
Poster: Prevent Session Hijacking

Willem Burgers Roel Verdult Marko van Eekelen

Institute for Computing and Information Sciences,

Radboud University Nijmegen, The Netherlands

willemburgers@student.ru.nl, {rverdult,marko}@cs.ru.nl

I. Introduction

Web applications are hard to secure. Many web applications suffer

from security vulnerabilities that can be exploited by an attacker.

A widely used method to secure web applications involves the

creation of an application session for which the user has to

authenticate using a registered login name and corresponding

password. Before such a session is established, a secure encrypted

communication channel is negotiated at a network level to ensure

confidentiality. However, the creation of a session and the use of

encrypted communication is not sufficient to make an application

secure against all attacks.

The focus of our paper [1] is on one of the serious attacks:

session stealing or session hijacking. This is aimed at the session

mechanism itself. An adversary takes over a valid user session

with a recovered authentication token that is distributed to an

genuine user. From this point on we call such a valid authen-

tication token a session identifier (session ID). Most modern

websites use encrypted communication between the client and the

server to prevent an adversary from eavesdropping this session ID.

However, it does not prevent stealing the session ID by means of

malicious scripts or rogue browser plug-ins.

A user whose session is stolen may not notice anything strange

while the attack is performed, since the execution of the script

may run in the background without changing anything on the

screen of the user. This means that the user can be offered

little advice in order to prevent such attacks. The main advice

is to avoid surfing to pages hosted on the same domain that

could be infected by malicious scripts during an active session.

This means always closing an open session before surfing to

a website that does not require the same session credentials.

Such advice does not help much if the application for which

the session is opened, is itself vulnerable to cross site scripting.

This is the case for many web applications where data can be

entered by users and is to be read by other users. Vulnerabilities

can occur if the output, generated from the entered data, is not

properly encoded. Output encoding prevents executable scripts by

replacing meaningful characters with harmless annotated symbols.

For example, when an adversary is able to post a malicious script,

it could compromise the complete website and steal all active

sessions. In that case an attack can happen directly after a genuine

user visits the website only once.

Vulnerabilities like these may greatly reduce the trust of the

user in the system. The user feels very insecure since there seems

to be no way for the user to prevent such an attack.

A. Our contribution

The contributions of this paper are summarized accordingly:

• A new method of binding the application session to the cryp-

tographic network credentials is presented that effectively

prevents hijacking of web sessions.

• A fully functional prototype implementation of the method

(for cookies) has been built and released under the royalty

free BSD license

II. Related Work

A. Session hijacking prevention

There are several other proposals to prevent session hijacking.

Johns (2006) [4] proposes a solution where the cookies in which

the session ID is kept are sent from a different subdomain. This

way the JavaScript code cannot get the cookie, because it does not

fall under the same-origin policy, so the cookie is safe. This does

not prevent every type of attack though. With browser hijacking

or XSS propagation, session cookies can still be obtained by an

attacker. Johns uses URL randomization and one-time URLs to

prevent these attacks from being executed. He also writes that

these methods are not meant as a complete replacement for input

and output validation in the application, but it is an extra layer

of protection. This sure is a good way of preventing session

hijacking, though it is a lot of hassle to implement. Most of the

application needs to be rewritten.

Another method is to run a piece of software on the client

computer which intercepts the ‘Set-Cookie’ header before it is

sent to the browser. This way the cookies will never be in

the browser at all. This method is proposed by Nikiforakis et

al. (2011) [6]. Without much overhead this system will prevent

JavaScript code from accessing the cookie information. This still

relies on the client side. A secure implementation without memory

leaks makes this a good solution. As mentioned in Sect. ??, this

paper is based on the work of Oppliger et al. [7]. They propose

to bind the application session to the SSL/TLS session to prevent

MITM attacks. To bind the two sessions, they use either a software

token (like a client cerficate or a private key) or a hardware token

(like a smartcard or dedicated device). This is a safe solution, but

it requires the distribution of a pre shared key to the client/user.

The same binding idea can be used for session hijacking, but we

propose a different binding method.

The only other paper that uses the binding of SSL/TLS Session-

Aware User Authentication as a basis is a proposal by Chen et

al. [2]. They make use of a two factor authentication method by

means of a separate device (3g phone). With this device they bind

the SSL/TLS session to the application session. It requires both

client and server side changes.

In Fig. II.1, an overview is given of the modifications that are

required to secure sessions with the various proposed methods.

Software patches System changes
Protection method Side

browser application software token hardware token server

SessionSafe [4] Server no yes no no no

SessionShield [6] Client yes no no no no

Session-Aware [7] Server no yes yes1 yes1 no

TLS-SA + GAA [2] Both no yes2 no yes yes2

SBP Server no no no no no

1The implementation can work with either a software token or a hardware token
2Either the server application needs to be modified or install additional software

Fig. II.1: Comparison of patch requirements to prevent session stealing

B. Related attack setups

There are also papers that describe attacks on cookies and

sessions. As mentioned in Sect. ?? there exist attacks like Browser

Exploit Against SSL/TLS (BEAST) [3] and CRIME to steal

cookies. Both attacks are implemented in JavaScript for speed,

but can be run on any user level. BEAST and CRIME use

known plaintext attacks to guess the unencrypted cookie that is

sent over an encrypted SSL connection. The cookie is guessed

character by character. This brute force method allows to guess

an entire cookie. Where BEAST works only on certain versions

of SSL/TLS, CRIME works for any version. CRIME makes use

of the compression in SSL/TLS to guess the cookie. The flaws of

compression in combination with encryption are already described

in a paper by John Kelsey in 2002 [5]. There is a proof of concept

for the CRIME attack. With some modifications it can be used

to actually capture cookies even though they have the http-only

property. This is just another method to get the cookie from the

client. Our proposed method also defends against both attacks as

depicted in the attacker model. Even though they can steal the

cookie. It is still hard to copy the SSL session.

