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Side-Channel Attacks

The power trace of a device is correlated with the values processed inside it.
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Side-Channel Attacks

The power trace of a device is correlated with the values processed inside it.
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Figure: 1000 traces aggregated.

Take-away: These correlations let an adversary learn operands or even recover

secret keys. 225
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Masking Countermeasure

To protect a sensitive variable X &€ Fou from side-channel leakage, masking is the most
widely used countermeasure.

® Replace X with n random shares X = [Xj, ..., X,,_1] such that

n—1
P xi=X.
1=0

® Shares are (pseudo)random and independent subject to the XOR constraint. Any
set of ¢t < n shares leaves X uniform (intuition: unless all shares are known, X is
hidden).

® All computations are performed on shares: linear ops are per-share; non-linear ops
(e.g., multiplication) require dedicated gadgets (e.g., ISW/PINI/...).

Multiplication (goal)

Given shares [Xp, ..., X,—1] and [Yo, ..., Y,_1], securely compute n shares of
Z = XY without leaking X or Y. 3/25
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Side-channel leakage is often noisy and hard to model directly. Two idealized models
capture what an attacker can observe without noise:
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Probing Model and Glitch-Extended Probing Model

Side-channel leakage is often noisy and hard to model directly. Two idealized models
capture what an attacker can observe without noise:

¢ (Threshold) probing model. The adversary can 0
read the values on up to d internal wires
(intermediate nodes) per execution.

(=)

)

(=)&)

e Glitch-extended probing model. Probing a value
V reveals the entire transitive fan-in used to

; Probe Z; (glitch-extended):
compute V (to model glitches/hazards). fan-in exposed.

Yi

Example

Let X = Xo® X; and Y = Yy & Y;q. A 2-share “schoolbook” multiplication over Fs:

Zy =XoYo® X1 1,
71 =XoY10 X1 Y.

Implication. Probing Zy (or Z;) reveals X and Y. 425



How to Multiply (ISW’03)

® In 2003, Ishai-Sahai-Wagner (ISW) introduced a multiplication gadget secure in
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How to Multiply (ISW’03)

® In 2003, Ishai-Sahai-Wagner (ISW) introduced a multiplication gadget secure in
the probing model.

For d = 1 (2 shares) over Fq, one correct instantiation is:

Zy=XoYo® R,
Zi=X1o (RS X Y1) X1 Yo

The gadget uses one fresh online random mask R per multiplication.

For higher orders d, dedicated gadgets exist (cost and randomness grow with d?).

ISW is not secure in the glitch-extended probing model.

Challenge

How can we perform secure multiplication under the glitch-extended probing model
without relying on online randomness?
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Nikova et al. (n = 4) Deterministic Gadget

Zo—(l@X2€9X3)(1EB ie Y2)® Y30 Xy,
_ (10 Xe X) (16 Yod Ys)® Y @ Xa,
=(X10X3)(Yo® Y3)@ Y1 @ X,
=(Xo® X1)(V1 @ Y2)® Yo @ Xo.
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Yo

Zo—(lEBXQEBXg)(l@Yl@YQ)@ Y3 @ Xy, Xo\l V)
=(1oXodX)(1e Yo V3)® Yo X3, X /@< %
=(X10X3)(Yo® Y3)@ Y1 @ X, X, T Y
= (Xo® X1)(Y1® Y2) ® Yo @ Xo. X,

Probe Z: (glitch-extended):
fan-in excludes X1, Yi.

o Glitch-extended safety example. Probing Z;
does not reveal X; or Yi:
fanin(Zl) = {X(), XQ,Xg, Y(), Yz, Yg}.
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Nikova et al. (n = 4) Deterministic Gadget

Zo—(lEBXQEBXg)(l@Yl@YQ)@ Y3 @ Xy, Xo\l v
=(1oXodX)(1e Yo V3)® Yo X3, X /@< ¥
=(X10X3)(Yo® Y3)@ Y1 @ X, X, T Y
= (Xo® X1)(Y1® Y2) ® Yo @ Xo. X,

Probe Z: (glitch-extended):

e Glitch-extended safety example. Probing Z; fomin excludes A1, T
does not reveal X; or Yi:
fanin(Zl) = {X(), XQ,Xg, Y(), YQ, Yg}.
® Deterministic: no online randomness is used.
® Uniformity: verified by direct enumeration for
the binary case (u = 1).
Computer-Aided Search

To date, no deterministic multiplication gadget secure against two or more

glitch-extended probes is known. 6/25



Diving into the Problem (1/3)

Let shares of X be (Xp,..., X,—1) and shares of Y be (Yp,..., Y,_1).

