledge-based systems is to keep knowledge and inference explicitly separated
from each other. Therefore, we have chosen for an approach in which the computation takes
place outside the production rules in the inference engine.

For computing the appropriate certainty factor for a fact which is derived from a successful
production rule, it is not enough to only have the certainty factor specified in the conclusion
of the rule available: it will be evident from the discussion in the foregoing sections that
the certainty factors resulting from the evaluation of the conditions of the rule have to be
known as well. Since we apply the PROLOG interpreter for the evaluation of a production
rule and PROLOG does not support global variables, it is necessary to pass the certainty
factors obtained from the evaluation of the conditions of a production rule to its conclusion
explicitly. In the PROLOG representation of a production rule we therefore augment each
condition with an extra argument, which is used as an output parameter to be instantiated
to the certainty factor resulting from evaluation of that condition. The conclusion of a pro-
duction rule is equally augmented with an extra argument: this extra argument is a term
cf(CFrule,CFlist) in which CFrule is the certainty factor associated with the conclusion
of the rule, and CFlist is a list of variables which will be instantiated to the certainty factors
obtained from the conditions.

EXAMPLE 5.13

The following Horn clause once more shows the production rule from the preceding
example, but this time certainty factors have been included in the manner discussed
above:

add(patient,disorder,aortic_aneurysm,cf(0.8,[CF1,CF2,CF3])) :-

same(patient,complaint,abdominal_pain,CF1),

same(patient,auscultation,murmur,CF2),

same(patient,palpation,pulsating_mass,CF3).

The evaluation of the first condition of this rule leads, in case the predicate same returns
the truth value @true@, to instantiation of the variable CF1 to a certainty factor (we
return to this shortly). A similar remark can be made with respect to the second
and third condition. The resulting certainty factors then are collected in the second
argument of the term cf(0.8,[CF1,CF2,CF3]) in the conclusion of the clause. The
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specified number 0.8 is the certainty factor associated by the expert with the conclusion
of the rule.

It will be evident that after the evaluation of the rule has been completed, the term cf(CFrule,CFlist)

in the conclusion of the rule contains all ingredients necessary for applying the combination
functions for composite hypotheses and the combination function for uncertain evidence.

EXAMPLE 5.14

Reconsider the production rule from the previous example. Suppose that evaluation of
the rule led to instantiation of the variable CF1 to the value 0.5, of CF2 to the value
0.7, and of CF3 to 0.9. The fourth argument in the conclusion of the rule therefore
is instantiated to the term cf(0.8,[0.5,0.7,0.9]). The evidence mentioned in the
condition part of the rule consists of three distinct pieces of evidence. We now have
to compute a certainty factor for the composite evidence before the uncertainty can
be propagated to the hypothesis specified in the conclusion of the rule. The inference
engine can find the information which is necessary for doing so in the fourth argument of
the conclusion of the rule: using the combination function for composite hypotheses it
determines the minimum of the certainty factors which resulted from evaluation of the
separate conditions, in the present example min{0.5, 0.7, 0.9} = 0.5. Then, it applies the
combination function for propagating uncertain evidence: the certainty factor associated
with the conclusion of the rule is multiplied by the certainty factor of the composite
evidence. The inference engine can find the certainty factor of the rule also in the fourth
argument of the conclusion of the rule. In the present example, the computation yields
0.8 · 0.5 = 0.4. This number is the certainty factor for the fact derived from the applied
rule.

Extending the PROLOG implementation of the top-down inference engine with the certainty
factor model only requires some minor alterations and additions. In Chapter 3 we have
described that in the process of tracing an object-attribute pair, first it is checked whether or
not the pair has already been traced before. If the object-attribute pair has not been traced
as yet, then the inference engine tries to infer values for it by selecting and applying relevant
production rules. If applying rules has failed to yield values for the object-attribute pair, then
the user is requested to provide further information. Since this process is not affected by the
incorporation of the certainty factor model, the basic Horn clauses remain unaltered:

trace_values(Object,Attribute) :-

fact(Object,Attribute,_,_),!.

trace_values(Object,Attribute) :-

infer(Object,Attribute),!,

ask(Object,Attribute).

infer(Object,Attribute) :-

select\_rule(Object,Attribute),

fail.

infer(_,_).

The clause responsible for the selection and evaluation of a production rule is modified to
deal with certainty factors as follows:
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select_rule(Object,Attribute) :-

add(Object,Attribute,Value,Cffunction),

compute(Object,Attribute,Value,Cffunction).

By means of add(Object,Attribute,Value,Cffunction), select rule selects and eval-
uates a single production rule. Recall that after the evaluation of the selected rule has
been completed, the variable Cffunction will have been instantiated to a term of the form
cf(CFrule,CFlist). Following the selection and evaluation of a rule, select rule calls the
procedure compute. This procedure takes care of computing the appropriate certainty factor
to be associated with the newly derived fact and then adds it with the computed certainty
factor to the fact set:

compute(Object,Attribute,Value,cf(CFrule,CFlist)) :-

composite_hypotheses(CFlist,CFmin),

uncertain_evidence(CFrule,CFmin,CF),

co_concluding_rules(Object,Attribute,Value,CF,CFfact),!,

asserta(fact(Object,Attribute,Value,CFfact)).

Using the combination function for composite hypotheses first a certainty factor is computed
for the composite evidence in the rule. This combination function simply takes the minimum
of the certainty factors of the constituting pieces of evidence in the condition part of the rule,
and is described in the following clause:

composite_hypotheses(CFlist,CFmin) :-

minimum(CFlist,CFmin).

The computed certainty factor CFmin for the composite evidence is subsequently propagated to
the hypothesis in the conclusion of the rule by means of the combination function for uncertain
evidence that multiplies CFmin by the certainty factor associated with the conclusion of the
rule:

uncertain_evidence(CFrule,CFmin,CF) :-

CF is CFmin * CFrule.

CF is the certainty factor that will be attached to the specified attribute value solely on
account of the rule just evaluated. Now recall that other rules which conclude the same
attribute value may have been applied before. The certainty factors yielded by applying such
co-concluding production rules have to be combined into one net certainty factor. In the
procedure compute therefore the procedure co concluding rules is called. This procedure
implements the combination function for co-concluding production rules:

co_concluding_rules(Object,Attribute,Value,CFnew,CFfact) :-

retract(fact(Object,Attribute,Value,CFold)),!,

case(CFnew,CFold,CFfact).

co_concluding_rules(_,_,_,CF,CF).

In the first clause of co concluding rules it is investigated by means of the call
retract(fact(Object,Attribute,Value,CFold))whether or not the specified object-attribute-
value tuple occurs in the fact set. If such a fact is not present, then the match with the first
clause fails. In this case, the just evaluated rule was the first to draw a conclusion concern-
ing the given tuple. The certainty factor computed from this rule for the attribute value,
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therefore is the certainty factor to be associated with the newly derived fact. This certainty
factor will be attached to the fact by means of the second clause of co concluding rules.
On the other hand, if the call retract(fact(Object,Attribute,Value,CFold)) in the
co concluding rules clause succeeds, then this specific object-attribute-value tuple has al-
ready been derived before from applying at least one other rule. The combination function
for co-concluding production rules now has to be applied for computing the net certainty
factor. We repeat the combination function for co-concluding certainty factors here, using a
somewhat different notation:

CFfact =







CFold + CFnew − CFold · CFnew if CFold > 0 and CFnew > 0
CFold+CFnew

1−min{|CFold |,|CFnew |} if −1 < CFold · CFnew ≤ 0

CFold + CFnew + CFold · CFnew if CFold < 0 and CFnew < 0

CFnew is the certainty factor for the object-attribute-value tuple yielded by the last applied
production rule; CFold is the certainty factor associated with the attribute value on account
of previously applied production rules. To conclude, CFfact is the net certainty factor that
will be associated with the attribute value by the combination function. In the following three
Horn clauses, the three cases discerned can easily be distinguished:

case(CFnew,CFold,CFfact) :-

CFnew > 0,

CFold > 0,!,

CFfact is CFold + CFnew - CFold * CFnew.

case(CFnew,CFold,CFfact) :-

CFnew < 0,

CFold < 0,!,

CFfact is CFold + CFnew + CFold * CFnew.

case(CFnew,CFold,CFfact) :-

Numerator is CFnew + CFold,

(CFnew >= 0, AbsCFnew is CFnew;

AbsCFnew is -CFnew),

(CFold >= 0, AbsCFold is CFold;

AbsCFold is -CFold),

minimum([AbsCFnew,AbsCFold],Min),

Denominator is 1 - Min,

(Denominator > 0,

CFfact is Numerator/Denominator;

nl,

write(’Contradictory information found!’),

nl,!,

fail).

In the previous section we have mentioned that most system predicates take the certainty
factor of an attribute value found in the fact set into account. The predicate same for example
tests whether the value of the certainty factor of the specified attribute value is greater than
0.2. So, the definitions of the system predicates have to be extended to include a test on
certainty factors. The clause defining the predicate same is extended in the following way:

same(Object,Attribute,Value,CF) :-
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trace_values(Object,Attribute),!,

fact(Object,Attribute,Value,CF),!,

CF > 0.2.

Until now we have only considered production rules having no disjunctions in their condition
part. Recall that in Chapter 3 we simply used the PROLOG ‘;’ for representing the logical
or. Due to the introduction of certainty factors we can no longer use the ‘;’ for doing
so. The PROLOG interpreter evaluates conditions connected by means of ‘;’ from left to
right, until one of the conditions has been fulfilled. Then, the evaluation stops, that is,
the remaining conditions will not be examined. When employing the certainty factor model,
however, in case of a disjunction, all conditions in the disjunction must be examined, since the
combination function for composite hypothesis has to return the maximum of the certainty
factors yielded by the conditions which are part of the disjunction. (There is one exception
not dealt with here: in the case that a condition yields a certainty factor equal to one the
remaining conditions may be skipped.) Therefore, we introduce for the representation of the
logical or a new system predicate or having two arguments. The first argument is a list of the
conditions which are connected by the or operator; the second argument is a variable which
will be instantiated to the certainty factor yielded by the combination function for composite
hypotheses for the entire disjunction. This certainty factor is inserted in the fourth argument
of the conclusion of the rule just like the certainty factors of the other conditions are.

EXAMPLE 5.15

An example of a production rule containing the predicate or is the following:

add(patient,disorder,aortic_regurgitation,cf(0.7,[CF1,CF2,CF3])) :-

greaterthan(patient,systolic_pressure,’140mmHg’,CF1),

greaterthan(patient,pulse_pressure,’50mmHg’,CF2),

or([same(patient,auscultation,diastolic_murmur,_),

same(patient,palpation,enlarged_heart,_)],CF3).

Note that a disjunction of two pieces of evidence is treated as being a single piece of
evidence.

The predicate or is defined by the following Horn clause:

or(Conditions,Cf) :-

or_conditions(Conditions,List_of_cf),!,

not(List_of_cf = []),

maximum(List_of_cf,Cf).

The conditions in the list Conditions are evaluated by means of or conditions(Conditions,

List of cf). We shall see in or conditions that if the evaluation of a condition yields the
truth value true, the corresponding certainty factor is added to the list List of cf. If this
list turns out to be non-empty after evaluation of all conditions from Conditions then at
least one of them has been satisfied. The combination function for composite hypotheses
subsequently selects the maximal certainty factor occurring in the list. If on the other hand,
the list is empty, then the entire condition fails.

In the following procedure:
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or_conditions([],[]) :- !.

or_conditions([Condition|Restconditions],[Cf|List_of_cf]) :-

call(Condition),

arg(4,Condition,Cf),!,

or_conditions(Restconditions,List_of_cf).

or_conditions([Condition|Restconditions],List_of_cf]) :-

or_conditions(Restconditions,List_of_cf).

the separate conditions specified in the list Conditions are evaluated one by one by recursively
calling or conditions. The first clause represents the termination criterion for the recursion
specified. The second clause evaluates the first condition in the list of conditions by means of
the predefined predicate call. If the condition is satisfied, then the certainty factor resulting
from the evaluation is added to the list of certainty factors. Subsequently, or conditions

is called recursively for the remainder of the disjunction. If on the other hand the condition
fails, then it is simply skipped by means of the third or conditions clause. So, a condition
that fails upon evaluation does not contribute to the list of certainty factors List of cf. This
recursive evaluation process is repeated until all conditions from the disjunction have been
examined.

5.6 The Dempster-Shafer theory

In the 1960s, A. Dempster laid the foundations for a new mathematical theory of uncertainty;
in the seventies, this theory was extended by G. Shafer to what at present is known as the
Dempster-Shafer theory. This theory may be viewed as a generalization of probability theory.
Contrary to the subjective Bayesian method and the certainty factor model, Dempster-Shafer
theory has not especially been developed for reasoning with uncertainty in expert systems.
Only at the beginning of the eighties, it became apparent that the theory might be suitable
for such a purpose. However, the theory cannot be applied in an expert system without
modification. For application in a rule-based system, for example, several combination func-
tions are lacking. Moreover, the theory in its original form has an exponential computational
complexity. For rendering it useful in the context of expert systems, therefore, several mod-
ifications of the theory have been proposed. In Sections 5.6.1 and 5.6.2 the main principles
of the theory are discussed. Section 5.6.3 briefly touches upon a possible adaptation of the
theory for application in a production system.

5.6.1 The probability assignment

We have mentioned above that the Dempster-Shafer theory may be viewed as a generalization
of probability theory. The development of the theory has been motivated by the observation
that probability theory is not able to distinguish between uncertainty and ignorance due to
incompleteness of information. Recall that in probability theory, probabilities have to be
associated with individual atomic hypotheses. Only if these probabilities are known, are we
able to compute other probabilities of interest. In the Dempster-Shafer theory, however, it
is possible to associate measures of uncertainty with sets of hypotheses, then interpreted as
disjunctions, instead of with the individual hypotheses only, and nevertheless be able to make
statements concerning the uncertainty of other sets of hypotheses. Note that this way, the
theory is able to distinguish between uncertainty and ignorance.
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EXAMPLE 5.16

Consider a house officers’ practice where a patient consults his physician for chest pain,
radiating to the arms and neck; the pain does not disappear in rest. In this simplified
example we assume that there are only four possible disorders to be considered as a
diagnosis: the patient is either suffering from a heart attack, a pericarditis, pulmonary
embolism, or an aortic dissection. Heart attack and pericarditis are disorders of the
heart; pulmonary embolism and aortic dissection are disorders of the blood vessels.
Now suppose that we have certain clues indicating that the patient has a disorder of
the heart; the strength of our belief is expressed in the number 0.4. In the Dempster-
Shafer theory this number is assigned to the set heart-attack, pericarditis, viewed as the
composite hypothesis heart-attack or pericarditis; there is no number associated with
the individual hypotheses, since more specific information indicating that one of these
two hypotheses is the cause of the complaints, is not available. Note that in probability
theory the number 0.4 would have to be distributed over the individual hypotheses
(without more information, each of the two hypotheses would be assigned the number
0.2). In that case, the false impression of more information than actually present would
be given.

The strategy followed in the Dempster-Shafer theory for dealing with uncertainty roughly
amounts to the following: starting with an initial set of hypotheses, due to pieces of evidence
each time a measure of uncertainty is associated with certain subsets of the original set of
hypotheses, until measures of uncertainty may be associated with all possible subsets on
account of the combined evidence. The initial set of all hypotheses in the problem domain
is called the frame of discernment. In such a frame of discernment the individual hypotheses
are assumed to be disjoint. The impact of a piece of evidence on the confidence or belief in
certain subsets of a given frame of discernment is described by means of a function which is
defined below.

Definition 5.14 Let Θ be a frame of discernment. If with each subset x ⊆ Θ a number m(x)
is associated such that:

(1) m(x) ≥ 0,

(2) m(∅) = 0, and

(3)
∑

x⊆Θ m(x) = 1

then m is called a basic probability assignment on Θ. For each subset x ⊆ Θ, the number
m(x) is called the basic probability number of x.

We define another two notions.

Definition 5.15 Let Θ be a frame of discernment and let m be a basic probability assignment
on Θ. A set x ⊆ Θ is called a focal element in m if m(x) > 0. The core of m, denoted by
κ(m), is the set of all focal elements in m.

Note the similarity between a basic probability assignment and a probability function. A
probability function associates with each element in Θ a number from the interval [0,1] such
that the sum of these numbers equals 1; a basic probability assignment associates with each
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element in 2Θ a number in the interval [0,1] such that once more the sum of the numbers
equals 1.

EXAMPLE 5.17

Consider the preceding medical example once more. In this example, the frame of dis-
cernment is the set Θ = {heart-attack, pericarditis, pulmonary-embolism, aortic-dissection}.
Note that each basic probability assignment on Θ assigns basic probability numbers to
24 = 16 sets (including the empty set). If for a specific patient there is no evidence
pointing at a certain diagnosis in particular, then the basic probability number 1 is
assigned to the entire frame of discernment:

m0(x) =

{

1 if x = Θ
0 otherwise

Note that each proper subset of the frame of discernment gets assigned the number 0.
The core of m0 is equal to Θ. Now suppose that some evidence has become available
that points to the composite hypothesis heart-attack or pericarditis with some certainty.
Then, the subset {heart-attack, pericarditis} will be assigned a basic probability number,
for example 0.4. Due to lack of further information, the remaining certainty 0.6 is
assigned to the entire frame of discernment:

m1(x) =







0.6 if x = Θ
0.4 if x = {heart-attack, pericarditis}
0 otherwise

The set {heart-attack, pericarditis} is an element of the core of m1. Now suppose that
we furthermore have obtained some evidence against the hypothesis that our patient
is suffering from pericarditis. This information can be considered as support for the
hypothesis that the patient is not suffering from pericarditis. This latter hypothesis is
equivalent to the composite hypothesis heart-attack or pulmonary-embolism or aortic-
dissection. In consequence of this evidence, we therefore assign a basic probability
number, for example 0.7, to the set heart-attack, pulmonary-embolism, aortic-dissection:

m2(x) =







0.3 if = Θ
0.7 if x = {heart-attack, pulmonary-embolism, aortic-dissection}
0 otherwise

A probability number m(x) expresses the confidence or belief assigned to precisely the set
x: it does not express any belief in subsets of x. It will be evident, however, that the total
confidence in x is not only dependent upon the confidence in x itself, but also upon the
confidence assigned to subsets of x. For a given basic probability assignment, we define a new
function describing the cumulative belief in a set of hypotheses.

Definition 5.16 Let Θ be a frame of discernment, and let m be a basic probability assignment
on Θ. Then, the belief function (or credibility function) corresponding to m is the function
Bel : 2Θ → [0, 1] defined by

Bel(x) =
∑

y⊆x

m(y)
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for each x ⊆ Θ.

Several properties of this belief function can easily be proven:

• Bel(Θ) = 1 since
∑

y⊆Θ m(y) = 1.

• For each x ⊆ Θ containing exactly one element, we have that Bel(x) = m(x).

• For each x ⊆ Θ, we have Bel(x) + Bel(x̄) ≤ 1, since

Bel(Θ) = Bel(x ∪ x̄) = Bel(x) + Bel(x̄) +
∑

x ∩ y 6= ∅

x̄ ∩ y 6= ∅

m(y) = 1

We furthermore have the inequality Bel(x) + Bel(y) 6= Bel(x ∪ y) for each x, y ∈ Θ.

We define some special belief functions. In the preceding example, we have demonstrated how
complete ignorance may be expressed. Recall that a basic probability assignment describing
lack of evidence had the following form:

m(x) =

{

1 if x = Θ
0 otherwise

The belief function corresponding to such an assignment has been given a special name.

Definition 5.17 Let Θ be a frame of discernment and let m be a basic probability assignment
such that κ(m) = {Θ}. The belief function corresponding to m is called a vacuous belief
function.

The following definition concerns belief functions corresponding to basic probability assign-
ments of the form

m(x) =







1− c1 if x = Θ
c1 if x = A
0 otherwise

where A ⊆ Θ, and 0 ≤ c1 ≤ 1 is a constant.

Definition 5.18 Let Θ be a frame of discernment and let m be a basic probability assignment
such that κ(m) = {A,Θ} for a certain A ⊂ Θ. The belief function corresponding to m is called
a simple support function.

A belief function provides for each set x only a lower bound to the ‘actual’ belief in x: it is
also possible that belief has been assigned to a set y such that x ⊆ y. Therefore, in addition
to the belief function the Dempster-Shafer theory defines another function corresponding to
a basic probability assignment.
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Definition 5.19 Let Θ be a frame of discernment and let m be a basic probability assignment
on Θ. Then, the plausibility function corresponding to m is the function Pl : 2Θ → [0, 1]
defined by

Pl(x) =
∑

x∩y 6=∅

m(y)

for each x ⊆ Θ.

A function value Pl(x) indicates the total confidence not assigned to x̄. So, Pl(x) provides
an upper bound to the ‘real’ confidence in x. It can easily be shown that for a given basic
probability assignment m, the property

Pl(x) = 1− Bel(x̄)

for each x ⊆ Θ, holds for the the belief function Bel and the plausibility function Pl corre-
sponding to m. The difference Pl(x)−Bel(x) indicates the confidence in the sets y for which
x ⊆ y and therefore expresses the uncertainty with respect to x.

Definition 5.20 Let Θ be a frame of discernment and let m be a basic probability assignment
on Θ. Let Bel be the belief function corresponding to m, and let Pl be the plausibility function
corresponding to m. For each x ⊆ Θ, the closed interval [Bel(x),Pl(x)] is called the belief
interval of x.

EXAMPLE 5.18

Let Θ be a frame of discernment, and let x ⊆ Θ. Now, consider a basic probability
assignment m on Θ and its corresponding functions Bel and Pl.

• If [Bel(x),Pl(x)] = [0, 1], then no information concerning x is available.

• If [Bel(x),Pl(x)] = [1, 1], then x has been completely confirmed by m.

• If [Bel(x),Pl(x)] = [0.3, 1], then there is some evidence in favour of the hypothesis
x.

• If [Bel(x),Pl(x)] = [0.15, 0.75], then we have evidence in favour as well as against
x.

If we have Pl(x) − Bel(x) = 0 for each x ⊆ Θ, then we are back at conventional probability
theory. In such a case, the belief function is called a Bayesian belief function. This notion is
defined more formally in the following definition.

Definition 5.21 Let Θ be a frame of discernment and let m be a basic probability assignment
such that the core of m only consists of singleton sets. The belief function corresponding to
m is called a Bayesian belief function.

5.6.2 Dempster’s rule of combination

The Dempster-Shafer theory provides a function for computing from two pieces of evidence
and their associated basic probability assignment a new basic probability assignment describ-
ing the combined influence of these pieces of evidence. This function is known as Dempster’s
rule of combination. The remainder of this section is devoted to an example of the use of this
function. First, however, it is defined formally in the following definition.
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Definition 5.22 (Dempster’s rule of combination) Let Θ be a frame of discernment, and let
m1 and m2 be basic probability assignments on Θ. Then, m1 ⊕m2 is a function m1 ⊕m2 :
2Θ → [0, 1] such that

(1) m1 ⊕m2(∅) = 0, and

(2) for all x 6= ∅:

m1 ⊕m2(x) =

∑

y∩z=x m1(y) ·m2(z)
∑

y∩z 6=∅
m1(y) ·m2(z)

Bel1 ⊕ Bel2 is the function Bel1 ⊕ Bel2 : 2Θ → [0, 1] defined by

Bel1 ⊕ Bel2(x) =
∑

y⊆x

m1 ⊕m2(y)

The usage of Dempster’s rule of combination will now be illustrated by means of an example.

EXAMPLE 5.19

Consider once more the frame of discernment Θ = {heart-attack, pericarditis,
pulmonary-embolism, aortic-dissection}. Furthermore, consider the basic probability
assignment m1 obtained from the evidence that a given patient suffers from a heart
attack or a pericarditis, and the basic probability assignment m2 obtained from the
evidence that the patient does not suffer from pericarditis. These functions are shown
below:

m1(x) =







0.6 if x = Θ
0.4 if x = {heart-attack, pericarditis}
0 otherwise

m2(x) =







0.3 if x = Θ
0.7 if x = {heart-attack, pulmonary-embolism, aortic-dissection}
0 otherwise

From applying Dempster’s rule of combination, we obtain a new basic probability as-
signment m1 ⊕m2, describing the combined effect of m1 and m2. The basic principle
of this rule is demonstrated in Figure 5.5; such a figure is called an intersection tableau.
In front of each row of the intersection tableau is specified a subset of the frame of
discernment and the basic probability number assigned to it by the basic probability
assignment m1; the figure shows only those subsets having a basic probability number
not equal to zero. Above the columns of the intersection tableau again all subsets of Θ
are specified, but this time with their basic probability numbers according to m2. The
crossing of a row and a column now contains the intersection of the sets associated with
the row and column concerned, and specifies the product of the two basic probability
numbers associated with these sets. So, at the crossing of the row corresponding to the
set {heart-attack, pericarditis} having the basic probability number 0.4, and the column
corresponding to the set {heart-attack, pulmonary-embolism, aortic-dissection} with the
basic probability number 0.7, we find the set {heart-attack} with the number 0.28.
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m2 {heart-attack, Θ
· · · pulmonary-embolism, · · · (0.3)

m1 aortic-dissection}
(0.7)

· · ·

{heart-attack, {heart-attack} {heart-attack,
pericarditis} (0.28) pericarditis}

(0.4) (0.12)

· · ·

Θ {heart-attack, Θ
(0.6) pulmonary-embolism, (0.18)

aortic-dissection}
(0.42)

Figure 5.5: Intersection tableau for m1 and m2.
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m3 {pulmonary-embolism} Θ
· · · (0.5) · · · (0.5)

m1

· · ·

{heart-attack, ∅ {heart-attack,
pericarditis} (0.2) pericarditis}

(0.4) (0.2)

· · ·

Θ {pulmonary-embolism} Θ
(0.6) (0.3) (0.3)

Figure 5.6: An erroneous intersection tableau for m1 en m3.

Now observe that the set {heart-attack} is also present at other places in the tableau
since there are various possibilities for choosing two sets x, y ⊆ Θ such that x ∩ y =
{heart-attack}. Dempster’s rule of combination now sums all basic probability numbers
assigned to the set {heart-attack}. The result of this computation (possibly after nor-
malization to 1; we shall return to this shortly) is the basic probability number assigned
by m1 ⊕m2 to that specific set. The intersection tableau in Figure 5.5 shows all sets
having a probability number not equal to zero. So, we have obtained the following
probability assignment:

m1 ⊕m2(x) =























0.18 if x = Θ
0.28 if x = {heart-attack}
0.12 if x = {heart-attack, pericarditis}
0.42 if x = {heart-attack, pulmonary-embolism, aortic-dissection}
0 otherwise

However, in computing the combination of the two basic probability assignments, as
demonstrated above, we may encounter a problem.

Consider m1 once more and the basic probability assignment m3 defined by

m3(x) =







0.5 if x = Θ
0.5 if x = {pulmonary-embolism}
0 otherwise

Figure 5.6 now shows an intersection tableau which has been constructed using the
same procedure as before. However, in this erroneous intersection tableau a basic
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m3 {pulmonary-embolism} Θ
· · · (0.5) · · · (0.5)

m1

· · ·

{heart-attack, ∅ {heart-attack,
pericarditis} (0) pericarditis}

(0.4) (0.25)

· · ·

Θ {pulmonary-embolism} Θ
(0.6) (0.375) (0.375)

Figure 5.7: The correct intersection tableau for m1 and m3.

probability assignment greater than zero has been assigned to the empty set: we have
that m1⊕m3(∅) = 0.2. So, the function m1⊕m3 is not a basic probability assignment,
since it does not satisfy the axiom m1 ⊕m3(∅) = 0. Dempster’s rule of combination
now simply sets m1 ⊕m3(∅) = 0. As a consequence, the second axiom is violated: we
now have that

∑

x⊆Θ

m1 ⊕m3(x)

is less than instead of equal to 1. To remedy this problem, Dempster’s rule of combina-
tion divides the remaining numbers by the scaling factor

∑

x∩y 6=∅

m1(x) ·m3(y)

in this example the factor 0.8. The correct intersection tableau for m1 and m3 is depicted
in Figure 5.7.

5.6.3 Application in rule-based expert systems

In the preceding subsections, we have paid some attention to the principle notions of the
Dempster-Shafer theory. These principles have been dealt with separate from an application
in an expert system since the theory in its original form is not directly applicable as a model
for plausible reasoning in this context. However, in the early eighties, research was initiated
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to further elaborate the model to render it suitable for application in an expert system. We
have mentioned before that the basic problems preventing the use of the model in rule-based
systems are its computational complexity and the lack of several combination functions. In
this book, we shall not discuss the complexity problem. With respect to the second problem,
various ad-hoc solutions have been proposed none of which is really satisfactory. One of
these ad-hoc solutions will be briefly discussed just to illustrate the problems one encounters
in providing for the missing combination functions. The simple approach sketched here has
been developed by M. Ishizuka for the expert system SPERIL.

We consider a production rule if e1 then h fi. The Dempster-Shafer theory does not
prescribe explicitly which information should be associated with the hypothesis h of this pro-
duction rule. It is rather straightforward, however, to associate a basic probability assignment
with the rule. If the rule if e1 then h fi is meant to express that the hypothesis h is confirmed
with certainty c1 if the evidence e1 has been observed with absolute certainty, then a basic
probability assignment me1

such that

me1
(x) =







1− c1 if x = Θ
c1 if x = h
0 otherwise

is associated with the hypothesis of the rule. Note that the corresponding belief function
Bele1

is a simple support function. So, we have

e1 h
me1

Recall from Section 5.1 that plausible reasoning in a rule-based system requires the presence
of a number of combination functions: a combination function for propagating uncertain
evidence, a combination function for co-concluding production rules, and two combination
functions for composite hypotheses. In the Dempster-Shafer theory in its original form, only
the combination function for co-concluding production rules is available; we shall see that
Dempster’s rule of combination may be viewed as such. Consider again the production rule
if e1 then h fi given above and its associated functions me1

en Bele1
. Furthermore, suppose

that we have a second rule if e2 then h fi also concerning the hypothesis h, with the following
associated basic probability assignment:

me2
(x) =







1− c2 if x = Θ
c2 if x = h
0 otherwise

This situation is shown in the following inference network:

e1

e2

h

me1

me2

If we assume that e1 and e2 have been observed with complete certainty, then the basic
probability assignment that will be associated with h based on e1 and e2 is equal to me1

⊕me2
.
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The other three combination functions unfortunately are lacking in the Dempster-Shafer
theory.

M. Ishizuka has augmented the Dempster-Shafer theory by providing combination func-
tions for use in his system SPERIL. We first consider the combination function for propagating
uncertain evidence. Suppose that we are given a production rule if e then h fi with which
a basic probability assignment me has been associated. We have seen in Section 5.1, that
the evidence e is not always established with complete certainty since e itself may have been
derived from applying other production rules. For example, e may have been confirmed with
a measure of uncertainty Bele′(e) on account of some prior evidence e′:

e′ e h
Bele′(e) me

In this situation we are interested in Bele′(h), the actual measure of uncertainty of h after
application of the production rule shown above. This Bele′(h) may be obtained from me′(h)
which is computed as follows:

me′(h) = me(h) · Bele′(e)

Note that this provides us with a combination function for uncertain evidence. The following
functions are employed in SPERIL as combination functions for composite hypotheses:

Bele′(e1 and e2) = min{Bele′(e1),Bele′(e2)}

Bele′(e1 or e2) = max{Bele′(e1),Bele′(e2)}

The approach to applying Dempster-Shafer theory in a rule-based setting as sketched in this
section is simple, but hardly satisfying. We have mentioned before that in the recent literature,
several other approaches have been proposed, none of which is really satisfactory. We chose
to discuss Ishizuka’s method merely because of its simplicity and its obvious similarity to the
quasi-probabilistic models treated earlier in this chapter.

5.7 Network models

In the mid-1980s a new trend in probabilistic reasoning with uncertainty in knowledge-based
systems became discernable taking a graphical representation of knowledge as a point of de-
parture. We use the phrase network models to denote this type of model. In the preceding
sections, we have concentrated primarily on models for plausible reasoning that were devel-
oped especially for expert systems using production rules for knowledge representation. In
contrast, the network models depart from another knowledge-representation formalism: the
so-called belief network. Informally speaking, a belief network is a graphical representation
of a problem domain consisting of the statistical variables discerned in the domain and their
probabilistic interrelationships. The relationships between the statistical variables are quan-
tified by means of ‘local’ probabilities together defining a total probability function on the
variables. The phrases causal graph and influence diagram are used as well to denote the
same formalism; statisticians often use the phrase recursive model to denote similar graphical
representations of a problem domain. This section presents a brief introduction to network
models. In Section 5.7.1 we shall discuss the way knowledge is represented in a belief network.
The Sections 5.7.3 and 5.7.4 discuss two approaches to reasoning with such a network.
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V1

V2

V6

V4

V3

V5

V8 V7

Figure 5.8: The acyclic directed graph of a belief network.

5.7.1 Knowledge representation in a belief network

We have mentioned before that belief networks provide a formalism for representing a problem
domain. A belief network comprises two parts: a qualitative representation of the problem
domain and an associated quantitative representation. The qualitative part takes the form of
an acyclic directed graph G = (V (G), A(G)) where V (G) = {V1, . . . , Vn}, n ≥ 1, is a finite
set of vertices and A(G) is a finite set of arcs (Vi, Vj), Vi, Vj ∈ V (G). Each vertex Vi in
V (G) represents a statistical variable which in general can take one of a set of values. In the
sequel, however, we shall assume for simplicity’s sake that the statistical variables can take
only one of the truth values true and false. We take an arc (Vi, Vj) ∈ A(G) to represent a
direct ‘influential’ or ‘causal’ relationship between the variables Vi and Vj : the arc (Vi, Vj) is
interpreted as stating that ‘Vi directly influences Vj’. Absence of an arc between two vertices
means that the corresponding variables do not influence each other directly. In general, such
a directed graph has to be configured by a domain expert from human judgment; hence the
phrase belief network. We give an example of such a qualitative representation of a problem
domain.

EXAMPLE 5.20

Consider the following qualitative medical information:

Shortness-of-breath (V7) may be due to tuberculosis (V2), lung cancer (V4)
or bronchitis (V5), or more than one of them. A recent visit to Asia (V1)
increases the chances of tuberculosis, while smoking (V3) is known to be a
risk factor for both lung cancer and bronchitis. The results of a single chest
X-ray (V8) do not discriminate between lung cancer and tuberculosis (V6), as
neither does the presence or absence of shortness-of-breath.

In this information, we may discern several statistical variables; with each variable
we have associated a name Vi. The information has been represented in the acyclic
directed graph G shown in Figure 5.8. Each vertex in G represents one of the statistical
variables, and the arcs in G represent the causal relationships between the variables.
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The arc between the vertices V3 and V4 for example represents the information that
smoking may cause lung cancer. Note that although the graph only depicts direct
causal relationships, we can read indirect influences from it. For example, the graph
shows that V3 influences V7 indirectly through V4, V5 and V6: smoking may cause lung
cancer and bronchitis, and these may in turn cause shortness-of-breath. However, as
soon as V4, V5 and V6 are known, V3 itself does not provide any further information
concerning V7.

The qualitative representation of the problem domain now is interpreted as the representa-
tion of all probabilistic dependency and independency relationships between the statistical
variables discerned. With the graph, a domain expert associates a numerical assessment of
the ‘strengths’ of the represented relationships in terms of a probability function P on the
sample space defined by the statistical variables. Before discussing this in further detail, we
introduce the notions of predecessor and successor.

Definition 5.23 Let G = (V (G), A(G)) be a directed graph. Vertex Vj ∈ V (G) is called a
successor of vertex Vi ∈ V (G) if there is an arc (Vi, Vj) ∈ A(G); alternatively, vertex Vi is
called a predecessor of vertex Vj. A vertex Vk is a neighbour of Vi if Vk is either a successor
or a predecessor of Vi.

Now, for each vertex in the graphical part of a belief network, a set of (conditional) probabil-
ities describing the influence of the values of the predecessors of the vertex on the values of
the vertex itself, is specified. We shall illustrate the idea with the help of our example shortly.

We introduce some new notions and notational conventions. From now on, the variable
Vi taking the truth value true will be denoted by vi; the probability that the variable Vi has
the value true will then be denoted by P (vi). We use ¬vi to denote that Vi = false; the
probability that Vi = false then is denoted by P (¬vi). Now, let V (G) = {V1, . . . , Vn}, n ≥ 1,
again be the set of all statistical variables discerned in the problem domain. We consider a
subset V ⊆ V (G) with m ≥ 1 elements. A conjunction of length m in which for each Vi ∈ V
either vi or ¬vi occurs, is called a configuration of V . The conjunction v1 ∧ ¬v2 ∧ v3 is an
example of a configuration of the set V = {V1, V2, V3}. The conjunction of length m in which
each Vi ∈ V is named only, that is, specified without its value, is called the configuration
template of V . For example, the configuration template of V = {V1, V2, V3} is V1 ∧ V2 ∧ V3.
Note that we can obtain the configuration v1 ∧ ¬v2 ∧ v3 from the template V1 ∧ V2 ∧ V3 by
filling in v1, ¬v2, and v3 for the variables V1, V2, and V3, respectively. In fact, every possible
configuration of a set V can be obtained from its template by filling in proper values for the
variables occurring in the template.

We return to the quantitative part of a belief network. With each variable, that is, with
each vertex Vi ∈ V (G) in the qualitative part of the belief network, a domain expert associates
conditional probabilities P (vi | c) for all configurations c of the set of predecessors of Vi in the
graph. Note that for a vertex with m incoming arcs, 2m probabilities have to be assessed; for
a vertex Vi with zero predecessors, only one probability has to be specified, namely the prior
probability P (vi).

EXAMPLE 5.21

Consider the medical information from the previous example and its graphical repre-
sentation in Figure 5.8 once more. For example, with the vertex V3 the domain expert
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associates the prior probability that a patient smokes. For the vertex V4 two conditional
probabilities have to be specified: the probability that a patient has lung cancer given
the information that he smokes, that is, the probability P (v4 | v3), and the probability
that a non-smoker gets lung cancer, that is, the probability P (v4 | ¬v3). Corresponding
with the graph, a domain expert therefore has to assess the following eighteen proba-
bilities:

P (v1)
P (v2 | v1) and P (v2 | ¬v1)
P (v3)
P (v4 | v3) and P (v4 | ¬v3)
P (v5 | v3) and P (v5 | ¬v3)
P (v6 | v2 ∧ v4), P (v6 | v2 ∧ ¬v4), P (v6 | ¬v2 ∧ v4), and P (v6 | ¬v2 ∧ ¬v4)
P (v7 | v5 ∧ v6), P (v7 | v5 ∧ ¬v6), P (v7 | ¬v5 ∧ v6), and P (v7 | ¬v5 ∧ ¬v6)
P (v8 | v6) and P (v8 | ¬v6)

Note that from these probabilities we can uniquely compute the ‘complementary’ prob-
abilities; for example, we have that P (¬v7 | v5 ∧ v6) = 1− P (v7 | v5 ∧ v6).

We observe that a probability function P on a sample space defined by n statistical variables
V1, . . . , Vn, n ≥ 1, is completely described by the probabilities P (c) for all configurations c
of V (G) = {V1, . . . , Vn}. The reader can easily verify that from these probabilities any other
probability may be computed using the axioms mentioned in Section 5.2.1. In the sequel,
therefore, we will frequently use the template P (V1 ∧ · · · ∧ Vn) to denote a probability func-
tion: note that from this template we can obtain the probabilities P (c) for all configurations
c of V (G), from which we can compute any probability of interest. Since there are 2n dif-
ferent configurations c of V (G), in theory 2n probabilities P (c) are necessary for defining a
probability function. In a belief network, however, often far less probabilities suffice for doing
so: an important property is that under the assumption that the graphical part of a belief
network represents all independency relationships between the statistical variables discerned,
the probabilities associated with the graph provide enough information to define a unique
probability function on the domain of concern. To be more precise, we have

P (V1 ∧ · · · ∧ Vn) =
n
∏

i=1

P (Vi | Cρ(Vi))

where Cρ(Vi) is the configuration template of the set ρ(Vi) of predecessors of Vi. Note that
the probability of any configuration of V (G) can be obtained by filling in proper values for
the statistical variables V1 up to Vn inclusive and then computing the resulting product on
the right-hand side from the initially assessed probabilities. We look again at our example.

EXAMPLE 5.22

Consider the previous examples once more. We have that

P (V1 ∧ · · · ∧ V8) = P (V8 | V6) · P (V7 | V5 ∧ V6) · P (V6 | V2 ∧ V4) · ·P (V5 | V3) · · ·

P (V4 | V3) · P (V3) · P (V2 | V1) · P (V1)

Note that in this example only eighteen probabilities suffice for specifying a probability
function on our problem domain.
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In a belief network, the quantitative representation of the problem domain only comprises
probabilities that involve a vertex and its predecessors in the qualitative part of the network.
Note that the representation of uncertainty in such local factors closely resembles the approach
followed in the quasi-probabilistic models in which uncertainty is represented in factors that
are local to the production rules constituting the qualitative representation of the domain.

