Poster: Prevent Session Hijacking

Willem Burgers

Roel Verdult

Marko van Eekelen

Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands
willemburgers @student.ru.nl, {rverdult,marko}@cs.ru.nl

I. Introduction

Web applications are hard to secure. Many web applications suffer
from security vulnerabilities that can be exploited by an attacker.
A widely used method to secure web applications involves the
creation of an application session for which the user has to
authenticate using a registered login name and corresponding
password. Before such a session is established, a secure encrypted
communication channel is negotiated at a network level to ensure
confidentiality. However, the creation of a session and the use of
encrypted communication is not sufficient to make an application
secure against all attacks.

The focus of our paper [1] is on one of the serious attacks:
session stealing or session hijacking. This is aimed at the session
mechanism itself. An adversary takes over a valid user session
with a recovered authentication token that is distributed to an
genuine user. From this point on we call such a valid authen-
tication token a session identifier (session ID). Most modern
websites use encrypted communication between the client and the
server to prevent an adversary from eavesdropping this session ID.
However, it does not prevent stealing the session ID by means of
malicious scripts or rogue browser plug-ins.

A user whose session is stolen may not notice anything strange
while the attack is performed, since the execution of the script
may run in the background without changing anything on the
screen of the user. This means that the user can be offered
little advice in order to prevent such attacks. The main advice
is to avoid surfing to pages hosted on the same domain that
could be infected by malicious scripts during an active session.
This means always closing an open session before surfing to
a website that does not require the same session credentials.
Such advice does not help much if the application for which
the session is opened, is itself vulnerable to cross site scripting.
This is the case for many web applications where data can be
entered by users and is to be read by other users. Vulnerabilities
can occur if the output, generated from the entered data, is not
properly encoded. Output encoding prevents executable scripts by
replacing meaningful characters with harmless annotated symbols.
For example, when an adversary is able to post a malicious script,
it could compromise the complete website and steal all active
sessions. In that case an attack can happen directly after a genuine
user visits the website only once.

Vulnerabilities like these may greatly reduce the trust of the
user in the system. The user feels very insecure since there seems
to be no way for the user to prevent such an attack.

A. Our contribution

The contributions of this paper are summarized accordingly:

e A new method of binding the application session to the cryp-
tographic network credentials is presented that effectively
prevents hijacking of web sessions.

e A fully functional prototype implementation of the method
(for cookies) has been built and released under the royalty
free BSD license

II. Related Work
A. Session hijacking prevention

There are several other proposals to prevent session hijacking.
Johns (2006) [4] proposes a solution where the cookies in which
the session ID is kept are sent from a different subdomain. This
way the JavaScript code cannot get the cookie, because it does not
fall under the same-origin policy, so the cookie is safe. This does
not prevent every type of attack though. With browser hijacking
or XSS propagation, session cookies can still be obtained by an
attacker. Johns uses URL randomization and one-time URLs to
prevent these attacks from being executed. He also writes that
these methods are not meant as a complete replacement for input
and output validation in the application, but it is an extra layer
of protection. This sure is a good way of preventing session
hijacking, though it is a lot of hassle to implement. Most of the
application needs to be rewritten.

Another method is to run a piece of software on the client
computer which intercepts the ‘Set-Cookie’ header before it is
sent to the browser. This way the cookies will never be in
the browser at all. This method is proposed by Nikiforakis et
al. (2011) [6]. Without much overhead this system will prevent
JavaScript code from accessing the cookie information. This still
relies on the client side. A secure implementation without memory
leaks makes this a good solution. As mentioned in Sect. ??, this
paper is based on the work of Oppliger et al. [7]. They propose
to bind the application session to the SSL/TLS session to prevent
MITM attacks. To bind the two sessions, they use either a software
token (like a client cerficate or a private key) or a hardware token
(like a smartcard or dedicated device). This is a safe solution, but
it requires the distribution of a pre shared key to the client/user.
The same binding idea can be used for session hijacking, but we
propose a different binding method.

The only other paper that uses the binding of SSL/TLS Session-
Aware User Authentication as a basis is a proposal by Chen et
al. [2]. They make use of a two factor authentication method by
means of a separate device (3g phone). With this device they bind

the SSL/TLS session to the application session. It requires both
client and server side changes.

In Fig. II.1, an overview is given of the modifications that are
required to secure sessions with the various proposed methods.

Software patches
browser | application server
Server no yes no no no

SessionShield [6] Client yes no no no no
T T

System changes

Protection method Side
software token | hardware token

SessionSafe [4]

11 to 19) in Fig. II.2. From this point on with each request by
the user, the client sends the encrypted cookie along with every
request. When a request is received with encrypted session data,
SBP decrypts the value of the cookie and send the plaintext cookie
to the back end server. This can be seen in the final block (lines
20 to 25) of Fig. I1.2.