Z = XY

Probe Z, (glitch-extended) reveals
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o Probe Zj, (glitch-extended) reveals
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o V. Probe Zj, (glitch-extended) reveals
Zy = @ X; Y], all (4,5) € Ly,

A glitch-extended probe on Zj reveals all pairs
(Xi, Y;) with (4,7) € Ly,

I

Ik:{ilzlj: (iaj)eLk}7 Jk:{j’ElZ‘: (ivj)GLk}'

Equivalently, probing Z; exposes all X; for i € I,
and all Yj for j € Jj.

Goal: choose Lj so that each probe reveals as few I
shares as possible.
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Best case (tight):

= 1 ;
n o= max max{ |y, Tl }

For n = 4, we can realize equality by pairing rows/columns as below.

Yo Y1

[ O ] Zo = X1, ® Y3, = (Xo@ X1) (Yo @ Y2),
X2 X Y Vs Z =X, ® Y]y, = (X00X) (V10 Y3),
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_ I Jil }.
W = Om<kaé< max{ Iz|, |Jx|}

For n = 4, we can realize equality by pairing rows/columns as below.

X.|IO7 X|11 Y|J07 Y|J2 ZO = X’Io X Y‘JO —_ (XO@Xl) (YO@ }/’2)7
X0 Xp| Yo Vi) Zi =X, @ Y|, = (X0®X1) (Y10 Y3),
:'3(;“;(;\: : Y2 j:\ YS : Z2 = X|12 ® Y|J2 = (X2®X3) (YO@ YQ)’
st s Z3 =X|1;, @ Y3, = (X2B X3) (Y18 Y3

X|127 X|13 Yv‘.]l7 Yv‘.]3 | 3 | 3 ( )( )

This gadget is first-order probing secure, but not uniform.
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If we had fresh masks Ry with @, Ry = 0, then W), = Z;, @ Ry, would be a uniform
sharing of Z.

We can synthesize such masks from the input shares: Ry is built from X;'s and Yj's.

To keep probing security, R; must depend only on shares already in the fan-in of Z;.

Simple efforts are not leading to uniformity. Finally, a uniform multiplication gadget:

e — ZO—(XO@XI)(YO@Y2)@(X1@X2) (1@ ¥2),
SO IR = (%8 Xs) (V18 V)@ (X8 X) e (V16 Ya),
g || 1l | Y = (X0 8 X;) (Y0 © Y2) @ (X2 © X3) & (12 @ Y3),
—————— = Zg_( 19 X2) (V18 Y3)® (Xo® X3) @ (Yo @ V3).

There is a pattern!!!

Can we generalize this pattern for square values of n?
9/25
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Searching for a Grouping Strategy

Formalizing the pattern.

® For n = s, index the n shares by a grid {0,...,s — 1} x {0,...,s—1}. A
cluster C = {Ay,...,A,_1} is a partition of the indices into s multi-shares
(blocks) of size s:

* Two clusters C(1) = {Ag-l)} and C(?) = {A§-2)} should be such that for all 4, j,

AY N AP =1

Geometric view. Take s X s grid points (“shares”) as the points of the affine plane.
Two parallel classes of lines give exactly such cluster families: lines within a class are
parallel (partition), and lines from different classes intersect in one point. This is why
our search leads to finite affine geometry. 10/25
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Euclidean Geometry example

Figure: Thales’ Theorem.
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Euclidean Geometry

® (Mostly) planar geometry concerning points, lines and circles;
® Based on postulates:

(I): There is a line between any two points;
): Any line can be extended infinitely long;
): There is a circle for each center and radius;
(IV): All right angles are equal;
): (Parallel postulate) Given a line and a point not on the line, there is a line
parallel to it through that point.}

'This is actually Playfair's axiom, which is equivalent.
12/25
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Euclidean Geometry to Finite Affine Geometry

® (Mostly) planar geometry concerning points and lines;
® Based on postulates:
(I): For any two distinct points, there is a line containing both;
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Trivial examples

Definition (Finite Pre-Affine plane)

A finite pre-affine plane consists of a set of points P and a set of lines L such that it
satisfies the postulates (I) and (V).
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Trivial examples

Definition (Finite Pre-Affine plane)

A finite pre-affine plane consists of a set of points P and a set of lines L such that it
satisfies the postulates (I) and (V).

