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Questions?

If any questions arise, please feel free to ask them during the
presentation.
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Mathieu-Zhao spaces
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Recap on ideals

In this talk all rings are considered to be commutative and have an
identity, unless specified otherwise. All algebras are associative and
contain 1.

Let R be a ring and A an R-algebra. An ideal I of A is an additive
subspace of A such that for all a, b ∈ A we have

a ∈ I =⇒ ba ∈ I.

Hence in particular, for all a, b ∈ A, if for all m ≥ 1 we have
am ∈ I, then for all m ≥ 1 we have bam ∈ I.
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Generalising

So for ideals:

for all a, b ∈ A, if for all m ≥ 1 we have am ∈ I, then for all m ≥ 1
we have bam ∈ I.

We can relax this a bit:

for all a, b ∈ A, if for all m ≥ 1 we have am ∈ I, then for all
m� 0 we have bam ∈ I.

(Here for all m� 0 we have bam ∈ I means there exists some
N > 0 such that for all m ≥ N we have bam ∈ I.)
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Definition

We now define a Mathieu-Zhao space of A as an R-linear subspace
M of A for which the following property holds:

If am ∈M for all m ≥ 1, then for any b ∈ A we have bam ∈M for
all m� 0.

Example 1 (Ideals)

Ideals of algebras.

Not every Mathieu-Zhao space is an ideal!
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Definition

We now define a Mathieu-Zhao space of A as an R-linear subspace
M of A for which the following property holds:

If am ∈M for all m ≥ 1, then for any b ∈ A we have bam ∈M for
all m� 0.

Not every Mathieu-Zhao space is an ideal!

Example 2

Consider F4 as a Z-algebra. We know that F4 only has two ideals:
0 and 1. But the set M := {0, x} is a Mathieu-Zhao space.

We have x2 = x+ 1. Since x+ 1 is not an element of {0, x}, we
find that this set indeed satisfies the conditions for a Mathieu-Zhao
space.

8 / 32



Mathieu-Zhao spaces Background and improvement General Results Finite rings Main theorems of classification

Non-example

Let R be any ring, and A an R-algebra. Then ∆A ⊂ A×A is an
R-linear space, but not a Mathieu-Zhao space:

We have:

∀a ∈ A ∀n ≥ 1 : (a, a)n = (an, an) ∈ ∆A.

Hence, if ∆A were a Mathieu-Zhao space, then we should have

∀(b, c) ∈ A×A ∃N ≥ 0 ∀m ≥ N : (b, c)(a, a)m ∈ ∆A.

Let a be any non-nilpotent element and (b, c) = (1, 0) we have
(1, 0)(a, a)m = (am, 0) 6∈ ∆A for all a 6= 0.

So ∆A is not a Mathieu-Zhao space.
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Background and improvement
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Mathieu Conjecture

Mathieu Conjecture (1995) Let G be a compact connected real
Lie group with Haar measure σ. Let f be a complex-valued G-finite
function on G such that

∫
G f

mdσ = 0 for all m ≥ 1. Then for
every G-finite function g on G, also

∫
G gf

mdσ = 0 for all large m.

The similarities to Mathieu-Zhao spaces is clear, and we can write
(MC) in terms of Mathieu-Zhao spaces:

Mathieu Conjecture Let G be a compact connected real Lie
group with Haar measure σ and let A be the algebra of
complex-valued G-finite functions on G. Then{

f ∈ A |
∫
G
fdσ = 0

}
is a Mathieu-Zhao space of A.
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Duistermaat and Van der Kallen’s theorem

Theorem 3 (Duistermaat-Van der Kallen (1998))

Let X1, . . . , Xn be n commutative variables and let M be the
subspace of the Laurent polynomial algebra
C[X1, . . . , Xn, X

−1
1 , . . . , X−1

n ] consisting of those Laurent
polynomials with no constant term. Then M is a Mathieu-Zhao
space of C[X1, . . . , Xn, X

−1
1 , . . . , X−1

n ].

1-dimensional case:

Theorem 4 (DvdK 1-dimensional)

Let C[X,X−1] be the Laurent polynomial algebra in one variable.
Then

{f ∈ C[X,X−1] | f0 = 0}

is a Mathieu-Zhao space of C[X,X−1].
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Duistermaat and Van der Kallen’s theorem

The set {f ∈ C[X,X−1] | f0 = 0} is of course the kernel of the
linear map L : C[X,X−1]→ C defined by L(f) = f0.

