Radboud University

Bijective properties of χ

```
Joan Daemen, Jan Schoone
Radboud University (The Netherlands)
ESCADA meeting
10 September 2020
```



```
ESCADA
```

Part I

Introduction and goal

We consider the quadratic map χ_{n} :

$$
\begin{aligned}
\chi_{n}: \mathbb{F}_{2}^{n} & \rightarrow \mathbb{F}_{2}^{n} \\
\left(a_{0}, \ldots, a_{n-1}\right) & \mapsto\left(b_{0}, \ldots, b_{n-1}\right)
\end{aligned}
$$

where $b_{i}=a_{i}+\left(a_{i+1}+1\right) a_{i+2}$ (indices modulo n).
Goal: To determine for which n the map χ_{n} is injective/surjective/bijective.

Examples

- $\chi_{2}: \chi_{2}(00)=00, \chi_{2}(01)=00, \chi_{2}(10)=00, \chi_{2}(11)=11$.
- χ_{3} :

$\left(a_{0}, a_{1}, a_{2}\right)$	$\chi_{3}\left(a_{2}, a_{1}, a_{0}\right)$
000	000
001	101
010	011
011	010
100	110
101	001
110	100
111	111

Lemma

Let A and B be finite sets of equal cardinality, i.e., $A \sim B$. Let $f: A \rightarrow B$ be a map from A to B.

If f is injective, then f is bijective.
If f is surjective, then f is bijective.
This is not true for infinite sets, e.g.,

$$
f: \mathbb{N} \rightarrow \mathbb{N}, x \mapsto x+1
$$

So if χ_{n} is surjective, it is also injective and hence bijective.

Quick start guide

By checking some small values for n, one can see that χ_{n} is bijective iff n is odd.

Lemma

$$
\text { If } \chi_{n}(a)_{i}=1, \text { then } a_{i-1}=\chi_{n}(a)_{i-1} .
$$

Proof.

Case 1: $a_{i}=1$. Then $\chi_{n}(a)_{i-1}=a_{i-1}+\left(a_{i}+1\right) a_{i+1}=a_{i-1}$, as required. Case 2:

$$
a_{i}=0 . \text { Then } 1=\chi_{n}(a)_{i}=\left(a_{i+1}+1\right) a_{i+2} . \text { So } a_{i+1}=0 \text {. Then }
$$

$$
\chi_{n}(a)_{i-1}=a_{i-1}+\left(a_{i}+1\right) a_{i+1}=a_{i-1}, \text { as required. }
$$

Lemma

We can express a_{i-2} in terms of a_{i} and $\chi_{n}(a)$ as:

$$
\begin{cases}a_{i-2}=\chi_{n}(a)_{i-2} & \text { if } a_{i}=0 \\ a_{i-2}=\chi_{n}(a)_{i-1}+\chi_{n}(a)_{i-2}+1 & \text { if } a_{i}=1\end{cases}
$$

- Algorithmically determine preimages under χ_{n} when n is odd
- when state contains at least one 1
- Algorithmically determine preimages under χ_{n} when n is even
- when state contains at least one 1 in an odd position, and
- when state contains at least one 1 in an even position

More examples

Let n be even. Then $\chi_{n}\left((01)^{n / 2}\right)=\chi_{n}\left((10)^{n / 2}\right)=\chi_{n}\left(0^{n}\right)=0^{n}$.
Can we determine a preimage of 0001 under χ_{4} ?

- For odd n :
- All-but-one state have at least one 1
- All those states have a (unique) preimage
- χ_{n} maps 0^{n} to 0^{n}
- So we have shown that χ_{n} is bijective if n is odd
- For even n :
- There are $2^{n / 2}$ states with no 1 in an even position $\left(\rightarrow S_{0}\right)$
- There are $2^{n / 2}$ states with no 1 in an odd position $\left(\rightarrow S_{1}\right)$
- 0^{n} satisfies both conditions and has three originals
- $2^{n / 2+1}-1$ states are not proven to have a (unique) preimage
- Everywhere else χ_{n} is bijective $(\rightarrow T)$

Goal is met

- Goal:
- To determine for which n the map χ_{n} is injective/surjective/bijective.
- When n is odd, the map χ_{n} is bijective.
- When n is even, the map χ_{n} is not injective/surjective/bijective.
- New goals:
- For even n,
- to determine the states not in $\operatorname{Im} \chi_{n}$.
- to determine all many-to-one states in \mathbb{F}_{2}^{n}.

