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Part I



Introduction and goal

We consider the quadratic map χn:

χn : Fn
2 → Fn

2

(a0, . . . , an−1) 7→ (b0, . . . , bn−1)

where bi = ai + (ai+1 + 1)ai+2 (indices modulo n).

Goal: To determine for which n the map χn is injective/surjective/bijective.
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Examples

• χ2: χ2(00) = 00, χ2(01) = 00, χ2(10) = 00, χ2(11) = 11.

• χ3:

(a0, a1, a2) χ3(a2, a1, a0)

000 000

001 101

010 011

011 010

100 110

101 001

110 100

111 111
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Intermezzo: Combinatorics reminder

Lemma

Let A and B be finite sets of equal cardinality, i.e., A ∼ B. Let f : A→ B be a map

from A to B.

If f is injective, then f is bijective.

If f is surjective, then f is bijective.

This is not true for infinite sets, e.g.,

f : N→ N, x 7→ x + 1.

So if χn is surjective, it is also injective and hence bijective.
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Quick start guide

By checking some small values for n, one can see that χn is bijective iff n is odd.

Lemma

If χn(a)i = 1, then ai−1 = χn(a)i−1.

Proof.

Case 1: ai = 1. Then χn(a)i−1 = ai−1 + (ai + 1)ai+1 = ai−1, as required. Case 2:

ai = 0. Then 1 = χn(a)i = (ai+1 + 1)ai+2. So ai+1 = 0. Then

χn(a)i−1 = ai−1 + (ai + 1)ai+1 = ai−1, as required.

Lemma

We can express ai−2 in terms of ai and χn(a) as:ai−2 = χn(a)i−2 if ai = 0;

ai−2 = χn(a)i−1 + χn(a)i−2 + 1 if ai = 1.

Proof.

Case 1: ai = 0. Then χn(a)i−2 = ai−2 + (ai−1 + 1)ai = ai−2, as required. Case 2:

ai = 1. Then by Case 1 of the previous lemma, we have χn(a)i−1 = ai−1. So we find

χn(a)i−2 = ai−2 + χn(a)i−1 + 1, as required.
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Results so far

• Algorithmically determine preimages under χn when n is odd

• when state contains at least one 1

• Algorithmically determine preimages under χn when n is even

• when state contains at least one 1 in an odd position, and

• when state contains at least one 1 in an even position
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More examples

Let n be even. Then χn((01)n/2) = χn((10)n/2) = χn(0n) = 0n.

Can we determine a preimage of 0001 under χ4?

0011OO

��

0110OO

��

1001OO

��

1100OO

��
1011 0111 1101 1110 1111

��

0010

$$

0001

zz
1010 // 0000

��
0101oo

1000

::

0100

dd
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Conclusions

• For odd n:

• All-but-one state have at least one 1

• All those states have a (unique) preimage

• χn maps 0n to 0n

• So we have shown that χn is bijective if n is odd

• For even n:

• There are 2n/2 states with no 1 in an even position (→ S0)

• There are 2n/2 states with no 1 in an odd position (→ S1)

• 0n satisfies both conditions and has three originals

• 2n/2+1 − 1 states are not proven to have a (unique) preimage

• Everywhere else χn is bijective (→ T )
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Goal is met

• Goal:

• To determine for which n the map χn is injective/surjective/bijective.

• When n is odd, the map χn is bijective.

• When n is even, the map χn is not injective/surjective/bijective.

• New goals:

• For even n,

• to determine the states not in Imχn.

• to determine all many-to-one states in Fn
2.
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Part II



Studying S0 and S1

• Fn
2 = S0 ∪ S1 ∪ T

• χ
n
∣∣
T

: T → T is bijective

• States not reached are in S0 ∪ S1

• S0 and S1 are similar, so we just look at S0
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Intermezzo: Shift-invariant maps

Let (� 1) : Fn
2 → Fn

2, (x0, . . . , xn−1) 7→ (xn−1, x0, . . . , xn−2) be the right-shift map.

• (� 1) is linear;

• We can define (� k) := (� 1)k ;

• (� 1) is bijective, (� 1) = (� 1)−1 = (� n − 1) = (� 1)n−1.