C. Session management

This section describes how the SBP handles a request. The first

thing that the SBP server does when it gets a request, is redirect

the user to the HTTPS port if the user did not connect on that

port already. This will start the SSL/TLS handshake to establish

the necessary identifiers. Fig. II.2 shows the SSL negotiation in

the first block (lines 0 to 10). All further traffic will go through

this SSL connection.

When the SSL connection is made, the application session can

be established. The first request sent to the server does not contain

a cookie, because the server has not set any cookies yet. The

SBP can simply replay the request to the application server. Any

request on a page without a session cookie results in a redirect to

the login page. When the user logs in, the application server will

send a ‘Set-Cookie’ header. This header is intercepted by SBP

and the value of the cookie is encrypted with the key kc, which

is a hash of a secret system key Kp and the SSL master key k

concatenated, performed by kc ← hash(Kp||k). In our prototype,

we use SHA256 as the hashing algorithm. Every encryption

with AES-256-cbc (denoted by {−}) requires a fresh random

Initialization Vector (IV) such that an attacker cannot generate

multiple session ID values encrypted with the same key and IV.

We generate a new random IV for every new ‘Set-Cookie’ header.

The IV is not required to be secret. The cookie is encrypted as

follows {cookie}kc
← encrypt(cookie, kc, IV). In order to later

retrieve the IV, we concatenate it with the encrypted cookie. The

encrypted version of the header {cookie}kc
and the IV is sent

to the client. This process is shown in the second block (lines

11 to 19) in Fig. II.2. From this point on with each request by

the user, the client sends the encrypted cookie along with every

request. When a request is received with encrypted session data,

SBP decrypts the value of the cookie and send the plaintext cookie

to the back end server. This can be seen in the final block (lines

20 to 25) of Fig. II.2.
Client Proxy Server

SSL/TLS negotiation

0 picks challenge cC

1 cC
−−−−−−−−−−−−−−−−−→

2 picks connection id

3 id, certificate
←−−−−−−−−−−−−−−−−−

4 picks secret S

5 {S}publickeyproxy
−−−−−−−−−−−−−−−−−→

6 k← hash(S, cC , id) k ← hash(S, cC , id)

7 {id}k
−−−−−−−−−−−−−−−−−→

8 verify {id}k
9 {cC}k

←−−−−−−−−−−−−−−−−−
10 verify {cC}k

SSL/TLS initialized

11 request
−−−−−−−−−−−−−−−−−→

12 forward request

13 request
−−−−−−−−−−−−→

14 get cookie

15 answer, cookie
←−−−−−−−−−−−−

16 kc ← hash(Kp||k)

17 picks IV

18 answer, IV, {cookie}kc
←−−−−−−−−−−−−−−−−−

19 stores IV, {cookie}kc

Session established

20 request, IV, {cookie}kc
−−−−−−−−−−−−−−−−−→

21 kc ← hash(Kp||k)

22 request, cookie
−−−−−−−−−−−−→

23 answer
←−−−−−−−−−−−−

24 forward answer

25 answer
←−−−−−−−−−−−−−−−−−

Request handled

Fig. II.2: Session Binding Proxy protocol

References

[1] Willem Burgers, Roel Verdult, and Marko van Eekelen. Prevent session
hijacking by binding the session to the cryptographic network credentials.
In 18th Nordic Conference on Secure IT Systems (NordSec 2013), volume
8208 of Lecture Notes in Computer Science, pages 33–50. Springer-Verlag,
2013.

[2] Chunhua Chen, Chris J. Mitchell, and Shaohua Tang. SSL/TLS session-
aware user authentication using a gaa bootstrapped key. In 5th IFIP WG

11.2 international conference on Information security theory and practice:

security and privacy of mobile devices in wireless communication (WISTP

2011), volume 6633 of Lecture Notes in Computer Science, pages 54–68.
Springer-Verlag, 2011.

[3] Thai Duong and Juliano Rizzo. Here come the XOR Ninjas. White paper,
Netifera, May 2011.

[4] Martin Johns. SessionSafe: Implementing XSS immune session handling.
In 11th European Conference on Research in Computer Security (ESORICS

2006), volume 4189 of Lecture Notes in Computer Science, pages 444–460.
Springer-Verlag, 2006.

[5] John Kelsey. Compression and information leakage of plaintext. In Joan
Daemen and Vincent Rijmen, editors, 9th Fast Software Encryption (FSE

2002), volume 2365 of Lecture Notes in Computer Science, pages 95–102.
Springer-Verlag, 2002.

[6] Nick Nikiforakis, Wannes Meert, Yves Younan, Martin Johns, and Wouter
Joosen. SessionShield: Lightweight protection against session hijacking.
In 3rd International Symposium Engineering Secure Software and Systems

(ESSoS 2011), volume 6542 of Lecture Notes in Computer Science, pages
87–100. Springer-Verlag, 2011.

[7] Rolf Oppliger, Ralf Hauser, and David Basin. SSL/TLS session-aware user
authentication – or how to effectively thwart the man-in-the-middle. Computer

Communications, 29(12):2238–2246, August 2006.