5.7.2 Evidence propagation in a belief network

In the preceding section we have introduced the notion of a belief network as a means for
representing a problem domain. Such a belief network may be used for reasoning with uncer-
tainty, for example for interpreting pieces of evidence that become available during a consul-
tation. For making probabilistic statements concerning the statistical variables discerned in
the problem domain, we have to associate with a belief network two methods:

• A method for computing probabilities of interest from the belief network.

• A method for processing evidence, that is, a method for entering evidence into the
network and subsequently computing the conditional probability function given this
evidence. This process is generally called evidence propagation.

In the relevant literature, the emphasis lies on methods for evidence propagation; in this
chapter we do so likewise.

Now recall that the probabilities associated with the graphical part of a belief network
uniquely define a probability function on the sample space defined by the statistical variables
discerned in the problem domain. The impact of a value of a specific variable becoming known
on each of the other variables, that is, the conditional probability function given the evidence,
can therefore be computed from these initially assessed local probabilities. The resulting
conditional probability function is often called the updated probability function. Calculation
of a conditional probability from the initially given probabilities in a straightforward manner
will generally not be restricted to computations which are local in terms of the graphical
part of the belief network. Furthermore, the computational complexity of such an approach
is exponential in the number of variables: the method will become prohibitive for larger
networks. In the literature, therefore, several less naive schemes for updating a probability
function as evidence becomes available have been proposed. Although all methods build on
the same notion of a belief network, they differ considerably in concept and in computational
complexity. All schemes proposed for evidence propagation however have two important
characteristics in common:

• For propagating evidence, the graphical part of a belief network is exploited more or
less directly as a computational architecture.

• After a piece of evidence has been processed, again a belief network results. Note that
this property renders the notion of a belief network invariant under evidence propagation
and therefore allows for recursive application of the method for processing evidence.

In the following two sections, we shall discuss different methods for evidence propagation.
In Section 5.7.3, we shall discuss the method presented by J.H. Kim and J. Pearl. In this
method, computing the updated probability function after a piece of evidence has become
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Figure 5.9: A causal polytree.

available essentially entails each statistical variable (that is, each vertex in the graphical part
of the belief network) updating the probability function locally from messages it receives
from its neighbours in the graph, that is, from its predecessors as well as its successors, and
then in turn sending new, updated messages to them. S.L. Lauritzen and D.J. Spiegelhalter
have presented another, elegant method for evidence propagation. They have observed that
calculating the updated probability function after a piece of evidence has become available
will generally entail going against the initially assessed ‘directed’ conditional probabilities.
They concluded that the directed graphical representation of a belief network is not suitable
as an architecture for propagating evidence directly. This observation, amongst other ones,
motivated an initial transformation of the belief network into an undirected graphical and
probabilistic representation of the problem domain. We shall see in Section 5.7.4 where this
method will be discussed in some detail, that this new representation allows for an efficient
method for evidence propagation in which the computations to be performed are local to
small sets of variables.

5.7.3 The network model of Kim and Pearl

One of the earliest methods for reasoning with a belief network was proposed by J.H. Kim
and J. Pearl. Their method is defined for a restricted type of belief network only. It therefore
is not as general as the method of Lauritzen and Spiegelhalter which will be discussed in the
following section.

The method of Kim and Pearl is applicable to belief networks in which the graphical part
is a so-called causal polytree. A causal polytree is an acyclic directed graph in which between
any two vertices at most one path exists. Figure 5.9 shows such a causal polytree; note that the
graph shown in figure 5.8 is not a causal polytree since there exist two different paths from the
vertex V3 to the vertex V7. For evidence propagation in their restricted type of belief network,
Kim and Pearl exploit the mentioned topological property of a causal polytree. Observe that
from this property we have that by deleting an arbitrary arc from a causal polytree, it falls
apart into two separate components. In a causal polytree G, therefore, we can identify for a
vertex Vi with m neighbours, m subgraphs of G each containing a neighbour of Vi such that
after removal of Vi from G there does not exist a path from one such subgraph to another
one. The subgraphs corresponding with the predecessors of the vertex will be called the upper
graphs of Vi; the subgraphs corresponding with the successors of Vi will be called the lower
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V2 G2

V4 G4

V0

V1G1

V3G3

Figure 5.10: A part of a causal polytree.

graphs of Vi. The following example illustrates the idea. From now on, we shall restrict the
discussion to this example; the reader may verify, however, that it can easily be extended to
apply to more general causal polytrees.

EXAMPLE 5.23

Figure 5.10 shows a part of a causal polytree G. The vertex V0 has the four neighbours
V1, V2, V3, and V4. V0 has two predecessors and therefore two upper graphs, which are
denoted by G1 and G2, respectively; V0 has also two lower graphs, denoted by G3 and
G4. Note that there do not exist any paths between these subgraphs G1, G2, G3, and
G4 other than through V0.

So far, we have only looked at the graphical part of a belief network. Recall that associ-
ated with the causal polytree we have a quantitative representation of the problem domain
concerned: for each vertex, a set of local probabilities has been specified.

Let us suppose that evidence has become available that one of the statistical variables in
the problem domain has adopted a specific value. This piece of evidence has to be entered
into the belief network in some way, and subsequently its effect on all other variables has
to be computed to arrive at the updated probability function. The method for propagating
evidence associated with this type of belief network will be discussed shortly. First, however,
we consider how probabilities of interest may be computed from the network. In doing so, we
use an object-oriented style of discussion and view the causal polytree of the belief network as
a computational architecture. The vertices of the polytree are viewed as autonomous objects
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which hold some private data and are able to perform some computations. Recall that with
each vertex is associated a set of local probabilities; these probabilities constitute the private
data the object holds. The arcs of the causal polytree are taken as communication channels:
the vertices are only able to communicate with their direct neighbours.

Now suppose that we are interested in the probabilities of the values of the variable V0

after some evidence has been processed. It will be evident that, in terms of the graphical part
of the belief network, these probabilities cannot be computed from the private data the vertex
holds; they are dependent upon the information from its upper and lower graphs as well. We
shall see, however, that the neighbours of V0 are able to provide V0 with all information
necessary for computing the probabilities of its values locally.

We introduce one more notational convention. After several pieces of evidence have been
entered into the network and processed, some of the statistical variables have been instantiated
with a value and some have not. Now, consider the configuration template CV (G) = V1 ∧
· · · ∧ Vn of the vertex set V (G) = {V1, . . . , Vn}, n ≥ 1, in such a situation: we have that in
the template some variables have been filled in. We shall use the notation c̃V (G) to denote
the instantiated part of the template. If, for example, we have the configuration template
C = V1 ∧ V2 ∧ V3 and we know that the variable V2 has adopted the value true and that the
variable V3 has the value false, and we do not know as yet the value of V1, then c̃ = v2 ∧¬v3.

We return to our example.

EXAMPLE 5.24

Consider the causal polytree from Figure 5.10 once more. We are interested in the prob-
abilities of the values of the variable V0. It can easily be proven, using Bayes’ theorem
and the independency relationships shown in the polytree, that these probabilities may
be computed according to the following formula:

P (V0 | c̃V (G)) = α · P (c̃V (G3) | V0) · P (c̃V (G4) | V0)

·
[

P (V0 | v1 ∧ v2) · P (v1 | c̃V (G1)) · P (v2 | c̃V (G2))

+P (V0 | ¬v1 ∧ v2) · P (¬v1 | c̃V (G1)) · P (v2 | c̃V (G2))

+P (V0 | v1 ∧ ¬v2) · P (v1 | c̃V (G1)) · P (¬v2 | c̃V (G2)) +

P (V0 | ¬v1 ∧ ¬v2) · P (¬v1 | c̃V (G1)) · P (¬v2 | c̃V (G2)))
]

where α is normalization factor chosen so as to guarantee P (v0 | c̃V (G)) = 1− P (¬v0 |
c̃V (G)). We take a closer look at this formula. Note that the probabilities P (v0 | v1∧v2),
P (v0 | ¬v1 ∧ v2), P (v0 | v1 ∧ ¬v2), and P (v0 | ¬v1 ∧ ¬v2) necessary for computing the
updated probabilities of the values of V0 have been associated with V0 initially: V0 holds
these probabilities as private data. So, if V0 were to obtain the probabilities P (c̃V (Gi) |
v0) and P (c̃V (Gi) | ¬v0) from its successors Vi, and the probabilities Pr(vj | c̃V (Gj))
and Pr(¬vj | c̃V (Gj)) from each of its predecessors Vj, then V0 would be able to locally
compute the probabilities of its values.

In the previous example we have seen that the vertex V0 has to receive some specific probabil-
ities from its successors and predecessors before it is able to compute locally the probabilities
of its own values. The vertex V0 has to receive from each of its successors a so-called diagnostic
evidence parameter : the diagnostic evidence parameter that the successor Vi sends to V0 is a



262 Chapter 5. Reasoning with Uncertainty

V1G1
πV0

(V1)

V3G3

λV3
(V0)

V2 G2
πV0

(V2)

V4 G4

λV4
(V0)

V0
πV3

(V0) πV4
(V0)

λV0
(V1) λV0

(V2)

Figure 5.11: The π and λ parameters associated with the causal polytree.

function λVi
defined by λVi

(v0) = P (c̃V (Gi) | v0) and λVi
(¬v0) = P (c̃V (Gi) | ¬v0). The vertex

V0 furthermore has to receive from each of its predecessors a causal evidence parameter : the
causal evidence parameter that the predecessor Vj sends to V0 is a function πV0

defined by
πV0

(vj) = P (vj | c̃V (Gj)) and πV0
(¬vj) = P (¬vj | c̃V (Gj)). These evidence parameters may

be viewed as being associated with the arcs of the causal polytree; Figure 5.11 shows the
parameters associated with the causal polytree from Figure 5.10. Note that the π and λ
parameters may be viewed as messages sent between objects.

Until now we have not addressed the question how a vertex computes the evidence param-
eters to be sent to its neighbours. We therefore turn our attention to evidence propagation.
Suppose that evidence becomes available that a certain variable Vi ∈ V (G) has adopted a
certain value, say true. Informally speaking, the following happens. This evidence forces that
variable Vi to update his private data: it will be evident that the updated probabilities for
the values of Vi are P (vi) = 1 and P (¬vi) = 0, respectively. From its local knowledge about
the updated probability function, Vi then computes the proper π and λ parameters to be sent
to its neighbours. Vi’s neighbours subsequently are forced to update their local knowledge
about the probability function and to send new parameters to their neighbours in turn. This
way evidence, once entered, is spread through the belief network.

EXAMPLE 5.25

Consider the causal polytree from Example 5.11 once more. The vertex V0 computes
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the following causal evidence parameter to be sent to its successor V3:

πV3
(V0) = α · λV4

(V0) · [P (V0 | v1 ∧ v2) · πV0
(v1) · πV0

(v2)

+P (V0 | ¬v1 ∧ v2) · πV0
(¬v1) · πV0

(v2)

+P (V0 | v1 ∧ ¬v2) · πV0
(v1) · πV0

(¬v2)

+P (V0 | ¬v1 ∧ ¬v2) · πV0
(¬v1) · πV0

(¬v2)]

where α again is a normalization factor. In computing this causal evidence parameter,
V0 uses its private data and the information it obtains from its neighbours V1, V2, and
V4. Note that, if due to some new evidence for example the information λV4

(V0) has
changed, then this change is propagated from V4 through V0 to V3.

The vertex V0 furthermore computes the following diagnostic evidence parameter to be
sent to its predecessor V1:

λV0
(V1) = α · λV3

(v0) · λV4
(v0) · [P (v0 | V1 ∧ v2) · πV0

(v2)

+ P (v0 | V1 ∧ ¬v2) · πV0
(¬v2)]

+α · λV3
(¬v0) · λV4

(¬v0) · [P (¬v0 | V1 ∧ v2) · πV0
(v2)

+ P (¬v0 | V1 ∧ ¬v2) · πV0
(¬v2)]

where α once more is a normalization factor.

We add to this example that the vertices Vi having no predecessors send a causal evidence
parameter defined by πVj

(Vi) = P (Vi) to their successors Vj; furthermore, the vertices Vi

having no successors initially send a diagnostic evidence parameter defined by λVi
(Vj) = 1 to

their successors Vj.
We now have discussed the way a piece of evidence, once entered, is propagated through the

causal polytree. We observe that any change in the joint probability distribution in response
to a new piece of evidence spreads through the polytree in a single pass. This statement can
readily be verified by observing that any change in the causal evidence parameter π associated
with a specific arc of the causal polytree does not affect the diagnostic evidence parameter
λ on the same arc (and vice versa), since in computing the diagnostic evidence parameter
λVk

(V0) associated with the arc (V0, Vk) the causal evidence parameter πVk
(V0) associated

with the same arc is not used. So, in a causal polytree a perturbation is absorbed without
reflection at the ‘boundary’ vertices, that is, vertices with either one outgoing or one incoming
arc.

It remains to be discussed how a piece of evidence may be entered into the network. This
is done rather elegantly: if evidence has become available that the variable Vi has the value
true (or false, alternatively), then a dummy successor W of Vi is temporarily added to the
polytree sending a diagnostic parameter λW (Vi) to Vi such that λW (vi) = 1 and λW (¬v)i = 0
(or vice versa if the value false has been observed).

5.7.4 The network model of Lauritzen and Spiegelhalter

In the previous section we have seen that propagating a piece of evidence concerning a spe-
cific statistical variable to the other variables in the graphical part of a belief network will
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generally involve going against the directions of the arcs. This observation, amongst other
ones, motivated S.L. Lauritzen and D.J. Spiegelhalter to transform an initially assessed belief
network into an equivalent undirected graphical and probabilistic representation of the prob-
lem domain. Their scheme for evidence propagation is defined on this new representation.
The scheme has been inspired to a large extent by the existing statistical theory of graphical
models (probabilistic models that can be represented by an undirected graph). In this theory,
the class of so-called decomposable graphs has proven to be an important subclass of graphs.
Before we define the notion of a decomposable graph, we introduce several other notions.

Definition 5.24 Let G = (V (G), E(G)) be an undirected graph where E(G) is a finite set of
unordered pairs (Vi, Vj), Vi, Vj ∈ V (G), called edges. A cycle is a path of length at least one
from V0 to V0, V0 ∈ V (G). A cycle is elementary if all its vertices are distinct. A chord of
an elementary cycle V0, V1, . . . , Vk = V0 is an edge (Vi, Vj), i 6= (j ± mod(k + 1).

We now are ready to define the notion of a decomposable graph.

Definition 5.25 An undirected graph is decomposable if all elementary cycles of length k >=
4 have a chord.

It can be shown that a probability function on such a graph may be expressed in terms of
local probability functions, called marginal probability functions, on small sets of variables.
We shall see that a representation of the problem domain in a decomposable graph and an
associated representation of the probability function then allows for an efficient scheme for
evidence propagation, in which the computations to be performed are local to these small
sets of variables.

In order to be able to fully exploit the theory of graphical models, Lauritzen and Spiegel-
halter propose a transformation of the initially assessed belief network in which the graphical
representation of the belief network is transformed into a decomposable graph, and in which
from the probabilistic part of the network a new representation of the probability function in
terms of the resulting decomposable graph is obtained. The resulting representation of the
problem domain is a new type of belief network, which will henceforth be called a decompos-
able belief network. We shall only describe the transformation of the initially assessed belief
network into such a decomposable belief network informally.

The transformation of the original acyclic directed graph G into a decomposable graph
involves three steps:

(1) Add arcs to G in such a way that no vertex in V (G) has non-adjacent predecessors.

(2) Subsequently, drop the directions of the arcs.

(3) Finally, cut each elementary cycle of length four or more short by adding a chord.

It will be evident that the resulting graph is decomposable. Note that the result obtained is
not unique.

EXAMPLE 5.26

Consider the belief network from the example of Section 5.7.1 once more. The trans-
formation of the graphical part of this belief network into a decomposable graph is
demonstrated in Figure 5.12. We consider the transformation steps in further detail.
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(c) Cut elementary cycles short

Figure 5.12: Construction of the decomposable graph.
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First of all, we have to add new arcs to the graph such that no vertex has non-adjacent
predecessors. Now observe that in figure 5.8 the vertex V6 has two predecessors: the
vertices V2 and V4. Since there does not exist an arc between V2 and V4, we have that
the predecessors of V6 are nonadjacent. We therefore add an arc between V2 and V4.
Note that we also have to add an arc between the vertices V5 and V6. Since we will
drop all directions in the second transformation step, the directions of the added arcs
are irrelevant. From subsequently dropping the directions of the arcs, we obtain an
undirected graph. The resulting graph, however, is still not decomposable, since it has
an elementary cycle of length 4 without any shortcut: V3, V4, V6, V5, V3. We cut this
cycle short by adding an edge between the vertices V4 and V5. Note that addition of an
edge between V3 and V6 would have yielded a decomposable graph as well.

We now have obtained an undirected graphical representation of the problem domain. With
this undirected graph, an ‘undirected’ representation of the probability function is associated.
We confine ourselves to a discussion of this new representation, without describing how it is
actually obtained from the initially assessed probabilities. It should however be evident that
the new representation can be obtained from the original one, since the initial probabilities
define a unique probability function.

We shall see that the probability function can be expressed in terms of marginal probability
functions on the cliques of the decomposable graph. We define the notion of a clique.

Definition 5.26 Let G = (V (G), E(G)) be an undirected graph. A clique of G is a subgraph
H = (V (H), E(H)) of G such that for any two distinct vertices Vi, Vj ∈ V (H) we have that
(Vi, Vj) ∈ E(H). H is called a maximal clique of G if there does not exist a clique H ′ of G
differing from H such that H is a subgraph of H ′.

In the sequel, we shall take the word clique to mean a maximal clique.

EXAMPLE 5.27

Consider the decomposable graph from Figure 5.12 once more. The reader can easily
verify that this graph contains six cliques.

To arrive at the new representation of the probability function, we obtain an ordering of the
vertices and of the cliques of the decomposable graph. Its vertices are ordered as follows:

(1) Assign an arbitrary vertex the number 1.

(2) Subsequently, number the remaining vertices in increasing order such that the next
number is assigned to the vertex having the largest set of previously numbered neigh-
bours.

We say that the ordering has been obtained from maximum cardinality search. After the
vertices of the decomposable graph have been ordered, the cliques of the graph are numbered
in the order of their highest numbered vertex.

EXAMPLE 5.28
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Figure 5.13: An ordering of the vertices obtained from maximum cardinality search.

Consider the decomposable graph G = (V (G), E(G)) as shown in Figure 5.12 once
more. The vertices of G are ordered using maximum cardinality search. An example
of such an ordering is shown in Figure 5.13. The six cliques of the graph subsequently
are numbered in the order of their highest numbered vertex. Let Cli be the clique
assigned number i, i = 1, . . . , 6. Then, we have obtained the following ordering (for ease
of exposition we identify a clique with its vertex set):

Cl1 = {V1, V2}

Cl2 = {V2, V4, V6}

Cl3 = {V4, V5, V6}

Cl4 = {V3, V4, V5}

Cl5 = {V5, V6, V7}

Cl6 = {V6, V8}

We consider the ordering Cl1, . . . ,Clm, m ≥ 1, of the cliques of a decomposable graph G
in further detail. Let V (Cli) denote the vertex set of clique Cli, i = 1, ...,m. The ordering
now has the following important property: for all i ≥ 2 there is a j < i such that V (Cli) ∩
(V (Cl1)∪ · · · ∪V (Cli−1)) ⊂ V (Clj). In other words, the vertices a clique has in common with
the lower numbered cliques are all contained in one such clique. This property is known as the
running intersection property. This property now enables us to write the probability function
on the decomposable graph as the product of the marginal probability functions on its cliques,
divided by a product of the marginal probability functions on the clique intersections:

P (CV (G)) =

m
∏

i=1

P (CV (Cli))

P (CSi
)

where Si is the set of vertices Cli has in common with the lower numbered cliques.

EXAMPLE 5.29
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Consider the decomposable graph G shown in Figure 5.13 once more. The probability
function on G may be expressed as

P (V1 ∧ · · · ∧ V8) = P (V1 ∧ V2) ·
P (V2 ∧ V4 ∧ V6)

P (V2)
·
P (V4 ∧ V5 ∧ V6)

P (V4 ∧ V6)

·
P (V3 ∧ V4 ∧ V5)

P (V4 ∧ V5)
·
P (V5 ∧ V6 ∧ V7)

P (V5 ∧ V6)
·
P (V6 ∧ V8)

P (V6)

The initially assessed belief network has now been transformed into a decomposable belief
network. The scheme for evidence propagation proposed by Spiegelhalter and Lauritzen
operates on this decomposable belief network. We emphasize that for a specific problem
domain the transformation has to be performed only once: each consultation of the system
proceeds from the obtained decomposable belief network.

Recall that for making probabilistic statements concerning the statistical variables dis-
cerned in a problem domain we have to associate with a decomposable belief network a
method for computing probabilities of interest from it and a method for propagating evidence
through it. As far as computing probabilities from a decomposable belief network is con-
cerned, it will be evident that any probability which involves only variables occurring in one
and the same clique can simply be computed locally from the marginal probability function
on that clique.

The method for evidence propagation is less straightforward. Suppose that evidence
becomes available that the statistical variable V has adopted a certain value, say v. For
ease of exposition, we assume that the variable V occurs in one clique of the decomposable
graph only. Informally speaking, propagation of this evidence amounts to the following. The
vertices and the cliques of the decomposable graph are ordered anew, this time starting with
the instantiated vertex. The ordering of the cliques then is taken as the order in which the
evidence is propagated through the cliques. For each subsequent clique, the updated marginal
probability function is computed locally using the computation scheme shown below; we use
P to denote the initially given probability function and P ∗ to denote the new probability
function after updating. For the first clique in the ordering we simply compute:

P ∗(CV (Cl1)) = P (CV (Cl1) | v)

For the remaining cliques, we compute the updated marginal probability function using:

P ∗(CV (Cli)) = P (CV (Cli) | v)

= P (CV (Cli)\Si
| CSi

∧ v) · P (CSi
| v)

= P (CV (Cli)\Si
| CSi

) · P ∗(CSi
)

= P (CV (Cli)) ·
P ∗(CSi

)

P (CSi
)

where Si once more is the set of vertices Cli has in common with the lower numbered cliques.
So, an updated marginal probability function is obtained by multiplying the ‘old’ marginal
probability function with the quotient of the ‘new’ and the ‘old’ marginal probability function
on the appropriate clique-intersection.

We look once more at our example.

EXAMPLE 5.30
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V18

V27

V62

V4

5

V3 6

V5 4

V81 V7 3

Figure 5.14: An ordering of the vertices starting with V8.

Consider the decomposable graph from Figure 5.12 and its associated probability func-
tion once more. Suppose that we obtain the evidence that the variable V8 has the value
true. Using maximum cardinality search, we renumber the vertices of the graph starting
with the vertex V8. Figure 5.14 shows an example of such an ordering. From this new
ordering of the vertices we obtain an ordering of the six cliques of the graph (once more,
we identify a clique with its vertex set):

Cl1 = {V6, V8}

Cl2 = {V5, V6, V7}

Cl3 = {V4, V5, V6}

Cl4 = {V3, V4, V5}

Cl5 = {V2, V4, V6}

Cl6 = {V1, V2}

The impact of the evidence on the first clique is

P ∗(V6) = P (V6 | v8)

For the second clique we find:

P ∗(V5 ∧ V6 ∧ V7) = P (V5 ∧ V6 ∧ V7) ·
P (V6)

P (V6)

For the remaining cliques we obtain similar results.

After the marginal probability functions have been updated locally, the instantiated vertex
is removed from the graph, and the updated marginal probability functions are taken as the
marginal probability functions on the cliques of the remaining graph. The process may now
simply be repeated for a new piece of evidence.
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Suggested reading

For some of the early research efforts on probabilistic reasoning undertaken during the six-
ties the reader is referred to [Gorry68] and [Dombal72]; [Szolovits78] provides an extensive
discussion of the problems encountered in these early systems.

The notions of an inference network and the four combination functions for plausible rea-
soning in rule-based systems are discussed in further detail in [Gaag89]. The PROSPECTOR
system is described in [Duda79]; [Reboh81] also treats PROSPECTOR and briefly discusses
the application of the subjective Bayesian method. [Duda76] contains a more extensive treat-
ment of this quasi-probabilistic model.

The certainty factor model is discussed in detail in [Shortliffe75] and [Buchanan84]. The
latter describes the certainty factor model in a rather informal and imprecise way; a more
rigorous treatment of the model is given in [Gaag88].

The foundations of the Dempster-Shafer theory have been laid by A. Dempster in 1967,
[Dempster67]; G. Shafer further elaborated the theory to its present form, [Shafer76].
[Buchanan84] also contains an introduction to the Dempster-Shafer theory. The contribu-
tion of J. Gordon and E.H. Shortliffe is very readable, [Gordon84]: based on earlier research,
Gordon and Shortliffe propose a model for applying Dempster-Shafer theory in rule-based
expert systems. W.F. Eddy and G.P. Pie suggest in [Eddy86] another way of using the
Dempster-Shafer theory. The technique employed by M. Ishizuka which has been described
in our Section 5.6.3, is described in [Ishizuka83].

The methods mentioned above have been dealt with also in [Black85] and [Lecot86]. In
the latter report, the implementation of the various methods in PROLOG receives much
attention.

An excellent introduction to network models is [Pearl88]. The original paper introducing
the model proposed by J.H. Kim and J. Pearl is [Kim83]. An implementation of this model
for a non-trivial application is treated in [Jensen87]. [Lauritzen88] introduces the model of
S.L. Lauritzen and D.J. Spiegelhalter; the example used in Section 5.7.4 has been borrowed
from this paper. [Gaag90] discusses both models and addresses the problem of having only a
partially quantified belief network.

In this book, we have only discussed some probability-based models for plausible reasoning.
Another major trend in plausible reasoning is based on fuzzy set theory and fuzzy logic, see
for example [Zadeh75] and [Zadeh83]; the name of L.A. Zadeh is intimately connected with
this trend. Moreover, not only numerical methods have been developed in the past, but also a
small number of qualitative methods. We mention here the theory of endorsements developed
by P.R. Cohen [Cohen85]. For a wide range of alternative approaches, the reader is referred
to [Kanal86], [Lemmer88] and [Kanal89].

Exercises

5.1 The subjective Bayesian method uses a linear interpolation function as a combination
function for propagating uncertain evidence. Recall that this interpolation function
consists of two distinct linear functions, each defined on half of the domain of the com-
bination function. Instead of the function employed in PROSPECTOR as discussed in
Section 5.3.2, we could use for example the function shown in the figure below.
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P (h | ē)

P (h)

1

P (h | e)

P (e | e′)

P (h | e′)

0
1P (e)

Describe the effect of applying the production rule if e then h fi on the prior probability
of h in case this function is used as the combination function for uncertain evidence.

5.2 Prove by means of counterexamples that the combination functions for composite evi-
dence in the subjective Bayesian method are not correct when viewed from the perspec-
tive of probability theory.

5.3 Write a PROLOG or LISP program implementing the subjective Bayesian method. You
can depart from the program for top-down inference discussed in Chapter 3.

5.4 A particular rule-based system employs the certainty factor model for modelling the
uncertainty that goes with the problem domain of concern. Let the following three
production rules be given (only the names of the attributes in the conditions and con-
clusions are shown):

if b or c then f0.3 fi
if f and g then a0.8 fi
if d or e then a0.2 fi

Furthermore, suppose that the attributes b, c, d, e, and g have been established with
the certainty factors 0.2, 0.5, 0.3, 0.6, and 0.7, respectively. The attribute a is the goal
attribute of top-down inference. Give the inference network resulting from top-down
inference with these facts and production rules. Compute the certainty factor which
results for the attribute a.

5.5 Consider the following frame of discernment: Θ = {a, b, c}. Let the basic probability as-
signment m be defined by m({a}) = 0.3, m({a, b}) = 0.4, m({a, b, c}) = 0.2, m({a, c}) =
0.1; the remaining basic probability numbers all equal 0. Compute Bel({a, c}).

5.6 Let Θ be a frame of discernment. Prove that for each x ⊆ Θ we have that Pl(x) ≥ Bel(x).

5.7 Let Θ = {a, b, c, d} be a frame of discernment. Give an example of a basic probability
assignment on Θ that defines a probability function on Θ at the same time.
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5.8 Consider the frame of discernment Θ = {a, b, c} and the following two basic probability
assignments m1 and en m2:

m1(x) =















0.3 if x = Θ
0.6 if x = {a, c}
0.1 if x = {b, c}
0 otherwise

m2(x) =







0.8 if x = Θ
0.2 if x = {b}
0 otherwise

Construct the intersection tableau for the function m1 ⊕m2 using Dempster’s rule of
combination.

5.9 Consider the frame of discernment Θ = {a, b, c} and the following basic probability
assignments m1 and m2:

m1(x) =















0.3 if x = Θ
0.6 if x = {a, c}
0.1 if x = {a, b}
0 otherwise

m2(x) =







0.8 if x = Θ
0.2 if x = {a}
0 otherwise

Why is it not necessary in this case to normalize? Compute the value of Bel1⊕Bel2({a}).

5.10 Consider the following medical information (borrowed from [Cooper84]):

Metastatic cancer is a possible cause of a brain tumor, and is also an explana-
tion for increased total serum calcium. In turn, either of these could explain
a patient falling into a coma. Severe headache is also possibly associated with
a brain tumour.

Suppose that we use a belief network to represent this information. Give the graphical
part of the belief network. Which probabilities have been associated with the graph?

5.11 Consider the causal polytree from Figure 5.9 and an associated set of probabilities.
Suppose that we apply the method of J.H. Kim and J. Pearl for evidence propagation.
Try to find out how evidence spreads through the network if entered in one of the
vertices.

5.12 Consider the belief network obtained in Exercise 5.10 once more. We transform this
belief network into a decomposable belief network as described in Section 5.7.4.

(a) Give the resulting decomposable graph. Which cliques do you discern?

(b) Give the new representation of the originally given probability function.

(c) What happens if we obtain the evidence that a specific patient is suffering from
severe headaches?
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Tools for Knowledge and Inference

Inspection

6.1 User interface and 6.3 A userinterface in LISP
explanation 6.4 Rule models

6.2 A user interface in PROLOG Suggested reading
Exercises

In Chapters 2-5 we have presented the basic principles of expert systems. The
representation and manipulation of knowledge were the central themes in these chapters,
and we have discussed several programs implementing these principles. In each of these
programs, the interaction between the user and the computer program has been kept as
simple as possible. For example, in Chapter 3 two programs for top-down inference were
discussed, in which the interaction was completely controlled by the program asking for
input from the user. Furthermore, in Chapter 4 we paid attention to a number of programs
implementing single inheritance, where the user was only allowed to pose simple questions to
the knowledge base for retrieving information. It will be evident that several disadvantages
arise from these restricted forms of interaction between user and computer. For example, in
case of an object-attribute-value representation in a rule-based expert system it is
mandatory for the system to be able to inform the user about the values which he may enter
for a particular attribute. Entering other values than those occurring in the production
rules in most cases will be senseless. Moreover, only with stringent input handling, the
system will be able to detect incorrect input data, for example due to alternative spelling or
to typing errors. Of course, simple checking of the user’s input is only the very beginning of
the development of a practical expert system environment: both the end user and the
knowledge engineer need tools which enable them to inspect the knowledge base, for
example to determine which and to what extent subjects in the domain have been covered
by the system, and for exploring the reasoning process of the system during an actual
consultation. In fact, such facilities are quite characteristic for expert systems and constitute
one of the main differences between conventional software systems and expert systems:
expert systems practically used normally have one or more of the facilities sketched.

In this chapter we concentrate on several simple means offering the end user and the
knowledge engineer insight into the overall structure of an expert system’s knowledge base
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and inference strategy employed. In the Sections 6.1-6.3 we pay attention to facilities for
obtaining information about the behaviour of the inference engine. In Section 6.4 we discuss
a facility that provides a global high-level view of a knowledge base. The
knowledge-representation formalism and associated inference method used to illustrate the
principles in this chapter are the production-rule formalism employing object-attribute-value
tuples, and top-down inference. However, facilities similar to the ones dealt with in this
chapter can be developed for other knowledge-representation formalisms as well.

6.1 User interface and explanation

One of the main challenges in the development of user interfaces to expert systems, is to
provide both the end user and the knowledge engineer with means for applying the knowledge
in the system in different ways. For example, the same medical knowledge base may be
consulted by a physician to solve a medical diagnostic problem, or it may be browsed to
determine which findings are typical in a given disease, or it may even be used to instruct a
medical student by explaining why the disease she or he suspects in a patient does or does
not fit the patient data available. It will be evident that such different ways of exploiting a
knowledge base require different user interfaces.

There are various possible dialogue forms for the interaction between a computer program
and the user. In case the initiative of the interaction is always on the side of the user, one
speaks of a user-initiated dialogue. It is also possible that the initiative of the dialogue is taken
by the computer, prompting the user to enter data; this dialogue form is called a computer-
initiated dialogue. Most current expert systems have a dialogue form lying somewhere in-
between these two extremes: the initiative of the dialogue is switched between the user and
the machine in an alternating fashion. An expert system incorporating such a dialogue form
is called a system supporting a mixed-initiative dialogue. Expert systems primarily developed
for the unexperienced user, usually take the initiative of the dialogue by posing questions for
input to the user. On the other hand, systems mainly developed for use by the experienced
user, generally leave the initiative of the dialogue to the user. Hence, the way an expert
system should interact with the user should depend on the experience the user has both with
computers and the problem domain concerned. Expert systems capable of adapting their
behaviour to the user are said to apply a so-called user model. The application of user models
in expert systems is a subject of ongoing research.

An aspect of the dialogue between user and program that is generally considered important
in expert systems, is the explanation to a user of the reasoning steps undertaken by the
system during a specific consultation. A clear and understandable explanation can be a
valuable means for justifying the recommendations of the expert system, for indicating its
limitations to the user, and for instructing users about the problem domain covered by the
system. Furthermore, it is indispensable for debugging a knowledge base in the process of its
development. Designing an expert system that is able to provide understandable and helpful
explanations involves issues such as the level of detail of the information presented to the
user, the structuring of the information presented, and the distinction between various types
of knowledge, such as shallow and deep knowledge, or declarative and strategic procedural
knowledge. An example of an experimental program that is able to justify its line of reasoning
to some extent is XPLAIN, developed by W.R. Swartout. This system makes use of the
structure of the problem domain covered by the expert system to guide the explanation of the
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problem-solving activity that is being undertaken. The difficulty of developing expert systems
providing explanatory support to a wide variety of users arises from the fact that explanation
is a very complicated form of human communication which is not well understood. Most
conventional expert systems therefore provide a form of explanation limited to a description
of the reasoning steps that were undertaken in confirming or rejecting the members of the
set of hypotheses considered. They are not capable of providing a justification of their line of
reasoning, nor are they able to adapt their behaviour to the user’s experience in the problem
domain.

Apart from the problems mentioned above, which have a psychological flavour, some ad-
ditional issues arise from the technical requirements for tools for inspecting the contents of
the knowledge base and the behaviour of the inference engine of an expert system. Obviously,
these tools should posses different characteristics dependent on whether they are applied to
support the end user or the knowledge engineer: the end user is mainly interested in the
problem domain itself, while the knowledge engineer is primarily concerned with the repre-
sentation of the domain. Most of the remainder of this chapter is devoted to the development
of a number of such tools. We shall mainly deal with expert systems supporting a mixed-
initiative dialogue. The development of software tools to support a user-initiated dialogue is
left as an exercise to the user.

We consider an expert system that poses questions to the user, which may be answered
directly by typing an appropriate string of symbols; however, the user is also given the
opportunity to postpone answering the question by entering a command in order to first
retrieve some information from the knowledge base. Commands may only be entered by the
user after the system has posed a question, or possibly at the end of a consultation, but not
at any other time. Moreover, the user is not allowed to exert any control on the inferential
behaviour of the system by means of these commands. So, the initiative of the dialogue
between system and user is quite strongly balanced towards the system. Now, let us review
some of the facilities for knowledge and inference inspection which expert systems normally
posses. A facility that is quite valuable for the knowledge engineer for obtaining a detailed
description of the reasoning behaviour of the expert system is the trace facility. This facility
makes it possible to visualize all inference steps undertaken, at various levels of detail. The
level of detail can usually be adjusted to the need. This facility is strongly related to the
trace facilities offered by programming languages, such as in the programming environments
for the languages LISP and PROLOG. Facilities offering the user the possibility to inspect
selective parts of the inference are called explanation facilities, although, as we have argued
above, they only provide a very limited form of explanation. The following three forms of
explanation of the inference process are usually distinguished:

• The why facility offers the user the possibility to examine why a certain question is
being asked. The facility shows which production rules are currently being applied by
the inference engine, and which subgoal led to posing the question. It is also possible
to visualize all production rules and subgoals which indirectly led to the question, by
successive activation of this facility. In the end, the why facility will display the goal
that initially started the inference process.

• The how facility offers a means for investigating how a particular attribute has been
traced, that is, which production rules have been applied for deriving its values and
whether or not a question concerning the attribute has been posed to the user.
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• The why-not facility is complementary to the how facility. It offers a means for deter-
mining during a specific consultation why a particular value has not been derived. The
expert system visualizes the production rules having that object-attribute-value tuple
in their conclusion, which have not been applied as yet, or have been applied but failed.

Each one of the types of explanation mentioned above uses information present in the rule
base, in the fact set, and also information concerning the inference search space which has
been recorded during the consultation. Figure 6.1 shows in a schematic way how information
concerning the inference search space is employed by the various forms of explanation.

goal attributes

subgoals

facts

rules

rules

how

why

why-not

Figure 6.1: Explanation facilities.

The following example demonstrates the use of the explanation facilities discussed above.

EXAMPLE 6.1

Consider the following three production rules:

R1 : if lessthan(object, a, 10) then add(object, b,D) fi
R2 : if same(object, c, A) and same(object, b, E) then add(object, d,H) fi
R3 : if same(object, c, B) and notsame(object, b, E) then add(object, d,G) fi

The attribute a is single-valued; all other attributes are multi-valued. We assume that
the attribute d is the goal attribute of the consultation. Let F = {object.c = {B}}
be the initial fact set. Now, when top-down inference is applied, the user is asked to
enter values for the attribute a. If the user wants to know which inference steps led
to the question, then the why facility may be invoked. This facility will display some
information taken from the top-down inference search space:

• The object-attribute pair in the first condition of rule R1 is shown, because eval-
uation of this condition directly led to the question.

• Rule R1 is presented.
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• The object-attribute pair in the second condition of rule R3 is shown, since evalu-
ation of this condition led to the selection of rule R1.

• Rule R3 is shown.

• It is mentioned that tracing the goal attribute d has led to the selection of rule R3.

If the user enters the value 5 as a response to the original question, the final fact set
after termination of the inference process will be as follows:

F ′ = {object.a = 5, object.b = {D}, object.c = {B}, object.d = {G}}

Application of the how facility for the object-attribute pair object.d yields the following
information:

• Rule R3 which has been used for deriving the set {G} for the object-attribute pair
object.d is displayed.

• The fact object.c = {B} which resulted in the success of the first condition in rule
R3 is shown.

• For a similar reason, the fact object.b = {D} is shown.

• Rule R1 is shown, since it has been applied for inferring the fact object.b = {D}.

• The fact object.a = 5 is shown; this fact resulted in the success of the first condition
in rule R1. Moreover, it is mentioned that this fact has been entered by the user.

By means of the why-not facility we can for example figure out why the value H is not
part of the set of values for the goal attribute d. The following information will then be
presented:

• Rule R2 will be shown, since the given object-attribute-value tuple occurs in the
conclusion of this rule.

• The fact object.c = {B} is subsequently shown as an explanation for the failure of
rule R2.

The explanation facilities treated above often apply some stilized form of natural language
for displaying information. Such a facility is called a quasi-natural language interface. In
such an interface, usually only a rather straightforward mechanical translation of the original
representation of facts and production rules into natural language is undertaken. Predicates,
objects, attributes, and values have associated short phrases, which will be joined together
using simple grammar rules for producing a complete sentence describing the contents of a
rule. We give an example to illustrate the usage of such a quasi-natural language interface.