Example

Let P =10 and L =0. Then (P, L) satisfies (I) and (V) and thus is a finite pre-affine
plane.

Example

Let P={z1...,2,} and L = {P} (the line contains all points in P). Then (P, L)
satisfies (1) and (V) and thus is a finite pre-affine plane.
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Non-example and non-trivial example

Figure: Fano plane.
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Non-example and non-trivial example

Figure: Fano plane.

The Fano plane has 7 points and 7 lines,
where each line contains 3 points, each
point lies on 3 lines and all lines inter-
sect. It is actually an example of a pro- postulates (I) and (V).

This finite pre-affine plane has
4 points, 6 lines, and satisfies

jective plane.
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Finite affine plane

Definition

A finite affine plane consists of a set of
points P and a set of lines L such that it
satisfies the postulates (I) and (V)
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Finite affine plane

Definition

A finite affine plane consists of a set of
points P and a set of lines L such that it
satisfies the postulates (I) and (V) and
additionally that there is a set of four
points in P such that no three of them
are on the same line.
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Finite affine plane

Definition

A finite affine plane consists of a set of
points P and a set of lines L such that it
satisfies the postulates (I) and (V) and
additionally that there is a set of four
points in P such that no three of them
are on the same line.

Figure: Affine plane of order 2.
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Properties of finite affine planes

® All lines in a finite affine plane have the same number of points;
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Properties of finite affine planes

® All lines in a finite affine plane have the same number of points;

® The number of points per line in a finite affine plane is called the order of the
affine plane.
® Let A= (P, L) be an affine plane of order k.
® Every point is on k£ + 1 lines.
A has k? points.
For any line ¢ there are k — 1 lines that are parallel to /.
A has k? + k lines.
A has k + 1 sets of parallel lines.

17/25



Coordinatization of finite affine planes

Construction (Coordinatization)
Let F be a field and consider P :=F x F.
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Coordinatization of finite affine planes

Construction (Coordinatization)

Let F be a field and consider P .= x IF. Furthermore, let a, b, s € F and define
Uiy ={(z,y) | y=sz+ b} and {, :={(a,y) | y € F}. Set L = {lsp} U{ls}acr.
Then (P, L) is an affine plane of order #F.

Example (Affine plane of order 2)
Let P = {(0,0), (0,1), (1,0), (1, 1)} I I
6 :=1{(0,0),(0,1)}; 4 :={(1,0),(1,1)};

Figure: P and first two lines.
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Coordinatization of finite affine planes

Construction (Coordinatization)

Let F be a field and consider P .= x IF. Furthermore, let a, b, s € F and define
Uiy ={(z,y) | y=sz+ b} and {, :={(a,y) | y € F}. Set L = {lsp} U{ls}acr.
Then (P, L) is an affine plane of order #F.

Example (Affine plane of order 2)
Let P :={(0,0),(0,1),(1,0),(1,1)}.

by = {(070),(0,1)}; by = {(170)7(1?1)};
0,0 :=1{(0,0),(1,0)}; 4o,1:={(0,1),(1,1)};

Figure: P and first four lines.
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Coordinatization of finite affine planes

Construction (Coordinatization)

Let F be a field and consider P .= x IF. Furthermore, let a, b, s € F and define
Uiy ={(z,y) | y=sz+ b} and {, :={(a,y) | y € F}. Set L = {lsp} U{ls}acr.
Then (P, L) is an affine plane of order #F.

Example (Affine plane of order 2)
Let P :={(0,0),(0,1),(1,0),(1,1)}.

by = {(070),(0,1)}; by = {(170)7(1?1)};
lo,0 =1(0,0),(1,0)};  &,1:={(0,1), (1, )} Figure: All points and lines.
l1,0:={(0,0),(1,1)};  ¢1,1 :={(0,1),(1,0)}.
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Construction (Coordinatization)

Let F be a field and consider P .= x IF. Furthermore, let a, b, s € F and define
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Parallel lines

® Lines /, are parallel;
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Parallel lines

® Lines /, are parallel;
® Linesin {¢s; | b € F} are parallel for each slope s.

