## Some algebraic views on chi

Jan Schoone



Thanksgiving 2019

#### Goal

Consider the quadratic map  $\chi_n$ :

$$\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$$
$$(a_0, \dots, a_{n-1}) \mapsto (b_0, \dots, b_{n-1})$$

where  $b_i = a_i + (a_{i+1} + 1)a_{i+2}$  (indices modulo n).

Using linear algebra, we can view  $\chi_n$  as

$$\chi'_n \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$
 $\alpha \mapsto ?$ 

## Why is it possible?

#### Theorem 1

 $\mathbb{F}_2^n \cong \mathbb{F}_{2^n}$  as vector spaces.

Reason: Both are n-dimensional  $\mathbb{F}_2$ -vector spaces.

Given 
$$\mathbb{F}_2^n=\llbracket\ e_0,\dots,e_{n-1}\ \rrbracket$$
 and  $\mathbb{F}_{2^n}=\llbracket\ f_0,\dots,f_{n-1}\ \rrbracket$ , then

$$\phi \colon \mathbb{F}_2^n \to \mathbb{F}_{2^n}, \ v = \sum \lambda_i e_i \mapsto \lambda_i f_i$$

is a linear map.

$$v \in \operatorname{Ker} \phi \iff \phi(v) = 0$$
  
 $\iff \sum_{i} \lambda_{i} f_{i} = 0$   
 $\iff \lambda_{i} = 0 \forall i$   
 $\iff v = 0$ 

## What is $\mathbb{F}_{2^n}$ ?

#### Definition 2

 $\mathbb{F}_{2^n}:=\mathbb{F}_2[X]/(f)$  where f is an irreducible polynomial of degree n.

E.g., 
$$\mathbb{F}_8 = \mathbb{F}_2[X]/(X^3 + X + 1)$$
. So for  $f \in \mathbb{F}_2[X]$  we consider  $\overline{f} = f \mod X^3 + X + 1$ .

Writing 
$$\alpha=\overline{X}$$
 we get  $\alpha^3+\alpha+1=0,$  hence  $\alpha^3=\alpha+1.$ 

$$\mathbb{F}_8 = \{ a + b\alpha + c\alpha^2 \mid a, b, c \in \mathbb{F}_2 \}.$$

Clearly 3-dimensional.

### The isomorphism

We have now found the basis for  $\mathbb{F}_8$ :

$$\mathbb{F}_8 = \left[ 1, \alpha, \alpha^2 \right].$$

The isomorphism becomes

$$\phi \colon \mathbb{F}_2^3 \to \mathbb{F}_8, (a, b, c) \mapsto a + b\alpha + c\alpha^2.$$

 $\chi_3'\colon \mathbb{F}_8 o \mathbb{F}_8$  is now given by

$$\chi_3' = \phi \circ \chi_3 \circ \phi^{-1}.$$

### Intermezzo: Lagrange Interpolation

Given a function  $f \colon K \to K$  and a set of pairs

$$(x_0, f(x_0)), \dots, (x_{m-1}, f(x_{m-1}))$$

we can approximate f by a univariate polynomial in K.

$$\ell_j(t) = \prod_{\substack{i=0,\dots,m-1\\i\neq j}} \frac{t-x_i}{x_j - x_i}$$

are the interpolation polynomials.

Then 
$$\hat{f}(t) = \sum_{i=0}^{m-1} f(x_i) \cdot \ell_i(t)$$
.

Remark:

$$\ell_j(x_i) = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

So 
$$\hat{f}(x_i) = f(x_i)$$
 for all  $i \in \{0, ..., m-1\}$ .

# Finding univariate expression for $\chi_3'$

We apply Lagrange Interpolation on  $\chi_3'$ .

$$\widehat{\chi_3'}(t) = \alpha^3 t^6 + \alpha^3 t^5 + t^4 + \alpha^5 t^3 + \alpha^2 t$$

But taking the isomorphism to be

$$\phi \colon (a, b, c) \mapsto c + b\alpha + c\alpha^2$$

we get:

$$\widehat{\chi'_3}(t) = \alpha^3 t^6 + \alpha^3 t^5 + \alpha^4 t^4 + \alpha^5 t^3 + \alpha^5 t^2 + \alpha t.$$

### Remarks on interpolation

- Since we did the interpolation over all possible inputs, we have  $\widehat{\chi_3'} = \chi_3'$ .
- For the same reason, we don't need to compute any inverses for the interpolation polynomials.

