

Order of odd-period χ

Joan Daemen, <u>Jan Schoone</u> Radboud University ESCADA meeting 10 February 2021

ESCADA

$$\chi_{n} \colon \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}^{n}, x \mapsto y$$

$$y_{i} = x_{i} + (x_{i+1} + 1)x_{i+2} \qquad \text{(indices modulo } n\text{)}$$

$$\tau_{n} \colon \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}^{n}, x \mapsto y$$

$$y_{i} = x_{i+1} \qquad \text{(indices modulo } n\text{)}$$

$$\tau_{n} \colon (x_{0}, x_{1}, \dots, x_{n-1}) \mapsto (x_{1}, \dots, x_{n-1}, x_{0})$$

We have $\chi_n \circ \tau_n = \tau_n \circ \chi_n$. (Shift invariance)

Example

 $\chi_5(00101) = (10001)$, then $\chi_5(01010) = ?0?0?0?1?.1$.

Lemma

Write
$$\chi_n(x) = y$$
. If $y_i = 1$, then $y_{i-1} = x_{i-1}$.

Proposition

Write
$$\chi_n(x) = y$$
. Then $x_{i-2} = y_{i-2} + x_i(y_{i-1} + 1)$.

Corollary

If n is odd, then χ_n is invertible.

Example

 $\chi_5^{-1}(10001) = ?0?0?1?0?.1.$

Let X be a set. We denote Sym(X) for the set of all permutations on X.

Proposition

The set $Sym(\mathbb{F}_2^n)$ is a group under composition, with id: $\mathbb{F}_2^n \to \mathbb{F}_2^n$ as neutral element.

Proposition

 $\#\operatorname{Sym}(\mathbb{F}_2^n) = 2^n!$

For odd *n*, we have $\chi_n \in \text{Sym}(\mathbb{F}_2^n)$.

By Lagrange's Theorem, χ_n has a finite order that is a divisor of $2^n!$.

In particular $\chi_n^{\operatorname{ord}(\chi_n)} = \operatorname{id}$ and $\chi_n^{-1} = \chi_n^{\operatorname{ord}(\chi_n)-1}$.

Order of χ_n

Theorem (Order of χ_n **)**

Let n > 0 be odd. Then

$$\operatorname{ord}(\chi_n) = 2^{\lceil \lg(\frac{n+1}{2}) \rceil}$$

Example

•
$$\operatorname{ord}(\chi_3) = 2^{\lceil \lg(\frac{4}{2}) \rceil} = 2^{\lceil 1 \rceil} = 2;$$

•
$$\operatorname{ord}(\chi_5) = 2^{\lceil \lg(\frac{6}{2}) \rceil} = 2^{\lceil \lg 3 \rceil} = 4;$$

•
$$\operatorname{ord}(\chi_7) = 2^{\lceil \lg(\frac{8}{2}) \rceil} = 2^2 = 4;$$

•
$$\operatorname{ord}(\chi_9) = 2^{\lceil \lg(\frac{10}{2}) \rceil} = 2^{\lceil \lg 5 \rceil} = 8.$$

 $1, 2, 4, 4, 8, 8, 8, 8, 16, 16, \ldots$

Definition (Orbit)

Given a map $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ and an element $a \in \mathbb{F}_2^n$, the orbit of a under F is the set $\mathcal{O}_F(a) = \{F^k(a) \mid k \ge 0\}.$

Proposition

$$\operatorname{ord}(F) = \lim_{x \in \mathbb{F}_2^n} (\# \mathcal{O}_F(x))$$

We conjecture that: $\#\mathcal{O}_{\gamma_n}(0^{n-1}1) = 2^{\lceil \lg(\frac{n+1}{2}) \rceil}.$

Proving the lower bound: anchors

Lemma

Let $\sigma = (0^{n-1}1)^*$, where n is odd. Then for all $i \ge 0$ we have:

- For all $1 \le k \le \frac{n-1}{2}$ we have $\chi_n^i(\sigma)_{n-2k} = 0$;
- $\chi_n^i(\sigma)_{n-1} = 1.$

Proof.

Induction on *i*. We start with i = 1 and make a case distinction on *k* to prove the first statement. For k = 1, we have $\chi_n(\sigma)_{n-2} = \sigma_{n-2} + (\sigma_{n-1} + 1)\sigma_n = \sigma_{n-2} + 0 \cdot \sigma_n = 0$, since $\sigma_{n-1} = 1$. For $1 < k \leq \frac{n-1}{2}$, we consider $\chi_n(\sigma)_{n-2k}$. We have $\chi_n(\sigma)_{n-2k} = \sigma_{n-2k} + (\sigma_{n-2k+1} + 1) \cdot \sigma_{n-2k+2} = 0 + (\sigma_{n-2k+1} + 1) \cdot 0 = 0$ low we prove the second statement for i = 1. We have

$$\chi_n(\sigma)_{n-1} = \sigma_{n-1} + (\sigma_0 + 1) \cdot \sigma_1 = 1 + 0 = 1.$$

