

Cyclic properties of even-period χ

Joan Daemen, <u>Jan Schoone</u> Radboud University ESCADA meeting 25 March 2020

ESCADA

Part I

Consider the space $\mathbb{F}_2^\mathbb{N}$ of infinite binary sequences.

Definition

A state $\sigma \in \mathbb{F}_2^{\mathbb{N}}$ is called *n*-periodic if

 $\sigma \ll n = \sigma$.

We write Σ_n for the set of all *n*-periodic states.

Lemma

For each $n \ge 1$ we find that Σ_n is an \mathbb{F}_2 -vector space of dimension n.

We consider, for even *n*, the quadratic map χ_n :

$$\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$$

 $(a_0, \ldots, a_{n-1}) \mapsto (b_0, \ldots, b_{n-1})$

where $b_i = a_i + (a_{i+1} + 1)a_{i+2}$ (indices modulo n).

This χ_n corresponds to $\chi_{|\Sigma_n} \colon \Sigma_n \to \Sigma_n$.

We will study graphs of χ_n for $n = 2^k \cdot 3$ in this presentation.

1 time:

Name: 1-cycle 12 times:

а

a

b

shape	number	number of states
1-cycle	1	1
2-cycle	12	24
4-cycle	6	24
prong	1	3
spin	2	12
		64

$$S_0 := \{ x \in \mathbb{F}_2^n \mid x_i = 0 \text{ when } i \equiv 0 \pmod{2} \}$$

$$S_1 := \{ x \in \mathbb{F}_2^n \mid x_i = 0 \text{ when } i \equiv 1 \pmod{2} \}$$

$$T := \mathbb{F}_2^n \setminus (S_0 \cup S_1)$$

We know that χ_n is bijective on T.

Also $\chi_n(S_i) \subset S_i$, and every non-zero element in S_0 has two preimages.

Since χ_n is shift-invariant ($\chi_n(x\ll 1)=\chi_n(x)\ll 1$), we can focus on S_1 only.

Recap: Linearizing χ_n

Removing all zeroes in odd positions:

$$\pi: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}^{n/2}, \ (x_{0}, x_{1}, \dots, x_{n-1}) \mapsto (x_{0}, x_{2}, \dots, x_{n-2})$$

This is bijective on S_1 .

$$\chi_k^L \colon \mathbb{F}_2^k \to \mathbb{F}_2^k, \, (x_0, x_1, \dots, x_{k-1}) \mapsto (x_0 + x_1, x_1 + x_2, \dots, x_{k-1} + x_0)$$

Part II

Example: k = 1, n = 6 revisited

Vector space isomorphism

$$arphi \colon \mathbb{F}_2^n o \mathbb{F}_2[X]/(X^n+1)$$

 $a_0, \dots, a_{n-1}) \mapsto \sum_{i=0}^{n-1} a_i X^{n-(i+1)}$

Since $n = 2^k \cdot 3$, by the Chinese Remainder Theorem:

$$\mathbb{F}_2[X]/(X^n+1)\cong \mathbb{F}_2[X]/(X+1)^{2^k} imes \mathbb{F}_2[X]/(X^2+X+1)^{2^k}$$

Equivalence of maps

1) A left-shift is just a multiplication by X;

We have

$$X \cdot \varphi(a_0, \dots, a_{n-1}) = X \cdot \sum_{i=0}^{n-1} a_i X^{n-(i+1)} = \sum_{i=0}^{n-1} a_i X^{n-i} = \sum_{j=-1}^{n-2} a_{j+1} X^{n-(j+1)}$$

while

$$\varphi((a_0,\ldots,a_{n-1})\ll 1)=\varphi(a_1,\ldots,a_{n-1},a_0)=\sum_{i=0}^{n-1}a_{i+1}X^{n-(i+1)}$$

These terms are equal for all indices from 0 to n-2. We compare the term for j = -1 and i = n - 1 and check if they are equal. They are: $a_0 X^n = a_0$ and $a_n X^0 = a_0$ since indices are modulo n.

2) $\chi_k^L = \text{Id} + (\ll 1);$ We have $\chi_k^L(x_0, x_1, \dots, x_{n-1}) = (x_0 + x_1, x_1 + x_2, \dots, x_{n-1} + x_0)$, while on the other 10/16

Part III

Lemma

Let for a state σ be denoted $f_{\sigma}(X)$ for its polynomial representation.

Then σ has two preimages of the same period if and only if $X + 1 \mid f_{\sigma}(X)$.

Proof.

 σ has two preimages of the same period iff $\mathcal{H}(\sigma) \equiv 0 \pmod{2}$

iff $f_{\sigma}(X)$ has an even number of terms iff $f_{\sigma}(1) = 0$ iff $X + 1 \mid f_{\sigma}(X)$.

Results and conjectures - II

Lemma

Let σ be a $2^k \cdot 3$ -periodic state and $f_{\sigma}(X)$ be its polynomial representation. We have: $X^{2^{k-2} \cdot 3} + 1 | f_{\sigma}(X)$, if and only if σ is $2^{k-1} \cdot 3$ -periodic.

Proof.

Sketch fFor k = 2:

 \implies :) Let $f_{\sigma}(X)$ be given for a certain σ be divisible by $X^3 + 1$. Let c(X) be such that $f_{\sigma}(X) = c(X) \cdot (X^3 + 1)$. Then the coefficients of the right-handside correspond to a bit-vector:

$$\sigma = (c_0 + c_3, c_1 + c_4, c_2 + c_5, c_3 + c_0, c_4 + c_1, c_5 + c_2)$$

Hence we see that σ is indeed 6-periodic. \Leftarrow :) Let σ be 6-periodic. Then $\sigma = (\sigma_0, \sigma_1, \sigma_2, \sigma_0, \sigma_1, \sigma_2)$. We can solve the system $\sigma_0 = c_0 + c_3$, $\sigma_1 = c_1 + c_4$, $\sigma_2 = c_1 + c_2$ for its two solutions. They are each others complement, so both will

14 / 16

Lemma

Let $k \in \{1,2\}$. Let σ be a state of period $2^k \cdot 3$ and $f_{\sigma}(X)$ be its polynomial representation. If $X^k + 1 \mid f_{\sigma}(X)$, then σ appears in a cycle.

Conjecture

The above lemma is true for all $k \ge 1$, albeit with $X^{2^{k-1}} + 1$ instead of $X^k + 1$.

The previous results hold for $2^k \cdot p$.

Question

Do similar results also hold for $2^k \cdot pq$ with p and q different primes?

Question

Do similar results also hold for $2^k \cdot p^2$?

Thank you for your attention!