Properties:

L(1) 6= 0;

L(Xn) = 0 for all n ≥ 1 and all n ≤ −1.
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Generalization

Theorem 5 (DvdK1 - generalization)

Let L : C[X,X−1]→ C be a non-zero C-linear map for which
there exists an N ≥ 1 such that L(Xn) = 0 for all n ∈ Z≥N and
all n ∈ Z≤−N . Then KerL is a Mathieu-Zhao space of C[X,X−1]
if and only if L(1) 6= 0.
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General Results
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MZ-spaces containing 1

From now on we shall say ”MZ-space” instead of Mathieu-Zhao
space.

Lemma 6

Let R be a ring and A an R-algebra. Let M be an MZ-space of A
such that 1 ∈M . Then M = A.

Proof.

Since 1m = 1 for all m ≥ 1, we find that for all b ∈ A we have
b1m ∈M for all m� 0 since M is an MZ-space. Hence b ∈M,
and M = A.
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A closer look

We take a closer look at the argument given just now. What is the
special property of 1 that we use here?

Since 1m = 1 for all m ≥ 1, we find that for all b ∈ A we have
b1m ∈M for all m� 0 since M is an MZ-space. Hence b ∈M,
and M = A.

That 12 = 1 is that special property! Let e ∈ A be an element that
satisfies e2 = e. We call such an element an idempotent.
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A closer look

We take a closer look at the argument given just now. What is the
special property of 1 that we use here?

Since em = e for all m ≥ 1, we find that for all b ∈ A we have
bem ∈M for all m� 0 since M is an MZ-space. Hence be ∈M,
and M ⊃ Ae.

That 12 = 1 is that special property! Let e ∈ A be an element that
satisfies e2 = e. We call such an element an idempotent.
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MZ-spaces containing an idempotent e

Now we have:

Lemma 7

Let R be a ring and A an R-algebra. Let M be an MZ-space of A
such that e ∈M, where e is an idempotent. Then Ae ⊂M.

Proof.

Since em = e for all m ≥ 1, we find that for all b ∈ A we have
bem ∈M for all m� 0 since M is an MZ-space. Hence be ∈M,
and Ae ⊂M. 4
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Operations on MZ-spaces

The intersection of two MZ-spaces is again an MZ-space:

Lemma 8 (Intersection)

Let M1,M2 be MZ-spaces of an R-algebra A. Then M1 ∩M2 is
an MZ-space of A.

Products of MZ-spaces are MZ-spaces:

Lemma 9 (Product)

Let A and B be R-algebras and M ⊂ A and N ⊂ B be MZ-spaces
of A,B respectively. Then M ×N is an MZ-spaces of A×B.

19 / 32



Mathieu-Zhao spaces Background and improvement General Results Finite rings Main theorems of classification

MZ-space of A×B that is not of the form M ×N

It is not true that all MZ-spaces of A×B are of the form M ×N :

Example 10

Consider the ring R := Z/2Z× Z/4Z. Then M := {(0, 0), (1, 2)}
is a Z-linear subspace and an MZ-space of R. Clearly, it is not of
the described form.

Since 2(1, 2) = (0, 0), we find that M is a Z-linear subspace and
since (1, 2)2 = (1, 0) 6∈M, we find that M satisfies the conditions
for being an MZ-space.

There exists a partial converse to the product lemma for finite
rings, which we will discuss later.
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Finite rings
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Finite rings are Artin rings

An Artin ring is a ring R such that every descending chain of ideals
becomes stationary, i.e., if

I1 ⊃ I2 ⊃ . . .

then there exists some n ∈ N such that In = In+1 = . . .

In particular, since a finite ring has only finitely many ideals, it is
clear that finite rings are Artin rings.
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Structure Theorem for Artin rings

Theorem 11 (Structure Theorem for Artin rings)

Let A be an Artin ring with maximal ideals m1, . . . ,mn. Then for
some k ∈ N we have A ∼=

∏n
n=1A/m

k
i .

This is now also a structure theorem for finite rings. So every finite
ring can be seen as a product of finitely many local rings.
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Z/100Z

Lemma 12 (Z/nZ)

Let n be a positive integer and let R be the ring Z/nZ. Then all
Z-linear subspaces of Z/nZ are actually ideals. Since ideals are
MZ-spaces, we have now classified all the MZ-spaces of Z/nZ.