EXAMPLE 6.2

Consider the following condition in a given production rule:

same(patient, complaint, fever)
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Suppose that the auxiliary verb ‘is’ has been associated with the predicate same, for
example by including the following specification in the domain declaration of the knowl-
edge base:

trans(same) = ‘is’

Similarly, the following specifications have been included:

trans(patient) = ‘the patient’
trans(complaint) = ‘the complaint’
trans(fever) = ‘fever’

Now suppose that our explanation facilities apply the following grammar rule:

trans(〈predicate〉(〈object〉, 〈attribute〉, 〈constant〉))→
trans(〈attribute〉) ‘of ’ trans(〈object〉)
trans(〈predicate〉) trans(〈constant〉)

If this grammar rule is applied to translate the condition above, then the following
sentence will be presented to the user:

the complaint of the patient is fever

6.2 A user interface in PROLOG

In Chapter 3, we discussed a PROLOG program for top-down inference. In the present section,
we shall extend this program with two of the three explanation facilities introduced in the
preceding section, namely the how and the why-not facility. Contrary to the program dealt
with in Section 3.2.2, however, facts will be represented here by means of object-attribute-
value tuples instead of by variable-value pairs. Furthermore, for ease of exposition we shall
not allow disjunctive conditions in the antecedents of production rules.

We shall see that for extending our program with a more elaborate user interface, the
representations of facts and production rules as Horn clauses need to be slightly changed. It
will be necessary that production rules in a rule base each have a unique (possibly mnemonic)
name or number. In the Horn clause representation of a production rule, the conclusion is
therefore extended with an extra argument for specifying the name or number of the rule.

EXAMPLE 6.3

Consider the following Horn clause:

add(patient,diagnosis,atherosclerosis,diag_1) :-

same(patient,complaint,leg_cramps),

same(pain,present,walking),

same(pain,absent,rest).

As can be seen, the production rule represented in the clause has been assigned the
name diag 1.
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Facts are supplied with an extra argument as well. This argument is used for storing infor-
mation on how the specified attribute value has been derived during the consultation.

EXAMPLE 6.4

The following Horn clause represents a fact:

fact(patient,diagnosis,atherosclerosis,diag_1).

It has been indicated that the value atherosclerosis of the attribute diagnosis has
been obtained by application of the production rule with the name diag 1.

In a similar way as in the example above, it is recorded that an attribute’s value has been
entered by the user, or that neither a value has been entered by the user, nor derived from
the rule base.

The user may enter a command at the end of a consultation as well as during the con-
sultation, but in the latter case only when a question is being asked. The interpretation of
a command leads to a temporary interruption of the inference process; after the execution
of the command has been completed, the inference process is resumed precisely at the point
where it was suspended. We shall see that adding a more extensive user interface to the
PROLOG top-down inference program discussed in Section 3.2.2, does not require radical
changes to the basic inference method. The main procedure of the program is given by the
following consultation clause:

consultation(Object,Goal_attribute) :-

trace_values(Object,Goal_attribute),

print_output(Object,Goal_attribute).

which calls the procedure trace values, the kernel of the inference engine, for a given object-
attribute pair. The clauses of the procedures trace values, infer, and select rule are only
modified with regard to the new representations of production rules and facts:

trace_values(Object,Attribute) :-

fact(Object,Attribute,_,_),!.

trace_values(Object,Attribute) :-

infer(Object,Attribute),!,

ask(Object,Attribute).

infer(Object,Attribute) :-

select_rule(Object,Attribute),

fail.

infer(_,_).

select_rule(Object,Attribute) :-

add(Object,Attribute,Value,Rulename),

asserta(fact(Object,Attribute,Value,Rulename)).
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Note that after the selection and evaluation of a production rule in select rule has been
completed, a new fact is added to the fact set, including the name of the rule from which the
fact has been derived. We shall use this information in the explanation facilities which will
be discussed in the following sections.

6.2.1 The command interpreter

Consider the trace values clauses for top-down inference as shown above once more. Af-
ter the selection and evaluation of the selected production rules has been completed, it is
investigated by means of the procedure ask whether this process has yielded an attribute
value. If no values have been inferred from the production rules, the user is prompted to
enter values for the attribute. However, instead of only entering a list of values, the user may
also enter commands. An important part of every interactive expert system (in fact of every
interactive computer program) is a command interpreter, which interprets commands entered
by the user. The procedure ask therefore should be able to distinguish between answers and
commands, and in case a command has been entered, to interpret the command. We have
the following ask clauses:

ask(Object,Attribute) :-

fact(Object,Attribute,_,_),!.

ask(Object,Attribute) :-

objattr_prompt(Object,Attribute),

read(Answer),!,

interpret_command(Object,Attribute,Answer).

ask(Object,Attribute) :-

asserta(fact(Object,Attribute,unknown,not_asked)).

Let us first examine the first and the third ask clause. The first ask clause has the same
meaning as in Section 3.2.2: it determines whether or not a fact concerning the object-
attribute pair occurs in the fact set. The third ask clause will only be executed in case the
derivation of values for the given attribute has failed, and the attribute is not askable. Recall
that for a non-askable attribute no prompt has been specified: the second clause therefore
always fails in case of a non-askable attribute. The third clause inserts a fact in the fact set
in which it has been indicated by means of the keyword not asked that no values have been
derived from the rule base, and that the user has not been asked for further information.
Note that thereby an explicit distinction is made between the value unknown entered by the
user, and the value unknown assigned to the attribute by the system in the above-mentioned
situation of a non-askable attribute.

When the second ask clause is called for an askable attribute, then a prompt is written to
the screen, and the user is allowed to enter either some attribute values or a command. The
following input is recognized:

• A list of values may be entered for the object-attribute pair concerned.

• The how facility may be invoked for informing the user how values of a given object-
attribute pair have been derived. The how facility is activated by entering a term of
the form

how(Object,Attribute).
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where Object and Attribute are instantiated to suitable constants.

• The why-not facility may be applied for determining why a particular attribute value
has not been derived for a given object-attribute pair. The why-not facility is activated
by entering a term of the form

why_not(Object,Attribute,Value).

where Object, Attribute, and Value are instantiated to suitable constants.

• The user may also prompt the system to show a production rule. This facility is acti-
vated by entering a term of the form

show(Rulename).

where Rulename is instantiated to the name (or number) of the desired rule.

In the second ask clause, the response of the user is read in by means of the built-in pred-
icate read. The user’s response is subsequently processed by the command interpreter. In
the present PROLOG program, the command interpreter is implemented by the procedure
interpret command. Four clauses corresponding to the four mentioned possible responses of
the user together constitute the procedure interpret command:

interpret_command(Object,Attribute,[Value|Rest]) :-

add_facts(Object,Attribute,[Value|Rest]).

interpret_command(Object,Attribute,how(H_Object,H_Attribute)) :-

process_how(H_Object,H_Attribute),!,

ask(Object,Attribute).

interpret_command(Object,Attribute,

why_not(W_Object,W_Attribute,W_Value)) :-

process_why_not(W_Object,W_Attribute,W_Value),!,

ask(Object,Attribute).

interpret_command(Object,Attribute,show(Rulename)) :-

process_show(Rulename),!,

ask(Object,Attribute).

The first clause deals with the situation that the user has entered a list of attribute values.
Each one of these values is successively added as a single fact to the fact set by means of
the procedure add facts; in each fact it is also recorded that the attribute value has been
obtained from the user:

add_facts(_,_,[]) :- !.

add_facts(Object,Attribute,[Value|Rest]) :-

asserta(fact(Object,Attribute,Value,from_user)),

add_facts(Object,Attribute,Rest),!.

The other interpret command clauses deal with the commands indicated in their heads,
respectively. After a commands has been processed by the system, the inference has to be
resumed at the point where the inference process was suspended. Therefore, the last three
interpret command clauses specify the proper call to the procedure ask after having dealt
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with the command. This way, the user again is offered the opportunity to enter a command,
or a list of attribute values.

Section 6.2.2 discusses the implementation of the how facility; Section 6.2.3 pays attention
to the why-not facility. The procedure for printing production rules is not described here; the
reader is encouraged to experiment with the program by developing the missing process show

clauses. (See exercise 6.1.)

6.2.2 The how facility

The how facility offers the user a valuable tool for determining how the values of a particular
attribute have been obtained. We already know that all information required for the how
facility is recorded in the fact set. The procedure process how implements the how facility:

process_how(Object,Attribute) :-

fact(Object,Attribute,_,_),!,

show_how(Object,Attribute).

process_how(Object,Attribute) :-

!,write(’Object-attribute pair has not been traced yet.’),

nl.

If at least one fact concerning the object-attribute pair is present in the fact set, then, the
attribute has already been traced, and the system should next investigate how the values
for the attribute have been derived. In this case, the first process how clause invokes the
procedure show how. Recall that the required information is stored in the earlier discussed
fourth argument in the PROLOG fact representation. The second process how clause deals
with the case where there is not a single fact concerning the object-attribute pair present in
the fact set. It is obvious that in this case the object-attribute pair has not been traced as
yet.

The show how procedure

show_how(Object,Attribute) :-

fact(Object,Attribute,Value,Derived),

message(Value,Derived),

fail.

show_how(_,_).

investigates how the attribute values have been derived. It depends on the information present
in the fourth argument of a fact which one of the following messages is sent to the screen:

message(Value,from_user) :-

write(’Attribute value ’),

write(Value),

write(’ has been entered by the user.’),

nl,!.

message(unknown,not_asked) :-

write(’An attribute value has neither been derived nor’),

nl,

write(’asked from the user.’),

nl,!.
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message(Value,Rule) :-

write(’Attribute value ’),

write(Value),

write(’ has been derived using the rule named ’),

write(Rule),

nl,!.

6.2.3 The why-not facility

The why-not facility is a valuable means for the user to determine why a particular value
has not been established for a given object-attribute pair. The system reacts to an activation
of this facility by first inspecting the fact set. A number of different situations may then be
distinguished. The following procedure process why not implements the why-not facility:

process_why_not(Object,Attribute,Value) :-

fact(Object,Attribute,Value,_),!,

write(’Attribute value has been derived.’).

process_why_not(Object,Attribute,Value) :-

fact(Object,Attribute,_,from_user),!,

show_why_not(Object,Attribute,Value),

write(’Attribute value has not been entered by the user.’).

process_why_not(Object,Attribute,Value) :-

fact(Object,Attribute,_,_),!,

show_why_not(Object,Attribute,Value).

process_why_not(_,_,_) :-

!,write(’Object-attribute pair has not been traced yet.’),

nl.

The first process why not clause deals with the case where a fact concerning the specified
object-attribute-value tuple is present in the fact set indicating that the user is wrong: the
specified value has been derived by the system. In case one or more facts concerning the
given object-attribute pair occur in the fact set, and none of them mentions the specified
constant, then in inferring values for the attribute, the specified value has not been derived
from the rule base or, in case the object-attribute has been asked from the user, only values
different from the given one have been entered. The second or third process why not clause
deal with this case by means of a call to show why not. The last clause handles the situation
where not a single fact concerning the object-attribute pair is present in the fact set. Note
that this indicates that the attribute has not been traced as yet. This procedure finds out
why the specified constant has not been inferred from the rule base. This is accomplished by
inspecting the rule base.

show_why_not(Object,Attribute,Value) :-

clause(add(Object,Attribute,Value,_),_),!,

evaluate_rules(Object,Attribute,Value).

show_why_not(_,_,_) :-

write(’No rules present, concluding about the given value.’),

nl,!.
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The first show why not clause deals with the case in which there are one or more production
rule present in the rule base, having the specified object-attribute-value tuple in their con-
clusion. We already know that the given tuple does not occur in the fact set and, therefore,
that each one of these rules must have failed. Why these rules have failed is examined by
means of the evaluate rules procedure. The second show why not clause deals with the
case where there are no production rules present in the rule base concluding the specified
object-attribute-value tuple.

If there do occur production rules in the rule base specifying the given object-attribute-
value tuple in their conclusion, then each of these rules is examined to find out why it has
failed during the consultation. For this purpose, the procedure evaluate rules recursively
scans the rule base for each of them:

evaluate_rules(Object,Attribute,Value) :-

clause(add(Object,Attribute,Value,Rulename),Body),

evaluate_body(Rulename,Body),

fail.

evaluate_rules(_,_,_).

The call to the built-in predicate clause selects a production rule having the given object-
attribute-value tuple in its conclusion. If such a rule is found, then the variable Body will
have been instantiated to its antecedent. This antecedent is subsequently examined by means
of the procedure evaluate body:

evaluate_body(Rulename,Body) :-

evaluate_conditions(Body,Failed_condition),!,

write(’Rule ’),

write(Rulename),

write(’ has failed due to condition ’),

write(Failed_condition),

nl,!.

The procedure evaluate body calls evaluate conditions, for determining the first failed
condition in the antecedent of the production rule: it is this condition that caused the pro-
duction rule to fail. Of course, more than one conditions could have failed if evaluated, but
only one of them has actually been evaluated. (Note that in case the look-ahead facility
was applied, all failed conditions should have been collected.) As soon as the condition that
caused the production rule to fail has been determined, this information is presented to the
user.

The following evaluate conditions procedure examines the conditions in the antecedent
of the production rule concerned one by one:

evaluate_conditions(Body,Body) :-

not(functor(Body,’,’,_)),!,

not(call(Body)).

evaluate_conditions(Body,Failed_condition) :-

arg(1,Body,Condition),

call(Condition),!,

arg(2,Body,Restbody),

evaluate_conditions(Restbody,Failed_condition).
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evaluate_conditions(Body,Failed_condition) :-

arg(1,Body,Failed_condition),!.

The first evaluate conditions clause deals with the situation that Body only comprises a
single condition, therefore defines the termination criterion of the recursion. Note that if the
antecedent of the production rule considered contains more than one condition, at the initial
call to evaluate body the variable Body will be instantiated to a term having the functor ‘,’
and two arguments, the first argument of which is the first condition of the antecedent and
the second argument of which is a term comprising the remaining conditions. If Body contains
more than condition, then the second evaluate conditions clause recursively evaluates the
conditions in Body by means of the built-in predicate call, until one is encountered that fails.
The evaluation then terminates by failure, and the second evaluate conditions clause fails
as well. The third clause passes the failed condition to the calling procedure evaluate body.

EXAMPLE 6.5

To conclude this section, we shall illustrate the usage of the explanation facilities that
have been discussed. We use a small, slightly modified set of three production rules
taken from the HEPAR system mentioned in Chapter 1. We shall not go into the
details of this expert system. The knowledge base contains three askable attributes, for
which therefore prompts have been specified:

objattr_prompt(patient,complaint) :-

nl,

write(’Enter the complaints of the patient.’),

nl.

objattr_prompt(pain,nature) :-

nl,

write(’What is the nature of the pain?’),

nl.

objattr_prompt(bile_system,ultrasound) :-

nl,

write(’Enter ultrasound findings.’),

nl.

The knowledge base furthermore specifies two non-askable attributes, named cholestasis
and diagnosis. The three HEPAR production rules are represented in PROLOG by
means of the following four Horn clauses, where the third and fourth clause have been
obtained from translating a single production rule with two conclusions into two Horn
clauses, as described in Chapter 3:

add(patient,cholestasis,extrahepatic,chol_1) :-

same(patient,complaint,abdominal_pain),

same(patient,complaint,fever),

same(pain,nature,colicky).

add(patient,cholestasis,intrahepatic,chol_2) :-
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same(patient,complaint,fever),

same(patient,complaint,purpura),

same(patient,complaint,abdominal_pain),

notsame(pain,nature,colicky).

add(patient,diagnosis,’common bile duct stone’,diag_1) :-

same(patient,cholestasis,extrahepatic),

same(bile_system,ultrasound,dilated_intrahepatic_bile_ducts).

add(patient,diagnosis,’Mirizzi’’s syndrome’,diag_2) :-

same(patient,cholestasis,extrahepatic),

same(bile_system,ultrasound,dilated_intrahepatic_bile_ducts).

A consultation of this small knowledge base could for example proceed as follows:

| ?- consultation(patient,diagnosis).

Enter the complaints of the patient.

|: [fever,abdominal_pain].

What is the nature of the pain?

|: [colicky].

Enter ultrasound findings.

|: how(patient,diagnosis).

Object-attribute pair has not been traced yet.

Enter ultrasound findings.

|: how(patient,cholestasis).

Attribute value extrahepatic has been derived using

the rule named chol_1

Enter ultrasound findings.

|: why_not(patient,cholestasis,intrahepatic).

Rule chol_2 has failed due to condition

same(patient,complaint,purpura)

.sp 0.5

Enter ultrasound findings.

|: why_not(patient,complaint,purpura).

No rules present, concluding about the given value.

Attribute value has not been entered by the user.

Enter ultrasound findings.

|: [dilated_intrahepatic_bile_ducts].

The possible diagnoses of the patient are:

Mirizzi’s syndrome, common bile duct stone

Enter how or why_not, or exit.
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|: exit.

6.2.4 A user interface in LISP

In this section we reconsider the LISP program for top-down inference discussed in Chapter
3. The incorporation of a more elaborate user interface can be accomplished more easily by
using more advanced data structures. Therefore, we shall once more pay attention to the
implementation of top-down inference in LISP, but this time concentrate on the development
of its user interface. The program has been inspired by the earlier mentioned EMYCIN
system. We shall only discuss parts of the entire program. As usual, a knowledge base
consists of a domain declaration part and a rule base. As before, problem-solving knowledge
is assumed to be represented in production rules specifying object-attribute-value tuples. An
object with its associated attributes is defined in the domain declaration by means of a LISP
expression. Such an expression, called an object specification in the sequel, has the following
form:

(object <name>

(trans <string> )

(attributes

{ (attribute <name>

(trans <string> )

(prompt <string> )

(constraint <type> )

(class <trace-class> )

(legal <value-list> )

(rules <rule-name-list> ) ) }* ))

An object specification starts with the keyword object followed by the object name. The
translation of the name of the object follows the keyword trans; it is to be used in the user
interface. Furthermore, the declarations of the attributes belonging to the object are specified
following the keyword attributes. Each attribute declaration is preceded by the keyword
attribute, and the name of the attribute. For each attribute, the following information is
stored:

• The translation of the attribute, following the keyword trans, which is to be employed
in the user interface.

• A string following the keyword prompt, which is to be used for asking the user to enter
values for the attribute. If instead of a string the value nil is filled in, the attribute
may not be asked to the user (that is, the attribute is non-askable).

• The type of the attribute is specified after the keyword constraint. An attribute type
denotes which type of values an attribute may take. The available types are: symbol

for an attribute that only takes symbolic values, and number for numerical attributes.

• The trace class of an attribute is specified following the keyword class. It indicates
whether the attribute is a goal attribute, an initial attribute, or an ‘ordinary’ attribute.
The initial attributes of an object are traced before the goal attributes of the object,
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and are used for collecting data at the beginning of a consultation. In a medical expert
system, one may think of the name, age, and sex of a patient. The order in which
the initial attributes are specified is normally used to impose an order on the initial
questions for input to the user. An initial attribute has trace class initial; a goal
attribute is denoted by the keyword goal. For all other attributes, the trace class nil

is specified, meaning that such an attribute will only be traced if it becomes a subgoal
during the top-down inference process.

• Following the keyword legal, a list of legal attribute values is specified. If instead of a
list of constants the special constant any has been specified, then arbitrary values are
allowed for an attribute in production rules as well as in the user’s input.

• The keyword rules is followed by a list of production-rule names having the attribute
in at least one of their conclusions. By means of the empty rule name nil it is indicated
that the attribute concerned cannot be derived from the rule base.

Note that as in Chapter 3, no distinction is made between single-valued and multi-valued
attributes – in fact all attributes will be treated as multi-valued attributes. The extension
allowing for this distinction is left as an exercise to the reader. (See exercise 6.2.) We give an
example of an object specification, in accord with the informal grammar presented above.

EXAMPLE 6.6

Consider the following object specification:

(object patient

(trans "the patient")

(attributes

(attribute age

(trans "the age")

(prompt "Enter the age of the patient.")

(constraint number)

(class initial)

(legal (0 120))

(rules nil))

(attribute complaint

(trans "the complaint")

(prompt "Enter the complaints of the patient.")

(constraint symbol)

(class nil)

(legal (anorexia fever jaundice vomiting))

(rules nil))

(attribute diagnosis

(trans "the diagnosis")

(prompt nil)

(constraint symbol)

(class goal)

(legal (hepatitis-A hepatitis-B hepatitis-non-A-non-B))

(rules (diag-1 diag-2 diag-3)))))
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This specification declares an object patient having three attributes. The first at-
tribute, age, is a numerical attribute of trace class initial, indicating that it will
be traced at the beginning of a consultation. Any numerical value greater than or
equal to 0 and less than or equal to 120 may be entered as an attribute value. The
second attribute, complaint, is neither an initial nor a goal attribute; it is therefore
only traced when it becomes a subgoal in the course of a consultation. The attribute
may take any subset of values from the set {anorexia, fever, jaundice, vomiting} as is
shown following the keyword legal. Finally, the third attribute, diagnosis, is a sym-
bolic goal attribute. This attribute may take the values hepatitis-A, hepatitis-B,
and hepatitis-non-A-non-B. The rules subexpression of this attribute refers to three
production rules, with the names diag-1, diag-2, and diag-3, which upon application
infer one or more values for the attribute.

Production rules have a syntax which is very much alike the syntax of rules defined in Section
3.2.3. However, in the present rule formalism, a production rule definition includes a unique
name.

EXAMPLE 6.7

Consider the following LISP expresssion which represents a production rule:

(rule diag-1

(and (lessthan patient age 30)

(same patient complaint fever)

(same patient complaint jaundice))

(add patient diagnosis hepatitis-A))

This rule which has been named diag-1; it contains three conditions in a conjunction
and one conclusion.

6.2.5 The basic inference functions

So far in Section 6.3 we have discussed the representation of objects, attributes, and produc-
tion rules by means of LISP expressions. We start the present section by showing how these
representations are translated into internal LISP data structures. At the same time, we shall
briefly review some of the implementation details of the inference engine.

All expressions present in the knowledge base are read in and subsequently parsed by the
function Parse.

(defun Parse (expr)

(case (first expr)

(object (ConstructObject (rest expr)))

(attribute (ConstructAttribute (rest expr)))

(rule (ConstructRule (rest expr)))

(otherwise (error "Unknown keyword: ~A" (first expr)))))

This function controls the further parsing of an expression by examining its first subexpression;
this yields one of the keywords object, attribute, or rule; otherwise an error is signaled.
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If the first element of the expression expr equals the keyword object, then the function
ConstructObject is called with as an argument the remainder of the expression after removal
of the first element. This function translates an object specification into a fill-in for the
following structure:

(defstruct (object)

(used nil)

(trans nil)

(attributes nil))

The field used will be employed for storing the inference status of the object in the course of
the inference, and is given the value t as soon as an object has been used. The fields trans
and attributes are filled in with the expressions corresponding with the data following the
equally named keywords in the object specification. The implementation of the function
ConstructObject is left as an exercise to the reader.

If the first element in the expression processed by the function Parse is the keyword
attribute, then the function ConstructAttribute will be called. This function translates
the attribute expression into a fill-in for the following structure:

(defstruct (attribute)

(trans nil)

(prompt nil)

(class nil)

(constraint nil)

(legal nil)

(rules nil)

(traced nil)

(value nil))

This structure contains several fields, six of which have been named after the corresponding
keywords in the object specification; these six fields are filled in by information taken from
the object specification. The seventh field, traced, will be used for indicating whether or not
an attribute has been traced. If the field contains the value t, the attribute has been traced;
otherwise it contains the value nil. Finally, the field value is used for storing the attribute
values which have actually been derived.

All objects with their associated attributes are stored in a global variable *objects*,
which is made special at the beginning of the program as follows:

(defvar *objects*)

Since each object in *objects* specifies its own attributes, this variable is at the same time
used to refer to the entire fact set.

We have now fully described the parsing of objects and attributes; let us now pay attention
to the parsing of production rules. Recall that the function Parse controls the parsing process
by inspection of the first subexpression of its expr argument. If this first subexpression equals
the keyword rule, then the function ConstructRule is called for translating a LISP expression
representing a production rule into a fill-in for the following structure:

(defstruct (rule)
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(name nil)

(used nil)

(antecedent nil)

(consequent nil))

The field name is used to store the rule identifier. The field used contains the information
whether or not the rule has been applied as yet. If the rule has been applied then the field
contains the truth value t; otherwise, the value nil is specified. The fields antecedent

and consequent contain the equally named parts of the rule expression. The function
ConstructRule, which takes care of the creation of the relevant rule data structure, is defined
as follows:

(defun ConstructRule (rule)

(setq *rule-base*

(cons (set (first rule)

(make-rule

:name (first rule)

:antecedent (cdadr rule)

:consequent (cddr rule)))

*rule-base*)))

The name, the antecedent, and the consequent of the production rule are extracted from
rule and, translated into a structure by means of the function make-rule. This structure is
subsequently assigned to the name of the rule; the assignment is done by means of a call to
the function set. Then, the newly created production-rule structure is added to the global
variable *rule-base* by means of the function cons.

The inference engine for manipulating these data structures, has the same global organi-
zation as the one described in Chapter 3. A consultation of an expert system is started by
means of a call to the function Consultation:

\texttt{(defun Consultation (objects)

(TraceObject (first objects))

(PrintGoals objects))

The function TraceObject starts an inference process for the attributes of the first object.
When the inference for the first object has finished, the conclusions obtained are printed to
the screen by means of the function PrintGoals. Note that the first object should always
contain at least one goal attribute to start the inference process.

In the function TraceObject shown below, first the field used of object is set to t. The
function TraceObject first traces all initial attributes of the given object and then its goal
attributes. This trace process has been implemented as two subsequent iterative processes
by means of a dolist form, in which for each initial and each goal attribute the function
TraceValues is called:

(defun TraceObject (object)

(setf (object-used object) t)

(dolist (attribute (object-attributes object))

(if (eq ’initial (attribute-class attribute))

(TraceValues object attribute)))
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(dolist (attribute (object-attributes object))

(if (eq ’goal (attribute-class attribute))

(TraceValues object attribute))))

The function TraceValues is quite similar to the one discussed in Section 3.2.3:

(defun TraceValues (object attribute)

(unless (attribute-traced attribute)

(TraceInfo object attribute)

(if (not (Infer object attribute))

(Ask object attribute))

(setf (attribute-traced attribute) t)))

By means of the function call to attribute-traced it is investigated whether or not the
attribute attribute has already been traced. If the attribute has not been traced as yet, then
the function TraceInfo is called, for printing information about the status of the inference;
whether or not trace information will actually be printed depends on the value of the global
variable *tracing*, which has been declared special at the beginning of the program. The
function TraceInfo takes two or three arguments where the third argument is optional,
as indicated by keyword &optional. The function represents only a modest attempt in
implementing a trace facility; however, it can easily be extended.

(defun TraceInfo (object attribute &optional selected-rules)

(when *tracing*

(terpri)

(unless (null object)

(princ "Tracing: ")

(PrintObjectAttributeTranslation object attribute))

(unless (null selected-rules)

(princ "Selected rules: ")

(dolist (rule selected-rules)

(prin1 (rule-name rule))

(princ " "))

(terpri))))

The function prints some information about the object-attribute pair that is being processed
and the production rules which have been selected.

If the attribute attribute has not been traced as yet, then the function TraceValues

tries to infer values for the attribute from the rule base, to which end the function Infer

is called. If rule application has not been successful and the attribute concerned is askable,
then the user is prompted by the function Ask to enter some values for it. To conclude, the
function TraceValues sets the field traced of the attribute to the value t, to indicate that
the attribute has now been traced.

The following function Infer once more calls the function TraceInfo:

(defun Infer (object attribute)

(let ((selected (SelectRules attribute)))

(TraceInfo nil nil selected)

(dolist (rule selected (attribute-value attribute))
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(setf (rule-used rule) t) ; rule used once

(PushHistory object attribute rule)

(ApplyRule rule)

(PopHistory))))

The selection of applicable production rules from the rule base is done by means of a call to
the function SelectRules. Each production rule selected is subsequently applied by means
of the function ApplyRule. As soon as all production rules have been applied, the iterative
loop terminates. To collect information concerning the inference status for the the explana-
tion facilities, the two functions PushHistory and PopHistory are called. We postpone the
treatment of these functions until Section 6.3.3.

In the function SelectRules, production rules are selected from the rule base simply by
calling the selection function attribute-rules, which returns the rules referred to in the
field rules of the attribute. So, contrary to the program discussed in Section 3.2.3, rules are
here not selected by sequentially scanning the entire rule base:

(defun SelectRules (attribute)

(let ((selected nil))

(dolist (rule (mapcar #’eval

(attribute-rules attribute)) selected)

(unless (rule-used rule)

(setf selected (append selected

(list rule)))))))

Before a selected production rule is actually applied, SelectRules investigates by means of
the function call (rule-used rule) whether or not the rule has already been applied. A rule
that has already been applied is not admitted to the conflict set for the second time.

Note that application of a production rule has to be implemented in a different way than
in Section 3.2.3 due to the difference in the data representation for facts employed. In Section
3.2.3, facts were stored as values of global variables; in the present section, facts are kept
in the value field of the attribute data structure, and the values are therefore less directly
accessible by the LISP interpreter than in Section 3.2.3. The implementation of the functions
Ask and ApplyRule is left as an exercise to the reader. (See exercise 6.2.)

6.2.6 The command interpreter

In the previous section we have briefly reviewed the implementation of top-down inference in
LISP which constitutes the point of departure for the present section. Here we shall deal with
the development of a more extended user interface. As in the PROLOG program discussed in
the preceding section, the program contains a command interpreter for processing the user’s
input. In the present LISP program the function InterpretCommand may be viewed as such.
This function is called from the function Ask.

(defun InterpretCommand (response object attribute)

(case response

(facts (ShowFacts *objects*))

(? (PrintPrompt attribute))

(legal (ShowLegalValues attribute))

(why (ExplainWhy object attribute ’why *history*))
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(trace (setq *tracing* t))

(notrace (setq *tracing* nil))))

The various commands which may be entered by the user and the actions to be executed
by the program are specified in the case form. The following commands and actions are
distinguished:

• If the user has entered the command facts, then the function ShowFacts will be called
which prints the entire current fact set to the screen. For this purpose, it examines
every object in the variable *objects*. Information for an object is only printed if the
field used has been set to t. Furthermore, the values of an attribute will only be printed
if the field traced of the attribute has the value t.

• If the user enters a question mark, then the function PrintPrompt will be invoked,
which prints the prompt defined for the attribute which is currently being asked.

• If the user enters the command legal, then the function ShowLegalValues shows the
legal values of the given attribute.

• The command why activates the why facility of the program. This function call passes
the current object and (sub)goal attribute as arguments to the function ExplainWhy,
together with the value of the global variable *history*. This variable is employed for
storing information concerning the inference search space. In the next section we shall
return to this variable and the why facility.

• The commands trace en notrace change the truth value of the global variable *tracing*,
thus switching the trace facility on and off, respectively.

6.2.7 The why facility

In Section 6.1 we have paid attention to a number of facilities for explaining the inference
behaviour of a rule-based expert system to the user. In the Sections 6.2.2 and 6.2.3 we have
shown implementations of the how and why-not facility in PROLOG. In the present section
we shall focus on an implementation of the why facility in LISP.

At the beginning of this chapter we have remarked that adding explanation facilities to an
expert system entails the collection and maintenance of bookkeeping information concerning
the inference status. For the purpose of the why facility, we must at every inference step at
least collect information concerning the object-attribute pair that is being traced, and the
production rule which is being applied to infer values for the attribute. In the LISP program
we record this information in the global variable *history*. This variable maintains a stack,
implemented as a list, of which each element represents the status information with respect
to a single inference step. We use the following structure for storing information concerning
one inference step:

(defstruct (explain-step)

(object nil)

(attribute nil)

(rule nil))
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In the fields object and attribute we collect the object-attribute pair which currently acts
as a (sub)goal of the inference process; the field rule contains a reference to the production
rule that is being applied for inferring values for the given attribute.

At each inference step, the function Infer calls the function PushHistory as soon as a
selected production rule is to be applied. PushHistory pushes a new explain-step structure
on the *history* stack:

(defun PushHistory (object attribute rule)

(setq *history* (cons (make-explain-step

:object object

:attribute attribute

:rule rule)

*history*)))

After the selected rule has been applied, the first element of *history* is again removed, that
is, the stack is popped. The popping of the history stack is done by means of the function
PopHistory:

(defun PopHistory ( )

(setq *history* (rest *history*)))

Now, when the user enters the command why, the function ExplainWhy inspects the contents
of the variable *history*.

(defun ExplainWhy (object attribute command history)

(cond ((eq command ’why)

(if history

(PrintInferenceStep (first history))

(TopExplanation object attribute))

(ExplainWhy object attribute (PromptUser) (rest history)))

(t command)))

After an explanation has been presented, either by a call to PrintInferenceStep or to the
function TopExplanation, the user is again given the opportunity to further inspect the
history stack by a recursive call to ExplainWhy. This way the complete inference path from
the last (sub)goal to the goal attribute that started the inference process, may be inspected.
The function PromptUser prints a system prompt and awaits the user’s input: if the user
enters input data different from the command why, then the body of ExplainWhy terminates
and the last entered input is returned to the callee.

In the body of ExplainWhy, the function PrintInferenceStep is called for the first el-
ement of the history stack provided it is not empty. This function prints information con-
cerning one inference step:

(defun PrintInferenceStep (inf)

(princ "The following rule is being applied to infer")

(terpri)

(PrintObjectAttributeTranslation (explain-step-object inf)

(explain-step-attribute inf))

(PrintRule (explain-step-rule inf)))
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The function PrintInferenceStep retrieves the object-attribute pair of the specified infer-
ence step by means of the selector functions explain-step-object and explain-step-attribute.
The function PrintObjectAttributeTranslation is invoked for printing a translation of the
given object-attribute pair to the screen. The function explain-step-rule retrieves from
the same explain-step structure the production rule which is being applied to infer values for
the specified attribute. This rule is subsequently printed by means of the function PrintRule.

If all inference steps constituting the inference path for a particular initial or goal attribute
have been walked through, then the function TopExplanation is called. This function just
prints the current (sub)goal attribute and the associated object:

(defun TopExplanation (object attribute)

(princ "The current goal to be proved is")

(PrintObjectAttributeTranslation object attribute)

(terpri))

The function PrintObjectAttributeTranslation is part of the quasi-natural language in-
terface of the program. This function prints the translation of the object-attribute pair to
the screen, using the method discussed in Section 6.1.

(defun PrintObjectAttributeTranslation (object attribute)

(PrintAttributeTrans attribute)

(princ " of ")

(PrintObjectTrans object))

We encourage the reader to develop the remaining functions of the inference engine, the why
facility and of the quasi-natural language interface not explicitly shown here, using the data
structures discussed above as a point of departure. (See again exercise 6.2.)

EXAMPLE 6.8

We now demonstrate the usage of the why facility discussed above by means of a tiny
knowledge base comprising three object specifications and three production rules. These
object specifications and production rules have been taken from the HEPAR system, as
in the PROLOG example in Section 6.2.3. The three objects occurring in the production
rules are defined as follows:

(object patient

(trans "the patient")

(attributes

(attribute diagnosis

(trans "the possible diagnosis")

(prompt nil)

(constraint symbol)

(class goal)

(legal ("common-bile-duct stone" "Mirizzi’s syndrome"))

(rules (diag-1)))

(attribute cholestasis

(trans "the cholestasis")

(prompt nil)



6.2. A user interface in PROLOG 297

(constraint symbol)

(class nil)

(legal (intrahepatic extrahepatic))

(rules (chol-1 chol-2)))

(attribute complaint

(trans "the complaint")

(prompt "Enter complaints of the patient.")

(constraint symbol)

(class nil)

(legal (none abdominal-pain anorexia fever nausea purpura))

(rules nil))))

(object pain

(trans "the pain")

(attributes

(attribute nature

(trans "the nature")

(prompt "What is the nature of the pain?")

(constraint symbol)

(class nil)

(legal (colicky continuous))

(rules nil))))

(object bile-system

(trans "the biliary tract")

(attributes

(attribute ultrasound

(trans "the ultrasound findings")

(prompt "Enter ultrasound findings.")

(constraint symbol)

(class nil)

(legal (none dilated-intrahepatic-bile-ducts

dilated-extrahepatic-bile-ducts))

(rules nil))))

As can be seen, the attribute diagnosis is the goal attribute of the object patient.
All other attributes are neither initial nor goal attributes, and will therefore only be
traced if required for tracing the goal attribute. The medical rule base in this example
consists of the following three production rules:

(rule chol-1

(and (same patient complaint abdominal-pain)

(same patient complaint fever)

(same pain nature colicky))

(add patient cholestasis extrahepatic))
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(rule chol-2

(and (same patient complaint fever)

(same patient complaint purpura)

(same patient complaint abdominal-pain)

(notsame pain nature colicky))

(add patient cholestasis intrahepatic))

(rule diag-1

(and (same patient cholestasis extrahepatic)

(same bile-system ultrasound

dilated-intrahepatic-bile-ducts))

(add patient diagnosis "common-bile-duct stone")

(add patient diagnosis "Mirizzi’s syndrome"))

The consultation of this tiny knowledge base may for example proceed as follows:

> (ConsultationSystem)

Enter the name of the knowledge base: hepar.kb

Enter complaints of the patient.

-> why

The following rule is being applied to infer

the cholestasis of the patient

If

the complaint of the patient is abdominal-pain, and

the nature of the is colicky, and

the complaint of the patient is fever

then

conclude that the cholestasis of the patient

is extrahepatic

-> why

The following rule is being applied to infer

the possible diagnosis of the patient

If

the cholestasis of the patient is extrahepatic, and

the ultrasound finding of the biliary tract is

dilated-intrahepatic-bile-ducts

then

conclude that the possible diagnosis of the patient

is common-bile-duct stone, and

conclude that the possible diagnosis of the patient
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is Mirizzi’s syndrome

-> ?

Enter the complaints of the patient.

-> legal

Legal values: (none abdominal-pain anorexia fever nausia purpura)

-> (fever abdominal-pain)

What is the nature of the pain?

-> (colicky)

Enter ultrasound findings.

-> (dilated-intrahepatic-bile-ducts)

Final conclusion:

Object: the patient

Attribute: the possible diagnosis

Value(s) : ("Mirizzi’s syndrome" "common-bile-duct stone")

6.3 Rule models

In the previous sections we mainly paid attention to explanation facilities for getting insight
in the inference behaviour of an expert system; for generating explanations of the inference
we only used information from the top-down inference search space constructed during a
consultation. These facilities, however, offer rather limited support, for example, to find out
which production rules are still lacking in the knowledge base and which rules are incorrect.
A major shortcoming of these facilities is that they do not provide the knowledge engineer
with an appropriate global high-level view of the knowledge present in the knowledge base.
Since imposing a suitable domain-dependent structure on the knowledge base is one of the
major tasks of the knowledge engineer, the availability of tools for reviewing the high-level
structure of the knowledge base is quite essential for carrying out the knowledge-engineering
task in a proper way. In the present section, we shall pay attention to a technique that is able
to provide such a high-level view of a knowledge base. The method discussed has been taken
from TEIRESIAS, a system that has been developed at the end of the 1970s by R. Davis
for supporting the process of knowledge acquisition. Many of the ideas incorporated into
TEIRESIAS were motivated by an analysis of the problems encountered in the development
of the MYCIN system.

During the development of large knowledge bases, containing several hundreds of produc-
tion rules, it often turns out that some sort of regularity is introduced into the rule base. This
regularity mainly arises from the presence of several rules rather than a single rule concluding
on a particular hypothesis. When the knowledge engineer adds a new rule to such a set of
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co-concluding rules, then one may expect that the new rule adheres to the same regularity,
that is, one may expect that it contains certain conditional patterns also occurring in other
rules in the knowledge base concluding on the same hypothesis.

EXAMPLE 6.9

We consider the knowledge base of a medical expert system containing, among other
rules, ten production rules concluding the value aortic-regurgitation for the attribute
diagnosis of the object patient. Suppose that all of these rules specify the condition

same(patient, sign, diastolic-murmur)

Now suppose that a new rule is added to the given set, also drawing the conclusion aortic
regurgitation. We may expect that this new rule also contains the above-mentioned
condition. However, we stress that this is only an expectation; there may be good
reasons why in contrast with all other rules concluding on aortic-regurgitation, the new
rule lacks that specific condition.

By exploiting regularities in conditions and conclusions of production rules, it is possible to
construct a high-level description of a subset of similarly looking production rules. A set
of similar rules and a description of the most typical conditions and conclusions occurring
in them is called a rule model. Note that a rule model may be viewed as a form of meta-
knowledge: it is a description of other knowledge, here a set of production rules.

