

Bijective properties of χ

Joan Daemen, <u>Jan Schoone</u> Radboud University (The Netherlands) ESCADA meeting 10 September 2020

ESCADA

Part I

We consider the quadratic map χ_n :

$$\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$$

 $(a_0, \dots, a_{n-1}) \mapsto (b_0, \dots, b_{n-1})$

where $b_i = a_i + (a_{i+1} + 1)a_{i+2}$ (indices modulo n).

Goal: To determine for which *n* the map χ_n is injective/surjective/bijective.

Examples

• χ₃:

• χ_2 : $\chi_2(00) = 00$, $\chi_2(01) = 00$, $\chi_2(10) = 00$, $\chi_2(11) = 11$.

(a_0,a_1,a_2)	$\chi_3(a_2,a_1,a_0)$
000	000
001	101
010	011
011	010
100	110
101	001
110	100
111	111

Lemma

Let A and B be finite sets of equal cardinality, i.e., $A \sim B$. Let $f : A \rightarrow B$ be a map from A to B.

If f is injective, then f is bijective.

If f is surjective, then f is bijective.

This is not true for infinite sets, e.g.,

 $f: \mathbb{N} \to \mathbb{N}, \ x \mapsto x+1.$

So if χ_n is surjective, it is also injective and hence bijective.

By checking some small values for n, one can see that χ_n is bijective iff n is odd.

Lemma

If
$$\chi_n(a)_i = 1$$
, then $a_{i-1} = \chi_n(a)_{i-1}$.

Proof.

Case 1:
$$a_i = 1$$
. Then $\chi_n(a)_{i-1} = a_{i-1} + (a_i + 1)a_{i+1} = a_{i-1}$, as required. Case 2:
 $a_i = 0$. Then $1 = \chi_n(a)_i = (a_{i+1} + 1)a_{i+2}$. So $a_{i+1} = 0$. Then
 $\chi_n(a)_{i-1} = a_{i-1} + (a_i + 1)a_{i+1} = a_{i-1}$, as required.

Lemma

We can express a_{i-2} in terms of a_i and $\chi_n(a)$ as:

$$\begin{cases} a_{i-2} = \chi_n(a)_{i-2} & \text{if } a_i = 0; \\ a_{i-2} = \chi_n(a)_{i-1} + \chi_n(a)_{i-2} + 1 & \text{if } a_i = 1. \end{cases}$$

- Algorithmically determine preimages under χ_n when *n* is odd
 - when state contains at least one 1
- Algorithmically determine preimages under χ_n when *n* is even
 - \bullet when state contains at least one 1 in an odd position, and
 - when state contains at least one 1 in an even position

More examples

Let *n* be even. Then $\chi_n((01)^{n/2}) = \chi_n((10)^{n/2}) = \chi_n(0^n) = 0^n$.

Can we determine a preimage of 0001 under χ_4 ?

Conclusions

- For odd *n*:
 - All-but-one state have at least one 1
 - All those states have a (unique) preimage
 - χ_n maps 0^n to 0^n
 - So we have shown that χ_n is bijective if n is odd
- For even *n*:
 - There are $2^{n/2}$ states with no 1 in an even position $(
 ightarrow S_0)$
 - There are $2^{n/2}$ states with no 1 in an odd position $(
 ightarrow S_1)$
 - 0^n satisfies both conditions and has three originals
 - $2^{n/2+1} 1$ states are not proven to have a (unique) preimage
 - Everywhere else χ_n is bijective ($\rightarrow T$)

- Goal:
 - To determine for which *n* the map χ_n is injective/surjective/bijective.
 - When *n* is odd, the map χ_n is bijective.
 - When *n* is even, the map χ_n is not injective/surjective/bijective.
- New goals:
 - For even *n*,
 - to determine the states not in Im χ_n .
 - to determine all many-to-one states in \mathbb{F}_2^n .

Part II

- $\mathbb{F}_2^n = S_0 \cup S_1 \cup T$
- $\chi_{n|_T} \colon T \to T$ is bijective
- States not reached are in $S_0 \cup S_1$
- S_0 and S_1 are similar, so we just look at S_0

Intermezzo: Shift-invariant maps

Let $(\gg 1)$: $\mathbb{F}_2^n \to \mathbb{F}_2^n$, $(x_0, \ldots, x_{n-1}) \mapsto (x_{n-1}, x_0, \ldots, x_{n-2})$ be the *right-shift* map.

- (\gg 1) is linear;
- We can define $(\gg k) := (\gg 1)^k$;

• (
$$\gg$$
 1) is bijective, (\ll 1) = (\gg 1)⁻¹ = (\gg n - 1) = (\gg 1)ⁿ⁻¹.

Definition

A map $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is called shift-invariant if for all k(< n) we have

$$F \circ (\gg k) = (\gg k) \circ F.$$

Intermezzo: χ_n is shift-invariant

Lemma

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a map such that $F \circ (\gg 1) = (\gg 1) \circ F$. Then F is shift-invariant.