So the MZ-spaces of Z/100Z are:

0, 50Z/100Z, 25Z/100Z, 20Z/100Z, 10Z/100Z,

5Z/100Z, 4Z/100Z, 2Z/100Z,Z/100Z.
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Finite Fields

Lemma 13 (Finite Fields)

Let p be a prime, n ≥ 1 an integer and q = pn. Then all Z-linear
subspaces of Fq that do not contain 1 are MZ-spaces of Fq, and of
course Fq itself is also an MZ-space.

Proof.

Let M be a Z-linear subspace of Fq that does not contain 1. Let
x ∈M be such that xn ∈M for all n ≥ 1. If x 6= 0, then this
implies 1 ∈M, a contradiction. So only x = 0 satisfies the
hypothesis xn ∈M and clearly for all y ∈ Fq we then have
y · 0m = 0 ∈M for all m� 0. 4

The finite field F4 has MZ-spaces 0, {0, x}, {0, x+ 1},F4.
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Main theorems of classification
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Classification Theorem #1.

We introduce here the definition
r(M) = {a ∈ A | an ∈M ∀n ≥ 1}. (We call this the radical of M)

Lemma 14 (Radical of nilpotents)

Let R be a ring and M a Z-linear subspace of R with
r(M) ⊂ n(R), where n(R) is the set of nilpotent elements of R,
then M is an MZ-space of R.

Theorem 15 (First Classification Theorem)

Let R be a finite ring. Let M be a Z-linear subspace of R. Write
E(R) for the set of idempotents of R. If M ∩ E(R) = 0, then
r(M) = n(R) and M is an MZ-space.
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Partial converse to the product lemma, or: Classification
Theorem #2

Theorem 16 (Second Classification Theorem’)

Let R be a finite ring of the form R ∼= R1/m
k1
1 ×R2/m

k2
2 . Then

every MZ-space that is not of the form r(M) ⊂ n(R) is of the form
M1 ×M2 where each Mi ⊂ Ri/m

ki
i is an MZ-space of Ri/m

ki
i .

Example 17

Let R := Z/2Z× Z/4Z. The product MZ-spaces are:

0 = 0× 0, 0× 2Z/4Z, 0× Z/4Z,

Z/2Z× 0,Z/2Z× 2Z/4Z,Z/2Z× Z/4Z = R.

By the above theorem, the remaining subspaces have the property
that r(M) ⊂ n(R).
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Example, continued

Example 17

Still, let R := Z/2Z× Z/4Z. We have previously met the
MZ-space {(0, 0), (1, 2)}. How do we proceed to find other
MZ-spaces M with r(M) ⊂ n(R)?

If M ∩ E(R) 6= 0, then we can determine a non-zero idempotent
e ∈M . Hence en = e ∈M for all n ∈ N, and e ∈ r(M). This
contradicts r(M) ⊂ n(R). Thus we must have M ∩ E(R) = 0.

Furthermore, if there exists some x ∈M such that nx = e for
some n ∈ N and non-zero e ∈ E(R), then since M is Z-linear we
have e ∈M . This contradicts M ∩ E(R) = 0.
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Example, continued

Example 17

The elements of Z/2Z× Z/4Z that are not idempotent or
nilpotent are:

(0, 3), (1, 2), (1, 3).

Note that 3 · (0, 3) = (0, 1) and 3 · (1, 3) = (1, 1).
So we have elements (0, 0), (0, 2) and (1, 2) that may be elements
of the remaining M . If (0, 2) and (1, 2) are both elements of M,
then their sum, (1, 0) is also an element of M . But this was ruled
out before. Hence we have the following possibilities:

{(0, 0)}

{(0, 0), (0, 2)}

{(0, 0), (1, 2)}
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Example of product of three rings

Example 18

Let R := Z/2Z× Z/4Z× Z/4Z. Then the Z-linear subspace M
defined by

M := {(0, 0), (1, 2)} × Z/4Z

is an MZ-space of R that is both:

not of the form r(M) ⊂ n(R). For we have (0, 0, 1) ∈M.

not of the form M1 ×M2 ×M3.

So for products of three rings (and hence arbitrary n > 2) there is
still some more work. This is done in my thesis.
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Questions

Thank you all for your attention, and if there are any lingering
questions, please do not hesitate to ask them.
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