In an expert system employing top-down inference a rule base can be partitioned into
subsets of rules such that each partition contains all rules having the same object-attribute
pair in one of their conclusions. Note that a production rule having more than one conclusion
may occur in more than one partition; so, the partitions do not have to be disjoint. Each
partition now is taken as the point of departure for the construction of a rule model. Each
partition then can be further divided into smaller partitions containing rules all specifying
the same object-attribute-value tuple in the conclusion concerned. So, the rules in a rule
model concerning a specific object-attribute-value tuple will be a subset of the rules in a rule
model concerning the same object-attribute pair. This way we arrive at a taxonomy of rule
models based on the subset relation. Before we go into further detail, we fix a language for
the specification of rule models.

Definition 6.1 A rule model is an expression of the following form:

〈rule-model〉 ::= model 〈model-name〉 is
supermodel 〈super-model〉;
submodel {〈model-name〉}∗;
antecedent {〈singlet〉}+

{〈correlation〉}∗;
consequent {〈singlet〉}+

{〈correlation〉}∗;
based-on {(〈rule-name〉〈cf 〉)}+

end
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〈supermodel〉 ::= 〈model-name〉 | nil

〈singlet〉 ::= (〈object〉 〈attribute〉 {〈pred-act〉}+ 〈cf-sum〉)

〈correlation〉 ::= ( {(〈object〉 〈attribute〉 {〈pred-act〉}+)}+ 〈cf-sum〉)

〈pred-act〉 ::= 〈predicate〉 | 〈action〉

The supermodel and submodel specifications are used to indicate the position of the rule
model in the tree-like taxonomy of rule models. The antecedent and consequent parts of a
rule model provide a kind of summary of the information in the antecedents and consequents
of the production rules contained in the model. In the based-on part the names of the rules
on which the rule model has been based are listed. For each of these rules the certainty factor
〈cf 〉 associated with the conclusion is given.

We first shall restrict the discussion to the properties of rule models describing object-
attribute pairs; however, similar properties hold for the other types of rule models. The
antecedent part of a rule model specifies data with respect to the objects, attributes, and
predicates occurring in the conditions of the production rules listed in the rule model. Infor-
mation concerning the occurrence of an object-attribute pair in the conditions of the rules is
stored as a singlet. In TEIRESIAS, a singlet is created for an object-attribute pair if it occurs
in the condition part of at least 30% of the rules present in the rule model. The predicates
listed in such a singlet cover together at least 75% of the conditions of the production rules
in which the object-attribute pair occurs; the predicates occurring with the highest frequency
have been included first. Finally, a singlet specifies the sum of all the certainty factors in the
conclusions of the rules from which the singlet has been constructed; this is used as a measure
for the information content of the given object-attribute pair.

EXAMPLE 6.10

Consider the following singlet in a rule model:

(patient sign same notsame 2.5)

It expresses that the object-attribute pair patient.sign occurs in the condition part of
at least 30% of the production rules concerned. In these rules, the pair patient.sign
occurs with the predicate same or the predicate notsame in at least 75% of the cases.
The sum of the certainty factors mentioned in the rules from which the singlet has been
constructed is equal to 2.5.

A correlation in the antecedent part of a rule model expresses information concerning the
combined occurrence of object-attribute pairs in the condition parts of the rules described
by the rule model. In TEIRESIAS, a correlation is created for an object-attribute pair if it
occurs in at least 80% of the rules together with one or more specific other object-attribute
pairs. Note that a correlation contains a sum of certainty factors just as a singlet does.

EXAMPLE 6.11
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Consider the following correlation:

((patient sign same) (patient complaint same) 1.5)

It expresses that in the antecedent parts of the production rules of the rule model, the
object-attribute pair patient.sign occurs in at least 80% of the rules in combination
with the object-attribute pair patient.complaint. In such cases, both object-attribute
pairs occur with the predicate same. The sum of the certainty factors specified in the
conclusions of the rules in which both conditions occur, equals 1.5.

The consequent part of a rule model contains information concerning the object-attribute
pairs the rules described by the rule model have in common in their conclusion parts. This
information is expressed much in the same way we have seen for the antecedent part of the
model.

We now have reviewed the various constituents of a rule model. Let us give an example
of an entire rule model.

EXAMPLE 6.12

Consider the following rule model:

model patient-diagnosis is
supermodel nil;
submodel pos-diagnosis neg-diagnosis;
antecedent (patient complaint same −0.4)

(patient sign same notsame 0.2)
((patient complaint same) (patient sign same) −0.4);

consequent (patient diagnosis add 0.2);
based-on (diag-1 −0.4) (diag-2 0.6)

end

It contains information concerning production rules specifying the object-attribute pair
patient.diagnosis in their conclusion. The model expresses that at least 30% of the
production rules concluding on the object patient and its attribute diagnosis specify
the object-attribute pairs patient.complaint and patient.sign in their antecedent part.
The object-attribute pair patient.complaint occurs in at least 75% of the cases with the
predicate same, while for the object-attribute pair patient.sign we find in at least 75% of
the cases either the predicate same or the predicate notsame. Furthermore, the object-
attribute pair patient.complaint occurs in at least 80% of the rules in combination with
the object-attribute pair patient.sign. In these rules, both pairs occur with the predicate
same. We see that the model has been based on two production rules named diag-1 and
diag-2, respectively, specifying the certainty factors −0.4 and 0.6. Note that since the
model has been based on two rules only, we for example have that at least one of them
contains either of the two specified antecedent singlets in its condition part.

We already mentioned that the rule models constructed from a knowledge base as sketched
above, are organized into a taxonomy. We describe one of the possible ways to organize rule
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model
patient-diagnosis

model
pos-diagnosis

CF ≥ 0

model
neg-diagnosis

CF < 0

model
pos-diagnosis
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CF ≥ 0

model
pos-diagnosis
hepatitis-B

CF ≥ 0

model
neg-diagnosis
hepatitis-A

CF < 0

model
neg-diagnosis
hepatitis-B

CF < 0

Figure 6.2: Example of a rule-model taxonomy.

models in a taxonomy, once more based on TEIRESIAS. In general, this taxonomy consti-
tutes a forest of tree structures, where the root of each tree contains information concerning
production rules having a particular object-attribute pair in at least one of their conclusions.
Figure 6.2 gives an example of such a rule-model taxonomy. The production rules described
by these models contain the object patient and the attribute diagnosis in one of their conclu-
sions. The root has two children, each of which is a specialization of the rule model in the
root. One specialization contains information with respect to the subset of rules described by
the root, having a certainty factor greater than or equal to zero in the conclusion specifying
the object-attribute pair concerned; the other specialization concerns the subset of rules all
having a certainty factor less than zero. Each of these specializations is further specialized by
rule models for specific object-attribute-value tuples. For each object-attribute-value tuple
the rule model again has two specializations: one for the positive-or-zero certainty factor case,
and the other one for the case where the certainty factor is negative. Note that in a more
general case not all possible rule models have to be present in the rule model taxonomy, since,
for example, production rules having negative certainty factors in their conclusion might be
missing from the rule base concerned.

EXAMPLE 6.13

The following rule model is a specialization of the rule model in the preceding example:

model pos-diagnosis is
supermodel patient-diagnosis;
submodel pos-diagnosis-hepatitis-A;
antecedent (patient sign same 0.6);
consequent (patient diagnosis add 0.6);
based-on (diag-2 0.6)

end
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This rule model is only based on a single production rule. Note that all the information
provided by this model is also described in the rule model patient-diagnosis from the
preceding example. However, due to the statistical nature of rule models, this will not
always be the case.

Rule models can be of much help when extending or modifying a rule base which is already
quite large, since they provide useful information on the typical patterns in production rules
concluding on a certain subject. In TEIRESIAS, rule models have been used to control the
knowledge input when building an expert system by informing the knowledge engineer about
possibly missing conditions or conclusions in the rules he has entered. We emphasize that
only in large knowledge bases rule models have enough predictive value to be of any help;
for small knowledge bases and in the initial implementation stage of an expert system, rule
models generally will not be very useful.

Suggested reading

The papers [Weiner80] and [Kass88] discuss the design of good explanation facilities for ex-
pert systems. The system XPLAIN is described in [Swartout83]. [Buchanan84] deals with
various kinds of explanation which have been applied in MYCIN and the MYCIN-derivatives
EMYCIN, TEIRESIAS, and GUIDON. This book also discusses various forms of dialogue
between user and expert system. [Hendler88] is a collection of papers dealing with the de-
velopment of user interfaces for expert systems. [Davis82] discusses the characteristics of the
system TEIRESIAS in much detail. A collection of papers on methodologies and tools for
building expert systems is [Guida89].

Exercises

(6.1) Consider the PROLOG program discussed in Section 6.2. This program only provides
a how and a why-not facility. Extend this program by adding a why facility and a
quasi-natural language interface for translating production rules into stilized English.

(6.2) Consider the LISP program discussed in Section 6.3. Amongst other things, this pro-
gram contains a why facility and a quasi-natural language interface.

(a) Develop the functions that are missing in the description and add a how and a
why-not facility. Furthermore, make a distinction between single-valued and multi-
valued attributes and extend both the user interface and the inference engine in
such a way that they can cope with single-valuedness and multi-valuedness.

(b) Yes-no attributes are special single-valued attributes which can take only one of
the values yes and no (or true and false, alternatively). The translation of this
type of single-valued attribute in a quasi-natural language interface justifies special
treatment. Consider for example the following condition:

same(patient, fever, yes

A suitable translation of this condition is the sentence ‘the patient has a fever’,
which is obtained by associating the phrase ‘the patient’ with the object patient
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and the phrase ‘has a fever’ with the attribute fever. Note that the predicate and
the constant specified in the condition are not included in the resulting sentence,
but instead are used only for determining whether a positive or negative sentence
is generated. Extend the knowledge base and the LISP functions for the user
interface in such a way that the program translates yes-no attributes properly.

(6.3) Consider the PROLOG or the LISP program developed in exercise 6.1 or 6.2, respec-
tively.

(a) Develop a knowledge base for a problem domain you are familiar with. Take care
of the structure of the knowledge base, in particular take care that the top-down
inference search tree will be more than one level deep during at least part of a
consultation. Study the behaviour of the explanation facilities by applying the
chosen program to your knowledge base.

(b) Explanation by example is a frequently used technique in tutoring: a subject is
explained by presenting an example revealing its principles. Extend either the
PROLOG or LISP program by including a facility that supplements the system’s
response to why questions by typical examples. Extend your knowledge base de-
veloped in exercise (a) so that you are able to demonstrate the applicability of this
technique.

(6.4) In the Sections 6.1 to 6.3 we have mainly concentrated on the development of a user
interface supporting a mixed-initiative dialogue. Try to modify one of the discussed
programs in such a way that a user interface supporting a user-initiated dialogue is
obtained. The user should be given the opportunity to start, interrupt, and continue
the inference process when desired; the user is never prompted for input by the system
– all attributes are considered to be non-askable. Furthermore, the user should be
permitted to freely add, modify, or remove facts.

(6.5) Modern graphical user interfaces to an expert system have the advantage that the infer-
ence process of an expert system can be visualized much clearer than by using classical
character-oriented user interfaces. Try to extend the PROLOG or LISP program result-
ing from exercise 6.1 or 6.2, respectively, in such a way that a graphical representation
of the top-down inference search space is presented to the user. The representation has
to provide information about which conditions in rules have failed, succeeded, or have
not yet been evaluated; it also has to indicate which part of the rule base is currently
being evaluated.

(6.6) Providing meaningful explanations of the system’s reasoning behaviour is not confined
to rule-based systems only. Develop an explanation facility for a frame-based expert
system that includes demons for passing control from one frame to another one.

(6.7) One of the major advantages of a typed knowledge-representation formalism, such as the
production-rule formalism described in Section 6.3 where for attributes so-called legal
values have been specified, is that many sources of errors in a knowledge base can be
detected by simple type checks. The detection and handling of such errors at execution
time when an inference process operates on the knowledge base and fact set, is less
straightforward and may even produce unpredictable results. Develop a type-checking
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program for the production-rule formalism discussed in Section 6.3. In particular, pay
attention to the generation of meaningful error messages.

(6.8) Consider two production rules such that when one of them succeeds, the other rule
succeeds as well, but by assigning a different value to the same single-valued attribute.
Such production rules are called conflicting. Furthermore, we say that a production rule
R1 is subsumed by a rule R2, if they have the same conclusions and rule R1 has the same
or more conditions than rule R2. Finally, a production rule is called unreachable if none
of the attributes in its conclusions will ever become a goal during top-down inference.
In each of these three cases, it will be necessary to modify the knowledge base. A
program that automatically finds such rules therefore is a convenient tool. Develop a
PROLOG or LISP program that detects conflicting, subsumable, and unreachable rules
in a rule base of an expert system using production rules for knowledge representation
and applying top-down inference as an inference method.

(6.9) One of the problems with rule-based expert systems is that they become difficult to
modify and maintain when the number of rules they contain surpasses a certain limit.
Such systems are much easier to maintain when the rule base has been partitioned
into several smaller modules each containing production rules that are related to each
other in a given rule base. To find out which rules are related to each other, a measure
of relatedness is required. A simple measure of relatedness is the number of object-
attribute pairs two production rules have in common both in conditions and conclusions,
divided by half of the total number of object-attribute pairs occurring in the two rules.
Only the production rules having the largest measure of relatedness greater than some
threshold value α ∈ [0, 1] are put in the same module. Every production rule is only
admitted in one module. Develop a PROLOG or LISP program that transforms a given
rule base into a collection of rule modules.

(6.10) Most commercial expert system shells and expert system builder tools provide special
editors for assisting in the interactive development of a knowledge base. Such editors are
sometimes called knowledge-base editors. Typically, such editors offer special templates
for object and attribute declarations, and production rules to ease the development of a
knowledge base. Develop a flexible knowledge-base editor which assists the knowledge
engineer in the development of a knowledge base.

(6.11) The LISP program developed in exercise 6.2 includes a set of functions performing a
lexical and syntactic analysis of the knowledge base. Extract that particular part from
the program and extend these functions in such a way that they generate a rule model
taxonomy of a given knowledge base. Experiment with the thresholds of 30knowledge
base you have developed for the expert system shell built in exercise 6.3.

(6.12) In Chapter 1 we have briefly discussed the process of knowledge engineering, the subject
of a significant amount of active research. Most current methodologies for knowledge
engineering suggest that the construction of an expert system should go through several
distinct stages. In the initial stage, unstructured verbal and textual information is
gathered from interviews with an expert, which will be transformed through a process
of abstraction into a so-called conceptual model of the problem domain. In such a
conceptual model, a problem domain is described in terms of the relevant concepts and
their interrelations. In the KEATS methodology, this abstraction process is supported
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by software tools. Read [Motta89] for a description of this methodology and the tools
supporting it. Try to apply this methodology to a problem domain you are familiar
with. Use an expert system shell or the LISP or PROLOG programs in this book to
further elaborate the obtained conceptual model of the problem domain into an expert
system.
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Chapter 7

OPS5, LOOPS and CENTAUR

7.1 OPS5 Suggested reading
7.2 LOOPS Exercises
7.3 CENTAUR

In the present chapter we shall study two typical examples of languages used for the
development of expert systems, and a special-purpose expert system. In each of these, one
or more of the principles of expert systems treated in the preceding chapters is employed in
some special way. We start by considering OPS5, a language which has especially been
designed for building production systems. The system supports the formalism of production
rules for the representation of domain knowledge, and includes an algorithm for bottom-up
inference. OPS5 bears stronger resemblance to a programming language than to an expert
system shell: it provides no explanation facilities, and an extensive standard user interface is
lacking. However, the language has been used with much success for building practical
expert systems. The second system that will be dealt with in this chapter is LOOPS: an
elaborate programming environment for symbolic processing which has proven to be highly
suitable for the development of expert systems. LOOPS supports a large number of different
paradigms, not only with respect to knowledge representation but with respect to inference
as well; the system may therefore be viewed as the prototypical expert-system builder tool.
CENTAUR, the last system that will be discussed in this chapter, is a dedicated expert
system in which production rules and frames are integrated. In addition to an algorithm for
production rule inference, the system offers a complete inference engine for the manipulation
of frames to which inheritance contributes only for a small part. Although CENTAUR is
not an expert system shell, many of the ideas realized in the system are believed to be
applicable to a wider range of problem domains than the domain for which it was developed.

7.1 OPS5

The last two decades, a significant amount of research has been carried out at the University
of Carnegie-Mellon on the design and development of production systems, amongst others by
C.L. Forgy, J. McDermott, A. Newell, and M. Rychener. Some of the languages and systems
that emerged from this long-term research effort are PSG, PSNLST, and OPS. OPS underwent
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a number of changes, which eventually led to the OPS5 language. The language is still a
subject of further development; consequently, there currently exists an OPS family of several
more or less related languages. The basic features these languages share are well-presented in
OPS5. The present section will be devoted to this member of the OPS family. The name OPS5
originates from the acronym ‘Official Production System 5’ in which the adjective ‘official’
should not be taken too seriously. The language is mainly used for building expert systems,
and became increasingly popular in the AI community after its successful application in the
development of the expert system XCON. The language, however, is suitable for developing
other kinds of applications in the field of symbolic processing as well. C.L. Forgy has developed
a programming environment for OPS5 in MACLISP and Franz LISP; there are versions of
the language available in BLISS and COMMON LISP as well. OPS-like languages are also
part of more elaborate expert system builder tools, such as for example Knowledge Craft.

Section 7.1.1 describes how knowledge is represented in OPS5, which is followed by a
discussion of the inference method employed by the OPS5 interpreter in Section 7.1.2. The
OPS5 interpreter makes use of a form of bottom-up inference in an efficient implementation
based on the rete algorithm mentioned earlier in Chapter 3. This algorithm, which has been
developed by C.L. Forgy, will be described in detail in Section 7.1.3.

7.1.1 Knowledge representation in OPS5

The major part of an OPS5 program is a set of production rules constituting the production
section of the program. These production rules, or productions as they are called in OPS5
context, employ an object-attribute-value representation, similar to the one introduced in
Section 3.1.3. In OPS5, the objects and attributes referred to in the production rules have
to be declared in the declaration section of the program. An object declaration consists of
the keyword literalize, followed by the name of the object declared and all its associated
attributes. The name of an object is also called a class name.

EXAMPLE 7.1

Consider the following object declaration:

(literalize patient

name

age

complaint

sign)

It declares the object with the name patient, having the (single-valued) attributes
name, age, complaint, and sign.

An attribute is always taken to be single-valued unless explicitly declared as being multi-
valued by means of a vector-attribute declaration. For ease of exposition, all attributes in
the present section are assumed to be single-valued.

During the execution of an OPS5 program, an object may become instantiated, that is, a
copy or instantiation of an object may be created in which constants have been filled in for its
attributes. The values assigned to the attributes are either constants or the special value nil,
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indicating that the value of the attribute is unknown. In OPS5 two different types of constant
are distinguished: numerical constants, simply called numbers, and symbolic constants, called
atoms. The created instantiation is subsequently inserted into the fact set, or the working
memory as the fact set is called in OPS5. As soon as an instantiation of an object is in the
working memory, it is called a working-memory element. Each working-memory element is
provided with an integer, called a time tag, by means of which working-memory elements
are uniquely identified. A newly created working-memory element is given as a time tag the
successor of the time tag attached to the last-created working-memory element. Working-
memory elements may be displayed in OPS5 by entering the command (wm); (wm) only shows
those attributes of an object that have already obtained a value.

EXAMPLE 7.2

Consider the following working-memory element concerning the object patient declared
in the previous example:

10: (patient ^name John ^age 20 ^complaint fever)

It has been assigned the time tag 10. The first component of this working-memory
element is the class name patient; all other components are attribute-value pairs. An
attribute is distinguished from its value by being prefixed with the ^ sign. The working-
memory element given above specifies the attributes name, age, and complaint, and
constants John (an atom), 20 (a number), and fever (an atom). Note that the sign

attribute is not shown, which indicates that it has not been assigned a value as yet.

The declaration section of an OPS5 program is followed by a collection of productions in
the production section. After it has been read in by the system, it constitutes the so-called
production memory. The syntax of production rules in OPS5 differs from the one introduced in
Chapter 3. However, conceptually spoken, OPS5 productions closely resemble the production
rules discussed before.

A production in OPS5 has the following form:

(p 〈name〉 〈lhs〉 --> 〈rhs〉)

The symbol p indicates that the expression represents a production; each production has a
unique name 〈name〉. Following the name of the production, we have the left-hand side, 〈lhs〉,
followed by the then symbol -->, and finally the right-hand side, 〈rhs〉. The left-hand side of
the production is a collection of conditions to be interpreted as a conjunction; its right-hand
side is a collection of conclusions.

EXAMPLE 7.3

Consider the following production rule represented in the formalism introduced in Chap-
ter 3:

if
same(patient, complaint, fever) and
same(patient, sign, jaundice) and
greaterthan(labdata,ASAT, 100)
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then
add(patient, diagnosis, hepatitis-A)

fi

This production rule can be represented in the OPS5 syntax as follows:

(p example

(patient ^complaint = fever ^sign = jaundice)

(labdata ^ASAT > 100)

-->

(make patient ^diagnosis hepatitis-A))

Note that the first two conditions concerning the same object patient in the preceding
production rule constitute only one (composite) condition in the corresponding OPS5
production.

The conditions in the left-hand side of a production are called condition elements in OPS5,
instead of just conditions. A condition element consists of a class name followed by a number
of attribute-predicate-value triples. A predicate expresses a test on an attribute value and a
specified constant. The most frequently applied predicates are <, <=, >=, >, <> (not equal to)
and =. If no predicate has been specified between an attribute and a value, then the equality
predicate = is assumed by default.

EXAMPLE 7.4

Consider the following condition element from the production dealt with in the preceding
example:

(patient ^complaint = fever ^sign = jaundice)

It specifies the class name patient, and contains two tests on the attributes complaint
and sign, respectively. The specified constants are fever and jaundice. Both attribute-
predicate-value triples specify the equality predicate =.

Anticipating the discussion of the OPS5 interpreter, we mention that the interpreter compares
the class name and attribute-predicate-value triples present in a condition element on the one
hand, with the attribute-value pairs in working-memory elements concerning the same object
on the other hand, applying the test specified by the predicate. If the test succeeds for a
given working-memory element, then we say that the interpreter has found a match.

EXAMPLE 7.5

Consider the following condition element:

(patient ^age < 70)

and the following two working-memory elements concerning the same object patient:
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1:(patient ^name John ^age 50)

2:(patient ^name Ann ^age 75)

We have that only the first working-memory element matches with the condition ele-
ment, since for the first memory element the test ^age < 70 succeeds, while for the
second one the test ^age < 70 fails. Note that in comparing the condition element
with the working-memory elements the attribute name is disregarded because it is not
referred to in the condition element.

The negation of a condition element in the left-hand side of a production is obtained by
specifying a minus sign in front of the condition element concerned.

In addition to the specification of an isolated predicate, it is also possible to specify a
conjunction or disjunction of tests. A conjunction is specified by placing the predicates and
values of the conjunction between braces, as shown in the following example.

EXAMPLE 7.6

Consider the following condition element:

(person ^age > 20 < 50 )

It expresses a conjunction involving the two predicates > and <. The OPS5 interpreter
only finds a match for this condition element with working-memory elements specifying
the attribute age for the class name person having a value greater than 20 and less
than 50.

A disjunction of equality tests is expressed by specifying a collection of constants between
the symbols << and >> at the value position. In case of a disjunction, it is not allowed to
explicitly specify a predicate.

EXAMPLE 7.7

In the following condition element, we have expressed a disjunction of two equality tests:

(patient ^complaint << fever headache >>)

The OPS5 interpreter will find a match for this condition element with every working-
memory element that specifies the attribute complaint for the class patient having
one of the values fever and headache. So, the following two working-memory elements
match with the given condition element:

1:(patient ^complaint fever)

2:(patient ^complaint headache)

The right-hand side of a production consists of a number of conclusions, each comprising
an action and a list of associated arguments. The actions are evaluated in the order of
appearance. When evaluated, most actions will bring about certain changes to the working
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memory. Only the most frequently applied actions make, remove, and modifywill be discussed
here in depth.

Execution of the action make creates a new working-memory element. In doing so, it
assigns values to the attributes of the object as specified in the argument list of the make

action. Attributes not explicitly referred to in the make action obtain the default value nil.

EXAMPLE 7.8

Suppose that we start with an empty working memory which has never been filled
before. We enter the following declaration:

(literalize person

name

age)

Now, the action

(make person ^name John)

adds the following element to the working memory:

1: (person ^name John ^age nil)

Note that this working-memory element not only contains the attribute name with the
value John, as indicated in the action, but the attribute age as well; since for the
attribute age no value has been specified in the make action, it has been assigned the
(default) value nil. It should be stressed that an attribute which has value nil will
not be printed by the OPS5 interpreter; the output of the command (wm) therefore will
differ from what has been shown above.

The action remove deletes an element from the working memory. This action takes one or
more arguments called element designators. An element designator is either a variable bound
to a working-memory element or an integer constant n referring to the working-memory ele-
ment matching with the n-th condition element of the production it is specified in. We shall
return to the first possibility shortly; we first consider the numerical element designators.
The OPS5 interpreter numbers the condition elements of a production starting by assigning
the number 1 to the first condition element specified; each next condition element is assigned
a number one greater than the last condition element encountered, with the exception of
negated condition elements which are disregarded. For example, if we have a left-hand side
comprising a negation enclosed between two non-negative condition elements, the element
designator referring to working-memory elements matching with the third condition will be
the number 2. It is also possible to enter the action remove separate from a production. In
that case, a numerical element designator is taken to be a time tag of a working-memory ele-
ment. The effect of the action remove is that elements referred to by the element designators
are removed from the working memory.

EXAMPLE 7.9

The execution of the action
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(remove 10)

which has been specified separate from a production, results in the deletion of the
element having a time tag equal to 10 from the working memory. The action remove

also offers the dangerous possibility of deleting all elements from the working memory:

(remove *)

The action modify may be viewed as a combination of the earlier treated actions remove

and make: it first removes a uniquely identified element from the working memory, and sub-
sequently adds a new instantiation of the same object to it. Its argument list consists of
an element designator followed by a collection of attribute-value pairs to be modified in the
working-memory element referred to by the element designator. Only the values of attributes
passed as arguments to the action modify will be altered by the execution of this action;
the other attribute values remain the same. The time tag of the new working element is the
previous maximal time tag incremented by two, reflecting the twofold action of modify.

EXAMPLE 7.10

Consider the following declaration

(literalize person

name)

and the following production expressing that from now on all anonymous persons will
be called John:

(p example

(person ^name = anonymous)

-->

(modify 1 ^name John))

Now suppose that the following action is carried out in an empty working memory:

(make person ^name anonymous)

After execution of this action, the working memory contains the following element:

1: (person ^name anonymous)

Subsequent application of the production defined above, modifies the working memory
as follows:

3: (person ^name John)

This is now the only element present in the working memory.

As we have discussed above, the actions make and remove may also be applied separate from
productions. However, this is not the case for the action modify: its arguments should always
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refer to working-memory elements matching with condition elements in the production it is
specified in.

OPS5 provides several other actions than those treated above; we shall only briefly mention
some of these. There are actions available for input and output. For example, the action
openfile opens a file. Files are closed by closefile. The action accept reads input from
the key-board. To conclude, the action write prints information on the screen.

Until now, we have only considered productions in which objects, attributes, and constants
were specified in the condition elements. However, OPS5 also permits local variables in
productions, thus increasing their expressiveness. Variables may appear in the left-hand side
of a production as well as in its right-hand side. A variable may occur in the left-hand side
of a production in three different places:

• following a predicate, that is, at the position of a constant;

• in front of a condition element;

• following a condition element.

In the last two cases, the condition element and the variable are grouped together by means
of a pair of braces; in these cases we speak of an element variable. Variables are distinguished
syntactically from constants by the requirement that the name of a variable should begin with
the < sign and end with the > sign.

EXAMPLE 7.11

The strings <X>, <1>, and <a-very-long-variable-name> are examples of valid vari-
able names.

If it is necessary to use a constant starting with the < sign or ending with the > sign, then
the constant should be preceded by the \\ sequence (the escape symbol) indicating that the
name stands for a constant instead of for a variable. Variables in condition elements may be
bound to constants as illustrated in the following example.

EXAMPLE 7.12

Consider the following condition element:

(person ^name = <n> ^age = 20)

which contains the variable <n>. If the OPS5 interpreter is able to find a matching
working-memory element for this condition element, then the variable <n> will be bound
to the constant value specified for the attribute name in the matching working-memory
element (or possibly to nil).

In the preceding example we have seen, that variables in the position of a constant may be
bound to an attribute value of a working-memory element. Element variables are more gen-
eral: such a variable may be bound to an entire working-memory element as illustrated below.

EXAMPLE 7.13
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Consider the following condition element

(person ^name John) <pers>

in which the element variable <pers> occurs. Suppose that the OPS5 interpreter finds
a match for this condition element with the following working-memory element:

1: (person ^name John ^age 20)

Then, as a result, the variable <pers> will be bound to the entire matching working-
memory element.

The following example demonstrates how an element variable may be used in the right-hand
side of a production.

EXAMPLE 7.14

The production shown below specifies the same element variable in both its left-hand
side and right-hand side, which is quite typical usage of element variables:

(p example

{ (person ^name John) <pers> }
-->

(remove <pers>))

Upon success, this production causes the deletion of all elements from working memory
specifying the class name person, the attribute name, and the constant value John.
Note that if we had specified the right-hand side (remove 1) instead of the one shown
above, then the same would have been achieved.

7.1.2 The OPS5 interpreter

OPS5 provides a bottom-up inference algorithm for the selection and application of production
rules, which is very much alike the bottom-up inference algorithm discussed in Chapter 3.
Since, however, there are some differences, the principles of bottom-up inference will be briefly
reviewed here, but this time from the perspective of OPS5.

During the selection phase of the inference algorithm, the OPS5 interpreter selects the
productions from production memory having conditions all of which match with one or more
elements from the working memory. It is said that there exists a match between a working-
memory element and a condition element, if:

• the class names in the given working-memory element and condition element coincide;

• every test expressed by means of a predicate in the condition element is satisfied for the
specified constant and the attribute value in the working-memory element.

In case a condition element contains a variable at the position of a constant, and if there
already exists a binding for that variable, then after replacing the variable by its binding, the
two conditions mentioned above should be met. In case the variable is still unbound, then the
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interpreter will attempt to create a binding for it by investigating for each working-memory
element if a match results after substituting the variable by the value of the correspond-
ing attribute present in that working-memory element. To determine whether there exists
a match of a condition element with a working-memory element, the interpreter only ex-
amines the attributes occurring in the condition element; all other attributes present in the
working-memory element are simply ignored. If a variable that has been bound in a cer-
tain condition element occurs in some other condition element in the same production as well
and if its binding causes the condition element to match, then we speak of a consistent match.

EXAMPLE 7.15

The following production contains a variable <n> appearing in two different condition
elements:

(p small-arteries

(artery ^name = <n> ^diameter < 2)

(arm ^blood-vessel = <n>)

-->

(make small-arm-artery ^name <n>))

We suppose that the interpreter is able to find a match for the first condition element
with some working-memory element with the class name artery that specifies a value
for the attribute diameter less than the number 2. Then, as a result, the variable <n>

will be bound to that value. The interpreter next searches the working memory for a
working-memory element with the class name arm. If such a working-memory element is
found, then in order to match the value of its blood-vessel attribute must be equal to
the previously created binding for the variable <n>. Now suppose that the production
succeeds. Its conclusion is subsequently evaluated resulting in the addition of a new
instantiation of the object small-arm-artery to the working memory in which the
value of the attribute name is equal to the constant that is the binding of the variable
<n>.

We now have given a brief overview of the process of selecting applicable productions from
the production memory in OPS5. We shall consider some aspects of this selection process in
further detail.

Instead of a set of productions, the selection process actually yields a set of production
instantiations, similar to the rule instantiations introduced in Chapter 3. A production in-
stantiation consists of a production together with a set of matching working-memory elements,
one for each condition elements. A production may therefore appear more than once in the
conflict set in different production instantiations. The time tags attached to working-memory
elements do not play any role in the selection of applicable productions from the produc-
tion memory. However, they become relevant in conflict resolution. Basically, two different
conflict-resolution strategies are employed by OPS5 for choosing a production for evaluation.
The first and most important conflict-resolution strategy employed is conflict resolution by
recency. This form of conflict resolution has already been dealt with in Chapter 3. It will
be reviewed only briefly. Recall from Chapter 3, that conflict resolution by recency will not
always yield a unique production instantiation for evaluation. Therefore, OPS5 incorporates
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a second conflict-resolution strategy, namely conflict resolution by specificity. We have al-
ready mentioned in Chapter 3 that conflict resolution by specificity chooses those production
instantiations having the largest number of tests in their left-hand side. If still not a unique
production instantiation is yielded, then an arbitrary one if chosen for evaluation. To sum-
marize, a production instantiation is selected from the conflict set in OPS5 according to the
following strategy:

1. Conflict resolution by recency. To start with, the OPS5 interpreter takes the production
instantiations from the conflict set with the maximal time tag. If this process yields
more than one production instantiation, then the process is repeated for the selected
subset of instantiations thereby disregarding the time tags previously applied in the
selection process; instantiations for which all time tags are exhausted are removed from
the conflict set. The entire process is repeated until a single instantiation is left, or until
all time tags have been examined.

2. Conflict resolution by specificity. If step 1 yields a set of more than one instantiation,
then for each element in this set it is determined how many tests on constants and vari-
ables are specified in the left-hand side of the associated production. The instantiations
with the maximal number of tests are selected.

3. Arbitrary selection. If step 2 still yields a set of more than one instantiation, a single
instantiation is chosen for evaluation on arbitrary grounds.

The conflict-resolution strategy in OPS5 described above, is known as the lex strategy, since
the most important criterion for selecting production instantiations is according to a lex ico-
graphical ordering of their time-tag sequences. In addition to this strategy, OPS5 also provides
the so-called mea strategy (mea is an acronym for means-ends analysis). This strategy is
usually applied to obtain a goal-driven inference behaviour using bottom-up inference: the
mea strategy differs from the lex strategy, by first choosing those instantiations from the
conflict set having a maximal time tag for the working-memory element matching with their
first condition element. The following steps are similar to the ones for the lex strategy. The
time tags of the working-memory elements matching with the first condition element are then
disregarded.

The process of selection and application of productions from the production memory is
called the recognize-act cycle of OPS5. The recognize part of the cycle consists of the selection
of applicable instantiations from the production memory as described above. The act part
consists of the execution of the actions specified in the right-hand side of the instantiation
chosen by conflict resolution.

We finish this section by giving an example demonstrating several of the features of the
OPS5 language.

EXAMPLE 7.16

Consider a database specifying some information from Greek mythology, as shown in
table 7.1. We shall develop an OPS5 program that returns for a given character the
names of her or his ancestors, using the data stored in this database; this problem is
known as the ancestor problem. Although this is only a toy example, many practical
problems characterized by a hierarchically structured search space closely resemble the
ancestor problem. In general, the ancestors of any person included in the database can
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Table 7.1: Data used in the ancestor problem.

Name Mother Father

Gaea – Chaos
Cronus Gaea Uranus
Rhea Gaea Uranus
Zeus Rhea Cronus
Hephaestus Hera Zeus
Leto Phoebe Coeus
Hera Rhea Cronus
Apollo Leto Zeus

be retrieved as follows:

1. Look up the name of the father of the given person, and search subsequently for
his ancestors.

2. Look up the name of the mother of the given person, and search for the ancestors
of the mother as well.

The algorithm sketched above is a recursive one. However, OPS5 does not support
recursion explicitly; it is therefore entirely left to the programmer to implement recursion
using productions. We shall see that it is not difficult to implement recursion in OPS5.
First we look at the various object declarations in the declaration section of our program.

The data concerning the characters specified in table 7.1 can be represented by means
of a single object. To this end we have declared an object with the class name person,
and the attributes name, mother, and father:

(literalize person

name

mother

father)

Furthermore, we need an object for temporary storage of the data concerning a given
person while the program is engaged in searching the ancestors of another person. To
this end, we define an object with the name kept which may be viewed as part of an
implementation of a stack data structure. The object only contains a single attribute
name for storing the name of a person to be processed at a later stage during the
computation:

(literalize kept

name)

To conclude, we need an additional third object for initiating the inference. This object
with the class name start does not contain any attributes:

(literalize start)
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The remaining and most important part of the program consists of two productions.
By means of the first production, the inference is initiated as soon as an element with
the class name start is inserted into the working memory. Amongst others things,
execution of the actions of this production results in asking the user to enter the name
of the person whose ancestors have to be looked up:

(p query

{ (start) <init> }
-->

(remove <init>)

(write (crlf) |Enter name of person: |)

(make kept ^name (accept)))

Recall that the actions in the right-hand side of the production are evaluated in the
order of appearance. First, the working-memory element that started the inference
and has been bound to the element variable <init> is removed. Next, the user is
prompted to enter the name of a person. The name entered by the user is read by
means of (accept). By means of the action make a new working-memory element with
the class name kept is added to the working memory. The attribute name of the new
working-memory element is assigned the name entered by the user.

The second production constitutes the kernel of the program: it searches for the names
of both parents of the given person. If the search succeeds, the names of the parents are
pushed upon the stack as two kept working-memory elements, in order to be processed
at a later stage.

(p ancestors

{ (kept ^name { <p-name> <> nil }) <wme> }
(person^name <p-name>

^mother <m-name>

^father <f-name>)

-->

(remove <wme>)

(write (crlf) <m-name> and <f-name> are parents of <p-name>)

(make kept ^name <m-name>)

(make kept ^name <f-name>))

We closely examine this production. If the interpreter is able to find a matching working-
memory element for its first condition element, then the variable <p-name> will be
bound to the value of the attribute name of some person working-memory element.
Recall that after application of the first production one working-memory element with
the class name kept is present; so, initially the first condition succeeds. We have
mentioned before that the kept instantiations may be viewed as simulating recursion
by a stack. The first condition element of the production shown above may therefore
be viewed as a means for inspecting the top element in the kept stack. Note that the
condition only succeeds if the binding for the variable <p-name> is not equal to nil.
The working-memory element matching with the first condition element will be bound
to the element variable <wme>. By means of the second condition element, the names
of the father and the mother are looked up in the working memory, and will be bound
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to <m-name> and <f-name>, respectively. In the right-hand side of the production, the
working-memory element matching with the first condition element is removed, thus
simulating popping the stack. This working-memory element is no longer needed. The
next action, write, print the name of the person, and the names of her or his father and
mother to the screen. Finally, by means of two make actions two new kept working-
memory elements are created specifying the names of the father and the mother of
the given person, respectively. These new elements are added to the working memory,
that is, pushed upon the kept stack of persons to be processed at a later stage. The
names of these persons are used in one of the following inference steps to retrieve the
other ancestors of the initially given person. The order in which these make actions
are executed is important. Observe that the father working-memory element is always
assigned a higher time tag than the mother working-memory element. Consequently,
the program first looks for the male ancestors and, after having found all of them,
returns for generating all female ancestors.

After the declarations and productions have been read in, the working memory is filled
by executing the following make actions:

(make person ^name Gaea ^father Chaos)

(make person ^name Cronus ^mother Gaea ^father Uranus)

(make person ^name Rhea ^mother Gaea ^father Uranus)

(make person ^name Zeus ^mother Rhea ^father Cronus)

(make person ^name Hephaestus ^mother Hera ^father Zeus)

(make person ^name Leto ^mother Phoebe ^father Coeus)

(make person ^name Hera ^mother Rhea ^father Cronus)

(make person ^name Apollo ^mother Leto ^father Zeus)

(make start)

Below, we have reproduced the transcript of the interaction with OPS5 in solving the
ancestor problem.

> (i-g-v) ; initialization
nil

> (load "ancestor.ops") ; load program
**

> (run) ; execute program

Enter name of a person: Apollo

Leto and Zeus are parents of Apollo

Rhea and Cronus are parents of Zeus

Gaea and Uranus are parents of Cronus

nil and Chaos are parents of Gaea

Gaea and Uranus are parents of Rhea

nil and Chaos are parents of Gaea

Phoebe en Coeus are parents of Leto

end -- no production true

2 productions (9 // 9 nodes)
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8 firings (33 rhs actions)

13 mean working memory size (17 maximum)

2 mean conflict set size (3 maximum)

12 mean token memory size (14 maximum)

7.1.3 The rete algorithm

We have mentioned before that OPS5 makes use of an inference algorithm much alike the
bottom-up inference algorithm discussed in Chapter 3. As we have argued in that Chapter,
a straightforward implementation of bottom-up inference may render a production system
unacceptably inefficient, since at every inference step all facts in the fact set have to be
matched against the left-hand sides of all productions. Now, it is a well-known fact that
when applying bottom-up inference, for many applications the inference state remains largely
unchanged between successive inference steps: at every inference step only a few facts are
added, modified, or removed. The class of applications for which this statement is true are
called temporally redundant. Of course, there are many applications which are characterized
by significant changes in the working memory between successive inference steps; for example,
in an expert system back-end of a signal-processing application, the fact set generally is
completely refreshed every time a fixed number of inference steps has been passed through.
This class of applications is called non-temporally redundant.

