Cyclic properties of even-period χ

```
Joan Daemen, Jan Schoone
Radboud University
ESCADA meeting
25 March 2020
```


ESCADA

Part I

Introduction and goal - I

Consider the space $\mathbb{F}_{2}^{\mathbb{N}}$ of infinite binary sequences.

Definition

A state $\sigma \in \mathbb{F}_{2}^{\mathbb{N}}$ is called n-periodic if

$$
\sigma \ll n=\sigma .
$$

We write Σ_{n} for the set of all n-periodic states.

Lemma

For each $n \geq 1$ we find that Σ_{n} is an \mathbb{F}_{2}-vector space of dimension n.

We consider, for even n, the quadratic map χ_{n} :

$$
\begin{aligned}
\chi_{n}: \mathbb{F}_{2}^{n} & \rightarrow \mathbb{F}_{2}^{n} \\
\left(a_{0}, \ldots, a_{n-1}\right) & \mapsto\left(b_{0}, \ldots, b_{n-1}\right)
\end{aligned}
$$

where $b_{i}=a_{i}+\left(a_{i+1}+1\right) a_{i+2}$ (indices modulo n).
This χ_{n} corresponds to $\chi_{\mid \Sigma_{n}}: \Sigma_{n} \rightarrow \Sigma_{n}$.
We will study graphs of χ_{n} for $n=2^{k} \cdot 3$ in this presentation.

Example: $k=1, n=6$

1 time:

Name: 2-cycle 6 times:

Name: 4-cycle 1 time:

shape	number	number of states
1-cycle	1	1
2-cycle	12	24
4-cycle	6	24
prong	1	3
spin	2	$\frac{12}{64}$

$$
\begin{aligned}
S_{0} & :=\left\{x \in \mathbb{F}_{2}^{n} \mid x_{i}=0 \text { when } i \equiv 0\right. \\
S_{1} & :=\left\{x \in \mathbb{F}_{2}^{n} \mid x_{i}=0 \text { when } i \equiv 1 \quad(\bmod 2)\right\} \\
T & :=\mathbb{F}_{2}^{n} \backslash\left(S_{0} \cup S_{1}\right)
\end{aligned}
$$

We know that χ_{n} is bijective on T.
Also $\chi_{n}\left(S_{i}\right) \subset S_{i}$, and every non-zero element in S_{0} has two preimages.
Since χ_{n} is shift-invariant $\left(\chi_{n}(x \ll 1)=\chi_{n}(x) \ll 1\right)$, we can focus on S_{1} only.

Recap: Linearizing χ_{n}

Removing all zeroes in odd positions:

$$
\pi: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n / 2},\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mapsto\left(x_{0}, x_{2}, \ldots, x_{n-2}\right)
$$

This is bijective on S_{1}.

$$
\chi_{k}^{L}: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{k},\left(x_{0}, x_{1}, \ldots, x_{k-1}\right) \mapsto\left(x_{0}+x_{1}, x_{1}+x_{2}, \ldots, x_{k-1}+x_{0}\right)
$$

Part II

Example: $k=1, n=6$ revisited

1000110

4
-111000

>000111

110001

001110

A new vector space

Vector space isomorphism

$$
\begin{aligned}
\varphi: \mathbb{F}_{2}^{n} & \rightarrow \mathbb{F}_{2}[X] /\left(X^{n}+1\right) \\
\left(a_{0}, \ldots, a_{n-1}\right) & \mapsto \sum_{i=0}^{n-1} a_{i} X^{n-(i+1)}
\end{aligned}
$$

Since $n=2^{k} \cdot 3$, by the Chinese Remainder Theorem:

$$
\mathbb{F}_{2}[X] /\left(X^{n}+1\right) \cong \mathbb{F}_{2}[X] /(X+1)^{2^{k}} \times \mathbb{F}_{2}[X] /\left(X^{2}+X+1\right)^{2^{k}}
$$

Equivalence of maps

1) A left-shift is just a multiplication by X;

We have

$$
X \cdot \varphi\left(a_{0}, \ldots, a_{n-1}\right)=X \cdot \sum_{i=0}^{n-1} a_{i} X^{n-(i+1)}=\sum_{i=0}^{n-1} a_{i} X^{n-i}=\sum_{j=-1}^{n-2} a_{j+1} X^{n-(j+1)}
$$

while

$$
\varphi\left(\left(a_{0}, \ldots, a_{n-1}\right) \ll 1\right)=\varphi\left(a_{1}, \ldots, a_{n-1}, a_{0}\right)=\sum_{i=0}^{n-1} a_{i+1} X^{n-(i+1)}
$$

These terms are equal for all indices from 0 to $n-2$. We compare the term for $j=-1$ and $i=n-1$ and check if they are equal. They are: $a_{0} X^{n}=a_{0}$ and $a_{n} X^{0}=a_{0}$ since indices are modulo n.
2) $\chi_{k}^{L}=\mathrm{Id}+(\ll 1)$;

We have $\chi_{k}^{L}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=\left(x_{0}+x_{1}, x_{1}+x_{2}, \ldots, x_{n-1}+x_{0}\right)$, while on the other $10 / 16$

Example for $k=2, n=12$

Example for $k=2, n=12$; polynomially

Part III

Results and conjectures - I

Lemma

Let for a state σ be denoted $f_{\sigma}(X)$ for its polynomial representation.
Then σ has two preimages of the same period if and only if $X+1 \mid f_{\sigma}(X)$.

Proof.

σ has two preimages of the same period iff $\mathcal{H}(\sigma) \equiv 0(\bmod 2)$
iff $f_{\sigma}(X)$ has an even number of terms
iff $f_{\sigma}(1)=0$
iff $X+1 \mid f_{\sigma}(X)$.

Results and conjectures - II

Lemma

Let σ be a 2^{k}. 3-periodic state and $f_{\sigma}(X)$ be its polynomial representation.
We have: $X^{2^{k-2} \cdot 3}+1 \mid f_{\sigma}(X)$, if and only if σ is $2^{k-1} \cdot 3$-periodic.

Proof.

Sketch fFor $k=2$:
\Longrightarrow :) Let $f_{\sigma}(X)$ be given for a certain σ be divisible by $X^{3}+1$. Let $c(X)$ be such that $f_{\sigma}(X)=c(X) \cdot\left(X^{3}+1\right)$. Then the coefficients of the right-handside correspond to a bit-vector:

$$
\sigma=\left(c_{0}+c_{3}, c_{1}+c_{4}, c_{2}+c_{5}, c_{3}+c_{0}, c_{4}+c_{1}, c_{5}+c_{2}\right)
$$

Hence we see that σ is indeed 6 -periodic. \Leftarrow :) Let σ be 6 -periodic. Then $\sigma=\left(\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{0}, \sigma_{1}, \sigma_{2}\right)$. We can solve the system $\sigma_{0}=c_{0}+c_{3}, \sigma_{1}=c_{1}+c_{4}$, (o,

Lemma

Let $k \in\{1,2\}$. Let σ be a state of period $2^{k} \cdot 3$ and $f_{\sigma}(X)$ be its polynomial representation. If $X^{k}+1 \mid f_{\sigma}(X)$, then σ appears in a cycle.

Conjecture

The above lemma is true for all $k \geq 1$, albeit with $X^{2^{k-1}}+1$ instead of $X^{k}+1$.

Results and conjectures - IV

The previous results hold for $2^{k} \cdot p$.

Question

Do similar results also hold for $2^{k} \cdot p q$ with p and q different primes?

Question

Do similar results also hold for $2^{k} \cdot p^{2}$?

Thank you for your attention!

