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Side-Channel Attacks

The power trace of a device is correlated with the values processed inside it.
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Take-away: These correlations let an adversary learn operands or even recover
secret keys.
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Figure: A single trace.

Take-away: These correlations let an adversary learn operands or even recover
secret keys.
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Masking Countermeasure

To protect a sensitive variable X ∈ F2u from side-channel leakage, masking is the most
widely used countermeasure.

• Replace X with n random shares X = [X0, . . . , Xn−1] such that
n−1⊕
i=0

Xi = X .

• Shares are (pseudo)random and independent subject to the XOR constraint. Any
set of t < n shares leaves X uniform (intuition: unless all shares are known, X is
hidden).

• All computations are performed on shares: linear ops are per-share; non-linear ops
(e.g., multiplication) require dedicated gadgets (e.g., ISW/PINI/. . . ).

Multiplication (goal)
Given shares [X0, . . . , Xn−1] and [Y0, . . . , Yn−1], securely compute n shares of
Z = XY without leaking X or Y .
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Probing Model and Glitch-Extended Probing Model

Side-channel leakage is often noisy and hard to model directly. Two idealized models
capture what an attacker can observe without noise:

• (Threshold) probing model. The adversary can
read the values on up to d internal wires
(intermediate nodes) per execution.

• Glitch-extended probing model. Probing a value
V reveals the entire transitive fan-in used to
compute V (to model glitches/hazards).

Example
Let X = X0 ⊕ X1 and Y = Y0 ⊕ Y1. A 2-share “schoolbook” multiplication over F2:{

Z0 = X0Y0 ⊕ X1Y1,

Z1 = X0Y1 ⊕ X1Y0.

Implication. Probing Z0 (or Z1) reveals X and Y .
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How to Multiply (ISW’03)

• In 2003, Ishai–Sahai–Wagner (ISW) introduced a multiplication gadget secure in
the probing model.

• For d = 1 (2 shares) over F2, one correct instantiation is:{
Z0 = X0Y0 ⊕ R,

Z1 = X1Y1 ⊕ (R ⊕ X0Y1) ⊕ X1Y0.

• The gadget uses one fresh online random mask R per multiplication.
• For higher orders d, dedicated gadgets exist (cost and randomness grow with d2).
• ISW is not secure in the glitch-extended probing model.

Challenge
How can we perform secure multiplication under the glitch-extended probing model
without relying on online randomness?
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Nikova et al. (n = 4) Deterministic Gadget


Z0 = (1 ⊕ X2 ⊕ X3)(1 ⊕ Y1 ⊕ Y2) ⊕ Y3 ⊕ X1,

Z1 = (1 ⊕ X0 ⊕ X2)(1 ⊕ Y0 ⊕ Y3) ⊕ Y2 ⊕ X3,

Z2 = (X1 ⊕ X3)(Y0 ⊕ Y3) ⊕ Y1 ⊕ X1,

Z3 = (X0 ⊕ X1)(Y1 ⊕ Y2) ⊕ Y0 ⊕ X0.

• Glitch-extended safety example. Probing Z1
does not reveal X1 or Y1:
fanin(Z1) = {X0, X2, X3, Y0, Y2, Y3}.

• Deterministic: no online randomness is used.
• Uniformity: verified by direct enumeration for

the binary case (u = 1).
Computer-Aided Search
To date, no deterministic multiplication gadget secure against two or more
glitch-extended probes is known.
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Diving into the Problem (1/3)

Let shares of X be (X0, . . . , Xn−1) and shares of Y be (Y0, . . . , Yn−1).

Z = XY

Zk =
⊕

(i,j)∈Lk

XiYj ,

A glitch-extended probe on Zk reveals all pairs
(Xi , Yj) with (i, j) ∈ Lk .

Ik = {i | ∃j : (i, j) ∈ Lk }, Jk = { j | ∃i : (i, j) ∈ Lk }.

Equivalently, probing Zk exposes all Xi for i ∈ Ik
and all Yj for j ∈ Jk .
Goal: choose Lk so that each probe reveals as few
shares as possible.

X0

X1

X2

X3

Y 0 Y 1 Y 2 Y 3

Probe Zk (glitch-extended) reveals
all (i, j) ∈ Lk
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Diving into the Problem (2/3)

We can show that √
n ≤ max

0≤k<n
max{ |Ik |, |Jk | }.

Best case (tight): √
n = max

0≤k<n
max{ |Ik |, |Jk | }.

For n = 4, we can realize equality by pairing rows/columns as below.