Analysis of performance measurements of typical OPS5 programs has revealed that the
part of the inference algorithm responsible for matching productions with facts, may consume
as much as 90% of the entire execution time of the program. So, there seem to be ample
reasons to look for optimizations of the matching part of the bottom-up inference algorithm.
OPS5 provides such an optimized algorithm for bottom-up inference, called the rete algorithm.
It has been developed by C.L. Forgy. The point of departure for this algorithm has been
the assumption that the inference state is largely unaltered between successive inference
steps. From the discussion above, it will be apparent that the rete algorithm has especially
been designed for temporally redundant applications; it is less suitable for non-temporally
redundant applications.

The algorithm operates on a kind of data-flow graph used for the representation of pro-
ductions. This directed graph is called the rete graph. Later on we shall see that the working
memory is incorporated in this graph as well. First we pay attention to the way the rete graph
is constructed. Any OPS5 program presented to the interpreter is compiled into a rete graph;
the various parts of a production are translated into its vertices or arcs. The following ex-
ample demonstrates how a simple condition element is translated into a graph representation.

EXAMPLE 7.17

Consider the following condition element:

(patient ^age < 40 ^complaint = fever)

For obtaining a match with this condition element the interpreter has to perform three
tests: a test concerning the class name patient, a test concerning the value of the
attribute age, and a test with respect to the value of the attribute complaint. The rete
graph into which this condition element is translated by OPS5 is shown in figure 7.1.
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patient

^age < 40

^complaint = fever

Figure 7.1: Rete graph for (patient ^age < 40 ^complaint = fever).

Each test specified by a condition element is represented as a vertex in the corresponding
rete graph. A test on the class name is indicated by means of an ellipse; each attribute-
predicate-value triple occurring in a condition element is represented by means of a rectangle.
Between the vertices representing the tests, arcs are drawn having directions indicating the
order in which the tests have to be carried out. The entire right-hand side of a production
is represented by a single vertex, called the production vertex. Production vertices are the
leaves of the rete graph.

We have now dealt with the translation of a production into graph representation. One
of the aims of the rete algorithm is to eliminate the redundancies in the representation of
the productions. For example, if we have several productions containing similar condition
elements, then a number of these similar condition elements will be represented only once.

EXAMPLE 7.18

Consider the following two productions:

(p small

(artery ^name = <n> ^diameter < 2)

-->

(make artery ^name = <n> ^type small))

(p large

(artery ^name = <n> ^diameter >= 2)

-->

(make artery ^name = <n> ^type large))

The condition elements in both productions concern the class name artery, and the
attributes name and diameter. The test on the value of the attribute name is in both
productions the same; however, their respective tests on the value of the attribute
diameter differ. The test on the attribute name now is represented only once in the rete
graph; the tests concerning the attribute diameter are represented in separate vertices,
as depicted in figure 7.2.
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artery

^name = <n>

^diameter < 2 ^diameter >= 2

rhs: small rhs: large

Figure 7.2: Two productions having the same condition element.

In the preceding examples, we have only considered single condition elements or production
rules having one condition element only. All vertices in the resulting rete graphs had one
incoming arc and one or more outgoing arcs. Such vertices are called one-input vertices. If a
production contains more than one condition element in its left-hand side, then generally an
extra vertex is required for linking these condition elements together. Such a vertex which has
two incoming arcs, and one or more outgoing arcs, is called a two-input vertex. A two-input
vertex will be indicated in the rete graph by means of a circle. If a given production contains
n condition elements, then a total of n−1 two-input vertices is required for the representation
of the left-hand side of the production. In the following example, we shall see that a two-input
vertex is also used for storing variable bindings and for specifying tests whether these variable
bindings are consistent.

EXAMPLE 7.19

Each of the following two productions comprises two condition elements:

(p disjunction

(expression ^type = boolean ^name = <e>)

(operator ^name = <e> ^left = <x> ^right = <y> ^op = or)

-->

...)

(p conjunction

(expression ^type = boolean ^name = <e>)

(operator ^name = <e> ^left = <x> ^right = <y> ^op = and)

-->

...)

The two left-hand sides of these productions only differ to a slight extent: the attribute
op in the second condition element of the first production concerns the constant or
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expression operator

^type = boolean ^name = <e>

^name = <e>

^left = <x>

^right = <y>

^op = or

^op = and

A.

<e>expression =
<e>operator

B.

<e>expression =
<e>operator

rhs: conjunction rhs: disjunction

Figure 7.3: Rete graph of two productions.

whereas the same attribute in the second condition element of the second production
concerns the constant and. The similarity between the left-hand sides of these produc-
tions is again reflected in the rete graph shown in figure 7.3. Note that the test on the
attribute name is represented twice: once for the class name expression, and once for
the class name operator. The two-input vertices in the graph specify a test on the
bindings created for the variables.

For a collection of productions a rete graph is constructed in the manner described above.
However, we have already remarked before that the rete graph is not only used for the compact
representation of productions; it is further exploited for the storage of the working memory
which once more improves the efficiency of the inference algorithm for temporally redundant
applications. The working memory is distributed over the rete graph during the inference.
Each new element to be added to the working memory occupies a location in the rete graph
which is based on the tests it has passed. Informally speaking, a working-memory element
travels through the graph along the specified arcs. After passing a collection of tests given
by the one-input vertices, a working-memory element is finally stored in a two-input vertex
which for this purpose is provided with a local memory location. The one-input vertices have
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no local memory, for if the test specified by a one-input vertex succeeds, then the working-
memory element proceeds to the next one-input vertex for the next test, or to a two-input
vertex to be stored. If, on the other hand, at least one of the tests on the working-memory
element has failed, then the working-memory element may simply be ignored.

The way in which the working memory is processed in the rete-graph may appropriately
be viewed as the processing of a sequence of working-memory elements through the graph.
Such a sequence of working-memory elements is called a token. A token consists of a collection
of working-memory elements supplemented with a tag indicating whether the elements must
be added to, or removed from the working memory. A token has the following form:

〈token〉 ::= <〈tag〉{〈working-memory-element〉}+>
〈tag〉 ::= + | -

A token containing a plus sign as a tag indicates that its working-memory elements must
be added to local memory by the interpreter. A token prefixed by a minus sign indicates
that all working-memory elements which are present in local memory and correspond to the
working-memory elements contained in the token, must be removed.

EXAMPLE 7.20

Study figure 7.3 once more and consider the following token:

<+ 1: (expression ^type boolean ^name ex10) >

This token adds the working-memory element

(expression ^type boolean ^name ex10)

to the two-input vertices A and B depicted in the figure. The variable <e> in the
condition element with class name expression will then be bound to the atom ex10.

Token are combined at two-input vertices by concatenating all elements stored into + or -

tokens. If a two-input vertex contains a token of which the elements have successfully passed
all its tests, then the token will be moved on to the next vertex in the rete graph. In this
way, the token may eventually reach the production vertex, where it will lead to the creation
of a production instantiation which will be added to the conflict set. If at a certain stage of
the inference all tokens in the rete graph have been processed, then the conflict set will be
constructed from the production vertices. All instantiations present in the conflict set then
participate in the conflict resolution.

EXAMPLE 7.21

Consider once more the previous example, where the token

<+ 1: (expression ^type boolean ^name ex10) >

was added to the two-input vertices shown in figure 7.3. Now suppose that the vertex
A already contained the token

<+ 3: (operator ^name ex10 ^left ex8 ^right ex9 ^op or) >
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Then, the local memory of A will be modified by storing the following new token:

<+ 1: (expression ^type boolean ^name ex10)

3: (operator ^name ex10 ^left ex8 ^right ex9 ^op or) >

Since the binding of the variable <e> results in a consistent match for the attribute
name, the token is moved to the production vertex disjunction.

7.1.4 Building expert systems using OPS5

We have presented the basic principles of OPS5 in the preceding sections. In the present
section we briefly touch upon some strong and weak points of OPS5 viewed as a tool for
building expert systems.

The OPS5 interpreter provides the knowledge engineer with an interactive programming
environment, which is much alike conventional programming environments for languages such
as LISP and PROLOG. Interpreters for OPS-like languages usually include facilities for trac-
ing the inference behaviour of the system at various levels of detail, and facilities for inspecting
the stepwise execution of programs. These facilities are quite valuable for debugging OPS5
programs. Even more elaborate and flexible environments for production-system languages
like OPS5 are available for special graphical workstations. For problems requiring more solv-
ing power for their solution than production rules only are able to provide, OPS5 offers an
interface to LISP or BLISS, depending on the particular version of the OPS5 system employed.

Although OPS5 is a suitable language for building expert systems, it has several char-
acteristics rendering it less flexible than is desirable. In many applications, for example, it
appears to be necessary to model some domain-dependent control strategy using the standard
inference method provided by the interpreter. For example, in a medical diagnostic expert
system, it is desirable to have the various possible disorders considered as diagnoses for a
given patient case examined in some specific order: starting with the disorders most likely
present in the given patient and only then proceeding to more rare disorders if the disorders
initially considered have been outruled. However, it is no easy matter to adapt the standard
inference behaviour of the interpreter to the need; this requires a thorough understanding
of for example the conflict-resolution strategy employed in OPS5. Evidently, it makes no
sense to put most of the effort of building an expert system in trying to adapt the standard
inference strategies offered. This problem can be alleviated partly by making an explicit dis-
tinction between productions only intended to control the inference and productions purely
used for representing the heuristic domain knowledge. Large OPS5 systems have usually been
developed using this approach. However, there still is some danger that only the knowledge
engineer who constructed the system is sufficiently familiar with the domain-specific control
strategy which has been incorporated in the expert system. In such a case the expert system
may be difficult to modify and maintain.

Another weakness of OPS5 closely related to the one mentioned above, is that it only offers
a single formalism for specifying knowledge. In large expert systems, it usually is advantageous
to impose some kind of modularization on the knowledge base. A suitable modularization
of a production system may for example be obtained by decomposing the knowledge base
into several partitions each of which concerns closely related pieces of knowledge. It will
be evident that a modularized knowledge base is much easier to develop and maintain than
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one large collection of similar looking production rules. Unfortunately, OPS5 does not offer
any language constructs for modularization. The problems mentioned here are not restricted
to OPS5 only, but apply to rule-based systems more in general. We shall return to this
observation in Section 7.3.

Most of the weaknesses mentioned above have been resolved in a more recent member
of the OPS family: OPS83. In order to more easily control, OPS83 offers the knowledge
engineer the possibility of developing her or his own conflict-resolution strategies to replace
the standard recognize-act cycle as discussed above. Furthermore, OPS83 not only supports
the production system concept but conventional imperative programming as well: the parts
of a problem that are more readily solved using an algorithmic approach, may now be handled
accordingly. Finally, an OPS83 program may be subdivided into several modules, in which
each module can indicate which information from other modules must be made visible to the
given module. The principle notions of OPS83 are, however, much like those of OPS5.

7.3 CENTAUR

In the late 1970s the rule-based expert system PUFF was developed by J.S. Aikins, J. Kunz,
and others at Stanford University, in collaboration with R.J. Fallat of the Pacific Medical
Centre in San Francisco, using the expert system shell EMYCIN. PUFF utilizes production
rules for interpreting data which are obtained by performing certain pulmonary (lung) func-
tion tests on a patient to find out whether the patient shows any signs of pulmonary disease
and to establish the severity of her or his condition.

In response to the specific problems encountered in developing PUFF, the hybrid expert
system CENTAUR was developed by J.S. Aikins for the same purpose. One of the objectives
in developing the CENTAUR system was the explicit separation of declarative knowledge con-
cerning pulmonary disease, and domain-specific knowledge used for controlling the inference.
As we shall see shortly, such a separation yielded a system with simpler production rules than
PUFF and with a more perspicuous inference behaviour. We shall first briefly review some
of the problems that were encountered in the development of the diagnostic expert system
PUFF using a rule-based approach. The knowledge representation scheme of CENTAUR is
next described in the Sections 7.3.2 and 7.3.3; Section 7.3.4 discusses the control structure in
the system.

7.3.1 Limitations of production rules

The main reason for building a revised version of the PUFF system, was the observation that
a purely rule-based approach appeared too restrictive for building an expert system with a
perspicuous structure and inference behaviour. The context in which production rules are
applicable is only given locally by their conditions. Production systems therefore lack infor-
mation concerning the broader context in which the problem solving takes place: the overall
structure of the problem-solving process is only implicitly present in the knowledge base,
hided in the rule base and nowhere made explicit.

EXAMPLE 7.22

The disadvantage of the uniformity of production rules is illustrated by the following
three production rules:
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R1: if a and b and c then g fi
R2: if a and b and d then h fi
R3: if a and b and e then i fi

Each of them is only applicable in a context for which the conjunction of conditions
a and b is satisfied. The represented knowledge would be much easier to grasp if this
context was indicated more explicitly, for example in the following way:

context: a and b are satisfied
R1: if c then g fi
R2: if d then h fi
R3: if e then i fi

end

Another well-known problem arising from using merely production rules for representing a
problem domain is that the domain-dependent problem-solving strategy has to be encoded
in the same formalism as the heuristic domain knowledge. We have already mentioned this
problem in connection with OPS5. When production rules are applied for representing pro-
cedural as well as declarative knowledge, it will not be possible to understand the meaning
of the knowledge base separate from the inference methods employed. Moreover, it often will
not be apparent to the user whether a certain production rule is employed to express heuristic
domain-knowledge or as part of the problem-solving strategy. Diagnostic rule-based expert
systems like PUFF usually apply backward chaining as their main or even only inference
method. Since backward chaining is more alike logical deduction than forward chaining in
an OPS5-like manner, problem-solving knowledge cannot easily be recognized as such. In the
next example it is shown that production rules applied by backward chaining, may indeed be
used for representing problem-solving knowledge in an explicit manner; however, the result is
not very satisfactory from a knowledge engineering point of view.

EXAMPLE 7.23

Suppose that we want to build a diagnostic medical expert system, dealing with the
domain of pulmonary disease. In most diagnostic expert systems, some kind of strategy
to be followed in the process of diagnosis is incorporated. In the present case, it may
be necessary to consider the degree (moderate, or severe) of the obstructive airways
disease (oad) the patient is suffering from, before establishing the subtype to which
the patient’s disorder belongs. Only then the disease of the patient is elucidated. If
we assume that the expert system uses backward chaining as its inference method, the
following production rule expresses what has been stated informally above:

if
same(patient, disease-type, oad) and
known(disorder, degree) and
known(disorder, subtype) and
known(patient, diagnosis)

then
add(patient, disorder, established)

fi
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Note that we have used the predicate known in three of the four conditions. This
predicate is used in the rule to find out whether any value has been inferred for its
attribute argument, that is, the predicate is used as a meta-predicate. Note that this
rule only has the proper meaning by the knowledge of the order in which its conditions
are evaluated by the interpreter. The following informally stated algorithm expresses
much more explicitly the algorithmic nature of the production rule shown above:

if disease-type = oad then
determine the degree of the disorder;
determine the subtype of the disorder suspected;
if degree and subtype have been confirmed then

determine the diagnosis of the patient
fi

fi

This type of explicit control specification evidently is to be preferred to the preceding
rule.

Another limitation of using production rules for building expert systems frequently mentioned,
is that the typical findings, in the case of PUFF concerning particular pulmonary diseases,
are distributed over many production rules. It is therefore not possible to retrieve knowledge
concerning the typical characteristics of, for example a disease, in a straightforward way.

7.3.2 Prototypes

In CENTAUR domain knowledge is represented in two different formalisms: production rules
and frame-like structures called prototypes. The prototypes in CENTAUR represent typical
pulmonary disease patterns described in terms of the results to be expected from tests ad-
ministered to patients suffering from a particular pulmonary disease. The most important
test to which a patient is subjected is spirometry, by means of which various lung volumes
and air flows can be determined. As shall be discussed in Section 7.3.4, during consultation
of the system the actual patient data is matched against the information described in these
prototypes. The production rules, capturing the knowledge necessary for interpreting the
test results obtained from a patient, are grouped in the prototypes in a kind of attributes
indicating the function of that specific group of rules in the consultation process. This way,
knowledge meant to control the reasoning process is separated from the highly-specialized
domain knowledge. As we have seen in the preceding section, such an explicit separation
cannot be readily achieved in a purely rule-based system. The specialized declarative domain
knowledge not directly controlling the reasoning process is often called object knowledge. The
knowledge for controlling the reasoning about the object knowledge at a higher level of ab-
straction, and knowledge about the prototypes themselves, is called meta-knowledge. The
prototype to which a production rule belongs explicitly states the context in which the rule is
applicable. From this we have that the production rules in the CENTAUR system have less
conditions than the corresponding rules in PUFF: in the latter system each production rule
implicitly states in its rule antecedent the context in which it is applicable.

In CENTAUR there are twenty-two prototypes containing knowledge about pulmonary
disease. The prototypes are organized in a tree-like taxonomy. A part of this taxonomy
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Figure 7.4: A part of the pulmonary disease taxonomy.

is shown in figure 7.5. A prototype comprises several slots for storing different types of
information relevant to the CENTAUR system. In CENTAUR the term slot is used to denote
a kind of field as in a COMMON LISP structure or a Pascal record. Essentially, there are
two types of slots:

• Slots that are used to represent characteristic features of the pulmonary disease de-
scribed in the prototype they are associated with, such as signs generally found in
patients suffering from the disease. These slots are called component slots and contain
the object knowledge of the CENTAUR system. The components are similar in nature
to the frame attributes introduced in Chapter 4.

• Slots that are used to represent meta-knowledge. These slots contain general informa-
tion, information about the relationships between the prototypes and information to
control the inference process.

We shall turn to the slots for the representation of meta-knowledge shortly. We first discuss
the component slots in detail.

A component slot may contain one or more facets:

• A name facet, specifying the name of the characteristic feature described by the com-
ponent.

• An actual value facet, filled in during the consultation process with the actual values
that have been found in the patient for this feature.

• A possible error values facet, specifying data values for the feature that are inconsistent
with the prototype the component is associated with, or that may be measurement
errors. CENTAUR has the possibility of performing some action when a possible error
value has been found: each data value in this facet is represented as a condition-action
pair. Generally, the action associated with a possible error value directs the control flow
to another prototype or prints a statement informing the user of the error value.

• A plausible values facet, specifying data values for the characteristic feature that are
consistent with the situation described by the prototype. Similar to possible error
values, plausible values are represented as condition-action pairs. All those values that
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are neither plausible values nor possible error values are called surprise values. Surprise
values cannot be accounted for by the situation represented by the given prototype.

• An inference rules facet, whose value is a list of production rules. These production
rules represent highly specialized domain knowledge only, and are used to infer a value
for the component when a value is needed but not known as yet. The inference rules
facet therefore behaves like an if-needed demon.

• A default value facet, containing a default value for the component, independent of other
values. All the components in a prototype with their default values form a picture of a
typical patient suffering from the pulmonary disease described by the prototype.

• An importance measure facet, specifying a measure (from 0 to 5) that indicates the
relative importance of the component in characterizing the situation described by the
prototype. The importance measures are mainly used to determine whether the pro-
totype matches the actual case data. An importance measure equal to 0 is used to
indicate components whose values are not considered in the matching process.

EXAMPLE 7.24

An example of a component in CENTAUR is the following component having the name
‘fev1’ (forced expired volume in 1 second). It describes the volume of air that can
be expelled by a person in one second by a forced expiration following a maximal
inspiration; it is expressed as a percentage of the volume of air that can be expired
irrespective of time (the so-called vital capacity, vc).

name: fev1
plausible values:

if
the value is less than 80

then
no action indicated

importance measure: 5
actual value: nil

In this component only four of the seven possible facets have been specified. The
actual values slot contains the value nil indicating that an actual value has not yet been
established.

In the component with the name ‘reversibility’ an actual value has been entered. This
component describes whether or not the effects of a particular pulmonary disease are
reversible.

name: reversibility
plausible values: anyvalue
importance measure: 0
inference rules: (RULE019 RULE020 RULE022 RULE025)
actual value: 43
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Notice that in the ‘reversibility’ component the inference rules slot does not contain
actual production rules but only their names. These names serve as pointers to actual
production rules stored in a global rule base. We will turn to this shortly.

In addition to a number of component slots, a prototype has several meta-knowledge slots.
The general information slots give static general information about the prototype itself, such
as bookkeeping information, information used in communicating with the user and informa-
tion relating the prototype to other prototypes. These slots do not have any facets. The
general information slots are:

• The name slot, specifying the unique name of the prototype. In general, the name of
the pulmonary disease that is represented in the prototype is taken to be the name of
the prototype.

• The author slot, containing the names of the experts that created the prototype.

• The date slot, the value of which is the date the prototype was created, or the date of
the last update of the prototype.

• The source slot, describing the source that inspired the creation of the prototype.

• The explanation slot, containing English phrases explaining the contents of the proto-
type. These phrases are used in answering a user’s request to explain the system’s lines
of reasoning.

• The hypothesis slot, containing an English description of the hypothesis the system is
investigating when the control is directed to this specific prototype.

• The moregeneral slot, containing a set of references to the more general prototypes in
the prototype taxonomy. The moregeneral slot is equivalent to the is-a link discussed
in Chapter 4. It is noted that the problems arising from multiple inheritance do not
occur in CENTAUR since the taxonomy is merely a tree.

• The morespecific slot containing a set of references to the more specific prototypes in
the taxonomy. In this slot the inverse relation of the is-a link is specified.

• The alternate slot, specifying a set of pointers to alternate prototypes in the taxonomy.

Furthermore, within each prototype, context-specific control knowledge for controlling the
inference locally is specified in control slots. These control slots contain LISP expressions
that are executed by the system at specific times during the consultation. The slot name of
a control slot indicates the moment during the consultation the control has to be applied.
Essentially, four control slots may be associated with a prototype:

• The to-fill-in slot. The procedures that have been specified in this slot express actions
to be taken by the system as soon as the prototype is selected to be contemplated as a
plausible explanation for the patient’s complaints and clinical signs. The information in
this slot indicates which components of the prototype should have values and in what
order they should be determined.
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• The if-confirmed slot. Once a prototype has been filled in, the system decides whether
the prototype should be confirmed as matching the actual patient data. Upon confir-
mation of a prototype the actions described in the if-confirmed slot are executed.

• The if-disconfirmed slot. The if-disconfirmed slot specifies actions to be performed in the
event that the prototype is disconfirmed. Generally, the if-confirmed and if-disconfirmed
slots specify sets of prototypes to be explored next.

• The action slot. In the action slot some concluding statements in English are specified
to be printed for the prototype after final conclusions have been derived.

A prototype has another three slots associated with it containing sets of production rules.
These rules are to be used after the system has formulated sets of confirmed and disconfirmed
prototypes. These slots are called rule slots:

• The summary rules slot, containing rules whose actions make summary statements
about the intermediate results that have been derived in examining the prototype.

• The fact-residual rules slot, specifying rules that are to be applied when the set of con-
firmed prototypes does not account for all the facts known in the actual case. Residual
facts can be an indication that the diagnosis is not complete, or that the patient’s dis-
ease pattern is exceptional. The fact-residual rules attempt to make conclusions about
these residual facts.

• The refinement rules slot, in which a set of production rules is specified that are to be
used to refine a tentative diagnosis, producing a final diagnosis about the pulmonary
disease the patient is likely to be suffering from. Refinement rules may also recommend
that additional laboratory tests should be performed.

EXAMPLE 7.25

The following production rule RULE050 is an example of a summary rule specified in
the summary rules slot of the prototype describing the normal pulmonary function of
a patient. From now on, production rules will be shown using a quasi-natural language
interface.

RULE050
if

the degree of obstructive airways disease as indicated by
overinflation is greater than or equal to mild

then
it is definite (1.0) that the following is one of the summary
statements about this interpretation: pulmonary function is
within wide limits of normal.

The production rule RULE157 is an example of a fact-residual rule specified in the
fact-residual rules slot of the prototype that describes the characteristics of a patient
suffering from obstructive airways disease:
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RULE157
if

there is not sufficient evidence for restrictive lung
disease, and the degree of obstructive airways disease of
the patient is greater than or equal to moderately severe, and
the tlc/tlc-predicted ratio of the patient is between 90 and 100

then
mark the tlc as being accounted for by restrictive lung disease,
and it is definite (1.0) that the following is one of the
conclusion statements about this interpretation: the reduced total
lung capacity in the presence of obstruction indicates a
restrictive component.

Finally, the following production rule named RULE040 is specified in the refinement
rules slot associated with the obstructive airways disease prototype. The tentative
diagnosis that the patient is suffering from an obstructive airways disease is refined: the
rule attributes the cause of the patient’s airway obstruction to smoking.

RULE040
if

the number of pack-years smoked is greater than 0, and
the number of years ago that the patient quit smoking is 0, and
the degree of smoking of the patient is greater than or equal
to the degree of obstructive airways disease of the patient

then
it is definite (1.0) that the following is one of the conclusion
statements about this interpretation: the patient’s airway
obstruction may be caused by smoking.

The different types of production rules, that is, the inference rules, the summary rules, the
fact-residual rules and the triggering rules that are still to be discussed, are part of a global
set of production rules. This set of rules is subdivided by means of pointers to specific rules
represented as rule names in the prototypes. When examining a prototype, only those rules
referred to in the prototype are applied. We shall focus on the respective functions of the
different types of rules during a consultation of the system in Section 7.3.4 when discussing
the CENTAUR control structure.

To conclude with, each prototype has a number of slots that are filled in with values as
the consultation proceeds:

• A match measure slot, containing a match measure dependent upon the present con-
sultation. This measure indicates how closely the data values of the actual case match
the expected data values described in the prototype. The match measure is computed
dynamically during the consultation as the components of the prototype are filled in,
using the former match measure, the importance measures of the filled components and
whether the actual values are classified as plausible values or not. After the actions
specified in the to-fill-in slot of the prototype have been executed, the match measure
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is compared with a certain numerical threshold in order to determine whether the pro-
totype should be confirmed or disconfirmed as matching the actual case data.

• A certainty measure slot, specifying a certainty measure that indicates how certain
the system is that the actual data values in the case match the expected data values
in the prototype. These certainty measures are similar in concept to the certainty
factors introduced in Chapter 5. Certainty measures may initially be set by applying
a triggering rule. A triggering rule is a rule that refers to values of components in
its condition part and suggests prototypes as possible hypotheses by setting certainty
measures, in their conclusion part. RULE093 is an example of such a triggering rule:

RULE093
if

the dlco/dlco-predicted ratio of the patient is less than 80
then

suggest diffusion-defect with a certainty measure of 900, and
suggest emphysema with a certainty measure of 800, and
suggest restrictive lung disease with a certainty measure of 800

On account of the actual value of the dlco/dlco-predicted ratio of the patient, that is,
the ratio of the measured and the predicted diffusing capacity of Carbon Monoxide
(dclo), this triggering rule suggests the exploration of the ‘diffusion-defect’ prototype,
the ‘emphysema’ prototype and the ‘restrictive lung disease’ prototype, by assigning
the certainty measures of these prototypes a value greater than zero.

• An intrigger slot specifying the component values that triggered the initialization of the
certainty measure of the prototype. For example, if the prototype describing obstructive
airways disease is triggered by the value 126 of the ‘tlc’, that is, the total lung capacity,
component, the intrigger slot will contain the pair (tlc 126).

• An origin slot recording the invocation of one prototype by another during the consul-
tation.

We will turn to these slots shortly.

EXAMPLE 7.26

The prototype describing obstructive airways disease serves as an example of the notions
discussed in the foregoing. Part of this prototype is shown in figure 7.6. This prototype
has the name ‘oad’ for obstructive airways disease. The moregeneral slot specifies an
is-a link to a more general prototype in the taxonomy, in this case the prototype with
the name ‘pulmonary disease’. The keyword DOMAIN is used to indicate a certain
type of is-a link. In the morespecific slot, pointers to prototypes containing more spe-
cific information have been specified. The keywords SUBTYPE and DEGREE may be
used in controlling the inference: the control slots may direct the reasoning control to a
specific set of prototypes, for instance the prototypes which have been labelled with the
keyword DEGREE in the morespecific slot. In fact, this option has been used in the
if-confirmed slot: if the pulmonary disease pattern represented in the ‘oad’ prototype
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PROTOTYPE
name: oad
hypothesis: ”there is Obstructive Airways Disease”
explanation: ”Obstructive Airways Disease”
author: Aikins
date: ”27-OCT-78 17:13:29”
source: Fallat
moregeneral: (DOMAIN pulmonary-disease)
morespecific:

(SUBTYPE asthma) (SUBTYPE bronchitis) (SUBTYPE emphysema)
(DEGREE mild-oad) (DEGREE moderate-oad)
(DEGREE moderately-severe-oad) (DEGREE severe-oad)

intriggers: nil
origin: nil
certainty measure: 0
match measure: 0
to-fill-in: nil
if-confirmed:

determine the degree of oad,
determine the subtype of oad

if-disconfirmed: nil
action:

An attempt has been made to deduce the findings about the diagnosis
of obstructive airways disease. Display the findings about the diagnosis:
”There is evidence that the following is one of the summary statements
about this interpretation: 〈deg - oad〉 Obstructive Airways Disease”.

refinement-rules: (RULE036 RULE038 RULE039 RULE040 . . .)
summary-rules: (RULE053 RULE054 RULE055 . . .)
fact-residual-rules: (RULE157 RULE158 RULE159)

COMPONENTS
cname: reversibility
plausible values: any value
importance measure: 0
inference rules: (RULE019 RULE020 RULE022 RULE025)
actual value: nil

...

Figure 7.5: The prototype describing obstructive airways disease.



7.3. CENTAUR 339

matches the actual patient data first the control is directed to the more specific pro-
totypes that are indicated by the keyword DEGREE; these are the prototypes having
the names ‘mild-oad’, ‘moderate-oad’, ‘moderately-severe-oad’ and ‘severe-oad’. Subse-
quently, the subtype of the obstructive airways disease is determined by directing the
control to the prototypes labelled with the SUBTYPE keyword, that is the prototypes
with the names ‘asthma’, ‘bronchitis’, and ‘emphysema’. In the if-disconfirmed slot no
actions have been specified. The ‘oad’ prototype furthermore has several components,
only one of which is shown in figure 7.6: the ‘reversibility’ component.

7.3.3 Facts

In the implementation of the CENTAUR system, the actual component values that have been
acquired are not only included in the prototypes themselves but in separate facts as well. Each
fact corresponds with a component, and represents either a pulmonary function test result or
a value that has been established during the consultation process. These facts are visible for
every prototype of the taxonomy; the fact set therefore is a kind of global working memory.
Each fact is represented in a record-like data structure. In such a data structure several
fields are discerned each containing a specific property of the represented component value.
In CENTAUR these fields are called slots as well. However to avoid misconception we will
adhere to the term field. A fact has six fields:

• An fname field, specifying the name of the fact. This name corresponds with the name
of a component and should appear at least once in the taxonomy.

• A fact value field, containing the actual value of the component.

• A certainty factor field, indicating the certainty with which the component value has
been established.

• A where from field indicating from whence the component value has been obtained: from
the user, from applying the inference rules, or from the default value slot associated with
the component.

• A classification field in which for each prototype containing the component is indicated
whether the component value is a plausible value (PV), a possible error value (PEV) or
a surprise value (SV) in the given prototype.

• An accounted for field, indicating which (confirmed) prototypes account for the given
fact value. When a prototype is confirmed, all the facts that correspond with the
components in the prototype and whose values are classified as plausible values for the
component are said to be accounted for by that prototype. Information in this slot is
used to determine which facts remain to be accounted for.

EXAMPLE 7.27

We consider the fact with the name ‘tlc’.
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fname: tlc
fact value: 126
certainty factor: 0.8
where from: USER
classification: ((PV OAD)(SV NORMAL))
accounted for: OAD

The name ‘tlc’ corresponds with a component occurring in the ‘oad’ and ‘normal’ pro-
totypes. For this component the value 126 has been obtained from the user who has
associated the certainty factor 0.8 with this value. The value 126 has been classified
as a plausible value for the component in the prototype describing obstructive airways
disease and as a surprise value in the normal pulmonary function prototype. Since
the value is plausible in a patient suffering from obstructive airways disease, the ‘oad’
prototype accounts for this value.

7.3.4 Reasoning in CENTAUR

In the foregoing two sections we have paid attention to the knowledge-representation schemes
in CENTAUR. In this section we focus on the manipulation of the represented information.
The approach to reasoning with frames used in CENTAUR is called hypothesize and match.
This reasoning strategy roughly amounts to the following: take a hypothesis, represented in
a prototype, as being the diagnosis for the patient’s disease, and try to match this hypothesis
against the test results and patient data in the actual case. This strategy is part of the overall
domain-independent control of the system. This overall control information is described in
a prototype as well. This prototype represents the consultation task itself and is called the
consultation prototype. The hypothesis-dependent control information is represented in the
prototype control slots, as described in Section 7.3.2.

task AGENDA

task1
task2
task3

.

.

.

interpreter

Figure 7.6: Agenda-driven control.

The basic control structure in CENTAUR is an agenda-driven control. An agenda is a
sequence of tasks, each representing an action to be taken by the system. Tasks can be
added to or deleted from the agenda. Figure 7.7 shows the general structure of an agenda.
Connected with the agenda is an interpreter. The interpreter at every turn removes the top
task from the agenda and executes it. When this task is finished, the process is repeated until
the agenda is empty.
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In CENTAUR there are two ways of adding tasks to the agenda:

• We recall that in the prototype control slots several tasks may be specified. When such
a control slot is activated during the consultation of the system, the tasks specified in
the slot are added to the agenda.

• The execution of one task may cause other tasks to be placed on the agenda.

Tasks are always inserted in front of the tasks already present on the agenda. The set of
tasks from a prototype control slot is added to the agenda as a group, thus preserving the
order in which the tasks have been specified. The agenda operates as a stack: the tasks on
the agenda are executed in a last-in, first-out order. Notice that operating the agenda as a
stack has the effect of moving depth-first through the prototype taxonomy of CENTAUR as
more specific pulmonary diseases are explored.

Figure 7.8 shows the control flow during a consultation of the CENTAUR system. At any
time during the consultation, there is a single prototype on which the system focuses: this
prototype is called the current prototype. Processing of the current prototype involves two
steps:

• Filling in the prototype component slots with values. Filling in the component slots is
guided by the tasks specified in the to-fill-in slot of the current prototype. If there are
rules associated with a component they will be applied to infer component values. Only
when these rules fail to yield a value, or when there are no rules associated with the
component, the user is asked for a value.

• Evaluating whether there is a match between the actual data values obtained from the
patient and the prototype’s set of plausible values. Following the execution of the tasks
in the to-fill-in slot, the interpreter connected with the agenda determines whether or
not the prototype should be confirmed as matching with the actual patient data. For
this purpose the interpreter compares the dynamically computed match measure of the
prototype with a preset numerical threshold. Dependent upon this comparison, the
tasks from the if-confirmed slot or the tasks from the if-disconfirmed slot are placed on
the agenda. These tasks specify how the consultation should proceed.

When starting with a consultation, the consultation prototype becomes the first current pro-
totype. As has been mentioned before, this prototype represents the consultation task itself.
The to-fill-in slot of this prototype contains tasks providing the user with the opportunity to
set some options to be used in running the consultation. The tasks in the if-confirmed slot
control the way in which the consultation develops through various stages. The execution of
these tasks amongst other things results in the ‘pulmonary disease’ prototype being selected
as the next current prototype. This prototype represents knowledge common to all of the pul-
monary diseases. The more specific prototypes have the knowledge present in this prototype
at their disposal. The tasks in the to-fill-in slot of the ‘pulmonary disease’ prototype control
the acquisition of an initial set of pulmonary function test results from the user. Filling in
these initial data has as a result that prototypes are suggested as being likely matches to the
given data values as a result of their certainty measures being set by triggering rules. When
a prototype has been suggested by data values, it becomes a potentially relevant prototype.
From this set of potentially relevant prototypes those prototypes are selected that are relevant
for executing the top task on the agenda. These prototypes are called relevant prototypes.
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Entering initial data

Triggering prototypes

Selecting
the current prototype

Filling in the prototype:
to-fill-in slot

(inference rule slot)

Testing match:
if-confirmed slot or
if-disconfirmed slot

Accounting for data:
fact-residual rules slot

Refining diagnosis
refinement rules slot

Summarizing results:
summary rules slot

Printing results:
action slot

Figure 7.7: The control flow during a consultation.
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The relevant prototypes are filled in with the data values that are already known in the case,
using single inheritance merely by examining the fact set. When data values are classified as
plausible values in the prototype, the certainty measure is raised an amount dependent upon
the importance measure of the component slot. The certainty measure is lowered when data
values are possible error values or surprise values. The relevant prototypes then are placed
on a hypotheses list, which subsequently is ordered according to the certainty measures of
the prototypes. So, the first prototype represents the system’s best hypothesis about how to
match the actual case data. The first prototype on the hypotheses list subsequently becomes
the current prototype.

When all hypotheses on the hypotheses list are confirmed or disconfirmed as matching the
actual case data, the fact-residual rules, the refinement rules and the summary rules associated
with each confirmed prototype are applied. Finally, the tasks specified in the action slots
of the confirmed prototypes are executed. Notice that instead of routinely considering all
possible hypotheses in turn as in a fully rule-based system, only prototypes that are triggered
by data values are considered: prototypes that are not suggested by the triggering rules as
likely explanations for the patient’s signs will not be considered, unless they are suggested
later in the consultation as new facts are derived. Considering only those prototypes that are
suggested by actual data values prevents many needless rule invocations and questions.

7.3.5 What has been achieved by CENTAUR?

We have now discussed the organization of the CENTAUR system in some detail. Now, the
question arises what actually has been achieved by redesigning the PUFF into the CENTAUR
system. To answer questions such as these, J.S. Aikins has experimentally compared the con-
sultations of the CENTAUR and PUFF systems, by presenting both systems a representative
sample of twenty cases. It turned out that PUFF always posed the questions to the user in
more or less the same order, while the questioning order in CENTAUR was more dynamic in
nature, dependent on the actual case at hand. Furthermore, the ability to focus on knowl-
edge relevant for the present case to be solved measured by the number of questions asked,
was also better for CENTAUR than for PUFF. Finally, in one-hundred cases the judgements
of two expert physicians were compared to the diagnostic conclusions of both PUFF and
CENTAUR. It was shown that judgements of the physicians did more often agree with the
conclusions drawn by CENTAUR than with the conclusions drawn by PUFF.

The main conclusion of J.S. Aikins was that the CENTAUR system is particularly strong
as a tool for experimenting with control schemes in domains in which prototypical knowledge
can be used to guide the problem solving. It will be evident that although CENTAUR is a
special-purpose system, its structure may be used for other problem domains as well. The
system has given a major impetus to the building of expert systems with a better controlled
inference behaviour. In our opinion, the CENTAUR approach has several strong points,
all arising from the explicit separation of object and control knowledge. For example, the
system has a clear and easy to grasp structure. Another pleasant consequence is that systems
constructed using this approach are not only applicable for solving diagnostic problems, but
for tutoring purposes as well.
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Suggested reading

For further information on OPS5, the reader is referred to the book ‘Programming Expert
Systems in OPS5’ [Brownston85], the book ‘Rule-based Programming with OPS5’ [Cooper88],
and the OPS5 User’s Manual [Forgy81]. For those interested in experimenting with the OPS5
system, we remark that the Franz and COMMON LISP versions of OPS5 are in the public
domain. The rete algorithm is described in [Forgy82]. The language OPS83 is described in
[Forgy85]. The expert-system builder tool Knowledge Craft, which incorporates an OPS5-like
language, called CRL-OPS, is reviewed in [Kahn89].

LOOPS is fully described in the user’s manual [Bobrow83]. Further detailed information
on LOOPS can be found in [Stefik84], which discusses the object-oriented style of program-
ming supported by LOOPS, and [Stefik86], which deals with the data-oriented programming
style. In Section 7.2 we remarked that D.G. Bobrow started his experiments with knowledge-
representation languages with the development of KRL: information about this knowledge-
representation language can be found in [Bobrow77]. The UNITS system, developed by M.J.
Stefik, is discussed in [Stefik79].

The discussion of the CENTAUR system presented in this chapter has been based to a
large extent on [Aikins80]. This report has in a shorter form been published as [Aikins83]. The
rule-based expert system PUFF that motivated the development of CENTAUR is discussed
in [Aikins84].

Exercises

(7.1) Suppose that we have three boxes at different positions a, b, and c, respectively placed
in a room. In addition, there is a robot in the room at position d, differing from the
positions of the boxes. Develop an OPS5 program that transforms the initial state as
described above into a state in which the three boxes are stacked on top of each other.
Assume that the boxes can be moved by push actions of the robot and that no special
action is required for stacking the boxes. The robot is allowed to move freely around
the room.