Definition

A map F : Fn
2 → Fn

2 is called shift-invariant if for all k(< n) we have

F ◦ (� k) = (� k) ◦ F .
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Intermezzo: χn is shift-invariant

Lemma

Let F : Fn
2 → Fn

2 be a map such that F ◦ (� 1) = (� 1) ◦ F . Then F is

shift-invariant.

Proof.

Induction to k.

Lemma

χn is shift-invariant (for any n ≥ 1).

Proof.

χn((a0, . . . , an−1)� 1) = χn(an−1, a0, . . . , an−2)

= (an−1 + (a0 + 1)a1, . . . , an−2 + (an−1 + 1)a0)

= (a0 + (a1 + 1)a2, . . . , an−1 + (a0 + 1)a1)� 1

= χn(a0, . . . , an−1)� 1
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χ
n

∣∣
S0

looks linear

S0 = {x ∈ Fn
2 | xi = 0 when i ≡ 0 (mod 2)}.

χn(0, x1, 0, x3, 0, . . . , xn−3, 0, xn−1) = (y0, y1, . . . , yn−2, yn−1)

where

y0 = 0 + (x1 + 1) · 0 = 0,

y1 = x1 + (0 + 1)x3 = x1 + x3,

y2 = 0 + (x3 + 1) · 0 = 0,

. . .

yn−2 = 0 + (xn−1 + 1) · 0 = 0

yn−1 = xn−1 + (0 + 1)x1 = xn−1 + x1

We see: χn(S0) ⊂ S0!
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Formalizing the previous

If we restrict the map

π0 : F2k
2 → Fk

2 , (x0, x1, . . . , x2k−1) 7→ (x1, x3, . . . , x2k−1)

to S0, we get a bijection.

Then we define χL
k := π−1

0
∣∣
S0

◦ χ2k ◦ π0.

Definition

Let k ≥ 1. We write χL
k : Fk

2 7→ Fk
2 , (x0, . . . , xk−1) 7→ (x0 + x1, x1 + x2, . . . , xk−1 + x0)

for the linearized even-length χ on S0 (or S1).
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Intermezzo: Linear Algebra reminder

Let F be a field and V ,W finite-dimensional F-vector spaces. Let L : V →W be a

linear map.

Let Ker L = {x ∈ V | L(x) = 0}, and Im L = {y ∈W | ∃x ∈ V : L(x) = y}.

Theorem (Isomorphism Theorem)

We have

V /Ker L ∼= Im L.

Corollary

dimV − dim Ker L = dim Im L.
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Determining image of linearized χ

Reminder: If A is the matrix that corresponds to a linear map L, then Im L = col(A).

Our case: 
1 1 0 0 . . . 0 0 0

0 1 1 0 . . . 0 0 0
...

. . .
...

0 0 0 0 . . . 0 1 1

1 0 0 0 . . . 0 0 1


All columns have even Hamming weight, so all vectors in Im L have even Hamming

weight.
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Determining kernel and image of χL
k

Reminder: χL
k(x0, . . . , xk−1) = (x0 + x1, x1 + x2, . . . , xk−1 + x0).

For χL
k(x) = 0 to hold, we must have

x0 = x1 = x2 = . . . = xk−1

hence KerχL
k = {0k , 1k}.

By the isomorphism theorem we find that dim Im L = k − 1.

Thus Im L is exactly the set of all vectors of even Hamming weight.
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Example for χL
3

χL
3 is defined as 1 1 0

0 1 1

1 0 1


x0

x1

x2

 =

x0 + x1

x1 + x2

x2 + x0


Then ImχL

3 is the set 
1

0

1

 ,

0

0

0

 ,

1

1

0

 ,

0

1

1
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Determining image of χn

Now by using the definition of χL
k , or by just adding zeroes, we find

Theorem

Let n > 1 be even. Then Imχn consists of elements with even Hamming weight such

that either:

• All odd positions are 0, or;

• All even positions are 0.
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Counting and conclusions

We had |T | = 2n − (2n/2+1 − 1) states with a unique preimage.

We see that 1
2 |S0| states have no preimage, and 1

2 |S1| states have no preimage.

So |S0| = 2n/2 states with no preimage.

Remaining states: 2n/2 − 1 that might have more than one preimage.
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Part III



Goal and results so far

We determined the states that are not in Imχn.