Proof.

Induction to k.

Lemma

 χ_n is shift-invariant (for any $n \ge 1$).

Proof.

$$\begin{split} \chi_n((a_0,\ldots,a_{n-1})\gg 1) &= \chi_n(a_{n-1},a_0,\ldots,a_{n-2}) \\ &= (a_{n-1}+(a_0+1)a_1,\ldots,a_{n-2}+(a_{n-1}+1)a_0) \\ &= (a_0+(a_1+1)a_2,\ldots,a_{n-1}+(a_0+1)a_1)\gg 1 \end{split}$$

$$S_0 = \{ x \in \mathbb{F}_2^n \mid x_i = 0 \text{ when } i \equiv 0 \pmod{2} \}.$$
$$\chi_n(0, x_1, 0, x_3, 0, \dots, x_{n-3}, 0, x_{n-1}) = (y_0, y_1, \dots, y_{n-2}, y_{n-1})$$

. . .

where

$$y_0 = 0 + (x_1 + 1) \cdot 0 = 0,$$

$$y_1 = x_1 + (0 + 1)x_3 = x_1 + x_3,$$

$$y_2 = 0 + (x_3 + 1) \cdot 0 = 0,$$

$$y_{n-2} = 0 + (x_{n-1} + 1) \cdot 0 = 0$$

$$y_{n-1} = x_{n-1} + (0+1)x_1 = x_{n-1} + x_1$$

We see: $\chi_n(S_0) \subset S_0!$

If we restrict the map

$$\pi_0 \colon \mathbb{F}_2^{2k} \to \mathbb{F}_2^k, \ (x_0, x_1, \dots, x_{2k-1}) \mapsto (x_1, x_3, \dots, x_{2k-1})$$

to S_0 , we get a bijection.

Then we define
$$\chi_k^L := \pi_0^{-1} \circ \chi_{2k} \circ \pi_0.$$

Definition

Let $k \ge 1$. We write $\chi_k^L \colon \mathbb{F}_2^k \mapsto \mathbb{F}_2^k$, $(x_0, \ldots, x_{k-1}) \mapsto (x_0 + x_1, x_1 + x_2, \ldots, x_{k-1} + x_0)$ for the linearized even-length χ on S_0 (or S_1).

Let \mathbb{F} be a field and V, W finite-dimensional \mathbb{F} -vector spaces. Let $L: V \to W$ be a linear map.

Let Ker
$$L = \{x \in V \mid L(x) = 0\}$$
, and Im $L = \{y \in W \mid \exists x \in V : L(x) = y\}$.

Theorem (Isomorphism Theorem)

We have

$$V/\operatorname{Ker} L \cong \operatorname{Im} L.$$

Corollary

 $\dim V - \dim \operatorname{Ker} L = \dim \operatorname{Im} L.$

Reminder: If A is the matrix that corresponds to a linear map L, then Im L = col(A). Our case:

$$\begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & \dots & 0 & 0 & 0 \\ \vdots & & & \ddots & & & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

All columns have even Hamming weight, so all vectors in Im L have even Hamming weight.

Reminder:
$$\chi_k^L(x_0, \dots, x_{k-1}) = (x_0 + x_1, x_1 + x_2, \dots, x_{k-1} + x_0).$$

For $\chi_k^L(x) = 0$ to hold, we must have

$$x_0 = x_1 = x_2 = \ldots = x_{k-1}$$

hence Ker $\chi_k^L = \{0^k, 1^k\}.$

By the isomorphism theorem we find that dim Im L = k - 1.

Thus Im L is exactly the set of all vectors of even Hamming weight.

 $\chi^L_{\rm 3}$ is defined as

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_0 + x_1 \\ x_1 + x_2 \\ x_2 + x_0 \end{pmatrix}$$

Then $\operatorname{Im} \chi_3^L$ is the set

$$\left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}$$

Now by using the definition of χ_k^L , or by just adding zeroes, we find

Theorem

Let n > 1 be even. Then Im χ_n consists of elements with even Hamming weight such that either:

- All odd positions are 0, or;
- All even positions are 0.

We had $|\mathcal{T}| = 2^n - (2^{n/2+1} - 1)$ states with a unique preimage.

We see that $\frac{1}{2}|S_0|$ states have no preimage, and $\frac{1}{2}|S_1|$ states have no preimage.

So $|S_0| = 2^{n/2}$ states with no preimage.

Remaining states: $2^{n/2} - 1$ that might have more than one preimage.

Part III

We determined the states that are not in Im χ_n .

They are those with odd Hamming weight in $S_0 \cup S_1$.

The remaining goal is to determine all many-to-one states in \mathbb{F}_2^n .

We already know that we need to look in $S_0 \cup S_1$.

