

Algebraic and Higher-Order Differential Cryptanalysis of Pyjamask-96

C. Dobraunig, Y. Rotella, <u>J. Schoone</u> FSE 2020

Pyjamask

Pyjamask is a 2^{nd} -round candidate for the NIST lightweight competition

By Goudarzi, Jean, Kölbl, Peyrin, Rivain, Sasaki and Sim.

- Pyjamask-128-AEAD
 - based on Pyjamask-128
 - uses OCB as mode
- Pyjamask-96-AEAD
 - based on Pyjamask-96
 - uses OCB as mode

We focused on the block cipher Pyjamask-96.

Key recovery attack on full-round Pyjamask-96

Round function

Pyjamask-96 state $(x_i \in \{0, 1\})$:

<i>X</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈	X9	X ₁₀	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅	X ₁₆	X ₁₇	X ₁₈	X ₁₉	X ₂₀	X ₂₁	X ₂₂	X ₂₃	X ₂₄	X ₂₅	X ₂₆	X ₂₇	X ₂₈	X ₂₉	X ₃₀	X ₃₁
X ₃₂	X33	X ₃₄	X35	X ₃₆	X37	X38	X39	X40	X41	X ₄₂	X43	X44	X ₄₅	X46	X47	X48	X49	X ₅₀	X ₅₁	X ₅₂	X ₅₃	X ₅₄	X ₅₅	X ₅₆	X ₅₇	X ₅₈	X ₅₉	X ₆₀	X ₆₁	X ₆₂	X ₆₃
X ₆₄	X ₆₅	X ₆₆	X ₆₇	X ₆₈	X ₆₉	X ₇₀	X71	X ₇₂	X ₇₃	X ₇₄	X ₇₅	X ₇₆	X ₇₇	X78	X ₇₉	X ₈₀	X ₈₁	X ₈₂	X ₈₃	X ₈₄	X ₈₅	X ₈₆	X ₈₇	X ₈₈	X ₈₉	X90	X ₉₁	X ₉₂	X93	X94	X ₉₅

- AddRoundKey: linear key schedule applied to key of 128 bits
- SubBytes: a 3-bit S-box of degree 2
- MixRows: circulant binary matrix to rows

Pyjamask-96 consists of 14 rounds.

Higher order derivatives

Definition (Derivative [Lai, 1994])

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ and $a \in \mathbb{F}_2^n$ be given.

Then the derivative of F to a, $\Delta_a F$ is: $\Delta_a F(x) = F(x+a) + F(x)$.

Properties:

- $\Delta_{a_k}\Delta_{a_{k-1}}\cdots\Delta_{a_1}F(x)=\sum_{v\in \llbracket a_1,\ldots,a_k\rrbracket}F(x+v)=:\Delta_VF(x)$
- $\deg \Delta_V F(x) \leq \deg F \dim V$
- If dim $V > \deg F$, then we have $\Delta_V F(x) = 0$

Cube attack

Degrees of the *n*-round versions of Pyjamask-96 are upper bounded by

Bounds by Boura, Canteaut, De Cannière [2011]

Affine spaces V of dimension 94 give distinguisher

$$\sum_{v \in V} \mathsf{Pyj}_K^{10}(x+v) = C^{\mathsf{st}}$$

Same for the inverse of Pyjamask-96!

Meet-in-the-middle

- Smartly choosing affine ciphertext space gives 11 rounds instead
- $\mathcal{U} = \{ u \in \mathbb{F}_2^{96} \mid u_0 = u_{32} = u_{64} = 0 \}$ has codimension 3
- $V_0 = \{0, v\}$ where $v_i = 0$ for all $i \in \{1, ..., 31, 33, ..., 63, ..., 95\}$
- $\mathcal{V} = \mathcal{U} \oplus V_0$ has dimension 94 and
- $\sum_{v \in \mathcal{V}} \mathsf{Pyj}_K^{11}(x+v)$ constant

Solving equations

- Taking key-bits as variables gives system of equations
- Linearise to solve linear system of monomials
 - Full codebook gives 448 equations
 - Too many monomials

Reducing monomials

Reducing in S-box:

$$S(P + K)_0 = (p_0 + k_0)(p_2 + k_2) + p_1 + k_1$$

= $S(P)_0 + S(K)_0 + p_0k_2 + p_2k_0$

Applying further MixRows and AddRoundKey:

$$(L \circ S)(P) + (L \circ S)(K_0) + K_1 + \sum_{\substack{i,j \in I \\ |I| = 11,13}} p_i k_j + p_j k_i$$

- Equivalent key: $\kappa = (L \circ S)(K_0) + K_1$,
- Equivalent plaintext: $P' = (L \circ S)(P)$
- Still too many monomials

Guess-and-determine

- Guess-and-determine on roundkey bits
 - Guess all bits in first roundkey:
 - 96 guesses \rightarrow 569 monomials
 - Guess four more bits in the second roundkey:
 - 100 guesses \rightarrow 411 monomials
- Introduces a 2¹⁰⁰ factor in computation

Complexities

Rounds	Time	Data				
	(in Pyjamask-96 calls)	(in blocks)				
14/14	2 ¹¹⁵	2 ⁹⁶				
13/14	2^{99}	2^{96}				
12/14	2^{96}	2 ⁹⁶				
11/14	2^{91}	2^{95}				
10/14	2 ⁸³	2 ⁸⁷				
9/14	2 ⁶⁷	2 ⁷¹				
8/14	2 ³⁵	2^{39}				
7/14	2^{27}	2 ²³				

Further research

- Attacking Pyjamask-96-AEAD
 - We got to 7 rounds with 2^{86} time complexity, 2^{41} data.
- Attacking Pyjamask-128-AEAD