(7.2) Consider the following OPS5 program:

(literalize person

name

age)

(literalize output name age)

(p names

(person ^age = <x>)

(person ^name = <y> ^age > <x> ^age = <z>)

-->

(make output ^name <y> ^age <z>))

(make person ^name john ^age 20)

(make person ^name john ^age 10)
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(make person ^name anna ^age 50)}

(a) Briefly describe the operations performed by this program on the working memory.
What is the contents of the working memory after execution?

(b) Why is the production given above not acceptable to OPS5 if the first condition
element is removed?

(c) When instead of the lex strategy the mea strategy is employed in the program
above, what will then be the contents of the working memory after execution?

(7.3) Consider the following OPS5 program, of which only the productions are given below.

(p one

(o ^a = 6 ^c < 10)

(p ^b = <x>)

-->

(make g ^c <x>))

(p two

(o ^a = <x> ^c = 10)

(p ^b = <x>)

-->

(make g ^d <x>))}

Draw the schematic representation of the rete graph constructed by OPS5 for these two
productions. Distinguish between class, one-input, two-input, and production vertices.

(7.4) Why is the rete algorithm not suitable for real-time applications in which at certain
time intervals the working memory is refreshed? Design an algorithm that would be
more suitable for such an application.

(7.5) In which way does the algorithm of multiple inheritance of attribute values in LOOPS
differ from the multiple inheritance algorithm described in Section 4.3? Which of the
two algorithms do you consider to be the most natural one?

(7.6) Consider the following class definition in LOOPS:

class artery is
metaclass class;
superclass blood-vessel ;
class-variables

wall = muscular
instance-variables

blood = (default oxygen-rich);
diameter = (default 1)

end

and the following instance definition:
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instance pulmonary-artery is
instance-of artery ;
instance-variables
blood = oxygen-poor

end

(a) Explain the difference between class variables and instance variables in a class.

(b) Which attribute values do we have for the instance pulmonary-artery? Which
attribute values do we have for any other instance of the class artery for which no
attribute values are explicitly specified? Explain your answer.

(7.7) OPS5 incorporates a method for bottom-up inference in which most of the control
strategy is provided by the standard inference algorithm. On the other hand, LOOPS
offers the knowledge engineer several control strategies to adapt the the bottom-up
inference method to the need. Why is it nevertheless difficult to model the conflict-
resolution method incorporated in OPS5 using the language constructs provided in
LOOPS?

(7.8) Give a brief, informal description of the way in which prototypes control the inference
in CENTAUR.

(7.9) What is the main function of the default-value facets in the components of the prototypes
in CENTAUR?

(7.10) What is the purpose of the fact-residual rules in CENTAUR? Which information is
stored in the fact set to be able to apply these rules?

(7.11) Give a description of the agenda-controlled inference method applied in CAUR.
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Introduction to PROLOG

PROLOG is a simple, yet powerful programming language, based on the principles of first-
order predicate logic. The name of the language is an acronym for the French ‘PROgramma-
tion en LOGique’. About 1970, PROLOG was designed by A. Colmerauer and P. Roussel at
the University of Marseille, influenced by the ideas of R.A. Kowalski concerning programming
in the Horn clause subset of first-order predicate logic. The name of PROLOG has since then
been connected with a new programming style, known as logic programming.

Until the end of the seventies, the use of PROLOG was limited to the academic world.
Only after the development of an efficient PROLOG interpreter and compiler by D.H.D.
Warren and F.C.N. Pereira at the University of Edinburgh, the language entered the world
outside the research institutes. The interest in the language has increased steadily. However,
PROLOG is still mainly used by researchers, even though it allows for the development of
serious and extensive programs in a fraction of the time needed to develop a C or Java program
with similar functionality. The only explanation is that people like waisting their precious
time. Nevertheless, there are a large number of fields in which PROLOG has been applied
successfully. The main applications of the language can be found in the area of Artificial
Intelligence; but PROLOG is being used in other areas in which symbol manipulation is of
prime importance as well. Some application areas are:

• Natural-language processing;

• Compiler construction;

• The development of expert systems;

• Work in the area of computer algebra;

• The development of (parallel) computer architectures;

• Database systems.

PROLOG is particularly strong in solving problems characterized by requiring complex sym-
bolic computations. As conventional imperative programs for solving this type of problems
tend to be large and impenetrable, equivalent PROLOG programs are often much shorter and
easier to grasp. The language in principle enables a programmer to give a formal specification
of a program; the result is then almost directly suitable for execution on the computer. More-
over, PROLOG supports stepwise refinement in developing programs because of its modular

347
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nature. These characteristics render PROLOG a suitable language for the development of
prototype systems.

There are several dialects of PROLOG in use, such as for example, C-PROLOG, SWI-
PROLOG, Sicstus-PROLOG, LPA-PROLOG. C-PROLOG, also called Edinburgh PROLOG,
was taken as a basis for the ISO standard. C-PROLOG itself is now no longer in use.

The language definition of C-PROLOG is derived from an interpreter developed by D.H.D.
Warren, D.L. Bowen, L. Byrd, F.C.N. Pereira, and L.M. Pereira, written in the C program-
ming language for the UNIX operating system. Most dialects only have minor syntactical
and semantical differences with the standard language. However, there are a small number
of dialects which change the character of the language in a significant way, for example by
the necessity of adding data-type information to a program. A typical example is offered by
the version of the PROLOG language supported by Visual PROLOG. In recent versions of
PROLOG, several features have been added to the ISO standard. Modern PROLOG versions
provide a module concept and extensive interfaces to the operating system, as well as tools
for the development of graphical user interfaces. As these have not been standardized, we
will not pay attention to them here.

A.1 Logic programming

In more conventional, imperative languages such as C++, Java and Pascal, a program is
a specification of a sequence of instructions to be executed one after the other by a target
machine, to solve the problem concerned. The description of the problem is incorporated
implicitly in this specification, and usually it is not possible to clearly distinguish between
the description of the problem, and the method used for its solution. In logic programming,
the description of the problem and the method for solving it are explicitly separated from
each other. This separation has been expressed by R.A. Kowalski in the following equation:

algorithm = logic + control

The term ‘logic’ in this equation indicates the descriptive component of the algorithm, that
is, the description of the problem; the term ‘control’ indicates the component that tries to
find a solution, taking the description of the problem as a point of departure. So, the logic
component defines what the algorithm is supposed to do; the control component indicates
how it should be done.

A specific problem is described in terms of relevant objects and relations between objects,
which are then represented in the clausal form of logic, a restricted form of first-order predicate
logic. The logic component for a specific problem is generally called a logic program. The
control component employs logical deduction or reasoning for deriving new facts from the
logic program, thus solving the given problem; one speaks of the deduction method. The
deduction method is assumed to be quite general, in the sense that it is capable of dealing
with any logic program respecting the clausal form syntax.

The splitting of an algorithm into a logic component and a control component has a
number of advantages:

• The two components may be developed separately from each other. For example, when
describing the problem we do not have to be familiar with how the control compo-
nent operates on the resulting description; knowledge of the declarative reading of the
problem specification suffices.



A.2. Programming in PROLOG 349

algorithm = logic + control

what how

Horn
clauses

resolution

PROLOG
database

PROLOG
interpreter

Figure A.1: The relationship between PROLOG and logic programming.

• A logic component may be developed using a method of stepwise refinement; we have
only to watch over the correctness of the specification.

• Changes to the control component affect (under certain conditions) only the efficiency
of the algorithm; they do not influence the solutions produced.

An environment for logic programming offers the programmer a deduction method, so that
only the logic program has to be developed for the problem at hand.

A.2 Programming in PROLOG

The programming language PROLOG can be considered to be a first step towards the practi-
cal realization of logic programming; as we will see in below, however, the separation between
logic and control has not been completely realized in this language. Figure A.1 shows the
relation between PROLOG and the idea of logic programming discussed above. A PROLOG
system consists of two components: a PROLOG database and a PROLOG interpreter.

A PROLOG program, essentially a logic program consisting of Horn clauses (which how-
ever may contain some directives for controlling the inference method), is entered into the
PROLOG database by the programmer. The PROLOG interpreter offers a deduction method,
which is based on a technique called SLD resolution. SLD resolution is discussed in consid-
erable detail in Chapter 2.

Solving a problem in PROLOG starts with discerning the objects that are relevant to the
particular problem, and the relationships that exist between them.

EXAMPLE A.1

In a problem concerning sets, we for instance take constants as separate objects and
the set as a whole as another object; a relevant relation between constants and sets is
the membership relation.
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When we have identified all relevant objects and relations, it must be specified which facts
and rules hold for the objects and their interrelationships.

EXAMPLE A.2

Suppose that we are given a problem concerning sets. We may for example have the
fact that a certain constant a is a member of a specific set S. The statement ‘the set X
is a subset of the set Y , if each member of X is a member of Y ’ is a rule that generally
holds in set theory.

When all facts and rules have been identified, then a specific problem may be looked upon as
a query concerning the objects and their interrelationships. To summarize, specifying a logic
program amounts to:

• Specifying the facts concerning the objects and relations between objects relevant to
the problem at hand;

• Specifying the rules concerning the objects and their interrelationships;

• Posing queries concerning the objects and relations.

A.2.1 The declarative semantics

Information (facts, rules, and queries) is represented in PROLOG using the formalism of Horn
clause logic. A Horn clause takes the following form:

B ← A1, . . . , An

where B, A1, . . . , An, n ≥ 0, are atomic formulas. Instead of the (reverse) implication symbol,
in PROLOG usually the symbol :- is used, and clauses are terminated by a dot. An atomic
formula is an expression of the following form:

P (t1, . . . , tm)

where P is a predicate having m arguments, m ≥ 0, and t1, . . . , tm are terms. A term is
either a constant, a variable, or a function of terms. In PROLOG two types of constants
are distinguished: numeric constants, called numbers, and symbolic constants, called atoms.
(Note that the word atom is used here in a meaning differing from that of atomic formula,
thus deviating from the standard terminology of predicate logic.) Because of the syntactic
similarity of predicates and functions, both are called functors in PROLOG. The terms of a
functor are called its arguments. The arguments of a functor are enclosed in parentheses, and
separated by commas.

Seen in the light of the discussion from the previous section, the predicate P in the atomic
formula P (t1, . . . , tm) is interpreted as the name of the relationship that holds between the
objects t1, . . . , tm which occur as the arguments of P . So, in a Horn clause B :- A1, . . . , An,
the atomic formulas B, A1, . . . , An, denote relations between objects. A Horn clause now is
interpreted as stating:

‘B (is true) if A1 and A2 and . . . and An (are true)’
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Formal Name In PROLOG Name

A← unit clause A. fact
← B1, . . . , Bn goal clause ?- B1, . . . , Bn. query
A← B1, . . . , Bn clause A:-B1, . . . , Bn. rule

Table A.1: Horn clauses and PROLOG.

A1, . . . , An are called the conditions of the clause, and B its conclusion. The commas between
the conditions are interpreted as the logical ∧, and the :- symbol as the (reverse) logical
implication ←.

If n = 0, that is, if conditions Ai are lacking in the clause, then there are no conditions
for the conclusion to be satisfied, and the clause is said to be a fact. In case the clause is a
fact, the :- sign is replaced by a dot.

Both terminology and notation in PROLOG differ slightly from those employed in logic
programming. Table A.1 summarizes the differences and similarities. The use of the various
syntactic forms of Horn clauses in PROLOG will now be introduced by means of examples.

EXAMPLE A.3

The PROLOG clause

/*1*/ member(X,[X|_]).

is an example of a fact concerning the relation with the name member. This relation
concerns the objects X and [X|_] (their meaning will be discussed shortly). The clause
is preceded by a comment; in PROLOG, comments have to be specified between the
delimiters /* and */.

If a clause contains one or more conditions as well as a conclusion, it is called a rule.

EXAMPLE A.4

Consider the PROLOG clause

/*2*/ member(X,[_|Y]) :- member(X,Y).

which is a rule concerning the relation with the name member. The conclusion
member(X,[_|Y]) is only subjected to one condition: member(X,Y).

If the conclusion is missing from a clause, then the clause is considered to be a query to the
logic program. In case a clause is a query, the sign :- is usually replaced by the sign ?-.

EXAMPLE A.5

The PROLOG clause

/*3*/ ?- member(a,[a,b,c]).

is a typical example of a query.
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A symbolic constant is denoted in PROLOG by a name starting with a lower-case letter.
Names starting with an upper-case letter, or an underscore sign, _, indicate variables in
PROLOG. A relation between objects is denoted by means of a functor having a name starting
with a lower-case letter (or a special character, such as &, not having a predefined meaning in
PROLOG), followed by a number of arguments, that is the objects between which the relation
holds. Recall that arguments are terms, that is, they may be either constants, variables, or
functions of terms.

EXAMPLE A.6

Consider the three clauses from the preceding examples once more. member is a functor
having two arguments. The names a, b, and c in clause 3 denote symbolic constants; X
and Y are variables.

In PROLOG, a collection of elements enclosed in square brackets denotes a list. It is possible
to explicitly decompose a list into its first element, the head of the list, and the remaining
elements, the tail of the list. In the notation [X|Y], the part in front of the bar is the head
of the list; X is a single element. The part following the bar denotes its tail; Y itself is a list.

EXAMPLE A.7

Consider the list [a,b,c]. Now, [a|[b,c]] is another notation for the same list; in
this notation, the head and the tail of the list are distinguished explicitly. Note that
the tail again is a list.

Each clause represents a separate piece of knowledge. So, in theory, the meaning of a set
of clauses can be specified in terms of the meanings of each of the separate clauses. The
meaning of a clause is called the declarative semantics of the clause. Knowledge of the
declarative semantics of first-order predicate logic helps in understanding PROLOG. Broadly
speaking, PROLOG adheres to the semantics of first-order logic. However, there are some
differences, such as the use of negation as finite failure which will be discussed below.

EXAMPLE A.8

Consider the clauses 1, 2 and 3 from the preceding examples once more. Clause 1
expresses that the relation with the name member holds between a term and a list
of terms, if the head of the list equals the given term. Clause 1 is not a statement
concerning specific terms, but it is a general statement; this can be seen from the use of
the variable X which may be substituted with any term. Clause 2 represents the other
possibility that the constant occurs in the tail of the list. The last clause specifies the
query whether or not the constant a belongs to the list of constants a, b, and c.

A.2.2 The procedural semantics and the interpreter

In the preceding section we have viewed the formalism of Horn clause logic merely as a formal
language for representing knowledge. However, the Horn clause formalism can also be looked
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upon as a programming language. This view of Horn clause logic is called its procedural
semantics.

In the procedural semantics, a set of clauses is viewed as a program. Each clause in the
program is seen as a procedure (entry). In the clause

B:-A1, . . . , An.

we look upon the conclusion B as the procedure heading, composed of a procedure name,
and a number of formal parameters; A1, . . . , An is then taken as the body of the procedure,
consisting of a sequence of procedure calls. In a program all clauses having the same predicate
in their conclusion, are viewed as various entries to the same procedure. A clause without
any conclusion, that is, a query, acts as the main program. Here no strict distinction is
made between both types of semantics; it will depend on the subject dealt with, whether the
terminology of the declarative semantics is used, or the terminology of procedural semantics
is preferred. In the remainder of this section we shall discuss the PROLOG interpreter.

When a PROLOG program has been entered into the PROLOG database, the main
program is executed by the PROLOG interpreter. The way the given PROLOG clauses are
manipulated, will be demonstrated by means of some examples.

EXAMPLE A.9

The three clauses introduced in Section A.2.1 together constitute a complete PROLOG
program:

/* 1*/ member(X,[X|_]).

/* 2*/ member(X,[_|Y]) :-

member(X,Y).

/* 3*/ ?- member(a,[a,b,c]).

Clauses 1 and 2 are entries to the same member procedure. The body of clause 2 consists
of just one procedure call. Clause 3 fulfills the role of the main program.

Let us suppose that the PROLOG database initially contains the first two clauses, and that
clause 3 is entered by the user as a query to the PROLOG system. The PROLOG interpreter
tries to derive an answer to the query using the information stored in the database. To this
end, the interpreter employs two fundamental techniques: matching and backtracking.

Matching of clauses

To answer a query, the PROLOG interpreter starts with the first condition in the query
clause, taking it as a procedure call. The PROLOG database is subsequently searched for a
suitable entry to the called procedure; the search starts with the first clause in the database,
and continues until a clause has been found which has a conclusion that can be matched with
the procedure call. A match between a conclusion and a procedure call is obtained, if there
exists a substitution for the variables occurring both in the conclusion and in the procedure
call, such that the two become (syntactically) equal after the substitution has been applied
to them. Such a match exists
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• If the conclusion and the procedure call contain the same predicate, and

• If the terms in corresponding argument positions after substitution of the variables are
equal; one then also speaks of a match for argument positions.

Applying a substitution to a variable is called instantiating the variable to a term. The
most general substitution making the selected conclusion and the procedure call syntactically
equal, is called the most general unifier (mgu) of the two. The algorithmic and theoretical
basis of matching is given by unification. For a more elaborate treatment of substitutions and
unifiers, the reader is referred to Chapter 2.

If we have obtained a match for a procedure call, the conditions of the matching clause
will be executed. In case the matching clause has no conditions, the next condition from the
calling clause is executed. The process of matching (and instantiation) can be examined by
means of the special infix predicate =, which tries to match the terms at its left-hand and
right-hand side and subsequently investigates whether the terms have become syntactically
equal.

EXAMPLE A.10

Consider the following example of the use of the matching predicate =. The first line
representing a query has been entered by the user; the next line is the system’s output.

?- f(X) = f(a).

X = a

As can be seen, the variable X is instantiated to a, which leads to a match of the left-hand
and right-hand side of =.

On first thoughts, instantiation seems similar to the assignment statement in conventional
programming languages. However, these two notions differ considerably. An instantiation
is a binding of a variable to a value which cannot be changed, that is, it is not possible to
overwrite the value of an instantiated variable by some other value (we will see however, that
under certain conditions it is possible to create a new instantiation). So, it is not possible to
express by instantiation a statement like

X := X + 1

which is a typical assignment statement in a language like Pascal. In fact, the ‘ordinary’
assignment which is usually viewed as a change of the state of a variable, cannot be expressed
in standard logic.

A variable in PROLOG has for its lexical scope the clause in which it occurs. Outside
that clause, the variable and the instantiations to the variable have no influence. PROLOG
does not have global variables. We shall see later that PROLOG actually does provide some
special predicates which have a global effect on the database; the meanings of such predicates,
however, cannot be accounted for in first-order logic. Variables having a name only consisting
of a single underscore character, have a special meaning in PROLOG. These variables, called
don’t-care variables, match with any possible term. However, such a match does not lead to
an instantiation to the variable, that is, past the argument position of the match a don’t care
variable looses its ‘binding’. A don’t care variable is usually employed at argument positions
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which are not referred to later in some other position in the clause.

EXAMPLE A.11

In our member example, the interpreter tries to obtain a match for the following query:

/*3*/ ?- member(a,[a,b,c]).

The first clause in the database specifying the predicate member in its conclusion, is
clause 1:

/*1*/ member(X,[X|_]).

The query contains at its first argument position the constant a. In clause 1 the vari-
able X occurs at the same argument position. If the constant a is substituted for the
variable X, then we have obtained a match for the first argument positions. So, X will
be instantiated to the constant a. As a consequence, the variable X at the second argu-
ment position of the conclusion of clause 1 has the value a as well, since this X is the
same variable as at the first argument position of the same clause. We now have to
investigate the respective second argument positions, that is, we have to compare the
lists [a,b,c] and [a| ]. Note that the list [a,b,c] can be written as [a|[b,c]]; it is
easily seen that we succeed in finding a match for the second argument positions, since
the don’t care variable will match with the list [b,c]. So, we have obtained a match
with respect to the predicate name as well as to all argument positions. Since clause 1
does not contain any conditions, the interpreter answers the original query by printing
yes:

/*3*/ ?- member(a,[a,b,c]).

yes

EXAMPLE A.12

Consider again the clauses 1 and 2 from the preceding example. Suppose that, instead
of the previous query, the following query is entered:

/*3*/ ?- member(a,[b,a,c]).

Then again, the interpreter first tries to find a match with clause 1:

/*1*/ member(X,[X|_]).

Again we have that the variable X will be instantiated to the constant a. In the second
argument position of clause 1, the variable X also has the value a. We therefore have to
compare the lists [b,a,c] and [a| ]: this time, we are not able to find a match for the
second argument positions. Since the only possible instantiation of X is to a, we will
never find a match for the query with clause 1. The interpreter now turns its attention
to the following entry of the member procedure, being clause 2:
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/*2*/ member(X,[_|Y]) :-

member(X,Y).

When comparing the first argument positions of the query and the conclusion of clause
2 respectively, we infer that the variable X will again be instantiated to the constant a.
For the second argument positions we have to compare the lists [b,a,c] and [ |Y]. We
obtain a match for the second argument positions by instantiating the variable Y to the
list [a,c]. We have now obtained a complete match for the query with the conclusion
of clause 2. Note that all occurrences of the variables X and Y within the scope of clause
2 will have been instantiated to a and [a,c], respectively. So, after instantiation we
have

member(a,[_|[a,c]]) :-

member(a,[a,c]).

Since, clause 2 contains a condition, its conclusion may be drawn only if the specified
condition is fulfilled. The interpreter treats this condition as a new query:

?- member(a,[a,c]).

This query matches with clause 1 in the same way as has been described in the previous
example; the interpreter returns success. Subsequently, the conclusion of clause 2 is
drawn, and the interpreter prints the answer yes to the original query.

Backtracking

When after the creation of a number of instantiations and matches the system does not
succeed in obtaining the next match, it systematically tries alternatives for the instantiations
and matches arrived at so far. This process of finding alternatives by undoing previous work,
is called backtracking. The following example demonstrates the process of backtracking.

EXAMPLE A.13

Consider the following PROLOG program:

/*1*/ branch(a,b).

/*2*/ branch(a,c).

/*3*/ branch(c,d).

/*4*/ branch(c,e).

/*5*/ path(X,X).

/*6*/ path(X,Y) :-

branch(X,Z),

path(Z,Y).

The clauses 1–4 inclusive represent a specific binary tree by means of the predicate
branch; the tree is depicted in Figure A.2. The symbolic constants a, b, c, d and e

denote the vertices of the tree. The predicate branch in branch(a,b) has the following
intended meaning: ‘there exists a branch from vertex a to vertex b’.
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a

b c

d e

Figure A.2: A binary tree.

The clauses 5 and 6 for path specify under which conditions there exists a path between
two vertices. The notion of a path has been defined recursively: the definition of a path
makes use of the notion of a path again.

A recursive definition of a relation generally consists of two parts: one or more termi-
nation criteria, usually defining the basic states for which the relation holds, and the
actual recursion describing how to proceed from a state in which the relation holds to
a new, simpler state concerning the relation.

The termination criterion of the recursive definition of the path relation is expressed
above in clause 5; the actual recursion is defined in clause 6. Note that the definition
of the member relation in the preceding examples is also a recursive definition.

Now, suppose that after the above given program is entered into the PROLOG database,
we enter the following query:

/*7*/ ?- path(a,d).

The interpreter first tries to obtain a match with clause 5, the first clause in the database
specifying the predicate path in its conclusion:

/*5*/ path(X,X).

For a match for the respective first argument positions, the variable X will be instan-
tiated to the constant a. Matching the second argument positions fails, since a, the
instantiation of X, and the constant d are different from each other. The interpreter
therefore tries the next clause for path, which is clause 6:

/*6*/ path(X,Y) :- branch(X,Z),path(Z,Y).

It will now find a match for the query: the variable X occurring in the first argument
position of the conclusion of clause 6 is instantiated to the constant a from the first
argument position of the query, and the variable Y is instantiated to the constant d.
These instantiations again pertain to the entire matching clause; in fact, clause 6 may
now be looked upon as having the following instantiated form:

path(a,d) :- branch(a,Z),path(Z,d).
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Before we may draw the conclusion of clause 6, we have to fulfill the two conditions
branch(a,Z) and path(Z,d). The interpreter deals with these new queries from left to
right. For the query

?- branch(a,Z).

the interpreter finds a match with clause 1

/*1*/ branch(a,b).

by instantiating the variable Z to b. Again, this instantiation affects all occurrences of
the variable Z in the entire clause containing the query; so, we have:

path(a,d) :- branch(a,b),path(b,d).

The next procedure call to be handled by the interpreter therefore is

?- path(b,d)

No match is found for this query with clause 5. The query however matches with the
conclusion of clause 6:

/*6*/ path(X,Y) :- branch(X,Z),path(Z,Y).

The interpreter instantiates the variable X to b, and the variable Y to d, yielding the
following instance of clause 6:

path(b,d) :- branch(b,Z),path(Z,d).

Note that these instantiations for the variables X and Y are allowed; the earlier instantia-
tions for variables X and Y concerned different variables since they occurred in a different
clause and therefore within a different scope. Again, before the query path(b,d) may
be answered in the affirmative, we have to check the two conditions of the instance of
clause 6 obtained. Unfortunately, the first condition

?- branch(b,Z).

does not match with any clause in the PROLOG program (as can be seen in Figure A.2,
there is no outgoing branch from the vertex b).

The PROLOG interpreter now cancels the last match and its corresponding instantia-
tions, and tries to find a new match for the originating query. The match of the query
path(b,d) with the conclusion of clause 6 was the last match found, so the correspond-
ing instantiations to X and Y in clause 6 are cancelled. The interpreter now has to try to
find a new match for the query path(b,d). However, since clause 6 is the last clause in
the program having the predicate path in its conclusion, there is no alternative match
possible. The interpreter therefore goes yet another step further back.

The match of branch(a,Z) with clause 1 will now be undone by cancelling the instan-
tiation of the variable Z to b. For the query
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?- branch(a,Z).

the interpreter is able to find an alternative match, namely with clause 2:

/*2*/ branch(a,c).

It instantiates the variable Z to c. Recall that the query branch(a,Z) came from the
match of the query path(a,d) with clause 6:

path(a,d) :- branch(a,Z),path(Z,d).

The undoing of the instantiation to Z, and the subsequent creation of a new instantiation
again influences the entire calling clause:

path(a,d) :- branch(a,c),path(c,d).

Instead of the condition path(b,d)we therefore have to consider the condition path(c,d).
By means of successive matches with the clauses 6, 3 and 5, the interpreter derives the
answer yes to the query path(c,d). Both conditions to the match with the original
query path(a,d) are now fulfilled. The interpreter therefore answers the original query
in the affirmative.

This example illustrates the modus operandi of the PROLOG interpreter, and, among other
things, it was demonstrated that the PROLOG interpreter examines clauses in the order
in which they have been specified in the database. According to the principles of logic
programming, a logic program is viewed as a set of clauses; so, their respective order is of
no consequence to the derived results. As can be seen from the previous example, however,
the order in which clauses have been specified in the PROLOG database may be important.
This is a substantial difference between a logic program and a PROLOG program: whereas
logic programs are purely declarative in nature, PROLOG programs tend to be much more
procedural. As a consequence, the programmer must bear in mind properties of the PROLOG
interpreter when developing a PROLOG program. For example, when imposing some order
on the clauses in the database, it is usually necessary that the clauses acting as a termination
criterion for a recursive definition, or having some other special function, are specified before
the clauses expressing the general rule.

A.3 Overview of the PROLOG language

Until now, all predicates discussed in the examples have been defined on purpose. However,
every PROLOG system offers a number of predefined predicates, which the programmer may
utilize in programs as desired. Such predicates are usually called standard predicates or built-
in predicates to distinguish them from the predicates defined by the programmer.

In this section, we shall discuss several standard predicates and their use. Only frequently
applied predicates will be dealt with here. A complete overview is usually included in the
documentation concerning the particular PROLOG system. This discussion is based on SWI-
PROLOG.
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A.3.1 Reading in programs

By means of the predicate consult programs can be read from file and inserted into the
PROLOG database. The predicate consult takes one argument which has to be instantiated
to the name of a file before execution.

EXAMPLE A.14

The query

?- consult(file).

instructs the interpreter to read a PROLOG program from the file with the name file.

It is also possible to insert into the database several programs from different files. This may
be achieved by entering the following clause:

?- consult(file1),. . .,consult(filen).

PROLOG offers an abbreviation for such a clause; the required file names may be specified
in a list:

?- [file1,. . .,filen].

A.3.2 Input and output

Printing text on the screen can be done by means of the predicate write which takes a
single argument. Before execution of the procedure call write(X), the variable X must be
instantiated to the term to be printed.

EXAMPLE A.15

The clause

?- write(output).

prints the term output on the screen. Execution of the call

?- write(’This is output.’).

results in

This is output.

When the clause

?- create(Output),write(Output).

is executed, the value to which Output is instantiated by a call to some user-defined
predicate create will be printed on the screen. If the variable Output is instantiated
to a term containing uninstantiated variables, then (the internal representation of) the
variables will be shown as part of the output.
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The predicate nl just prints a new line, causing output to start at the beginning of the next
line. nl takes no arguments.

We also have some means for input. The predicate read reads terms entered from the
keyboard. The predicate read takes only one argument. Before executing the call read(X),
the variable X has to be uninstantiated; after execution of the read predicate, X will be
instantiated to the term that has been entered. A term entered from the keyboard has to end
with a dot, followed by a carriage return.

A.3.3 Arithmetical predicates

PROLOG provides a number of arithmetical predicates. These predicates take as arguments
arithmetical expressions; arithmetical expressions are constructed as in usual mathematical
practice, that is, by means of infix operators, such as +, -, * and /, for addition, subtraction,
multiplication, and division, respectively. Generally, before executing an arithmetical predi-
cate all variables in the expressions in its left-hand and right-hand side have to be instantiated
to terms only containing numbers and operators; the arguments will be evaluated before the
test specified by means of the predicate is performed. For example, in a condition X < Y

both X and Y have to be instantiated to terms which upon evaluation yield numeric constants,
before the comparison is carried out. The following arithmetical relational predicates are the
ones most frequently used:

X > Y.

X < Y.

X >= Y.

X =< Y.

X =:= Y.

X =\= Y.

The last two predicates express equality and inequality, respectively. Note that the earlier
mentioned matching predicate = is not an arithmetical predicate; it is a more general predicate
the use of which is not restricted to arithmetical expressions. Furthermore, the predicate =

does not force evaluation of its arguments.
Besides the six arithmetical relational predicates shown above, we also have in PROLOG

an infix predicate with the name is. Before executing

?- X is Y.

only the right-hand side Y has to be instantiated to an arithmetical expression. Note that the
is predicate differs from =:= as well as from the matching predicate =; in case of =:= both X

and Y have to be instantiated to arithmetical expressions, and in case of the matching predicate
neither X nor Y has to be instantiated. If in the query shown above X is an uninstantiated
variable, it will after execution of the query be instantiated to the value of Y. The values of
both left-hand and right-hand side are subsequently examined upon equality; it is obvious
that this test will always succeed. If, on the other hand, the variable X is instantiated to a
number (or the left-hand side itself is a number), then the condition succeeds if the result of
evaluating the right-hand side of is equals the left-hand side, and it fails otherwise. All other
uses of the predicate is lead to a syntax error.
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EXAMPLE A.16

Consider the following queries and answers which illustrate the differences and similar-
ities between the predicates =, =:=, and is:

?- 3 = 2+1.

no

?- 3 is 2+1.

yes

?- 3 =:= 2+1.

yes

?- 3+1 = 3+1.

yes

?- 3+1 =:= 3+1.

yes

?- 3+1 is 3+1.

no

?- 1+3 = 3+1.

no

?- 1+3 =:= 3+1.

yes

The following examples illustrate the behaviour of these predicates in case the left-
hand side is an uninstantiated variable. PROLOG returns by showing the computed
instantiation:

?- X is 2+1.

X = 3

?- X = 2+1.

X = 2+1

We have left out the example ?- X =:= 2+1, since it is not permitted to have an
uninstantiated variable as an argument to =:=.

The predicates =:= and is may only be applied to arithmetical arguments. The predicate =

however, also applies to non-arithmetical arguments, as has been shown in Section A.2.2.

EXAMPLE A.17

Execution of the query
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?- X = [a,b].

leads to the instantiation of the variable X to the list [a,b]. In case the predicate =:= or
the predicate is would have been used, the PROLOG interpreter would have signaled
an error.

A.3.4 Examining instantiations

A number of predicates is provided which can be used to examine a variable and its possible
instantiation. The predicate var taking one argument, investigates whether or not its argu-
ment has been instantiated. The condition var(X) is fulfilled if X at the time of execution
is uninstantiated; otherwise, the condition fails. The predicate nonvar has a complementary
meaning.

By means of the predicate atom, also taking one argument, it can be checked whether the
argument is instantiated to a symbolic constant. The predicate atomic, which also takes a
single argument, investigates whether its argument is instantiated to a symbolic or numeric
constant. The one-argument predicate integer tests if its argument is instantiated to an
integer.

EXAMPLE A.18

Consider the following queries specifying the predicates mentioned above, and answers
of the PROLOG interpreter:

?- atomic([a]).

no

?- atomic(3).

yes

?- atom(3).

no

?- atom(a).

yes

?- integer(a).

no

A.3.5 Controlling backtracking

PROLOG offers the programmer a number of predicates for explicitly controlling the back-
tracking behaviour of the interpreter. Note that here PROLOG deviates from the logic
programming idea.

The predicate call takes one argument, which before execution has to be instantiated to
a procedure call; call takes care of its argument being handled like a procedure call by the
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PROLOG interpreter in the usual way. Note that the use of the call predicate allows for
‘filling in’ the program during run-time.

The predicate true takes no arguments; the condition true always succeeds. The predi-
cate fail also has no arguments; the condition fail never succeeds. The general application
of the predicate fail is to enforce backtracking, as shown in the following example.

EXAMPLE A.19

Consider the following clause:

a(X) :- b(X),fail.

When the query a(X) is entered, the PROLOG interpreter first tries to find a match for
b(X). Let us suppose that such a match is found, and that the variable X is instantiated
to some term. Then, in the next step fail, as a consequence of its failure, enforces the
interpreter to look for an alternative instantiation to X. If it succeeds in finding another
instantiation for X, then again fail will be executed. This entire process is repeated
until no further instantiations can be found. This way all possible instantiations for X

will be found. Note that if no side-effects are employed to record the instantiations of X
in some way, the successive instantiations leave no trace. It will be evident that in the
end the query a(X) will be answered by no.

The predicate not takes a procedure call as its argument. The condition not(P) succeeds if
the procedure call to which P is instantiated fails, and vice versa. Contrary to what one would
expect in case of the ordinary logical negation, PROLOG does not look for facts not(P) in the
database (these are not even allowed in PROLOG). Instead, negation is handled by confirming
failed procedure calls. This form of negation is known as negation as (finite) failure; for a
more detailed discussion of this notion the reader is referred to [Lloyd87].

The cut, denoted by !, is a predicate without any arguments. It is used as a condition
which can be confirmed only once by the PROLOG interpreter: on backtracking it is not
possible to confirm a cut for the second time. Moreover, the cut has a significant side effect
on the remainder of the backtracking process: it enforces the interpreter to reject the clause
containing the cut, and also to ignore all other alternatives for the procedure call which led
to the execution of the particular clause.

EXAMPLE A.20

Consider the following clauses:

/* 1 */ a :- b,c,d.

/* 2 */ c :- p,q,!,r,s.

/* 3 */ c.

Suppose that upon executing the call a, the successive procedure calls b, p, q, the
cut and r have succeeded (the cut by definition always succeeds on first encounter).
Furthermore, assume that no match can be found for the procedure call s. Then as
usual, the interpreter tries to find an alternative match for the procedure call r. For each
alternative match for r, it again tries to find a match for condition s. If no alternatives
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for r can be found, or similarly if all alternative matches have been tried, the interpreter
normally would try to find an alternative match for q. However, since we have specified
a cut between the procedure calls q and r, the interpreter will not look for alternative
matches for the procedure calls preceding r in the specific clause. In addition, the
interpreter will not try any alternatives for the procedure call c; so, clause 3 is ignored.
Its first action after encountering the cut during backtracking is to look for alternative
matches for the condition preceding the call c, that is, for b.

There are several circumstances in which specification of the cut is useful for efficiency or
even necessary for correctness. In the first place, the cut may be used to indicate that the
selected clause is the only one that can be applied to solve the (sub)problem at hand, that
is, it may be used to indicate ‘mutually exclusive’ clauses.

EXAMPLE A.21

Suppose that the condition b in the following clause has been confirmed:

a :- b,c.

and that we know that this clause is the only one in the collection of clauses having
a as a conclusion, which is applicable in the situation in which b has been confirmed.
When the condition c cannot be confirmed, there is no reason to try any other clause
concerning a: we already know that a will never succeed. This unnecessary searching
can be prevented by specifying the cut following the critical condition:

a :- b,!,c.

Furthermore, the cut is used to indicate that a particular procedure call may never lead to
success if some condition has been fulfilled, that is, it is used to identify exceptional cases to a
general rule. In this case, the cut is used in combination with the earlier mentioned predicate
fail.

EXAMPLE A.22

Suppose that the conclusion a definitely may not be drawn if the condition b succeeds.
In the clause

a :- b,!,fail.

we have used the cut in conjunction with fail to prevent the interpreter to look for
alternative matches for b, or to try any other clause concerning a.

We have already remarked that the PROLOG programmer has to be familiar with the working
of the PROLOG interpreter. Since the cut has a strong influence on the backtracking process,
it should be applied with great care. The following example illustrates to what errors a careless
use of the cut may lead.

EXAMPLE A.23
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Consider the following three clauses, specifying the number of parents of a person;
everybody has two of them, except Adam and Eve, who have none:

/* 1 */ number_of_parents(adam,0) :- !.

/* 2 */ number_of_parents(eve,0) :- !.

/* 3 */ number_of_parents(X,2).

Now, the query

?- number_of_parents(eve,2).

is answered by the interpreter in the affirmative. Although this is somewhat unexpected,
after due consideration the reader will be able to figure out why yes instead of no has
been derived.

For convenience, we summarize the side-effects of the cut:

• If in a clause a cut has been specified, then we have normal backtracking over the
conditions preceding the cut.

• As soon as the cut has been ‘used’, the interpreter has committed itself to the choice for
that particular clause, and for everything done after calling that clause; the interpreter
will not reconsider these choices.

• We have normal backtracking over the conditions following the cut.

• When on backtracking a cut is met, the interpreter ‘remembers’ its commitments, and
traces back to the originating query containing the call which led to a match with the
clause concerned.

We have seen that all procedure calls in a PROLOG clause will be executed successively, until
backtracking emerges. The procedure calls, that is, the conditions are connected by commas,
which have the declarative semantics of the logical ∧. However, it is also allowed to specify a
logical ∨ in a clause. This is done by a semicolon, ;, indicating a choice between conditions.
All conditions connected by ; are evaluated from left to right until one is found that succeeds.
The remaining conditions will then be ignored. The semicolin has higher precedence than the
comma.

A.3.6 Manipulation of the database

Any PROLOG system offers the programmer means for modifying the content of the database
during run-time. It is possible to add clauses to the database by means of the predicates
asserta and assertz. Both predicates take one argument. If this argument has been in-
stantiated to a term before the procedure call is executed, asserta adds its argument as a
clause to the database before all (possibly) present clauses that specify the same functor in
their conclusions. On the other hand, assertz adds its argument as a clause to the database
just after all other clauses concerning the functor.

EXAMPLE A.24
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Consider the PROLOG database containing the following clauses:

fact(a).

fact(b).

yet_another_fact(c).

and_another_fact(d).

We enter the following query to the system:

?- asserta(yet_another_fact(e)).

After execution of the query the database will have been modified as follows:

fact(a).

fact(b).

yet_another_fact(e).

yet_another_fact(c).

and_another_fact(d).

Execution of the procedure call

?- assertz(fact(f)).

modifies the contents of the database as follows:

fact(a).

fact(b).

fact(f).

yet_another_fact(e).

yet_another_fact(c).

and_another_fact(d).

By means of the one-placed predicate retract, the first clause having both conclusion and
conditions matching with the argument, is removed from the database.

A.3.7 Manipulation of terms

Terms are used in PROLOG much in the same way as records are in Pascal, and structures
in C. In these languages, various operations are available to a programmer for the selection
and modification of parts of these data structures. PROLOG provides similar facilities for
manipulating terms. The predicates arg, functor and =.. (pronounced as ‘univ’) define
such operations.

The predicate arg can be applied for selecting a specific argument of a functor. It takes
three arguments:

arg(I,T,A).
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Before execution, the variable I has to be instantiated to an integer, and the variable T must
be instantiated to a term. The interpreter will instantiate the variable A to the value of the
I-th argument of the term T.

EXAMPLE A.25

The procedure call:

arg(2,employee(john,mccarthy),A)

leads to instantiation of the variable A to the value mccarthy.