Part II

Studying S_{0} and S_{1}

- $\mathbb{F}_{2}^{n}=S_{0} \cup S_{1} \cup T$
- $\left.\chi_{n}\right|_{T}: T \rightarrow T$ is bijective
- States not reached are in $S_{0} \cup S_{1}$
- S_{0} and S_{1} are similar, so we just look at S_{0}

Let $(\gg 1): \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n},\left(x_{0}, \ldots, x_{n-1}\right) \mapsto\left(x_{n-1}, x_{0}, \ldots, x_{n-2}\right)$ be the right-shift map.

- $(\gg 1)$ is linear;
- We can define $(\gg k):=(\gg 1)^{k}$;
- $(\gg 1)$ is bijective, $(\ll 1)=(\gg 1)^{-1}=(\gg n-1)=(\gg 1)^{n-1}$.

Definition

A map $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is called shift-invariant if for all $k(<n)$ we have

$$
F \circ(\gg k)=(\gg k) \circ F .
$$

Intermezzo: χ_{n} is shift-invariant

Lemma

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be a map such that $F \circ(\gg 1)=(\gg 1) \circ F$. Then F is shift-invariant.

Proof.

Induction to k.

Lemma

χ_{n} is shift-invariant (for any $n \geq 1$).

Proof.

$$
\begin{aligned}
\chi_{n}\left(\left(a_{0}, \ldots, a_{n-1}\right) \gg 1\right) & =\chi_{n}\left(a_{n-1}, a_{0}, \ldots, a_{n-2}\right) \\
& =\left(a_{n-1}+\left(a_{0}+1\right) a_{1}, \ldots, a_{n-2}+\left(a_{n-1}+1\right) a_{0}\right) \\
& =\left(a_{0}+\left(a_{1}+1\right) a_{2}, \ldots, a_{n-1}+\left(a_{0}+1\right) a_{1}\right) \gg 1
\end{aligned}
$$

looks linear

$S_{0}=\left\{x \in \mathbb{F}_{2}^{n} \mid x_{i}=0\right.$ when $\left.i \equiv 0(\bmod 2)\right\}$.

$$
\chi_{n}\left(0, x_{1}, 0, x_{3}, 0, \ldots, x_{n-3}, 0, x_{n-1}\right)=\left(y_{0}, y_{1}, \ldots, y_{n-2}, y_{n-1}\right)
$$

where

$$
\begin{aligned}
y_{0} & =0+\left(x_{1}+1\right) \cdot 0=0, \\
y_{1} & =x_{1}+(0+1) x_{3}=x_{1}+x_{3}, \\
y_{2} & =0+\left(x_{3}+1\right) \cdot 0=0, \\
\ldots & \\
y_{n-2} & =0+\left(x_{n-1}+1\right) \cdot 0=0 \\
y_{n-1} & =x_{n-1}+(0+1) x_{1}=x_{n-1}+x_{1}
\end{aligned}
$$

We see: $\chi_{n}\left(S_{0}\right) \subset S_{0}$!

Formalizing the previous

If we restrict the map

$$
\pi_{0}: \mathbb{F}_{2}^{2 k} \rightarrow \mathbb{F}_{2}^{k},\left(x_{0}, x_{1}, \ldots, x_{2 k-1}\right) \mapsto\left(x_{1}, x_{3}, \ldots, x_{2 k-1}\right)
$$

to S_{0}, we get a bijection.
Then we define $\chi_{k}^{L}:=\pi_{\left.0\right|_{s_{0}}}^{-1} \circ \chi_{2 k} \circ \pi_{0}$.

Definition

Let $k \geq 1$. We write $\chi_{k}^{L}: \mathbb{F}_{2}^{k} \mapsto \mathbb{F}_{2}^{k},\left(x_{0}, \ldots, x_{k-1}\right) \mapsto\left(x_{0}+x_{1}, x_{1}+x_{2}, \ldots, x_{k-1}+x_{0}\right)$ for the linearized even-length χ on S_{0} (or S_{1}).

Let \mathbb{F} be a field and V, W finite-dimensional \mathbb{F}-vector spaces. Let $L: V \rightarrow W$ be a linear map.