X0 X1

X2 X3

[ ]
Y0 Y1

Y2 Y3

[ ]


Z0 = X|I0 ⊗ Y|J0 = (X0⊕X1) (Y0⊕Y2),
Z1 = X|I1 ⊗ Y|J1 = (X0⊕X1) (Y1⊕Y3),
Z2 = X|I2 ⊗ Y|J2 = (X2⊕X3) (Y0⊕Y2),
Z3 = X|I3 ⊗ Y|J3 = (X2⊕X3) (Y1⊕Y3).

This gadget is first-order probing secure, but not uniform.
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Diving into the Problem (3/3)

If we had fresh masks Rk with
⊕

k Rk = 0, then Wk = Zk ⊕ Rk would be a uniform
sharing of Z .

We can synthesize such masks from the input shares: Rk is built from Xi ’s and Yj ’s.

To keep probing security, Rk must depend only on shares already in the fan-in of Zk .

Simple efforts are not leading to uniformity. Finally, a uniform multiplication gadget:

X0 X1

X2 X3


 Y0 Y1

Y2 Y3





Z0 = (X0 ⊕ X1) (Y0 ⊕ Y2) ⊕ (X1 ⊕ X2) ⊕ (Y1 ⊕ Y2),
Z1 = (X2 ⊕ X3) (Y1 ⊕ Y3) ⊕ (X1 ⊕ X2) ⊕ (Y1 ⊕ Y2),
Z2 = (X0 ⊕ X3) (Y0 ⊕ Y2) ⊕ (X2 ⊕ X3) ⊕ (Y2 ⊕ Y3),
Z3 = (X1 ⊕ X2) (Y1 ⊕ Y3) ⊕ (X2 ⊕ X3) ⊕ (Y2 ⊕ Y3).

There is a pattern!!!

Can we generalize this pattern for square values of n?
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Searching for a Grouping Strategy

Formalizing the pattern.

• For n = s2, index the n shares by a grid {0, . . . , s − 1} × {0, . . . , s − 1}. A
cluster C = {A0, . . . , As−1} is a partition of the indices into s multi-shares
(blocks) of size s:

Ai ⊆ [n], |Ai | = s, Ai ∩ Aj = ∅ (i ̸= j),
⋃
i

Ai = [n].

• Two clusters C (1) = {A(1)
i } and C (2) = {A(2)

j } should be such that for all i, j,∣∣A(1)
i ∩ A(2)

j
∣∣ = 1

Geometric view. Take s × s grid points (“shares”) as the points of the affine plane.
Two parallel classes of lines give exactly such cluster families: lines within a class are
parallel (partition), and lines from different classes intersect in one point. This is why
our search leads to finite affine geometry.
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Euclidean Geometry example
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Figure: Thales’ Theorem.
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Euclidean Geometry

• (Mostly) planar geometry concerning points, lines and circles;

• Based on postulates:

(I): There is a line between any two points;
(II): Any line can be extended infinitely long;

(III): There is a circle for each center and radius;
(IV): All right angles are equal;
(V): (Parallel postulate) Given a line and a point not on the line, there is a line

parallel to it through that point.1

1

This is actually Playfair’s axiom, which is equivalent.
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Euclidean Geometry to Finite Affine Geometry

• (Mostly) planar geometry concerning points and lines;
• Based on postulates:

(I): For any two distinct points, there is a line containing both;
(II): Any line can be extended infinitely long;

(III): There is a circle for each center and radius;
(IV): All right angles are equal;
(V): (Playfair’s axiom) Given a line ℓ and a point p not on ℓ, there exists a line ℓ′
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Trivial examples

Definition (Finite Pre-Affine plane)
A finite pre-affine plane consists of a set of points P and a set of lines L such that it
satisfies the postulates (I) and (V).

Example
Let P = ∅ and L = ∅.

Then (P, L) satisfies (I) and (V) and thus is a finite pre-affine
plane.

Example
Let P = {x1 . . . , xn} and L = {P} (the line contains all points in P).

Then (P, L)
satisfies (I) and (V) and thus is a finite pre-affine plane.
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Non-example and non-trivial example

Figure: Fano plane.

The Fano plane has 7 points and 7 lines,
where each line contains 3 points, each
point lies on 3 lines and all lines inter-
sect. It is actually an example of a pro-
jective plane.

This finite pre-affine plane has
4 points, 6 lines, and satisfies
postulates (I) and (V).
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Finite affine plane

Definition
A finite affine plane consists of a set of
points P and a set of lines L such that it
satisfies the postulates (I) and (V)

and
additionally that there is a set of four
points in P such that no three of them
are on the same line.