The predicate functor can be used for selecting the left-most functor in a given term. The
predicate functor takes three arguments:

functor(T,F,N).

If the variable T is instantiated to a term, then the variable F will be instantiated to the
functor of the term, and the variable N to the number of arguments of the functor.

EXAMPLE A.26

The procedure call

functor(employee(john,mccarthy),F,N).

leads to instantiation of the variable F to the constant employee. The variable N will
be instantiated to the integer 2.

The predicate functor may also be applied in a ‘reverse mode’: it can be employed for
constructing a term with a given functor F and a prespecified number of arguments N. All
arguments of the constructed term will be variables.

The predicate =.. also has a dual function. It may be applied for selecting information
from a term, or for constructing a new term. If in the procedure call

X =.. L.

X has been instantiated to a term, then after execution the variable L will be instantiated to
a list, the first element of which is the functor of X; the remaining elements are the successive
arguments of the functor.

EXAMPLE A.27

Consider the following procedure call:

employee(john,mccarthy,[salary=10000]) =.. L.

This call leads to instantiation of the variable L to the list

[employee,john,mccarthy,[salary=10000]]
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The predicate =.. may also be used to organize information into a term. This is achieved
by instantiating the variable L to a list. Upon execution of the call X =.. L, the variable X

will be instantiated to a term having a functor which is the first element from the list; the
remaining elements of the list will be taken as the arguments of the functor.

EXAMPLE A.28

The procedure call

X =.. [employee,john,mccarthy,[salary=10000]].

leads to instantiation of the variable X to the term

employee(john, mccarthy, [salary= 10000]).

Note that, contrary to the case of the predicate functor, in case of the predicate =.. pre-
specified arguments may be inserted into the new term.

To conclude this section, we consider the predicate clause, which can be used for inspect-
ing the contents of the database. The predicate clause takes two arguments:

clause(Head,Body).

The first argument, Head, must be sufficiently instantiated for the interpreter to be able
to find a match with the conclusion of a clause; the second argument, Body, will then be
instantiated to the conditions of the selected clause. If the selected clause is a fact, Body will
be instantiated to true.

Suggested reading and available resources

Readers interested in the theoretical foundation of PROLOG and logic programming should
consult Kowalski’s Logic for Problem Solving [Kowalski79] and Lloyd’s Foundations of Logic
Programming [Lloyd87]. PROLOG is one of the few programming language with a simple
formal semantics. This is mainly due to the declarative nature of the language. Students of
computing science should know at least something of this semantics.

For an introduction to the PROLOG language one is referred to [Clocksin81]. An excellent
introductory book to programming in PROLOG, with an emphasis on Artificial Intelligence
applications, is [Bratko01]. More experienced programmers interested in the more technical
aspects of PROLOG may find [Sterling86], [Kluzniak85] and [Campbell84] valuable sources
of information.

The PROLOG community has its own Usenet newsgroup: comp.lang.prolog. There are
quite a number of PROLOG programs in the public domain which researchers can use in their
own research. SWI-PROLOG is a good complete PROLOG interpreter and compiler, which
is freely available for Linux, MacOS and Windows at:

http://www.swi-prolog.org
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Appendix B

Introduction to LISP

The programming language LISP was designed by J. McCarthy between 1956 and 1958 at
the Massachusetts Institute of Technology (MIT) as a language for the construction of ‘intel-
ligent’ computer systems. The name of the language, which is an acronym for ‘LISt Process-
ing’, readily indicates the most important and strongest feature of the language, namely list
manipulation. LISP has been the origin of a new programming style known as functional pro-
gramming. The language furthermore has relations with lambda calculus and term rewriting
systems, important fields of research in theoretical computer science.

The first LISP interpreters became available already at the beginning of the 1960s, which
renders the language one of the oldest still used programming languages. Although in the
course of time LISP underwent many changes, most of these were not fundamental in nature:
many were due to the incorporation of concepts from other types of programming languages
into LISP. The language provides a terse notation. A pleasant consequence is that algorithms
having a lengthy formulation in a more conventional procedural programming language can
often be expressed in LISP in a short and elegant way. Furthermore, it is possible in LISP to
dynamically modify a program during its execution by interpreting data as program parts, a
feature that is particularly important for the development of interpreters for formal languages.

Right from its inception LISP was applied in the burgeoning field of artificial intelligence,
then led by J. McCarthy, A. Newell, and H.A. Simon. McCarthy used the language for the
development of a general problem solver named ‘Advice Taker’. At present, LISP is still
mainly used for applications in which symbol manipulation predominates, such as in artificial
intelligence in general and for the development of expert systems more in particular. For more
than a decade LISP even was the only language commonly employed in artificial intelligence, a
circumstance which only recently changed by the introduction of PROLOG. Some application
areas in which LISP is frequently applied are:

• Symbolic computer algebra (MACSYMA);

• Theorem proving (Boyer-Moore theorem prover);

• Natural-language processing (SHRDLU);

• Expert systems (INTERNIST-I, MYCIN), and

• Expert system builder tools (ART, KEE, Knowledge Craft, OPS5).

371
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expression

atom list

number symbol

Figure B.1: LISP expressions.

LISP has also been employed with success outside the area of artificial intelligence, for example
for the construction of compilers and interpreters for formal languages such as the algebraic
specification language OBJ.

Until some years ago there were many different dialects of LISP in use of which the most
familiar are MACLISP, INTERLISP, LELISP, ZETALISP, and SCHEME. This multiplicity
of dialects was caused by the lack of a standard language definition. In 1983 a number of
eminent LISP researchers proposed COMMON LISP in an effort to enforce a LISP standard,
which largely has succeeded. COMMON LISP shows many characteristics taken from older
LISP dialects, in particular from MACLISP, ZETALISP, and SCHEME. In addition, many
concepts from other types of programming languages have been incorporated.

B.1 Fundamental principles of LISP

In this section we discuss the basic principles of LISP by means of a general introduction to
the representation and manipulation of data in LISP. In section B.2, a selected number of
specific features of the language will be discussed. In both sections, the LISP of our choice is
COMMON LISP.

B.1.1 The LISP expression

Data are represented in LISP by means of so-called expressions (previously also called s-
expressions). An expression is either an atom or a list of expressions. An atom may be
numeric or symbolic. A numeric atom is also called a number ; a symbolic atom is simply called
a symbol. In this book, names of symbols are denoted by lower-case letters; in COMMON
LISP, however, the internal representation of all alphabetic letters is in upper-case by default.
A list may be an empty list which is indicated by the symbol nil or by ( ); or, alternatively,
it is a finite sequence of expressions enclosed by a pair of parentheses. Figure B.1 illustrates
this subdivision of expressions schematically.

EXAMPLE B.1

The following three expressions are all atoms: a, 3, a-long-atom. The first and the
last atom are symbols; the second one is a number. Examples of lists are:

(a b c)
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· · · · ·

a b c

Figure B.2: Representation of the list (a b c).

(a (b c d))

((1 a) (2 b))

The first list contains three atoms: a, b, and c. The second list contains two expressions:
the atom a and the list (b c d). The third list comprises two expressions, both lists.

A list containing expressions which again are lists is called a nested list.
An important property of lists is that the removal of the first expression from a list again

yields a list. Actually, a list is built from a more basic data structure, the so-called cons or
dotted pair. A dotted pair is a data structure consisting of two elements: its first element is
called the car and its second element is called the cdr (pronounced as ‘cudder’). The syntax
of a cons is as follows:

(e1 . e2)

where e1 and e2 are expressions. A list can therefore be viewed as either being the empty
list or syntactic sugar for a special kind of dotted pair in which the second element again is
either a dotted pair or the empty list. The dotted pair occurring at the deepest nesting in a
list always specifies as its second element the empty list.

EXAMPLE B.2

The list

(a b c)

can be expressed as a dotted pair as follows:

(a . (b . (c . nil)))

The list may be represented graphically as shown in figure B.2.

Since the dotted-pair notation of lists turns out to be rather cumbersome, generally the earlier
discussed list notation is preferred.

Beside dotted pairs, lists and atoms, COMMON LISP offers the programmer also a large
number of other more conventional data types, such as arrays, structures (records), strings,
and streams. Furthermore, the language offers an information hiding mechanism, the so-called
packages, which has much in common with the notion of packages as employed in ADA. In
this book we shall not go into the details of all these different data types.
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B.1.2 The form

With the introduction of expressions, the basic syntax of the LISP language has been described
completely. A LISP program is just a collection of expressions which are to be evaluated by
a LISP interpreter (the LISP evaluator). To distinguish these expressions from expressions
representing data, the former expressions are often called forms. The LISP interpreter may
be viewed as a system that reads in a form, evaluates it, and then prints the result of the
evaluation. This sequence of steps is called the read-eval-print loop of LISP.

In a form, the first element is taken to be a function name and the remaining elements are
taken as the arguments to the specified function. Evaluation of a form by the LISP interpreter
yields a function value as a result. In COMMON LISP, evaluation of a form starts with the
evaluation of the arguments to the function specified in the form; the values returned by the
LISP evaluator are substituted for the corresponding formal parameters of the definition of
the function concerned. Then, the function will be applied to its arguments. This method
of evaluation is called evaluation according to the substitution model. The mechanism of
parameter transfer is known as call by value. The substitution model is all that is needed to
describe the meaning of programs from a functional programming point of view.

EXAMPLE B.3

The function with the name car takes a dotted pair or a list as an argument. Upon
evaluation it returns as a function value the first element of the specified argument. On
evaluation of the form

(car (quote (a . b)))

first the expression (quote (a . b)), the argument to car, is evaluated. The function
quote switches off the LISP interpreter temporarily; as a consequence, the argument is
returned unmodified. In the present example, we have that evaluation of the expression
(quote (a . b)) yields the dotted pair (a . b). There also exists an abbreviation
for this frequently used function in LISP, namely the apostrophe. Hence, the following
two LISP forms are equivalent:

quote (a . b))

’(a . b)

Further evaluation of the form (car (quote (a . b))) results in the substitution of
the dotted pair (a . b) for the formal parameter of the function car. Application of
the function car to this argument yields the function value a.

Evaluating a form may have side effects, which then are the real purpose of the evaluation
of the form. An often used side effect is the assignment of an expression to a symbol, which
then is viewed as a variable. This side effect occurs as a result of evaluation of the functions
set, setq, and setf.

EXAMPLE B.4

The result of evaluating the form
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(setq x ’a)

is that the variable x is assigned the value a. Note that x is not preceded by an
apostrophe.

Another function which is also used for its side effect is the function print. The value of
any argument to print is written to the screen or to a stream given as the second argu-
ment to print. The function value yielded by print is usually not relevant. In general, all
input/output functions produce side effects.

Side effects are required in most realistic programs for example to gain in efficiency;
furthermore, there are situations in which the use of side effects results in a more natural
solution to the problem concerned than otherwise. However, it must be stressed that the use of
side effects, in particular assignment, conflicts with the basic idea of functional programming,
and that unwieldy use of side effects may lead to programs that are difficult to comprehend.
A problem with side effects is that their meaning is not captured by the simple substitution
model of evaluation discussed above, since this model presupposes that the state of a LISP
system is unchanged after the completion of the evaluation of a form. Hence, the substitution
model does not fully describe the semantics of forms in general. A complete description
of the semantics of forms is provided by the so-called environment model, which encloses
the substitution model. In this model, evaluation of a form is described with respect to an
environment of variables with associated values. Each element in a given environment is
a frame of variable-value pairs, and an environment is defined as an ordered collection of
such frames. During the evaluation of a form, the values of variables are looked up in the
environment. Note that side effects may modify the values variables have in the environment.

LISP offers the programmer a large number of predefined functions; some of these will
be discussed in section B.2. For some of the available predefined functions, the evaluation
is somewhat different from the standard evaluation. In those cases one speaks of special
forms. The way special forms are treated depends on the particular predefined function
employed. Finally, there are several forms available in LISP which upon evaluation just
return themselves. These forms are called self-evaluating forms; all numbers and the symbols
nil and t are examples of self-evaluating forms. Note that self-evaluating forms never have
to be prefixed by the quote function when employed in some enclosing form.

B.1.3 Procedural abstraction in LISP

LISP provides the programmer with a large number of predefined or primitive functions,
such as the functions car and cdr from the previous examples. However, like most modern
programming languages LISP also offers a means for procedural abstraction: it is possible to
combine a collection of forms into a larger composite form having an effect equivalent to the
combined effects of the individual forms after parameter substitution. Such a composite form
is created and given a name by means of function definition by employing the special form
with the function name defun. The first argument to defun is the name of the function to
be defined, the second argument is taken to be the formal parameter list, and the remaining
arguments together constitute the body of the function describing its behaviour. Function
definition will be illustrated by means of the following example.

EXAMPLE B.5
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We shall define a LISP function element for checking whether or not a given element
belongs to a set of elements. If the element belongs to the set, then the function has to
return the truth value true; otherwise it has to return the truth value false. We shall
represent the set of elements as a list. In LISP the truth value true is represented by
the symbol t; the truth value false is represented by the symbol nil. Note the dual
meaning of the symbol nil. The function element will now be defined in a recursive
manner, which is quite typical for functional programming. If the list representing the
given set is empty, then the given element cannot be an element of the set, and the
function value nil is returned. If, on the other hand, the list is not empty, then the
element occurs in the set either if it is equal to the first expression in the list or if it
occurs in the remainder of the list after removal of the first element. We obtain the
following function definition:

(defun element (x s)

(cond ((null s) nil)

(t (or (equal x (first s))

(element x (rest s)))))

As can be seen, the name of the function is element. The formal parameter list consists
of two parameters x and s representing the given element and the set, respectively;
the remaining forms constitute the body of the function. The primitive function cond,
the so-called conditional form, in the body of the function is used to express a choice.
Each argument to cond comprises a test followed by the form to be evaluated if the test
succeeds. In our case the first argument to cond is the form ((null s) nil) specifying
the test (null s). The primitive function null is used for investigating whether or not
the list s is empty. If the test (null s) yields the truth value t, then the next form
in the first argument to cond is evaluated, that is, the self-evaluating form nil. This
value nil will then be returned by the function, and the remaining subforms of cond

will be ignored. However, if the test (null s) fails, then the next argument to cond

is evaluated: in the present case the form (t (or (equal x (first s)) (element x

(rest s)))). The test in this second argument, t, always succeeds. As a consequence,
the form with the function name or will be evaluated next. First, it is checked whether
the element x equals the first element of s using the primitive function equal. If they
are not equal, then by a recursive call to element it is examined whether the element x
occurs in the remainder of the list s. If, on the other hand, x equals the first element of
s, then the test (equal x (first s)) succeeds, and the function value t is returned.
We shall discuss the functions null, or, and equal in further detail in section B.2.

In the previous example, we employed the primitive function first. This function is equiva-
lent to the function car mentioned earlier. For several frequently used functions, COMMON
LISP provides function names which better indicate the effect of their application than the
names in the older LISP dialects do. In a small number of cases in which these older names
have more or less become established in the LISP community, COMMON LISP offers the
programmer both the old name of the function and the new one.

EXAMPLE B.6
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The following function calls with associated function values indicate how the function
element just defined may be used. The function value returned is shown following the
‘=>’ sign.

(element ’a ’(d e f g s a))

=> t

(element ’e ’(d f g))

=> nil}

Note that in each call both arguments to element have been quoted to prevent evalua-
tion by the LISP interpreter.

B.1.4 Variables and their scopes

We have mentioned before that a LISP program is just a collection of forms. The majority
of the forms in a typical LISP program are function definitions in which variables have been
specified. Variables are indicated by symbols which are taken as their names. There are two
ways for a variable to obtain a value: a variable can be assigned a LISP expression, which is
achieved by means of one of the functions set, setq, and setf, or a variable can be bound
to a value then called its binding. When a new binding is created for a variable the old
binding is saved in the new, expanded environment. The old binding and the corresponding
environment are restored as soon as the new binding has been released. On the other hand,
when a new value is assigned to a variable no new environment is created: the old value is
simply overwritten by the new one (if the variable is unbound at the time of assignment, then
the variable-value pair is simply added to the environment). So, in the case of assignment an
old value is lost forever.

Two types of variables are distinguished: lexical and special variables. A lexical variable
can only be referred to within the LISP construct in which it has been defined: only within this
construct it may obtain a binding. It is said that such variables have a lexical scope. Lexical
variables may be viewed as a kind of local variable. The notion of a lexical variable has been
taken from the Algol-like programming languages. All variables occurring in a COMMON
LISP program have a lexical scope by default; a special variable has to be declared as such
explicitly. Special variables differ from lexical variables by the fact that one can refer to a
special variable as long as the evaluation of the form in which the variable has been bound
has not yet terminated. Special variables may therefore be considered as a kind of global
variables. While the scope of a lexical variable is statically determined by the program text,
the scope of a special variable is determined dynamically during the execution of the program.
It is therefore said that special variables have a dynamic scope.

EXAMPLE B.7

Consider the following two function definitions:

(defun Example (x y)

(Print-Both y))
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(defun Print-Both (y)

(print x)

(print y))

The function call (Example 2 3) yields an error message as soon as the interpreter tries
to evaluate the form (print x), since in the function Print-Both the lexical variable
x is unbound. However, if the variable x has been declared as a special variable, then
x will stay bound to 2 as long as the evaluation of the body of Example has not been
completed. In that case the function Example will successively return the values 2 and
3.

The primitive function defvar may be applied to declare a variable as being special. This
function always associates an initial value with the newly declared variable.

EXAMPLE B.8

After evaluation of the form:

(defvar x)

the variable x will be considered by the LISP interpreter as being special. Optionally, a
second argument may be specified to the function defvar, which will be assigned to the
variable. If no second argument is specified, as in the example above, then the variable
obtains the initial value nil.

B.2 Overview of the language LISP

As has been mentioned in the introduction, LISP is particularly strong in symbol manipu-
lation. To this end, LISP offers a large number of language facilities. However, a complete
enumeration, let alone a full description of the language facilities provided by COMMON
LISP, would go far beyond the intention of the present appendix. In this section we merely
pay attention to the most important features of COMMON LISP. Many of the languages
constructs described here have one or more options for handling special cases. Since in this
book few of the options are actually used, we only describe them in exceptional cases.

B.2.1 Symbol manipulation

The primitive LISP functions most widely known, even amongst non-LISP programmers, are
those for list processing. It is from the emphasis on the manipulation of lists and symbols
that LISP is commonly known as a language for symbol manipulation. In the present section,
a selected number of symbol-manipulation functions will be discussed.

Some primitive functions for list processing

In the preceding section we already encountered the functions first and rest. The function
first, also called car, takes a list (or dotted pair) as an argument, and returns the first
element of its argument as a function value. The function rest, also called cdr, equally takes
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a list (or dotted pair) as an argument, but returns the list which results after removal of the
first element of the original list.

EXAMPLE B.9

Consider the following calls to the functions first and rest and the function values
returned by the LISP interpreter:

(first ’(a b c d))

=> a

(rest ’(a b c d e))

=> (b c d e)

(rest ’(a))

=> nil

Note that the last call upon evaluation returns the empty list nil in accord with the
discussion of the relationship between dotted pairs and lists in section B.1.1.

The functions car and cdr select the first and the remaining elements from a list, respectively.
The other elements of a list may be selected by means of a composite call to these functions.

EXAMPLE B.10

The second element in the list (a b c) is obtained as follows:

(car (cdr ’(a b c)))

=> b

For composite combinations of calls to car and cdr, LISP offers a convenient abbreviation.
The following abbreviated function calls and their meanings illustrate the general idea:

(cadr 〈list〉) ≡ (car (cdr 〈list〉))
(caadr 〈list〉) ≡ (car (car (cdr 〈list〉))
(caddr 〈list〉) ≡ (car (cdr (cdr 〈list〉))
(cdadr 〈list〉) ≡ (cdr (car (cdr 〈list〉))

In addition, LISP offers the function nth for selecting the (n+1)-st subexpression from a list.

EXAMPLE B.11

The following function call and its returned function value illustrate the use of the
primitive function nth:

(nth 2 ’(a b c d))

=> c
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Functions for retrieving data such as the ones discussed above are often called selector func-
tions. Besides these selector functions LISP also provides a number of primitive functions
for constructing new lists. Such functions are called constructor functions. An important
constructor function is the function list which builds a new list from the values of its ar-
guments. The function append takes zero or more lists as its arguments and concatenates
them. The function cons is used for combining two expressions by taking them as the car and
the cdr of a newly created dotted pair. Note that the functions list and append may take
an arbitrary number of arguments whereas the function cons takes precisely two arguments.
If possible the LISP interpreter presents the results after evaluation of a form specifying a
constructor function to the user in list notation instead of as a dotted pair. The following
example demonstrates the use of these constructor functions.

EXAMPLE B.12

Consider the following function calls and the returned function values:

(list)

=> nil

(list ’a ’(b c))

=> (a (b c))

(list ’(a b) ’(c d))

=> ((a b) (c d))

(append ’(a b) ’(c d))

=> (a b c d)

(cons ’a ’b)

=> (a . b)

(cons ’(a b) ’(c d))

=> ((a b) c d)

Note the differences in the results obtained by these functions when applied to the same
arguments.

In addition to the selector and constructor functions discussed above, LISP further provides
a number of mutator functions. A mutator function modifies its list argument by means of a
side effect. These functions are dangerous since they have an effect that goes far beyond the
form in which they are applied, and therefore must be used with great care. Typical examples
of mutator functions are the functions rplaca and rplacd, and the function setf. The first
two functions replace the car and the cdr, respectively, of their first argument by the second
argument.

EXAMPLE B.13
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Consider the following function calls to the primitive functions rplaca and rplacd and
the returned function values:

(rplaca ’(a b c) ’d)

=> (d b c)

(rplacd ’(a b c) ’d)

=> (a . d)

As can be seen, the values returned by these functions are their modified first arguments.

In a function call to rplaca or rplacd, a variable may be specified as a first argument to
the function. In that case the value of the variable will be modified by the function as a side
effect.

The function setf whose name stands for set f ield, is the generalized version of the as-
signment function setq. The setq function just evaluates its second argument and assigns
the result to its first argument. The setf function, however, first evaluates its first argument
yielding a memory address, a so-called place, and then assigns the value of the second argu-
ment to that place.

EXAMPLE B.14

Let us demonstrate the side effects of applying the functions rplaca and setf on the
value of a given variable:

(setq x ’(a b))

=> (a b)

(rplaca x ’b)

=> (b b)

x

=> (b b)

\texttt{(setf (cadr ’x) ’a)

=> a

x

=> (b a)

Note that setq and setf return the value of their last argument, whereas rplaca returns
its modified first argument.

The property list

In the preceding section we have mentioned that LISP symbols may be used as variables,
which then can be assigned certain values or can be bound to values. Data, however, can
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also be stored in a so-called property list or p-list of a symbol. In LISP, each symbol has
associated a p-list, which initially is empty. A p-list is a sequence of pairs, in which each pair
consists of a symbol and an expression. The first element of a pair is called the indicator or
the property name; the second element is called the property value or simply the value.

The indicator is used in retrieving a property value. A value is extracted from the p-list by
means of the primitive function get. This function takes two arguments: the first argument
is a LISP symbol, the second argument is an indicator. On evaluation of a call to the function
get, the value associated with the indicator in the p-list of the specified symbol is returned.

EXAMPLE B.15

Consider the symbol patient having the following p-list:

(age 20 disorder jaundice)

which consists of two pairs: (age . 20) and (disorder . jaundice). Then, the
following function calls yield the following results:

(get ’patient ’disorder)

=> jaundice

(get ’patient ’age)

=> 20

(get ’patient ’name)

=> nil

A p-list is constructed by means of a call to the function get in combination with a call to the
function setf. A pair can be removed from a given p-list by means of the function remprop

by providing the indicator of the pair that must be removed as an argument. Upon evaluation
the function remprop returns the pair that has been removed; the rest of the p-list remains
unchanged.

EXAMPLE B.16

Consider again the symbol patient with its associated p-list from the preceding exam-
ple. Suppose that we want to add the property complaints to the symbol patient.
This can be accomplished as shown below:

(setf (get ’patient ’complaints) ’(anorexia nausea))

=> (anorexia nausea)

The resulting p-list is now as follows:

(complaints (anorexia nausea) age 20 disorder jaundice)

The following call to the primitive function remprop:
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(remprop ’patient ’age)

=> (age 20)}

results in the removal of the pair with the indicator age from the p-list. After this
deletion we have:

(get ’patient ’age)

=> nil}

The association list

By means of a p-list we can store data with a symbol; accessing the thus stored data is
rather straightforward. Another, similar means for storage and retrieval of data is offered
by the so-called association list or a-list for short. Contrary to p-lists association lists are
not associated with symbols: an a-list is an ordinary list having dotted pairs as elements.
The first element of a dotted pair in an a-list is used as the key for retrieval of the second
element. For selecting data from an a-list, LISP offers a primitive function called assoc. This
function takes two arguments: the first argument is a key and the second one is the a-list to
be searched for the key. The function assoc returns the dotted pair in which the key occurs
or nil if the key does not occur in the specified a-list. In addition to the function assoc LISP
provides the function rassoc which differs from assoc by its taking the second element of a
dotted pair in an a-list as the key.

EXAMPLE B.17

Consider the following function calls and returned function values:

(assoc ’age ’((age . 20) (disorder . jaundice)))

=> (age . 20)

(rassoc ’jaundice ’((age . 20) (disorder . jaundice)))

=> (disorder . jaundice)

(assoc ’x ’((y . z)))

=> nil

B.2.2 Predicates

In section B.1.3, we have encountered the function null which specified a test. This function
is a so-called predicate. A predicate is a function that performs a test on its arguments; if
the test fails then the value nil, representing the truth value false, is returned; otherwise a
value not equal to nil is returned. Generally the value t is returned; however, sometimes a
more informative value is yielded.
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Data-type predicates

LISP provides the programmer with a large variety of predicates for investigating the data
type of a particular LISP expression, for example for finding out whether it is a list, an atom,
a number, an array, or a function.

The predicate atom investigates whether or not its argument is an atom. If this turns out
to be the case, then the value t is returned; otherwise it returns the value nil.

EXAMPLE B.18

Consider the following function calls:

(atom ’a)

=> t

(atom 2)

=> t

(atom ’(a b))

=> nil

So, non-empty lists are no atoms while numbers are.

For finding out whether a LISP expression is a symbol or a number, we have the predicates
symbolp and numberp at our disposal. The predicate listp tests whether its argument is a
list.

EXAMPLE B.19

The following function calls and function values returned show the behaviour of the
predicates mentioned above:

(symbolp ’a)

=> t

(symbolp 2)

=> nil

(numberp 2)

=> t

(numberp ’a)

=> nil

(symbolp ’(a b))

=> nil

(listp ’(a b))
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=> t

(listp ’(a . b))

=> nil

(listp ’a)

=> nil

Now let us look at the following example.

EXAMPLE B.20

Consider the following four forms:

(atom nil)

=> t

(atom ’( ))

=> t

(listp nil)

=> t

(listp ’( ))

=> t

This example shows that the empty list, nil, is an exception to the general rule that an
expression is either an atom or a list: it is both. It furthermore shows that it makes no
difference whether the notation nil or ( ) is used for the representation of the empty list.
This explains why the special predicate null is required to test whether its argument is of
the type ‘empty list’.

EXAMPLE B.21

The use of the predicate null is illustrated by means of the following function calls:

(null nil)

=> t

(null ’(a))

=> nil

(null ’a)

=> nil
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Relational predicates

The predicate equal takes two arguments and tests whether its two arguments represent
the same expression. It examines numbers as well as atoms and lists on equality. To be
equal, numbers must be of the same type, such as integer or float. The predicate equal

checks on equality of arguments without using information with regard to their internal
representation. In contrast, the predicate eq investigates whether its arguments are stored
at the same memory location, that is, have the same memory address. If two arguments are
equal according to eq, then they are equal according to equal as well. However, the reverse
does not hold. When specifying the predicate eq instead of equal, the programmer has to be
sure which data will and which data will not have been stored at the same memory location.
This is partly system dependent; in each LISP system, however, symbols with the same name
are equal according to eq.

EXAMPLE B.22

Consider the following LISP forms demonstrating the behaviour of the two equality
predicates:

(equal ’a ’a)

=> t

(eq ’a ’a)

=> t

(equal ’(a b) ’(a b))

=> t

(eq ’(a b) ’(a b))

=> nil

(equal ’a ’(a b))

=> nil

(equal 3 2)

=> nil

(equal 2 2)

=> t

(equal 2 2.0)

=> nil

Numbers are usually tested on equality using the special predicate = which automatically
converts its arguments to the same data type. The predicate = takes one or more numeric
arguments. For comparing numbers several other numeric relational predicates are available
as well. These predicates are described in table B.1.
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Predicate Meaning

= all arguments are equal
/= not all arguments are equal
< arguments are monotonically increasing
> arguments are monotonically decreasing
<= arguments are monotonically non-decreasing
>= arguments are monotonically non-increasing

Table B.1: Meaning of numeric predicates.

EXAMPLE B.23

The following examples demonstrate the use of the numeric predicates:

(= 2 2.0 2e+0)

=> t

(= 2 3 2)

=> nil

(= 2 2 2 2 2)

=> t

(< 0 1 2 3 4 5)

=> t

(> 5 3 2 1 1 0)

=> nil

(>= 5 3 2 1 1 0)

=> t

The predefined predicate member takes two arguments: an expression (often a symbol) and a
list. The predicate investigates whether or not the expression is equal according to eq to one
of the elements in the list. If the given expression occurs in the list, then the function returns
as its function value the part of the list from, and including, the given expression until the
end of the list; otherwise it returns nil.

EXAMPLE B.24

Consider the following two function calls:

(member ’b ’(a b c d))

=> (b c d)

(member ’f ’(a b c d))

=> nil
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As can be seen, the first call to the function member succeeds and returns the sublist
starting with the element b instead of just t. The second member call fails since f does
not occur in the given list, and therefore the value nil is returned.

Since member uses the predicate eq to check on equality, it actually examines whether a
given expression occupies the same memory location as one of the elements in the given list.
Therefore, this version of the member predicate generally is not applicable to find out whether
a given list occurs in a nested list. However, by means of a special :test key-word option, one
may indicate which equality predicate must be used internally as a test. The same applies to
the predicates assoc and rassoc which also use the predicate eq by default. The following
example demonstrates the practical consequence of this option.

EXAMPLE B.25

Consider the following function calls to member. In the second function call we have
indicated that the predicate equal must be used internally for comparison instead of
the predicate eq:

(member ’(b c) ’(a (b c) (d e)))

=> nil

(member ’(b c) ’(a (b c) (d e)) :test #’equal)

=> ((b c) (d e))

Logic predicates

To conclude this section, a number of logic predicates is discussed. The predicate not yields
the function value t if its argument is the empty list; otherwise it returns the value of its
argument unmodified. In fact, the predicate has the same effect as the function null discussed
earlier.

EXAMPLE B.26

We know that evaluation of the form (= 2 3) yields the value nil; the function value
returned from prefixing this form by the predicate not therefore yields the value t:

(not (= 2 3))

=> t

The predicate and evaluates its zero or more arguments from left to right, until an argument
is encountered which on evaluation returns the value nil; then the evaluation stops and the
value nil is returned. If none of the arguments yields the value nil on evaluation, then the
value of the last evaluated argument is returned. The predicate or also takes zero or more
arguments and equally evaluates them from left to right but this time until some argument is
met yielding a value not equal to nil. This value then is the function value of or; otherwise
the value nil is returned.

EXAMPLE B.27
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The behaviour of the predicates and and or is illustrated by means of the following
function calls:

(and (> 3 2)

(equal ’a ’a))

=> t

(or (null ’a)

(member ’a ’(b a c)))

=> (a c)

B.2.3 Control structures

COMMON LISP offers the programmer a rich variety of modern control structures. In this
section, we shall discuss the conditional and iterative control structures. Furthermore, we
shall pay attention to a special type of control structure for extending an environment by
creating new bindings for variables.

Conditional control structures

In the older dialects of LISP, the main conditional control structure provided for formulating
a choice between alternatives was the function cond. This function is still available in COM-
MON LISP, but in addition a number of simpler conditional control structures is provided.
We start our exposition with these functions.

The function if takes two or three arguments. Its first argument is a test ; the second
argument is called the then part and will be evaluated if the specified test succeeds. The
optional third argument is called the else part and will be evaluated in case the test fails.

EXAMPLE B.28

In the following function call to if the previously discussed predicate = is applied:

(if (= 2 3) ; test

’equal ; then part

’not-equal) ; else part

=> not-equal

The if form is usually applied in situations in which a choice has to be made between two
distinct function calls both yielding relevant function values. An alternative for using the if

form with only the then part, is to use the when form. The function when takes one or more
arguments. Its first argument specifies a test; if evaluation of this test yields a value not equal
to nil, then all subsequent forms, called the body of when, are evaluated. Note that contrary
to the if form the body of when may comprise more than one form. The value returned by
the function when is nil in case the specified test fails, and the value of the last form in the
body otherwise. The function when is normally used for conditionally producing side effects;
its function value is then irrelevant. The function unless is similar to the function when,
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except that its body is evaluated if the test specified in its first argument fails.

EXAMPLE B.29

Consider the following function call to when:

(when (member ’a ’(a b c))

(setq x 2)

(* x 3))

=> 6

The body of when contains two forms. The first form is an assignment to the variable
x which is subsequently used in the second form.

The function cond is more complicated than the control structures we have treated so far.
The use of this function has already been discussed briefly in section B.1.3. The function
takes zero or more arguments, each of which is a list, generally called a clause. The first
expression in each clause denotes a test. The clauses of cond are evaluated in the order of
their specification. The first clause of which the test succeeds will be further executed; only of
this clause are the remaining forms, called the consequents, evaluated. The cond form returns
as its the function value the value of the last evaluated consequent. The remaining clauses
are skipped.

EXAMPLE B.30

Consider again the cond form introduced in section B.1.3:

(cond ((null s) nil)

(t (or (equal x (first s))

(element x (rest s))))

This form comprises two clauses. The test in the second clause, t, always succeeds.
However, the first clause is always evaluated before the second one; if the test in the
first clause (null s) succeeds, then the second clause is skipped.

Iterative control structures

The formulation of an algorithm in LISP is often done in a recursive manner, which gener-
ally results in a function that is both more perspicuous and elegant than a similar iterative
specification would have been. However, there are algorithms which can be better expressed
using an iterative control structure. Fortunately, COMMON LISP offers a number of iterative
control structures for this purpose.

The most general iterative function provided in COMMON LISP is the function do. The
syntax of the do form is given below:

(do ( { (〈var〉 〈init-form〉 〈step-form〉) }∗ )

(〈test-form〉 . 〈result-form〉)
〈body〉)
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On evaluation of a do form, first all function values of the initialization forms specified in
〈init-form〉 are determined. These values are subsequently bound to the corresponding vari-
ables given in 〈var〉. In case an 〈init-form〉 is lacking, the corresponding variable in 〈var〉 is
initialized with the value nil. The evaluation of the forms in 〈init-form〉 is carried out in a
nondeterministic order and can best be considered as done in parallel. The scope of each of
the variables in 〈var〉 is the body of the do form. So, these variables are lexical. After this
initialization has been completed, the test form specified in 〈test-form〉 is evaluated. If the
test succeeds, that is, if it yields a value different from nil, then the iteration terminates and
the forms in the 〈result-form〉 are evaluated. The function value of do is the value of the last
evaluated form from the 〈result-form〉. If, on the other hand, the test fails, then the forms
in the 〈body〉 are evaluated next. Following the evaluation of the body, each of the forms
specified in the 〈step-form〉 is evaluated, again in some nondeterministic order. The values
yielded by these forms are subsequently taken as the new bindings of the variables in 〈var〉.
In case no 〈step-form〉 has been specified for a variable, its binding is left unchanged.

EXAMPLE B.31

Consider the following form for adding up the first hundred elements of an array x:

(do ((i 0 (+ i 1))

(sum 0))

((= i 100) sum)

(setq sum (+ sum (aref x i))))

In this form, we have two subexpressions of the form (〈var〉 〈init-form〉 〈step-form〉):
the subform (i 0 (+ i 1)) which increments the variable i by one at each iteration
step, and the subform (sum 0). In the latter subform a 〈step-form〉 is lacking; hence,
the value of sum is not modified when the next iteration step starts. The variable sum,
however, is changed as a result of evaluation of the body of the do form. The value of
the variable sum is returned as soon as the variable i has attained the value 100. The
form (aref x i) extracts the i-th element from the array x. The first element in the
array has index 0.

The do form just discussed is sometimes called the parallel do form. There also exists a
sequential do form, the do* form, which differs from the parallel do form by its init and
step forms being evaluated one by one in the order in which they have been specified. Each
value resulting from the evaluation of an init or step form is bound to the associated variable
immediately after the value has been obtained. This way it becomes possible to refer in an
init or step form to a variable which has obtained a binding in some earlier evaluated init or
step form. The syntax of the do* form is, with the obvious exception of the function name,
the same as for do.

For many common situations the do form is too general. Therefore, also some simpler
iterative control structures are available. Here, we discuss only one of the most frequently
used iterative forms: the dolist form. The syntax of the dolist form is as follows:

(dolist (〈var〉 〈list-form〉 〈result-form〉)
〈body〉)
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In this form, 〈list-form〉 has to be a list of expressions, which are bound successively to the
variable 〈var〉; after each binding the 〈body〉 is evaluated. As soon as all elements in the
〈list-form〉 have been processed, the value of 〈result-form〉 is returned as a function value of
dolist.

EXAMPLE B.32

Consider the following form:

(dolist (x ’(a b c d))

(prin1 x))

abcd

=> nil

First, the variable x is bound to the symbol a and the body of dolist prints the value
of x. Next, the variable x is bound to b, and so on. This way, the symbols a up to
d inclusive are printed successively. Since we have not specified a 〈result-form〉 in the
example, the function returns the value nil.

Local bindings of variables

For creating a new binding for a variable in a new environment, generally the let form is
employed. The syntax of this form is as follows:

(let ( { (〈var〉 〈init-form〉) }∗ )

〈body〉)

Upon evaluation of the let form, first the values of the forms in the 〈init-form〉 are determined.
These values then are bound to the corresponding variables in 〈var〉. Evaluation of the
init forms is done in a nondeterministic order just as in the parallel do form. After this
initialization, the body of the let form is evaluated. The function value returned by let is
obtained from the evaluation of the last form present in the body. The let form is usually
applied for introducing local, lexical variables; the scope of these variables is the body of
the form. After the evaluation of the let form has been terminated, the old environment of
variable bindings will be re-established.

EXAMPLE B.33

Consider the following function definition:

(defun Example (x)

(print x)

(let ((x 2))

(print x))

(print x))

When the function Example is called with the argument 1, the values 1, 2 and 1 are
printed successively.
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The ordinary let form evaluates all forms in 〈init-form〉 in some nondeterministic order,
before the results are bound to the variables specified in 〈var〉. Similar to the do form, this
let form is said to be the parallel let form. LISP also offers a sequential let form, called the
let* form, which evaluates its init forms in the order of specification: immediately after a
value for an init form has been determined, it binds this value to the associated variable.

EXAMPLE B.34

In the form below we have to use two let forms for computing sin 1
2π:

(let ((pi 3.1415926))

(let ((x (* pi 0.5)))

(sin x)))

In the first let form we bind the variable pi to the appropriate value. For binding the
variable x to the value 1

2π, we need to access the value the variable pi has obtained.
For this purpose we have to introduce into the enclosing let form another let form
with the init form (* pi 0.5). The same, however, can be accomplished with one let*
form only:

(let* ((pi 3.1415926)

(x (* pi 0.5)))

(sin x))

B.2.4 The lambda expression

In section B.1.3 we described how a new function may be defined using the defun form. A
major disadvantage of the discussed function definition is that we have to specify a function
name for a new function in cases in which we need it only once in the program. For this
purpose of function definition without naming, the so-called lambda expression, is available.
A lambda expression is specified by means of a lambda form as shown below:

((lambda 〈parameter-list〉 〈body〉) 〈arg-list〉)

where 〈parameter-list〉 is the list of formal parameters and 〈arg-list〉 is the argument list.
Upon evaluation of a lambda form first the arguments are substituted one by one for the
corresponding parameters, before the body is evaluated. The following example illustrates
the application of the lambda expression.

EXAMPLE B.35

Consider the following function definition:

(defun Hypotenuse (a b)

(sqrt (+ (* a a) (* b b))))

This function may be called as follows:



394 Appendix B. Introduction to LISP

(Hypotenuse 3 4)

=> 5

If the function Hypotenuse is called only once in the entire program, then there is no
need for introducing a new function name. In that case we might use the following
lambda expression instead:

((lambda (a b) (sqrt (+ (* a a) (* b b)))) 3 4)

=> 5

which returns the same result. The list (a b) following the symbol lambda is the list of
formal parameters of the lambda expression. The numbers 3 and 4 are the arguments
to the nameless function: their values are substituted for the formal parameters a and
b, respectively, before the body of the lambda form is evaluated.