Client Proxy Server

Session-Aware [7] Server no yes yes yes no
TLS-SA + GAA [2] Both no yes2 no yes yes2
SBP Server no no no no no

The implementation can work with either a software token or a hardware token
2Either the server application needs to be modified or install additional software

Fig. II.1: Comparison of patch requirements to prevent session stealing

B. Related attack setups

There are also papers that describe attacks on cookies and
sessions. As mentioned in Sect. ?? there exist attacks like Browser
Exploit Against SSL/TLS (BEAST) [3] and CRIME to steal
cookies. Both attacks are implemented in JavaScript for speed,
but can be run on any user level. BEAST and CRIME use
known plaintext attacks to guess the unencrypted cookie that is
sent over an encrypted SSL connection. The cookie is guessed
character by character. This brute force method allows to guess
an entire cookie. Where BEAST works only on certain versions
of SSL/TLS, CRIME works for any version. CRIME makes use
of the compression in SSL/TLS to guess the cookie. The flaws of
compression in combination with encryption are already described
in a paper by John Kelsey in 2002 [5]. There is a proof of concept
for the CRIME attack. With some modifications it can be used
to actually capture cookies even though they have the http-only
property. This is just another method to get the cookie from the
client. Our proposed method also defends against both attacks as
depicted in the attacker model. Even though they can steal the
cookie. It is still hard to copy the SSL session.

C. Session management

This section describes how the SBP handles a request. The first
thing that the SBP server does when it gets a request, is redirect
the user to the HTTPS port if the user did not connect on that
port already. This will start the SSL/TLS handshake to establish
the necessary identifiers. Fig. II.2 shows the SSL negotiation in
the first block (lines 0 to 10). All further traffic will go through
this SSL connection.

When the SSL connection is made, the application session can
be established. The first request sent to the server does not contain
a cookie, because the server has not set any cookies yet. The
SBP can simply replay the request to the application server. Any
request on a page without a session cookie results in a redirect to
the login page. When the user logs in, the application server will
send a ‘Set-Cookie’ header. This header is intercepted by SBP
and the value of the cookie is encrypted with the key k., which
is a hash of a secret system key K, and the SSL master key &
concatenated, performed by k. <— hash(Kp||k). In our prototype,
we use SHA256 as the hashing algorithm. Every encryption
with AES-256-cbc (denoted by {—}) requires a fresh random
Initialization Vector (IV) such that an attacker cannot generate
multiple session ID values encrypted with the same key and IV.
We generate a new random IV for every new ‘Set-Cookie’ header.
The IV is not required to be secret. The cookie is encrypted as
follows {cookie}y, + encrypt(cookie, k., IV'). In order to later
retrieve the IV, we concatenate it with the encrypted cookie. The
encrypted version of the header {cookie}y. and the IV is sent
to the client. This process is shown in the second block (lines

SSL/TLS

picks challenge cc:
cc
¢t
picks connection id
id, certificate
picks secret S
{S}pubtickeuproay
k < hash(S, cc, id) k <+ hash(S, cc, id)

{id}

Coo ue ME W —O

verify {id}x
{ectr

10| verify {cc}e

SSL/TLS initialized

11 request
12 forward request
13 request
14 get cookie
15 answer, cookie
2NSWer, coolvre
16 ke « hash(K,||k)
17 picks IV
18 answer, I'V, {cookie}y,
T 00T ke
19 stores 1V, {cookie} .

Session

20 request, IV, {cookie}y,
T D NOO e ke,
21 ke + hash(Kp||k)
22 request, cookie
B
23 answer
. answer
24 forward answer
25 answer

Request handled

Fig. I1.2: Session Binding Proxy protocol
References

[1] Willem Burgers, Roel Verdult, and Marko van Eekelen. Prevent session
hijacking by binding the session to the cryptographic network credentials.
In 18th Nordic Conference on Secure IT Systems (NordSec 2013), volume
8208 of Lecture Notes in Computer Science, pages 33-50. Springer-Verlag,
2013.

[2] Chunhua Chen, Chris J. Mitchell, and Shaohua Tang. SSL/TLS session-
aware user authentication using a gaa bootstrapped key. In 5th IFIP WG
11.2 international conference on Information security theory and practice:
security and privacy of mobile devices in wireless communication (WISTP
2011), volume 6633 of Lecture Notes in Computer Science, pages 54-68.
Springer-Verlag, 2011.

[3] Thai Duong and Juliano Rizzo. Here come the XOR Ninjas. White paper,
Netifera, May 2011.

[4] Martin Johns. SessionSafe: Implementing XSS immune session handling.
In 71th European Conference on Research in Computer Security (ESORICS
2006), volume 4189 of Lecture Notes in Computer Science, pages 444—460.
Springer-Verlag, 2006.

[5] John Kelsey. Compression and information leakage of plaintext. In Joan
Daemen and Vincent Rijmen, editors, 9th Fast Software Encryption (FSE
2002), volume 2365 of Lecture Notes in Computer Science, pages 95-102.
Springer-Verlag, 2002.

[6] Nick Nikiforakis, Wannes Meert, Yves Younan, Martin Johns, and Wouter
Joosen. SessionShield: Lightweight protection against session hijacking.
In 3rd International Symposium Engineering Secure Software and Systems
(ESSoS 2011), volume 6542 of Lecture Notes in Computer Science, pages
87-100. Springer-Verlag, 2011.

[71 Rolf Oppliger, Ralf Hauser, and David Basin. SSL/TLS session-aware user
authentication — or how to effectively thwart the man-in-the-middle. Computer
Communications, 29(12):2238-2246, August 2006.