Let $\operatorname{Ker} L=\{x \in V \mid L(x)=0\}$, and $\operatorname{Im} L=\{y \in W \mid \exists x \in V: L(x)=y\}$.

Theorem (Isomorphism Theorem)

We have

$$
V / \operatorname{Ker} L \cong \operatorname{Im} L
$$

Corollary

$\operatorname{dim} V-\operatorname{dim} \operatorname{Ker} L=\operatorname{dim} \operatorname{Im} L$.

Reminder: If A is the matrix that corresponds to a linear map L, then $\operatorname{Im} L=\operatorname{col}(A)$.
Our case:

$$
\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & \ldots & 0 & 0 & 0 \\
\vdots & & & & \ddots & & & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & \ldots & 0 & 0 & 1
\end{array}\right)
$$

All columns have even Hamming weight, so all vectors in Im L have even Hamming weight.

Reminder: $\chi_{k}^{L}\left(x_{0}, \ldots, x_{k-1}\right)=\left(x_{0}+x_{1}, x_{1}+x_{2}, \ldots, x_{k-1}+x_{0}\right)$.
For $\chi_{k}^{L}(x)=0$ to hold, we must have

$$
x_{0}=x_{1}=x_{2}=\ldots=x_{k-1}
$$

hence $\operatorname{Ker} \chi_{k}^{L}=\left\{0^{k}, 1^{k}\right\}$.
By the isomorphism theorem we find that $\operatorname{dim} \operatorname{Im} L=k-1$.
Thus $\operatorname{Im} L$ is exactly the set of all vectors of even Hamming weight.

Example for $\chi_{3}^{\frac{1}{3}}$

χ_{3}^{L} is defined as

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right)=\left(\begin{array}{l}
x_{0}+x_{1} \\
x_{1}+x_{2} \\
x_{2}+x_{0}
\end{array}\right)
$$

Then $\operatorname{Im} \chi_{3}^{L}$ is the set

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}
$$

Now by using the definition of χ_{k}^{L}, or by just adding zeroes, we find

Theorem

Let $n>1$ be even. Then Im χ_{n} consists of elements with even Hamming weight such that either:

- All odd positions are 0, or;
- All even positions are 0 .

We had $|T|=2^{n}-\left(2^{n / 2+1}-1\right)$ states with a unique preimage.
We see that $\frac{1}{2}\left|S_{0}\right|$ states have no preimage, and $\frac{1}{2}\left|S_{1}\right|$ states have no preimage. So $\left|S_{0}\right|=2^{n / 2}$ states with no preimage.

Remaining states: $2^{n / 2}-1$ that might have more than one preimage.

Part III

We determined the states that are not in $\operatorname{Im} \chi_{n}$.
They are those with odd Hamming weight in $S_{0} \cup S_{1}$.
The remaining goal is to determine all many-to-one states in \mathbb{F}_{2}^{n}.
We already know that we need to look in $S_{0} \cup S_{1}$.

Recall that $\operatorname{Ker} \chi_{k}^{L}=\left\{0^{k}, 1^{k}\right\}$.
We have: if $\chi_{k}^{L}(u)=\chi_{k}^{L}(v)$ then $u=v$ or $u=v+1^{k}$.
By composing this with π_{0}^{-1}, (since $\chi_{n}\left(S_{i}\right) \subset S_{i}$) we find

Lemma

Let n be a positive integer. If $a, b \in \mathbb{F}_{2}^{n}$ are such that $\chi_{n}(a)=\chi_{n}(b) \neq 0$, then either

- $a, b \in S_{0}$ and $a+b=(10)^{n / 2}$; or
- $a, b \in S_{1}$ and $a+b=(01)^{n / 2}$.

So every non-zero element in \mathbb{F}_{2}^{n} has at most two preimages under χ_{n}.

We have $2^{n / 2}-1$ states that might have more than one preimage.
One of those has three preimages, namely 0^{n}.
We have $2^{n / 2+1}-1$ states that have an image.
Excluding the three states that map to 0^{n}, we have $2^{n / 2+1}-4$ states that need to map to the $2^{n / 2}-2$ non-zero states in $\operatorname{Im} \chi_{n}$ that we do not know yet.