Projections and isomorphisms I

Projection map $\pi \colon \mathbb{F}_2^n \to \mathbb{F}_2^{\frac{n+1}{2}}, (x_0, \ldots, x_{n-1}) \mapsto (x_0, x_2, \ldots, x_{n-1})$ Bijective on $S = \{x \in \mathbb{F}_2^n \mid x_i = 0 \text{ when } i \equiv 1 \pmod{2}\}.$ Then $\chi'_n = \pi \circ \chi_n \circ \pi_{\downarrow S}^{-1}$. In a formula: $\chi'_n(a)_i = a_i + a_{i+1}$ for all $i = 0, \dots, \frac{n-1}{2}$, and $\chi'_n(a)_{\frac{n+1}{2}} = a_{\frac{n+1}{2}}$. Vector space isomorphism $\psi \colon \mathbb{F}_2^k \to \mathbb{F}_2[X]/(X^k)$, determined by $\psi: (a_0, a_1, \dots, a_{k-1}) \mapsto a_0 X^{k-1} + a_1 X^{k-2} + \dots + a_{k-2} X + a_{k-1}.$ Set $L_{\gamma_n} = \psi \circ \chi'_n \circ \psi^{-1}$. Then:

$$L_{\chi_n}(f(X)) = f(X) \cdot (X+1).$$

Projections and isomorphisms II

Proving the lower bound: algebra

Then
$$\#\mathcal{O}_{\chi_n}(0^{n-1}1) = \operatorname{ord}(1+X).$$

Lemma

$$\#\mathbb{F}_2[X]/(X^{\frac{n+1}{2}})^* = 2^{\frac{n-1}{2}}.$$

Proof.

Since $\mathbb{F}_2[X]$ is a Euclidean ring, we have that $f \in \mathbb{F}_2[X]/(X^{\frac{n+1}{2}})$ is invertible if and only if $gcd(f, X^{\frac{n+1}{2}}) = 1$. If $f_0 = 0$ (the constant term of f), then $gcd(f, X^{\frac{n+1}{2}}) \neq 1$, since X is a divisor of both f and $X^{\frac{n+1}{2}}$. Since only positive powers of X are divisors of $X^{\frac{n+1}{2}}$ and all these are not divisors of f with $f_0 = 1$, we find that when $f_0 = 1$, that $gcd(f, X^{\frac{n+1}{2}}) = 1$.

In summary, since $f \in \mathbb{F}_2[X]/(X^{\frac{n+1}{2}})^*$ iff $f_0 = 1$, we find that $\#\mathbb{F}_2[X]/(X^{\frac{n+1}{2}})^* = 2^{\frac{n-1}{2}}$.

By Lagrange's Theorem we now know that the order of $1 \perp X$ is a nower of 2

10/13

Definition (Strand)

Every string of odd length that starts with a 1 that is followed by a repeated pattern of *0 is called a *strand*. Let \mathfrak{S}_n be the set of strands of length 2n + 1.

Example

$$\mathfrak{S}_0 = \{1\}, \ \mathfrak{S}_1 = \{100, 110\}, \ \mathfrak{S}_2 = \{10000, 11000, 10010, 11010\}$$

Proposition

Let σ be a non-zero state of odd period n. Then there exists a canonical way to split up σ into strands.

Notation

Let σ be a state of odd period. Then its unique decomposition into strands is denoted as $s_1 - s_2 - \cdots - s_l$.

Full theorem: Strands II

Proposition

Let σ be a state of odd period n. Write $\sigma = s_1 - s_2 - \cdots - s_l$ as its decomposition into strands. Then $\chi_n(\sigma) = s'_1 - s'_2 - \cdots - s'_l$, where $|s_i| = |s'_i|$.

Proof.

Fix some $1 \le i \le l$ arbitrarily. Write $s_i = (\sigma_j, \sigma_{j+1}, \dots, \sigma_{j+|s_i|-1})$. We have $\sigma_j = 1$ and want to show that $\chi_n(\sigma)_j = 1$. If $|s_i| = 1$, then $\sigma_{j+1} = 1$, hence

$$\chi_n(\sigma)_j = \sigma_j + (1+1)\sigma_{j+2} = 1.$$

When $|s_i| > 1$, then $\sigma_{j+2} = 0$, hence

$$\chi_n(\sigma)_j = \sigma_j + (\sigma_{j+1} + 1) \cdot 0 = \sigma_j = 1.$$

12/13

Let $1 \le k \le \frac{|s_i|-1}{2}$ be arbitrary. We have $\sigma_{j+2l} = 0$ and we want to see that $\chi_n(\sigma)_{i+2k} = 0$. We have that $\sigma_{i+2k+2} = 0$, hence

Let $\sigma = s_1 - s_2 - \cdots - s_l$ be a non-zero state of length n. Then

$$\begin{split} \#\mathcal{O}_{\chi_n}(\sigma) &= \lim_{i \in \{1,...,l\}} (\#\mathcal{O}_{\chi_{|s_i|+1}}(s_i \| 1)) \\ &= \lim_{i \in \{1,...,l\}} (2^{\lceil \lg(\frac{|s_i|+1}{2})\rceil}) \\ &= \max_{i \in \{1,...,l\}} (2^{\lceil \lg(\frac{|s_i|+1}{2})\rceil}) \\ &= 2^{\lceil \lg(\frac{|s_{i_0}|+1}{2})\rceil} \end{split}$$

where i_0 is chosen such that $|s_{i_0}| = \max_i |s_i|$.

In particular $\operatorname{ord}(\chi_n) = \max_{\sigma \in \mathbb{F}_2^n} \# \mathcal{O}_{\chi_n}(\sigma) = 2^{\lceil \lg(\frac{n+1}{2}) \rceil}.$