Algebraic and Higher-Order Differential Cryptanalysis of Pyjamask-96

C. Dobruiig, Y. Rotella, J. Schoone
FSE 2020
Pyjamask is a 2nd-round candidate for the NIST lightweight competition

By Goudarzi, Jean, Kölbl, Peyrin, Rivain, Sasaki and Sim.

- Pyjamask-128-AEAD
 - based on Pyjamask-128
 - uses OCB as mode
- Pyjamask-96-AEAD
 - based on Pyjamask-96
 - uses OCB as mode

We focused on the block cipher Pyjamask-96.

Key recovery attack on full-round Pyjamask-96
Pyjamask-96 state \(x_i \in \{0,1\} \):

\(x_0 \)	\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)	\(x_5 \)	\(x_6 \)	\(x_7 \)	\(x_8 \)	\(x_9 \)	\(x_{10} \)	\(x_{11} \)	\(x_{12} \)	\(x_{13} \)	\(x_{14} \)	\(x_{15} \)	\(x_{16} \)	\(x_{17} \)	\(x_{18} \)	\(x_{19} \)	\(x_{20} \)	\(x_{21} \)	\(x_{22} \)	\(x_{23} \)	\(x_{24} \)	\(x_{25} \)	\(x_{26} \)	\(x_{27} \)	\(x_{28} \)	\(x_{29} \)	\(x_{30} \)	\(x_{31} \)
\(x_{32} \)	\(x_{33} \)	\(x_{34} \)	\(x_{35} \)	\(x_{36} \)	\(x_{37} \)	\(x_{38} \)	\(x_{39} \)	\(x_{40} \)	\(x_{41} \)	\(x_{42} \)	\(x_{43} \)	\(x_{44} \)	\(x_{45} \)	\(x_{46} \)	\(x_{47} \)	\(x_{48} \)	\(x_{49} \)	\(x_{50} \)	\(x_{51} \)	\(x_{52} \)	\(x_{53} \)	\(x_{54} \)	\(x_{55} \)	\(x_{56} \)	\(x_{57} \)	\(x_{58} \)	\(x_{59} \)	\(x_{60} \)	\(x_{61} \)	\(x_{62} \)	\(x_{63} \)
\(x_{64} \)	\(x_{65} \)	\(x_{66} \)	\(x_{67} \)	\(x_{68} \)	\(x_{69} \)	\(x_{70} \)	\(x_{71} \)	\(x_{72} \)	\(x_{73} \)	\(x_{74} \)	\(x_{75} \)	\(x_{76} \)	\(x_{77} \)	\(x_{78} \)	\(x_{79} \)	\(x_{80} \)	\(x_{81} \)	\(x_{82} \)	\(x_{83} \)	\(x_{84} \)	\(x_{85} \)	\(x_{86} \)	\(x_{87} \)	\(x_{88} \)	\(x_{89} \)	\(x_{90} \)	\(x_{91} \)	\(x_{92} \)	\(x_{93} \)	\(x_{94} \)	\(x_{95} \)

- **AddRoundKey**: linear key schedule applied to key of 128 bits
- **SubBytes**: a 3-bit S-box of degree 2
- **MixRows**: circulant binary matrix to rows

Pyjamask-96 consists of **14 rounds**.
Definition (Derivative [Lai, 1994])

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ and $a \in \mathbb{F}_2^n$ be given.

Then the derivative of F to a, $\Delta_a F$ is: $\Delta_a F(x) = F(x + a) + F(x)$.

Properties:

- $\Delta_{a_k} \Delta_{a_{k-1}} \cdots \Delta_{a_1} F(x) = \sum_{v \in \langle a_1, \ldots, a_k \rangle} F(x + v) =: \Delta_V F(x)$
- $\deg \Delta_V F(x) \leq \deg F - \dim V$
- If $\dim V > \deg F$, then we have $\Delta_V F(x) = 0$
Cube attack

Degrees of the n-round versions of Pyjamask-96 are upper bounded by

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11+</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>80</td>
<td>88</td>
<td>92</td>
<td>94</td>
<td>95</td>
</tr>
</tbody>
</table>

Bounds by Boura, Canteaut, De Cannière [2011]

Affine spaces V of dimension 94 give distinguisher

$$\sum_{v \in V} \text{Pyj}_K^{10}(x + v) = C^\text{st}$$

Same for the inverse of Pyjamask-96!
Meet-in-the-middle

- Smartly choosing affine ciphertext space gives 11 rounds instead
- $\mathcal{U} = \{ u \in \mathbb{F}_2^{96} \mid u_0 = u_{32} = u_{64} = 0 \}$ has codimension 3
- $\mathcal{V}_0 = \{0, v\}$ where $v_i = 0$ for all $i \in \{1, \ldots, 31, 33, \ldots, 63, \ldots, 95\}$
- $\mathcal{V} = \mathcal{U} \oplus \mathcal{V}_0$ has dimension 94 and
- $\sum_{v \in \mathcal{V}} \text{Proj}_{K}^{11}(x + v)$ constant
Solving equations

- Taking key-bits as variables gives system of equations
- Linearise to solve linear system of monomials
 - Full codebook gives 448 equations
 - Too many monomials
Reducing monomials

- Reducing in S-box:

\[
S(P + K)_0 = (p_0 + k_0)(p_2 + k_2) + p_1 + k_1 \\
= S(P)_0 + S(K)_0 + p_0 k_2 + p_2 k_0
\]

- Applying further MixRows and AddRoundKey:

\[
(L \circ S)(P) + (L \circ S)(K_0) + K_1 + \sum_{i,j \in I \mid |I| = 11,13} p_i k_j + p_j k_i
\]

- Equivalent key: \(\kappa = (L \circ S)(K_0) + K_1 \),
- Equivalent plaintext: \(P' = (L \circ S)(P) \)
- Still too many monomials
• Guess-and-determine on roundkey bits
 • Guess all bits in first roundkey:
 • 96 guesses \rightarrow 569 monomials
 • Guess four more bits in the second roundkey:
 • 100 guesses \rightarrow 411 monomials
• Introduces a 2^{100} factor in computation
<table>
<thead>
<tr>
<th>Rounds</th>
<th>Time (in Pyjamask-96 calls)</th>
<th>Data (in blocks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/14</td>
<td>2^{27}</td>
<td>2^{23}</td>
</tr>
<tr>
<td>8/14</td>
<td>2^{35}</td>
<td>2^{39}</td>
</tr>
<tr>
<td>9/14</td>
<td>2^{67}</td>
<td>2^{71}</td>
</tr>
<tr>
<td>10/14</td>
<td>2^{83}</td>
<td>2^{87}</td>
</tr>
<tr>
<td>11/14</td>
<td>2^{91}</td>
<td>2^{95}</td>
</tr>
<tr>
<td>12/14</td>
<td>2^{96}</td>
<td>2^{96}</td>
</tr>
<tr>
<td>13/14</td>
<td>2^{99}</td>
<td>2^{96}</td>
</tr>
<tr>
<td>14/14</td>
<td>2^{115}</td>
<td>2^{96}</td>
</tr>
</tbody>
</table>
Further research

• Attacking Pyjamask-96-AEAD
 • We got to 7 rounds with 2^{86} time complexity, 2^{41} data.
• Attacking Pyjamask-128-AEAD