The lambda expression is normally applied in conjunction with the function funcall which
will be discussed in the next section.

B.2.5 Enforcing evaluation by the LISP interpreter

At the beginning of this appendix we mentioned that in LISP it is possible to interpret data
as programs. To this end LISP offers several primitive functions, the most frequently applied
of which are eval, apply, and funcall.

The function eval may be considered as a kind of interface to the LISP interpreter. In fact,
any form presented to LISP is evaluated using eval implicitly; it is this function that defines
the standard evaluation rule. If we enter an explicit call to eval to LISP, then its argument is
evaluated twice: once by the standard evaluation rule, which then passes the resulting value
of the argument to the function eval, where it is evaluated for the second time. The function
value returned by the function eval is the result of this second evaluation.

EXAMPLE B.36

Consider the following call to eval:

(eval (list ’+ ’(first ’(2 3)) 4))

=> 6

The LISP evaluator first evaluates the argument to eval. It returns the following form:
(+ (first ’(2 3)) 4). Subsequent evaluation of this form by eval yields the value
6.

The function apply takes a form specifying a function name or lambda expression as its first
argument; its remaining one or more arguments are LISP expressions to which the function
or lambda expression has to be applied. These expressions are concatenated and then passed
as an argument list to the specified function or lambda expression. The function name or the
lambda expression must be specified in the special function form. The effect of function is
similar to quote: it inhibits evaluation.

EXAMPLE B.37
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Consider the following call to apply:

(apply (function element) ’a ’((b a c)))

=> t

It specifies the function element defined in section B.1.3. Upon evaluation of the apply
form, this function is applied to the symbol a and the list (b a c). Note that we have to
specify ’((b a c)) since the expressions ’a and ’((b a c)) are concatenated before
they are passed to element.

Instead of function we may also use the symbol #’ which is an abbreviation for the function
function, in a similar way as ’ is an abbreviation for the function quote. In the previous
example, the first argument to apply therefore may be specified as #’element. The main
difference between quote and function is that the latter takes the bindings of the lexical
variables into account when the given function element is evaluated. It is said that function
handles the symbol element as a lexical closure.

The function funcall has much in common with the function apply. Just like the func-
tion apply, the function funcall takes a function name or a lambda expression as its first
argument, but in contrast to apply it takes zero or more further arguments. The function
funcall furthermore just applies the specified function or lambda expression to its remaining
arguments.

EXAMPLE B.38

Consider the following function call:

(funcall #’+ 1 2 3 4 5 6)

=> 21

It yields the sum of the six specified numbers by applying the function + to them.

Until now, we have demonstrated in our examples the use of apply and funcall only in
conjunction with a function. The functions apply and funcall, however, may also be used
together with a lambda expression.

EXAMPLE B.39

Evaluation of the form below:

(funcall #’(lambda (a b) (sqrt (+ (* a a) (* b b)))) 3 4)

yields the same result as the evaluation of the lambda expression given in the previous
section did.

A compact notation for repeated application of a function or lambda expression to successive
arguments is offered by the function mapc. This function applies its first argument which has
to be a function or a lambda expression, to all elements of the second argument which has
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to be a list. The function mapc is often employed in conjunction with a function having side
effects.

EXAMPLE B.40

In the following example, we use the function mapc for successively printing the elements
of a list:

(mapc #’print ’(a b c))

a

b

c

=> nil

B.2.6 Macro definition and the backquote

Besides the function definition, COMMON LISP provides yet another method for dynamically
extending the language: macro definition. A macro is invoked in a way similar to a function.
However, the arguments to a macro call are not evaluated before the call is actually executed.
In evaluating a macro call the arguments are immediately substituted for the corresponding
formal parameters which also occur in the body of the macro. This process of substitution is
known as macro expansion. The form resulting from macro expansion is evaluated.

A macro is defined by means of defmacro. The following example illustrates the principle
idea. In this example the body of the macro definition contains the backquote function: ‘.
The main effect of this function is similar to that of the quote function: it switches off
evaluation temporarily. However, there is a difference. In contrast with the quote function,
when the backquote function is used it is possible to selectively switch on the evaluation by
means of the specification of a comma; if some formal parameter is preceded by a comma, it
will be substituted by the corresponding argument.

EXAMPLE B.41

In section B.2.2 we discussed a number of conditional control structures. Now, suppose
that the if function was no part of the COMMON LISP language, then we might
think of adding this special form to the LISP system by means of the following function
definition:

(defun other-if (condition then-part else-part) ; \emph{bugged!\texttt{

(cond ((condition) then-part)

(t else-part)))

Now look at the following function call:

(other-if (equal ’a ’a) (print ’equal) (print ’not-equal))

Upon evaluation the following happens: successively the values equal and not-equal

are printed, and then an error is signaled. This is explained as follows. Before the
function other-if is applied, its three arguments are evaluated first. So, the test,
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the then part and the else part are evaluated which results in the values equal and
not-equal being printed. This clearly was not our intention. The problem can be solved
by preceding each argument to other-if by quote, and then applying the function eval

in the body of the given function. This solution is not very satisfactory since prefixing
each argument in every call to other-if by a quote is undesirable. The best solution
to this problem is obtained by using a macro definition. We may obtain the following
macro definition for the special other-if form:

(defmacro other-if (condition then-part else-part)

(cond (,condition ,then-part)

(t ,else-part))

Upon evaluation of the macro other-if, first its actual arguments are substituted for
the corresponding parameters which are preceded by a comma. The form that results is
subsequently evaluated. The reader should convince himself that the call to other-if

shown above has the required effect when employing the defined macro.

B.2.7 The structure

We have seen before that LISP supports data abstraction in a flexible way by offering a
rich variety of data structures and possibilities for function and macro definition. So, it is
a relatively straightforward task to implement in LISP various data types with associated
constructor and selector functions. However, most conventional data types are already built-
in. This is the case for a data type similar to the record data type in Pascal-like languages,
namely the structure which consists of a number of components, called fields or slots each
having a unique name. A structure type is defined by means of the function defstruct. The
arguments to this function are the name of the new structure type and its successive fields,
possibly provided with initial values. If no initial values have been specified for a field, then
it is initialized with the value nil by default.

EXAMPLE B.42

The following function call defines a new structure type with the name person:

(defstruct person

(name)

(age 30)

(married ’no))

The new structure type has three fields: name, age and married. These fields initially
have the values nil, 30 and no, respectively.

For each structure type we have a so-called constructor function at our disposal for creating a
new structure of the given structure type. The name of the constructor function is composed
of the name of the structure type preceded by the symbol make-. In creating a new structure,
it is possible to specify new initial values for the fields. Each field is referred to by means of
a key-word which is composed of the name of the field prefixed by a colon.

EXAMPLE B.43



398 Appendix B. Introduction to LISP

The following form assigns a structure of type person to the variable with the name
a-person:

(setq a-person (make-person :name ’john :age 20))

By means of the key-word :name the value john is filled in for the field name; similarly
the field age is assigned the initial value 20. The field married has not been specified
explicitly; its value is therefore copied unchanged from the original structure.

As soon as a structure type is defined also a number of so-called selector functions is created,
one for each field, for accessing the values of the fields. The name of a selector function is
composed of the name of the structure type followed by a minus sign which in turn is followed
by the required field name.

EXAMPLE B.44

Consider the variable a-person once more which has been assigned a structure of type
person. When we apply the selector function person-name to a-person, we obtain the
value of the field name:

(person-name a-person)

=> john

With the definition of a structure type also a copier function is created for making copies of
structures. The name of the copier function is copy- followed by the name of the structure
to be copied.

B.2.8 Input and output

To conclude this brief introduction to LISP, a number of input and output functions will be
described.

The primitive function load reads LISP forms from a data file, the name of which is
specified as an argument to load. Upon evaluation, load dynamically adds the declarations,
functions and macro’s present in the file to the LISP environment.

EXAMPLE B.45

The following function call:

(load "example")}

results in reading in the forms present in the file with the name example.

Using load the forms read from file are evaluated. It is also possible to read expressions from
a file without evaluation. This can be done using the function read which reads one LISP
expression at a time; in case one wants to read a single line from the file, which need not be
an entire LISP expression, the function read-line may be used. Both read and read-line



B.2. Overview of the language LISP 399

assume by default that the input is entered from the keyboard. However, by opening a file
by means of a call to the primitive function open, an input stream is created which redirects
the input to a file which can then be read.

EXAMPLE B.46

Suppose that the file example contains the single expression (a b c). This expression
can be read in as follows:

(let ((file (open "example")))

(read file))

=> (a b c)

The function value returned by the function open is either an input or an output stream. The
function close can be used for closing an input or output stream. A frequently applied form
for processing data from a file is given below:

(let ((file (open "example")))

(Process file)

(close file))

The most often used function for printing an expression is the function print. This function
creates a new line, then prints the expression which is the value of its argument and pads it
by one blank. Printing is a side effect; the value of print is equal to the function value of its
argument but it is usually ignored in the program.

EXAMPLE B.47

The following function call illustrates the behaviour of the function print:

(print ’a)

a

=> a

In addition to the function print LISP offers another three functions for producing output.
The function prin1 prints its argument, just as print does, but it does not start the output
on a new line and does not add a blank. The function princ is especially designed for
producing user-friendly output. The behaviour of these functions is demonstrated in the
following example.

EXAMPLE B.48

Consider the following three function calls to the output functions discussed above.
Note the difference in the output of these function when applied to the same argument:

(print "Enter value:")

"Enter value:"

=> "Enter value:"
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(prin1 "Enter value:")"Enter value:"

=> "Enter value:"

(princ "Enter value:")Enter value:

=> "Enter value:"

LISP also offers a so-called pretty print function, called pprint. This function is less frequently
applied than the print functions described above. The advantage of this function is that it
produces its output in a formatted way.

The function terpri is used for directing future output to a new line.

EXAMPLE B.49

By combining the functions terpri and prin1 the output is printed on a new line.
Without the call to the function terpri the output would immediately follow the spec-
ification of the let form:

(let ((x 2))

(terpri)

(prin1 x))

2

=> 2

It should be noted that no blank is added at the end of the output line; so, the result
still differs from that produced by print.

An output function with a large number of options is the function format. This function is
a powerful tool for producing nice-looking formatted output. In the present book, it suffices
to only give a small number of examples covering the most frequent applications of format.

EXAMPLE B.50

Consider the following function calls and their associated side effects and function values:

(setq x ’(a b c))

=> (a b c)

(format t "~%Value: ~A" x)

Value: (a b c)

=> Value: (a b c)

(format t "~%The list ~A contains three elements" x)

The list (a b c) contains three elements

=> The list (a b c) contains three elements

The first argument to format in the two function calls given above is t, indicating that
the output should be sent to the screen. The second argument to format is a format
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string which may contain some control characters. The effect of the control character
~% in the above examples is that the output starts on a new line; the character ~A

specifies the location in the format string where the value of the third argument should
be substituted.

To conclude, the function y-or-n-p takes an optional format string as an argument. Upon
evaluation, this format string is printed after which the LISP evaluator awaits input from the
user. As input only one of ‘y’ and ‘n’ is accepted. The function y-or-n-p returns as function
value t if ‘y’ has been entered, and nil if ‘n’ has been entered.

EXAMPLE B.51

The following function call to y-or-n-p demonstrates the behaviour of the function:

(y-or-no-p "~%Are you ill? ")

Are you ill? y

=> t

Suggested reading

The history of LISP has been discussed by J. McCarthy in [McCarthy78b]. [Sammet69] also
pays attention to the history of LISP. The basic principles of the language have been treated
by J. McCarthy in [McCarthy78a]; this paper includes a full listing of a LISP evaluator.
Information on OBJ can be found in [Futatsugi85], MACSYMA is discussed in [Moses78],
and the Boyer-Moore theorem prover is covered in [Boyer88]. Most large LISP programs,
including the ones mentioned above are now available in COMMON LISP.

The COMMON LISP standard is defined in the book of G.L. Steele [Steele84], which every
COMMON LISP progammer should posses. Introductory books on the language containing
a lot of useful programming examples are [Winston89] and [Brooks85]. An interesting book
which discusses various sorts of data abstraction and procedural abstraction in the LISP
dialect SCHEME is [Abelson85]. This book also deals with programming style, and discusses
several useful implementation techniques.

There is currently much work going on to extend COMMON LISP by an object-oriented
subsystem called COMMON LISP OBJECT SYSTEM, or CLOS for short. A preliminary
definition of CLOS is given in [Bobrow88]. PORTABLE COMMON LOOPS is an experi-
mental CLOS-like object-oriented extension to COMMON LISP which is available from the
Xerox Corporation, Palo Alto.



402 References



References

[Abelson85] H. ABELSON, G.J. SUSSMAN, J. SUSSMAN (1985). Structure and Interpre-
tation of Computer Programs, The MIT Press, Cambridge, Massachusetts.

[Aikins80] J.S. AIKINS (1980). Prototypes and Production Rules: a Knowledge Represen-
tation for Computer Consultations, Report no. STAN-CS-80-814, Computer Science
Department, Stanford University.

[Aikins83] J.S. AIKINS (1983). Prototypical knowledge for expert systems, Artificial Intel-
ligence, vol. 20, pp. 163-210.

[Aikins84] J.S. AIKINS, J.C. KUNZ, E.H. SHORTLIFFE, R.J. FALLAT (1984). PUFF: An
expert system for interpretation of pulmonary function data, in: B.C. CLANCEY, E.H.
SHORTLIFFE (eds.), Readings in Medical Artificial Intelligence: The First Decade,
Addison-Wesley, Reading, Massachusetts.

[Aø”(iD(aD”t-Kaci86] H. AIT-KACI, R. NASR (1986), LOGIN: a logic programming lan-
guage with built-in inheritance, Journal of Logic Programming, vol. 3, pp. 185-215.

[Barr80] A. BARR, J. DAVIDSON (1980). Representation of Knowledge, a Section of the
Handbook of Artificial Intelligence, Report no. STAN-CS-80-793, Computer Science
Department, Stanford University.

[Bennett78] J.S. BENNETT, L. CREARY, R. ENGLEMORE, R. MELOSH (1978). SACON:
A Knowledge-based Consultant for Structural Analysis, Report no. STAN-CS-78-699,
Computer Science Department, Stanford University.

[Bibel86] W. BIBEL, PH. JORRAND (eds.) (1986). Fundamentals of Artificial Intelligence,
Lecture Notes in Computer Science 232, Springer-Verlag, Berlin.

[Black85] P.K. BLACK, W.F. EDDY (1985). Models of Inexact Reasoning, Technical Report
no. 351, Department of Statistics, Carnegie-Mellon University, Pittsburgh.

[Bobrow77] D.G. BOBROW, T. WINOGRAD (1977). An overview of KRL, a knowledge
representation language, Cognitive Science, vol. 1, no. 1, pp. 3-46. .br

[Bobrow83] D.G. BOBROW, M.J. STEFIK (1983). The LOOPS Manual Xerox Corpora-
tion, Palo Alto, California.

[Bobrow88] D.G. BOBROW, L.G. DEMICHIEL, R.P. GABRIEL, et al. (1988). COMMON
LISP OBJECT SYSTEM SPECIFICATION, Xerox Corporation, Palo Alto, California.

403



404 References

[Bonnet85] A. BONNET (1985). Artificial Intelligence, Promise and Performance, Prentice-
Hall Int., Englewood Cliffs, New Jersey.

[Boyer72] R.S. BOYER, J. MOORE (1972). The sharing of structure in theorem-proving
programs, in: B. MELTZER, D. MICHIE (eds.), Machine Intelligence 7, Edinburgh
University Press, Edinburgh.

[Boyer88] R.S. BOYER, J. MOORE (1988). A Computational Logic-handbook, Academic
Press, Boston.

[Brachman83] R.J. BRACHMAN (1983). What IS-A is and isn’t: an analysis of taxonomic
links in semantic networks, IEEE Computer, vol. 16, no. 10, pp. 30-36.

[Brachman85a] R.J. BRACHMAN, H.J. LEVESQUE (eds.) (1985). Readings in Knowledge
Representation, Morgan Kauffman Publishers, Los Altos, California.

[Brachman85b] R.J. BRACHMAN, J.G. SCHMOLZE (1985). An overview of the KL-ONE
knowledge representation system, Cognitive Science, vol. 9, no. 2, pp. 171-216.

[Bratko86] I. BRATKO (1986). PROLOG Programming for Artificial Intelligence, Addison-
Wesley, Reading, Massachusetts.

[Brooks85] R.A. BROOKS (1985). Programming in COMMON LISP, John Wiley & Sons,
New York.

[Brough86] D.R. BROUGH, I.F. ALEXANDER (1986). The fossil expert system, Expert
Systems, vol. 3, pp. 76-83.

[Brownston85] L. BROWNSTON, R. FARRELL, E. KANT, N. MARTIN (1985). Program-
ming Expert Systems in OPS5: An Introduction to Rule-based Programming, Addison-
Wesley, Reading, Massachusetts.

[Buchanan69] B.G. BUCHANAN, G.L. SUTHERLAND, E.A. FEIGENBAUM (1969).
HEURISTIC DENDRAL: a program for generating explanatory hypotheses in organic
chemistry, in: B. MELTZER, D. MICHIE (eds.), Machine Intelligence 4, Edinburgh
University Press, Edinburgh.

[Buchanan78] B.G. BUCHANAN, E.A. FEIGENBAUM (1978). DENDRAL and
METADENDRAL: their applications dimension, Artificial Intelligence, vol. 11,
pp. 5-24.

[Buchanan83] B.G. BUCHANAN, R.O. DUDA (1983). Principles of rule-based expert sys-
tems, Advances in Computers, vol. 22, pp. 163-216.

[Buchanan84] B.G. BUCHANAN, E.H. SHORTLIFFE (1984). Rule-based Expert Systems:
The MYCIN Experiments of the Stanford Heuristic Programming Project, Addison-
Wesley, Reading, Massachusetts.

[Burks60] A.W. BURKS (1960). Collected Papers of Charles Sanders Peirce, Harvard Uni-
versity Press, Cambridge, Massachusetts.

[Campbell84] J.A. CAMPBELL (1984). Implementations of PROLOG, Ellis Horwood,
Chichester.



References 405

[Chang73] C.L. CHANG, R.C.T. LEE (1973). Symbolic Logic and Mechanical Theorem Prov-
ing, Academic Press, New York.

[Charniak86] E. CHARNIAK, D. MCDERMOTT (1986). Introduction to Artificial Intelli-
gence, Addison-Wesley, Reading, Massachusetts.

[Clancey84] B.C. CLANCEY, E.H. SHORTLIFFE (eds.) (1984). Readings in Medical Arti-
ficial Intelligence: The First Decade, Addison-Wesley, Reading, Massachusetts.

[Clocksin81] W.F. CLOCKSIN, C.S. MELLISH (1981). Programming in PROLOG,
Springer-Verlag, Berlin.

[Cohen85] P.R. COHEN (1985). Heuristic Reasoning about Uncertainty: An Artificial Intel-
ligence Approach, Pitman, London.

[Cooper84] G.F. COOPER (1984), NESTOR, Report HPP-84-48, Stanford University, Stan-
ford.

[Cooper88] T.A. COOPER, N. WOGRIN (1988), Rule-based Programming with OPS5, Mor-
gan Kaufmann, San Mateo, California.

[Dalen83] D. VAN DALEN (1983). Logic and Structure, 2nd Edition, Springer-Verlag,
Berlin.

[Davis57] M. DAVIS (1957). A computer program for Presburger’s procedure, Summaries of
Talks Presented at the Summer Institute for Symbolic Logic, Second Edition, Institute
for Defense Analysis.

[Davis82] R. DAVIS, D.B. LENAT (1982). Knowledge-Based Systems in Artificial Intelli-
gence, McGraw-Hill, New York.

[Deliyanni79] A. DELIYANNI, R.A. KOWALSKI (1979). Logic and semantic networks, Com-
munications of the ACM, vol. 22, no. 3, pp. 184-192.

[Dempster67] A.P. DEMPSTER (1967). Upper and lower probabilities induced by a multi-
valued mapping, Annals of Mathematical Statistics, vol. 38, pp. 325-339.

[Dombal72] F.T. de DOMBAL, D.J. LEAPER, J.R. STANILAND, A.P. MCCANN, J.C.
HORROCKS (1972). Computer-aided diagnosis of acute abdominal pain, British Med-
ical Journal, vol. 2, pp. 9-13.

[Duda76] R.O. DUDA, P.E. HART, N.J. NILSSON (1976). Subjective Bayesian methods
for rule-based inference systems, AFIPS Conference Proceedings of the 1976 National
Computer Conference, vol. 45, pp. 1075-1082.

[Duda79] R.O. DUDA, J. GASCHNIG, P.E. HART (1979). Model design in the PROSPEC-
TOR consultant program for mineral exploration, in: D. MICHIE (ed.), Expert Systems
in the Microelectronic Age, Edinburgh University Press, Edinburgh.

[Eddy86] W.F. EDDY, G.P. PEI (1986). Structures of rule-based belief functions, IBM
Journal on Research and Development, vol. 30, no. 1, pp. 93-101.



406 References

[Enderton72] H.B. ENDERTON (1972). A Mathematical Introduction to Logic, Academic
Press, London.

[Ernst69] G. ERNST, A. NEWELL (1969). GPS: A Case Study in Generality and Problem
Solving, Academic Press, New York.

[Fagan80] L.M. FAGAN (1980). VM: Representing Time-dependent Relations in a Clinical
Setting, PhD Thesis, Heuristic Programming Project, Stanford University.

[Fikes85] R. FIKES, T. KEHLER (1985). The role of frame-based representation in reasoning,
Communications of the ACM, vol. 28, no. 9, pp. 904-920. .br .ne 2

[Findler79] N.V. FINDLER (ed.) (1979). Associative Networks, Academic Press, New York.

[Forgy81] C.L. FORGY (1981). OPS5 User’s Manual, Report no. CMU-CS-81-135, Depart-
ment of Computer Science, Carnegie-Mellon University.

[Forgy82] C.L. FORGY (1982). Rete: a fast algorithm for the many pattern/many object
matching problem, Artificial Intelligence, vol. 19, pp. 17-37.

[Forgy85] C.L. FORGY (1985). The OPS83 User’s Manual, Production System Technology,
Pittsburgh, Pennsylvania.

[Froidevaux88] C. FROIDEVAUX, D. KAYSER (1988). Inheritance in semantic networks
and default logic, in: P. SMETS, E.H. MAMDANI, D. DUBOIS, H. PRADE (eds.),
Non-Standard Logics for Automated Reasoning, Academic Press, London, pp. 179-212.

[Frost86] R.A. FROST (1986). Introduction to Knowledge Base Systems, Collins, London.

[Futatsugi85] K. FUTATSUGI, J.A. GOGUEN, J.P. JOUANNAUD, J. MESEGUER (1985).
Principles of OBJ2, in: Proceedings of the Symposium on Principles of Programming
Languages, ACM, pp. 52-66.

[Gaag88] L.C. VAN DER GAAG (1987). The Certainty Factor Model and Its Basis in Prob-
ability Theory, Report no. CS-R8816, Centre for Mathematics and Computer Science,
Amsterdam.

[Gaag89] L.C. VAN DER GAAG (1989). A conceptual model for inexact reasoning in rule-
based systems, International Journal of Approximate Reasoning, vol. 3, no. 3, pp.
239-258.

[Gaag90] L.C. VAN DER GAAG (1990). Probability-based Models in Plausible Reasoning,
Dissertation, University of Amsterdam.

[Gallier87] J.H. GALLIER (1987). Logic for Computer Science: Foundations of Automatic
Theorem Proving, John Wiley & Sons, New York.

[Genesereth87] M.R. GENESERETH, N.J. NILSSON (1987). Logical Foundations of Artifi-
cial Intelligence, Morgan Kaufmann, Los Altos.

[Gordon84] J. GORDON, E.H. SHORTLIFFE (1984). The Dempster-Shafer theory of evi-
dence, in: B.G. BUCHANAN, E.H. SHORTLIFFE, Rule-based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Programming Project, Addison-Wesley,
Reading, Massachusetts.



References 407

[Gorry68] G.A. GORRY, G.O. BARNETT (1968). Experience with a model of sequential
diagnosis, Computers and Biomedical Research, vol. 1, pp. 490-507.

[Green68] C.C. GREEN, B. RAPHAEL (1968). The use of theorem proving techniques in
question answering systems, Proceedings of the 23rd National Conference of the ACM,
pp. 169-181.

[Green69] C.C. GREEN (1969). Theorem proving by resolution as a basis for question-
answering systems, in: B. MELTZER, D. MICHIE (eds.), Machine Intelligence 4, Ed-
inburgh University Press, Edinburgh.

[Guida89] G. GUIDA, C. TASSO (1989), Topics in Expert System Design, North-Holland,
Amsterdam.

[Guyton76] A.C. GUYTON (1976). Textbook of Medical Physiology, W.B. Saunders Com-
pany, Philadelphia.

[Harmon85] P. HARMON, D. KING (1985). Expert Systems, Artificial Intelligence in Busi-
ness, John Wiley & Sons, New York.

[Hayes-Roth83] F. HAYES-ROTH, D.A. WATERMAN, D.B. LENAT (1983). Building Ex-
pert Systems, Addison-Wesley, Reading, Massachusetts.

[Hendler88] J.A. HENDLER (ed.) (1988). Expert Systems: the User Interface, Ablex Pub-
lishing Corporation, Norwood, New Jersey.

[Ishizuka83] H. ISHIZUKA (1983). Inference methods based on extended Dempster & Shafer’s
theory for problems with uncertainty/fuzziness, New Generation Computing, vol. 1, pp.
159-168.

[Jackson86] P. JACKSON (1986). Introduction to Expert Systems, Addison-Wesley, Reading,
Massachusetts.

[Jensen87] F.V. JENSEN, S.K. ANDERSEN, U. KJAERULFF, S. ANDREASSEN (1987).
MUNIN – On the case for probabilities in medical expert systems – a practical exercise,
in: J. FOX, M. FIESCHI, R. ENGELBRECHT (eds). AIME 87, Lecture Notes in
Medical Informatics, vol. 33, Springer-Verlag, Berlin, pp. 149-160.

[Kahn89] G.S. KAHN, M. BAUER (1989), Prototyping: tools and motivations, in: G.
GUIDA, C. TASSO (eds.), Topics in Expert System Design, North-Holland, Ams-
terdam.

[Kanal86] L.N. KANAL, J.F. LEMMER (eds.) (1986). Uncertainty in Artifical Intelligence,
Elsevier Science Publishers (North-Holland), Amsterdam.

[Kanal89] L.N. KANAL, T.S. LEVITT, J.F. LEMMER (1989). Uncertainty in Artificial
Intelligence 3, North-Holland, Amsterdam.

[Kass88] R. KASS, T. FININ (1988), The need for user models in generating expert systems
explanations, International Journal of Expert Systems, vol. 1, no. 4, pp. 345-375.



408 References

[Kim83] J.H. KIM, J. PEARL (1983). A computational model for causal and diagnostic
reasoning in inference systems, Proceedings of the 8th Internation Joint Conference on
Artificial Intelligence, pp. 190 -193.

[Kluzniak85] F. KLUZNIAK, S. SZPAKOWICZ (1985). PROLOG for Programmers, Aca-
demic Press, New York.

[Kowalski79] R. KOWALSKI (1979). Logic for Problem Solving, North-Holland, New York.

[Kraft84] A. KRAFT (1984). XCON: An expert configuration system at Digital Equipment
Corporation, in: P.H. WINSTON, K.A. PRENDERGAST (eds.), The AI Business: The
Commercial Uses of Artificial Intelligence, The MIT Press, Cambrige, Massachusetts.

[Lauritzen88] S.L. LAURITZEN, D.J. SPIEGELHALTER (1987). Local computations with
probabilities on graphical structures and their application to expert systems (with dis-
cussion), Journal of the Royal Statistical Society (Series B), vol. 50, no. 2, pp. 157-224.

[Lecot86] K.G. LECOT (1986). Inexact Reasoning in PROLOG-Based Expert Systems, Re-
port no. CSD-860053, University of California, Los Angeles.

[Lemmer88] J.F. LEMMER, L.N. KANAL (1988). Uncertainty in Artificial Intelligence 2,
North-Holland, Amsterdam.

[Levesque85] H.J. LEVESQUE, R.J. BRACHMAN (1985). A fundamental tradeoff in knowl-
edge representation and reasoning, in: R.J. BRACHMAN, H.J. LEVESQUE (eds.),
Readings in Knowledge Representation, Morgan Kauffman Publishers, Los Altos, Cali-
fornia.

[Lindsay80] R.K. LINDSAY, B.G. BUCHANAN, E.A. FEIGENBAUM, J. LEDERBERG
(1980). Applications of Artificial Intelligence in Organic Chemistry: The DENDRAL
Project, McGraw-Hill, New York.

[Lloyd87] J.W. LLOYD (1987). Foundations of Logic Programming, 2nd edition, Springer-
Verlag, Berlin.

[Loveland78] D.W. LOVELAND (1978). Automated Theorem Proving: A Logical Basis,
North-Holland, New York.

[Lucas89a] P.J.F. LUCAS (1989). Multiple Inheritance and Exceptions in Frame Systems,
Report no. CS-R8931, Centre for Mathematics and Computer Science, Amsterdam.

[Lucas89b] P.J.F. LUCAS, R.W. SEGAAR, A.R. JANSSENS (1989). HEPAR: an expert
system for the diagnosis of disorders of the liver and biliary tract, Liver, vol. 9, pp.
266-275.

[Luger89] G.F. LUGER, W.A. STUBBLEFIELD (1989). Artificial Intelligence and the De-
sign of Expert Systems, The Benjamin/Cummings Publishing Company, Redwood City.

[McCarthy78a] J. MCCARTHY (1978). A micro-manual for LISP – not the whole truth,
ACM SIGPLAN Notices, vol. 13, no. 8, pp. 215-216.

[McCarthy78b] J. MCCARTHY (1978). History of LISP, ACM SIGPLAN Notices, vol. 13,
no. 8, pp. 217-223.



References 409

[McCune89] W.W. MCCUNE (1989). OTTER 1.0 Users’ Guide, Report ANN-88/44, Math-
ematics and Computer Science Division, Argonnne National Laboratory, Argonne, Illi-
nois.

[McDermott80] D. MCDERMOTT, J. DOYLE (1980). Non-monotonic logic I, Artificial
Intelligence, vol. 13, pp. 41-72.

[McDermott82a] D. MCDERMOTT (1982). Non-monotonic logic II: Non-monotonic modal
theories, JACM, vol. 29, pp. 33-57.

[McDermott82b] J. MCDERMOTT (1982). R1: a rule-based configurer of computer systems,
Artificial Intelligence, vol. 19, pp. 39-88.

[McKeown85] D.M. MCKEOWN, W.A. HARVEY, J. MCDERMOTT (1985). Rule-based
interpretation of aerial imagery, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 7, no. 5, pp. 570-585.

[Melle79] W. VAN MELLE (1979). A domain-independent production rule system for con-
sultation programs, Proceedings of the 6th International Joint Conference on Artificial
Intelligence, pp. 923-925. .br .ne 4

[Melle80] W. VAN MELLE (1980). A Domain Independent System that Aids in Constructing
Knowledge-based Consultation Programs, Ph.D dissertation, Report no. STAN-CS-80-
820, Computer Science Department, Stanford University.

[Melle81] W. VAN MELLE, A.C. SCOTT, J.S. BENNETT, M. PEAIRS (1981). The
EMYCIN Manual, Report no. STAN-CS-81-16, Computer Science Department, Stan-
ford University. .br .ne 4

[Miller82] A.M. MILLER, H.E. POPLE, J.D. MYERS (1982). INTERNIST-I, an experimen-
tal computer-based diagnostic consultant for general internal medicine, New England
Journal of Medicine, vol. 307, pp. 468-476.

[Minsky75] M. MINSKY (1975). A framework for representing knowledge, in: P.H. WIN-
STON (ed.), The Psychology of Computer Vision, McGraw-Hill, New York. .br .ne
4

[Moses78] J. MOSES (1978). The MACSYMA Primer, MathLab Group, Laboratory of
Computer Science, Massachusetts Institute of Technology. .br

[Motta89] E. MOTTA, T. RAJAN, M. EISENSTADT (1989), A methodology and tools for
knowledge acquisition in KEATS-2, in: G. GUIDA, C. TASSO (eds.), Topics in Expert
System Design, North-Holland, Amsterdam.

[Newell57] A. NEWELL, J.C. SHAW, H. SIMON (1957). Empirical explorations with the
Logic Theory Machine, Proceedings of the Western Joint Computer Conference, vol.
15, pp. 218-239.

[Newell63] A. NEWELL, H.A. SIMON (1963). GPS, a program that simulates human
thought, in: E.A. FEIGENBAUM, J. FELDMAN (eds.), Computers and Thought,
McGraw-Hill, New York.



410 References

[Newell72] A. NEWELL, H.A. SIMON (1972). Human Problem Solving, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey.

[Newell73] A. NEWELL (1973). Production systems: models of control structures, in: W.G.
CHASE (ed.), Visual Information Processing, Academic Press, New York.

[Nilsson82] N.J. NILSSON (1982). Principles of Artificial Intelligence, Springer-Verlag,
Berlin.

[Nilsson84] M. NILSSON (1984). The world’s shortest PROLOG interpreter? in: J.A.
CAMPBELL (ed.), Implementations of PROLOG, Ellis Horwood, Chichester.

[Patil82] R. PATIL, P. SZOLOVITS, W.B. SCHWARTZ (1982). Modeling knowledge of the
patient in acid-base and electrolyte disorders, in: P. SZOLOVITS, (ed.) Artificial Intel-
ligence in Medicine, Westview Press, Boulder, Colorado.

[Pauker76] S. PAUKER, A. GORRY, J. KASSIRER, W. SCHWATZ (1976). Towards the
simulation of clinical cognition ... Taking a present illness by computer, American Jour-
nal of Medicine, vol. 60, pp. 981-996.

[Pearl88] J. PEARL (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann Publishers, Palo Alto.

[Quillian68] M.R. QUILLIAN (1968). Semantic memory, in: M. MINSKY (ed.), Semantic
Information Processing, MIT Press, Cambridge, Massachusetts.

[Reboh81] R. REBOH (1981). Knowledge Engineering Techniques and Tools in the
PROSPECTOR Environment, Technical Note 243, SRI International, Menlo Park, Cal-
ifornia.

[Reiter80] R. REITER (1980). A logic for default reasoning, Artificial Intelligence, vol. 13,
pp. 81-132.

[Robinson65] J.A. ROBINSON (1965). A machine-oriented logic based on the resolution prin-
ciple, Journal of the ACM, vol. 12, pp. 23-41.

[Robinson79] J.A. ROBINSON (1979). Logic: Form and Function. The Mechanization of
Deductive Reasoning, North-Holland, New York.

[Sammet69] J.E. SAMMET (1969). LISP 1.5, in: J.E. SAMMET (ed.), Programming Lan-
guages: History and Fundamentals, Prentice-Hall Inc., Englewood Cliffs, New Jersey.

[Sauers88] R. SAUERS (1988). Controlling Expert Systems, in: L. BOLC, M.J. COOMBS
(eds.), Expert System Applications, Springer-Verlag, Berlin.

[Selz22] O. SELZ (1922). Zur Psychologie des produktiven Denkens und des Irrtums,
Friedrich Cohen, Bonn.

[Shafer76] G. SHAFER (1976). A Mathematical Theory of Evidence, Princeton University
Press, Princeton, N.J.

[Shortliffe75] E.H. SHORTLIFFE, B.G. BUCHANAN (1975). A model of inexact reasoning
in medicine, Mathematical Biosciences, vol. 23, pp. 351-379.



References 411

[Shortliffe76] E.H. SHORTLIFFE (1976). Computer-based Medical Consultations: MYCIN,
Elsevier, New York.

[Siekmann83a] J. SIEKMANN, G. WRIGHTSON (eds.) (1983). Automation of Reasoning
1. Classical Papers on Computational Logic 1957-1966, Springer-Verlag, Berlin.

[Siekmann83b] J. SIEKMANN, G. WRIGHTSON (eds.) (1983). Automation of Reasoning
2. Classical Papers on Computational Logic 1967-1970, Springer-Verlag, Berlin.

[Slagle65] J.R. SLAGLE (1965). Experiments with a deductive question-answering program,
Communications of the ACM, vol. 8, pp. 792-798.

[Smets88] P. SMETS, E.H. MAMDANI, D. DUBOIS, H. PRADE (1988). Non-Standard
Logics for Automated Reasoning, Academic Press, London.

[Smith83] R.G. SMITH, J.D. BAKER (1983). The DIPMETER ADVISOR System. A case
study in commercial expert system development, Proceedings of the 8th International
Joint Conference on Artificial Intelligence, pp. 122-129.

[Sowa84] J.F. SOWA (1984). Conceptual Structures: Information Processing in Mind and
Machine, Addison-Wesley, Reading, Massachusetts.

[Steele84] G.L. STEELE (1984). COMMON LISP: The Language, Digital Press.

[Stefik79] M.J. STEFIK (1979). An examination of a frame-structured representation system,
Proceedings of the 6th International Joint Conference on Artificial Intelligence, pp. 845-
852.

[Stefik84] M.J. STEFIK, D.G. BOBROW (1984). Object-oriented programming: themes and
variations, The AI Magazine, vol. 2, no. 4, pp. 40-62.

[Stefik86] M.J. STEFIK, D.G. BOBROW, K.M. KAHN (1986). Integrating access-oriented
programming into a multi-paradigm environment, IEEE Software, vol. 3, no. 1, pp.
10-18.

[Sterling86] L. STERLING, E. SHAPIRO (1986). The Art of PROLOG: Advanced Program-
ming Techniques, The MIT Press, Cambridge, Massachusetts.

[Swartout83] W.R. SWARTOUT (1983), XPLAIN: a system for creating and explaining ex-
pert system consulting programs, Artificial Intelligence, vol. 21, pp. 285-325.

[Szolovits78] P. SZOLOVITS, S.G. PAUKER (1978). Categorical and probabilistic reasoning
in medical diagnosis, Artificial Intelligence, vol. 11, pp. 115-144.

[Szolovits82] P. SZOLOVITS (ed.) (1982). Artificial Intelligence in Medicine, Westview
Press, Boulder, Colorado.

[Thayse88] A. THAYSE (1988). From Standard Logic to Logic Programming, John Wiley
& Sons, Chichester.

[Touretzky86] D.S. TOURETZKY (1986). The Mathematics of Inheritance Systems, Pit-
man, London.



412 References

[Touretzky87] D.S. TOURETZKY, J.F. HORTY, R.H. THOMASON (1987). A clash of in-
tuitions: the current state of non-monotonic multiple inheritance systems, Proceedings
of the 10th International Joint Conference on Artificial Intelligence, pp. 476-482.

[Vesonder83] G.T. VESONDER, S.J. STOLFO, J.E. ZIELINSKI, F.D. MILLER, D.H. COPP
(1983). ACE: an expert system for telephone cable maintenance, Proceedings of the 8th
International Joint Conference on Artificial Intelligence, pp. 116-121.

[Waterman78] D.A. WATERMAN, F. HAYES-ROTH (1978). Pattern-directed Inference Sys-
tems, Academic Press, New York.

[Weiner80] J.L. WEINER (1980), Blah, a system which explains its reasoning, Artificial
Intelligence, vol. 15, pp. 19-48.

[Weiss78] S. WEISS, C. KULIKOWSKI, A. SAFIR (1978). A model-based method for
computer-aided medical decision making, Artificial Intelligence, vol. 11, pp. 145-172.

[Winston84] P.H. WINSTON (1984). Artificial Intelligence, Addison-Wesley, Reading, Mas-
sachusetts.

[Winston89] P.H. WINSTON, B.K.P HORN (1989). LISP 3rd ed, Addison-Wesley, Reading,
Massachusetts.

[Wos84] L. WOS, R. OVERBEEK, E. LUSK, J. BOYLE (1984). Automatic Reasoning:
Introduction and Applications, Prentice-Hall Inc., Englewood Cliffs, New Jersey.

[Zadeh75] L.A. ZADEH (1975). Fuzzy logic and approximate reasoning, Synthese, vol. 30,
pp. 407-428.

[Zadeh83] L.A. ZADEH (1983). The role of fuzzy logic in the management of uncertainty in
expert systems, Fuzzy Sets & Systems, vol. 11, no. 3, pp. 199-228.

[Zarri84] G.P. ZARRI (1984). Expert systems and information retrieval: an experiment in
the domain of biographical data management, International Journal of Man - Machine
Studies, vol. 20, pp. 87-106.