This is exactly two-to-one.

Example

Consider the state 100010 . What is its preimage under χ_{6} ?

L: If $\chi_{n}(x)_{i}=1$, then $x_{i-1}=\chi_{n}(x)_{i-1}$.
P1: If $x_{i}=0$, then $x_{i-2}=\chi_{n}(x)_{i-2}$.
P2: If $x_{i}=1$, then $x_{i-2}=\chi_{n}(x)_{i-1}+\chi_{n}(x)_{i-2}+1$.

We have now determined the states not in $\operatorname{Im} \chi_{n}$: The states with odd Hamming weight in $S_{0} \cup S_{1}$.

We have also determined all many-to-one states in \mathbb{F}_{2}^{n}. The elements in $\left(S_{0} \cup S_{1}\right) \backslash\left\{0^{n},(01)^{n / 2},(10)^{n / 2}\right\}$ are mapped two-to-one to states with even Hamming weight in $S_{0} \cup S_{1}$. The elements $0^{n},(01)^{n / 2},(10)^{n / 2}$ are mapped to 0^{n}.

New goal:
To determine whether χ is injective/surjective/bijective on infinite states.

Part IV

We write $\widehat{\mathbb{F}_{2}}$ for the vector space of infinite binary sequences.
$\chi: \widehat{\mathbb{F}_{2}} \rightarrow \widehat{\mathbb{F}_{2}},\left(x_{0}, x_{1}, x_{2}, \ldots\right) \mapsto\left(y_{0}, y_{1}, y_{2}, \ldots\right)$
where
$y_{i}=x_{i}+\left(x_{i+1}+1\right) x_{i+2}$.
Examples:

$$
\begin{aligned}
\chi(\overline{01}) & =\overline{0} \\
\chi(\overline{10}) & =\overline{0} \\
\chi(\overline{0}) & =\overline{0}
\end{aligned}
$$

Clearly, χ is not injective.

Introducing period spaces

Definition

Let $n \geq 1$ be a positive integer. A state $\sigma \in \widehat{\mathbb{F}_{2}}$ is called n-periodic if $\sigma \ll n=\sigma$. We call the minimal such n the period of σ. We write Σ_{n} for the set of all n-periodic states.

$$
\begin{array}{r}
\Sigma_{1}=\{\overline{0}, \overline{1}\} \\
\Sigma_{2}=\{\overline{0}, \overline{1}, \overline{01}, \overline{10}\}
\end{array}
$$

Lemma

We have $\Sigma_{n} \subset \Sigma_{n k}$ for all $n, k \geq 1$. Furthermore Σ_{n} is a linear subspace of $\widehat{\mathbb{F}_{2}}$ for all $n \geq 1$ and we have the isomorphism $\Sigma_{n} \cong \mathbb{F}_{2}^{n}$.

Applying period spaces

- χ is shift-invariant (similar proof)
- $\chi\left(\Sigma_{n}\right) \subset \Sigma_{n}$
- $\sigma \in \Sigma_{n}: \sigma \ll n=\sigma$;
- $\chi(\sigma)=\chi(\sigma \ll n)=\chi(\sigma) \ll n$;
- $\chi(\sigma) \in \Sigma_{n}$.
- $\chi_{n}=\left.\chi\right|_{\Sigma_{n}}$

We can use the results from χ_{n} now:

- χ is bijective on states of odd period
- χ is bijective on states of even period that have a 1 in both an odd and an even position
- χ is surjective on non-zero states of even period that have even Hamming weight (two-to-one if even positions all 0 or odd positions all 0)
- χ is three-to-one on zero state

To investigate:

- χ on non-zero states of even period with odd Hamming weight with even positions all 0 (or odd positions all 0)

Theorem

$\chi: \widehat{\mathbb{F}_{2}} \rightarrow \widehat{\mathbb{F}_{2}}$ is surjective.

Proof.

Let σ be a state of even period n with odd Hamming weight and even positions all 0 (or odd positions all 0). Then σ is also $2 n$-periodic. The state $\sigma \mid \sigma$ has even Hamming weight, but still all even positions 0 . Hence it has a preimage under $\chi_{2 n}$. Hence χ is surjective.

Outro

Conclusions

χ is surjective

χ_{n} is bijective if n is odd
χ_{n} is not surjective if n is even