A new lemma

Recall that Ker $\chi_k^L = \{0^k, 1^k\}.$

We have: if $\chi_k^L(u) = \chi_k^L(v)$ then u = v or $u = v + 1^k$.

By composing this with π_0^{-1} , (since $\chi_n(S_i) \subset S_i$) we find

Lemma

Let n be a positive integer. If $a, b \in \mathbb{F}_2^n$ are such that $\chi_n(a) = \chi_n(b) \neq 0$, then either

- $a, b \in S_0$ and $a + b = (10)^{n/2}$; or
- $a, b \in S_1$ and $a + b = (01)^{n/2}$.

So every non-zero element in \mathbb{F}_2^n has at most two preimages under χ_n .

We have $2^{n/2} - 1$ states that might have more than one preimage.

One of those has three preimages, namely 0^n .

We have $2^{n/2+1} - 1$ states that have an *image*.

Excluding the three states that map to 0^n , we have $2^{n/2+1} - 4$ states that need to map to the $2^{n/2} - 2$ non-zero states in Im χ_n that we do not know yet.

This is exactly two-to-one.

Consider the state 100010. What is its preimage under χ_6 ?

L: If $\chi_n(x)_i = 1$, then $x_{i-1} = \chi_n(x)_{i-1}$. P1: If $x_i = 0$, then $x_{i-2} = \chi_n(x)_{i-2}$. P2: If $x_i = 1$, then $x_{i-2} = \chi_n(x)_{i-1} + \chi_n(x)_{i-2} + 1$. We have now determined the states not in Im χ_n : The states with odd Hamming weight in $S_0 \cup S_1$.

We have also determined all many-to-one states in \mathbb{F}_2^n . The elements in $(S_0 \cup S_1) \setminus \{0^n, (01)^{n/2}, (10)^{n/2}\}$ are mapped two-to-one to states with even Hamming weight in $S_0 \cup S_1$. The elements $0^n, (01)^{n/2}, (10)^{n/2}$ are mapped to 0^n .

New goal:

To determine whether χ is injective/surjective/bijective on infinite states.

Part IV

Introducing χ on infinite states and first result

We write $\widehat{\mathbb{F}_2}$ for the vector space of infinite binary sequences.

$$\chi: \widehat{\mathbb{F}_2} \to \widehat{\mathbb{F}_2}, \ (x_0, x_1, x_2, \ldots) \mapsto (y_0, y_1, y_2, \ldots)$$

where

$$y_i = x_i + (x_{i+1} + 1)x_{i+2}.$$

Examples:

$$\chi(\overline{01}) = \overline{0}$$
$$\chi(\overline{10}) = \overline{0}$$
$$\chi(\overline{0}) = \overline{0}$$

Clearly, χ is not injective.

Definition

Let $n \ge 1$ be a positive integer. A state $\sigma \in \widehat{\mathbb{F}_2}$ is called *n*-periodic if $\sigma \ll n = \sigma$. We call the minimal such *n* the period of σ . We write Σ_n for the set of all *n*-periodic states.

$$\Sigma_1 = \{0, 1\}$$

 $\Sigma_2 = \{\overline{0}, \overline{1}, \overline{01}, \overline{10}\}$

Lemma

We have $\Sigma_n \subset \Sigma_{nk}$ for all $n, k \ge 1$. Furthermore Σ_n is a linear subspace of $\widehat{\mathbb{F}_2}$ for all $n \ge 1$ and we have the isomorphism $\Sigma_n \cong \mathbb{F}_2^n$.

- χ is shift-invariant (similar proof)
- $\chi(\Sigma_n) \subset \Sigma_n$

•
$$\sigma \in \Sigma_n$$
: $\sigma \ll n = \sigma$;

•
$$\chi(\sigma) = \chi(\sigma \ll n) = \chi(\sigma) \ll n;$$

•
$$\chi(\sigma) \in \Sigma_n$$

•
$$\chi_n = \chi_{|_{\Sigma_n}}$$

We can use the results from χ_n now:

- χ is bijective on states of odd period
- χ is bijective on states of even period that have a 1 in both an odd and an even position
- χ is surjective on non-zero states of even period that have even Hamming weight (two-to-one if even positions all 0 or odd positions all 0)
- χ is three-to-one on zero state

To investigate:

• χ on non-zero states of even period with odd Hamming weight with even positions all 0 (or odd positions all 0)

Theorem

 $\chi \colon \widehat{\mathbb{F}_2} \to \widehat{\mathbb{F}_2}$ is surjective.

Proof.

Let σ be a state of even period n with odd Hamming weight and even positions all 0 (or odd positions all 0). Then σ is also 2n-periodic. The state $\sigma | \sigma$ has even Hamming weight, but still all even positions 0. Hence it has a preimage under χ_{2n} . Hence χ is surjective.

Outro

 χ is surjective

 χ_n is bijective if *n* is odd

 χ_n is not surjective if *n* is even