® \We say that the lines £, have slope c.
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A finite affine plane of order 4. We take F := Fo[X]/(X? + X + 1):

Figure: Points in 2
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A finite affine plane of order 4. We take F := Fo[X]/(X? + X + 1):
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Figure: Lines of slope oc.
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A finite affine plane of order 4. We take F := Fo[X]/(X? + X + 1):

Figure: Lines of slope co and 0.
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A finite affine plane of order 4. We take F := Fo[X]/(X? + X + 1):

Figure: Lines of slope oo, 0 and 1.
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A finite affine plane of order 4. We take F := Fo[X]/(X? + X + 1):

Figure: Lines of slope oo, 0, 1 and z.
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A finite affine plane of order 4. We take F := Fo[X]/(X? + X + 1):

Figure: Lines of slope oo, 0, 1, z and z + 1.
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A finite affine plane of order 4. We take F := Fo[X]/(X? + X + 1):

Figure: A finite affine plane of order 4.
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Definition (Cluster)

Let X be a set of n = 52 elements. A cluster C is a partition of X in s sets of equal
size s.
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Definition (Cluster)

Let X be a set of n = s> elements. A cluster C is a partition of X in s sets of equal
size s.

Definition (MNO clusters)

Let C! and C? be two clusters of X, then they are maximally non-overlapping
(MNO) if given any set ¢ € C! and any set d € C?, we have [cNd| = 1.

Definition (SMNO clusters)

Let ¢ be a collection of clusters. Then € is called a collection of simultaneous MNO
clusters if each pair of clusters in € is MNO.
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Maximum number of SMNO clusters

® Assume we have a finite affine plane
A = (P, L) of order s;

22/25



Maximum number of SMNO clusters

® Assume we have a finite affine plane
A = (P, L) of order s;

® Any set s of parallel lines is a cluster
of P;

22/25



Maximum number of SMNO clusters

® Assume we have a finite affine plane
A = (P, L) of order s;

® Any set s of parallel lines is a cluster
of P;

Figure: Example for s = 4.

22/25



Maximum number of SMNO clusters

® Assume we have a finite affine plane
A = (P, L) of order s;

® Any set s of parallel lines is a cluster
of P;

® Then any two clusters so obtained are
MNO;

Figure: Example for s = 4.

22/25



Maximum number of SMNO clusters

® Assume we have a finite affine plane
A = (P, L) of order s;

® Any set s of parallel lines is a cluster
of P;

® Then any two clusters so obtained are
MNO;

Then we obtain s+ 1 SMNO clusters.

Figure: Example for s = 4.
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Maximum number of SMNO clusters

® Assume we have a finite affine plane
A = (P, L) of order s;

® Any set s of parallel lines is a cluster
of P;

® Then any two clusters so obtained are
MNO;

® Then we obtain s +1 SMNO clusters.

® Known to be possible for all prime
powers (s = p").

Figure: Example for s = 4.
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Properties of Clustering

® For n = s? where s is a prime power, there exist exactly s+ 1 simultaneous
MNO (SMNO) clusters over an n-sharing.
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Properties of Clustering

® For n = s? where s is a prime power, there exist exactly s+ 1 simultaneous
MNO (SMNO) clusters over an n-sharing.

® A cluster that has a missing multi-share can not be completed with less than
s — 1 multi share from other clusters.

® et s be an odd prime power, and let n = s2. Consider all sums:
PA} for 0<h<s 0<j<s-—1,

where A? denotes the j-th multi-share from the h-th SMNO cluster of an
n-sharing X. Then, the rank of the resulting system of linear (parity)
relations is n.
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Our Multiplication Gadget

The gadget is deterministic and uniform, and it is secure against upto d = s — 1
glitch-extended probes.
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Our Multiplication Gadget

The gadget is deterministic and uniform, and it is secure against upto d = s — 1
glitch-extended probes.

o= [k/s],
B = mod(k, s),
s—1
Ry = D (A%(X)[i] & AT 5(X)[i] @ A% (V)] @ A~ 5(Y)]1]),
=0

Wi = A%(X) & A L5(Y),
Zy = R ® W

Here, A;l() denotes the j-th multi-share from the h-th SMNO cluster applied
to the input sharing.
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Other Applications of Clustering

® For d = 2 security, our multiplication gadget requires n = 9 shares — which
is not practically interesting.
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Other Applications of Clustering

® For d = 2 security, our multiplication gadget requires n = 9 shares — which
is not practically interesting.

® However, the clustering approach is also applicable to protecting the
nonlinear layer ys.

® \We constructed a uniform and deterministic x5 gadget using only n =4
shares that achieves d = 3 probing security.

® Previously, such gadgets were only known for d =1 and d = 2.

® This construction enables a fully deterministic masking of ASCON with
d = 3 security — a new milestone.

Thank you for your attention!
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