REASON: We have

$$\ell_j(t) = \prod_{\substack{i=0,\dots,m-1\\i\neq j}} \frac{t-x_i}{x_j - x_i} = \frac{\prod t - x_i}{\prod x_j - x_i}$$

and

$$\prod_{\substack{i=0,\dots,m-1\\i\neq j}} x_j - x_i = \prod_{\beta \in \mathbb{F}_{2^n}^*} \beta = 1 \cdot \gamma \cdot \gamma^2 \cdots \gamma^{2^n - 2}$$

$$= \gamma^{\sum_{i=0}^{2^{n}-2} i} = \gamma^{\frac{1}{2}(2^{n}-2)(2^{n}-1)} = 1.$$

#### Intermezzo: Normal basis I

#### Definition 3

Given a finite field  $\mathbb{F}_{q^n}$ , then  $\varphi_{\mathcal{F}} \colon \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}, x \mapsto x^q$  is called the Frobenius automorphism.

#### Theorem 4

The only automorphisms of  $\mathbb{F}_{q^n}$  are  $\mathrm{id}, \varphi_{\mathcal{F}}, \varphi_{\mathcal{F}}^2, \ldots, \varphi_{\mathcal{F}}^{n-1}$ .

#### Definition 5

An element  $\beta \in \mathbb{F}_{q^n}$  is called a normal element of  $\mathbb{F}_{q^n}$  if the set

$$\mathcal{N}_{\beta} = \{\beta, \varphi_{\mathcal{F}}(\beta), \dots, \varphi_{\mathcal{F}}^{n-1}(\beta)\}$$

is a linear independent set.

We then call  $\mathcal{N}_{\beta}$  a normal basis for  $\mathbb{F}_{a^n}$ .

### A normal basis for $\mathbb{F}_8$

 $\alpha^3$  is a normal element of  $\mathbb{F}_8$ .

REASON:

$$\left[ \left[ \begin{array}{c} \alpha^3 \\ \alpha^6 \\ \alpha^5 \end{array} \right] \right] = \left[ \left[ \begin{array}{c} \alpha+1 \\ \alpha^2+1 \\ \alpha^2+\alpha+1 \end{array} \right] \right] = \left[ \left[ \begin{array}{c} \alpha+1 \\ \alpha^2+1 \\ \alpha \end{array} \right] = \left[ \left[ \begin{array}{c} 1 \\ \alpha^2 \\ \alpha \end{array} \right] \right]$$

so  $\{\alpha^3, \alpha^6, \alpha^5\}$  spans the entire  $\mathbb{F}_8$ .

An isomorphism can be found in

$$\mathbb{F}_2^3 \to \mathbb{F}_{2^3}, (a, b, c) \mapsto a\alpha^5 + b\alpha^6 + c\alpha^3$$

Used in cryptography, since squaring is now only a left-shift.

# Finding a univariate representation of $\chi_3'$ over $\mathbb{F}_2$

We apply Lagrange Interpolation again, to find:

$$\chi_3'(t) = t^6 + t^4 + t^2$$

It is now a polynomial in  $\mathbb{F}_2[t]!$ 

Changing the isomorphism to

$$(a,b,c) \mapsto a\alpha^3 + b\alpha^6 + c\alpha^5$$

gives us:

$$\chi_3'(t) = t^6.$$

#### Future Research

- Find an argument as to why the coefficients are in  $\mathbb{F}_{2^n}$  with any basis, yet with a normal basis they are in  $\mathbb{F}_2$ ?
- Examples show that varying the irreducible polynomial, or the normal element, may yield different results. Is the difference in the results predictable in a clear way?
- ullet What irreducible polynomial and normal element combination gives the polynomial representation of  $\chi_n$  that has the lowest degree / is the most sparse?

### Questions

$$\chi_5(t) = t^{18} + t^{17} + t^{16} + t^{10} + t^9 + t^6 + t^4 + t^2 + t$$