Figure: Affine plane of order 2.
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Properties of finite affine planes

• All lines in a finite affine plane have the same number of points;

• The number of points per line in a finite affine plane is called the order of the
affine plane.

• Let A = (P, L) be an affine plane of order k.
• Every point is on k + 1 lines.
• A has k2 points.
• For any line ℓ there are k − 1 lines that are parallel to ℓ.
• A has k2 + k lines.
• A has k + 1 sets of parallel lines.
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Coordinatization of finite affine planes

Construction (Coordinatization)
Let F be a field and consider P := F × F.

Furthermore, let a, b, s ∈ F and define
ℓs,b := {(x, y) | y = sx + b} and ℓa := {(a, y) | y ∈ F}. Set L = {ℓs,b} ∪ {ℓa}a∈F.
Then (P, L) is an affine plane of order #F.

Example (Affine plane of order 2)

Let P := {(0, 0), (0, 1), (1, 0), (1, 1)}.

ℓ0 := {(0, 0), (0, 1)};
ℓ0,0 := {(0, 0), (1, 0)};
ℓ1,0 := {(0, 0), (1, 1)};

ℓ1 := {(1, 0), (1, 1)};
ℓ0,1 := {(0, 1), (1, 1)};
ℓ1,1 := {(0, 1), (1, 0)}.
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Parallel lines

• Lines ℓa are parallel;

• Lines in {ℓs,b | b ∈ F} are parallel for each slope s.
• We say that the lines ℓa have slope ∞.
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Example

A finite affine plane of order 4. We take F := F2[X ]/(X2 + X + 1):

Figure: Points in F2

.
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A finite affine plane of order 4. We take F := F2[X ]/(X2 + X + 1):

Figure: Lines of slope ∞ and 0.
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Example

A finite affine plane of order 4. We take F := F2[X ]/(X2 + X + 1):

Figure: Lines of slope ∞, 0, 1, x and x + 1.
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Example

A finite affine plane of order 4. We take F := F2[X ]/(X2 + X + 1):

Figure: A finite affine plane of order 4.
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Clusters

Definition (Cluster)
Let X be a set of n = s2 elements. A cluster C is a partition of X in s sets of equal
size s.

Definition (MNO clusters)
Let C 1 and C 2 be two clusters of X , then they are maximally non-overlapping
(MNO)

if given any set c ∈ C 1 and any set d ∈ C 2, we have |c ∩ d| = 1.

Definition (SMNO clusters)
Let C be a collection of clusters. Then C is called a collection of simultaneous MNO
clusters

if each pair of clusters in C is MNO.
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Maximum number of SMNO clusters

• Assume we have a finite affine plane
A = (P, L) of order s;

• Any set s of parallel lines is a cluster
of P;

• Then any two clusters so obtained are
MNO;

• Then we obtain s + 1 SMNO clusters.
• Known to be possible for all prime

powers (s = pk).

Figure: Example for s = 4.
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Properties of Clustering

• For n = s2 where s is a prime power, there exist exactly s + 1 simultaneous
MNO (SMNO) clusters over an n-sharing.

• A cluster that has a missing multi-share can not be completed with less than
s − 1 multi share from other clusters.

• Let s be an odd prime power, and let n = s2. Consider all sums:⊕
Ah

j for 0 ≤ h ≤ s, 0 ≤ j ≤ s − 1,

where Ah
j denotes the j-th multi-share from the h-th SMNO cluster of an

n-sharing X. Then, the rank of the resulting system of linear (parity)
relations is n.
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Our Multiplication Gadget

The gadget is deterministic and uniform, and it is secure against up to d = s − 1
glitch-extended probes.

α = ⌊k/s⌋,

β = mod(k, s),

Rk =
s−1⊕
i=0

(
A0

α(X)[i] ⊕ Aα+1
β(X)[i] ⊕ A0

α(Y)[i] ⊕ Aα+1
β(Y)[i]

)
,

Wk = A0
α(X) ⊗ Aα+1

β(Y),

Zk = Rk ⊕ Wk .

Here, Ah
j (·) denotes the j-th multi-share from the h-th SMNO cluster applied

to the input sharing.
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Other Applications of Clustering

• For d = 2 security, our multiplication gadget requires n = 9 shares — which
is not practically interesting.

• However, the clustering approach is also applicable to protecting the
nonlinear layer χ5.

• We constructed a uniform and deterministic χ5 gadget using only n = 4
shares that achieves d = 3 probing security.

• Previously, such gadgets were only known for d = 1 and d = 2.
• This construction enables a fully deterministic masking of ASCON with

d = 3 security — a new milestone.

Thank you for your attention!
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