They are those with odd Hamming weight in S0 ∪ S1.

The remaining goal is to determine all many-to-one states in Fn
2.

We already know that we need to look in S0 ∪ S1.
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A new lemma

Recall that KerχL
k = {0k , 1k}.

We have: if χL
k(u) = χL

k(v) then u = v or u = v + 1k .

By composing this with π−1
0 , (since χn(Si ) ⊂ Si ) we find

Lemma

Let n be a positive integer. If a, b ∈ Fn
2 are such that χn(a) = χn(b) 6= 0, then either

• a, b ∈ S0 and a + b = (10)n/2; or

• a, b ∈ S1 and a + b = (01)n/2.

So every non-zero element in Fn
2 has at most two preimages under χn.
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Counting and conclusions

We have 2n/2 − 1 states that might have more than one preimage.

One of those has three preimages, namely 0n.

We have 2n/2+1 − 1 states that have an image.

Excluding the three states that map to 0n, we have 2n/2+1 − 4 states that need to map

to the 2n/2 − 2 non-zero states in Imχn that we do not know yet.

This is exactly two-to-one.
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Example

Consider the state 100010. What is its preimage under χ6?

001010
P2

χ6

xx

00?010
P1

00?0?0

100010 ??????
L

?????0
P1

???0?0
P1

?0?0?0

Guess

Guess

100000
P1

χ6

ff

10?000
P2

10?0?0

L: If χn(x)i = 1, then xi−1 = χn(x)i−1.

P1: If xi = 0, then xi−2 = χn(x)i−2.

P2: If xi = 1, then xi−2 = χn(x)i−1 + χn(x)i−2 + 1.
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Conclusions

We have now determined the states not in Imχn: The states with odd Hamming

weight in S0 ∪ S1.

We have also determined all many-to-one states in Fn
2. The elements in

(S0 ∪ S1) \ {0n, (01)n/2, (10)n/2} are mapped two-to-one to states with even Hamming

weight in S0 ∪ S1. The elements 0n, (01)n/2, (10)n/2 are mapped to 0n.

New goal:

To determine whether χ is injective/surjective/bijective on infinite states.
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Part IV



Introducing χ on infinite states and first result

We write F̂2 for the vector space of infinite binary sequences.

χ : F̂2 → F̂2, (x0, x1, x2, . . .) 7→ (y0, y1, y2, . . .)

where

yi = xi + (xi+1 + 1)xi+2.

Examples:

χ(01) = 0

χ(10) = 0

χ(0) = 0

Clearly, χ is not injective.
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Introducing period spaces

Definition

Let n ≥ 1 be a positive integer. A state σ ∈ F̂2 is called n-periodic if σ � n = σ. We

call the minimal such n the period of σ. We write Σn for the set of all n-periodic

states.

Σ1 = {0, 1}
Σ2 = {0, 1, 01, 10}

Lemma

We have Σn ⊂ Σnk for all n, k ≥ 1. Furthermore Σn is a linear subspace of F̂2 for all

n ≥ 1 and we have the isomorphism Σn
∼= Fn

2.
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Applying period spaces

• χ is shift-invariant (similar proof)

• χ(Σn) ⊂ Σn

• σ ∈ Σn: σ � n = σ;

• χ(σ) = χ(σ � n) = χ(σ)� n;

• χ(σ) ∈ Σn.

• χn = χ∣∣
Σn
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Reusable results

We can use the results from χn now:

• χ is bijective on states of odd period

• χ is bijective on states of even period that have a 1 in both an odd and an even

position

• χ is surjective on non-zero states of even period that have even Hamming weight

(two-to-one if even positions all 0 or odd positions all 0)

• χ is three-to-one on zero state

To investigate:

• χ on non-zero states of even period with odd Hamming weight with even

positions all 0 (or odd positions all 0)
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The main theorem

Theorem

χ : F̂2 → F̂2 is surjective.

Proof.

Let σ be a state of even period n with odd Hamming weight and even positions all 0

(or odd positions all 0). Then σ is also 2n-periodic. The state σ|σ has even

Hamming weight, but still all even positions 0. Hence it has a preimage under χ2n.

Hence χ is surjective.
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Outro



Conclusions

χ is surjective

χn is bijective if n is odd

χn is not surjective if n is even
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