Algebraic and Higher-Order Differential Cryptanalysis of Pyjamask-96 C. Dobraunig, Y. Rotella, <u>J. Schoone</u> FSE 2020 ## **Pyjamask** Pyjamask is a 2^{nd} -round candidate for the NIST lightweight competition By Goudarzi, Jean, Kölbl, Peyrin, Rivain, Sasaki and Sim. - Pyjamask-128-AEAD - based on Pyjamask-128 - uses OCB as mode - Pyjamask-96-AEAD - based on Pyjamask-96 - uses OCB as mode We focused on the block cipher Pyjamask-96. Key recovery attack on full-round Pyjamask-96 #### **Round function** Pyjamask-96 state $(x_i \in \{0, 1\})$: | <i>X</i> ₀ | <i>X</i> ₁ | <i>X</i> ₂ | <i>X</i> ₃ | <i>X</i> ₄ | <i>X</i> ₅ | <i>X</i> ₆ | <i>X</i> ₇ | <i>X</i> ₈ | X9 | X ₁₀ | X ₁₁ | X ₁₂ | X ₁₃ | X ₁₄ | X ₁₅ | X ₁₆ | X ₁₇ | X ₁₈ | X ₁₉ | X ₂₀ | X ₂₁ | X ₂₂ | X ₂₃ | X ₂₄ | X ₂₅ | X ₂₆ | X ₂₇ | X ₂₈ | X ₂₉ | X ₃₀ | X ₃₁ | |-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | X ₃₂ | X33 | X ₃₄ | X35 | X ₃₆ | X37 | X38 | X39 | X40 | X41 | X ₄₂ | X43 | X44 | X ₄₅ | X46 | X47 | X48 | X49 | X ₅₀ | X ₅₁ | X ₅₂ | X ₅₃ | X ₅₄ | X ₅₅ | X ₅₆ | X ₅₇ | X ₅₈ | X ₅₉ | X ₆₀ | X ₆₁ | X ₆₂ | X ₆₃ | | X ₆₄ | X ₆₅ | X ₆₆ | X ₆₇ | X ₆₈ | X ₆₉ | X ₇₀ | X71 | X ₇₂ | X ₇₃ | X ₇₄ | X ₇₅ | X ₇₆ | X ₇₇ | X78 | X ₇₉ | X ₈₀ | X ₈₁ | X ₈₂ | X ₈₃ | X ₈₄ | X ₈₅ | X ₈₆ | X ₈₇ | X ₈₈ | X ₈₉ | X90 | X ₉₁ | X ₉₂ | X93 | X94 | X ₉₅ | - AddRoundKey: linear key schedule applied to key of 128 bits - SubBytes: a 3-bit S-box of degree 2 - MixRows: circulant binary matrix to rows Pyjamask-96 consists of 14 rounds. ## Higher order derivatives ## Definition (Derivative [Lai, 1994]) Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ and $a \in \mathbb{F}_2^n$ be given. Then the derivative of F to a, $\Delta_a F$ is: $\Delta_a F(x) = F(x+a) + F(x)$. #### Properties: - $\Delta_{a_k}\Delta_{a_{k-1}}\cdots\Delta_{a_1}F(x)=\sum_{v\in \llbracket a_1,\ldots,a_k\rrbracket}F(x+v)=:\Delta_VF(x)$ - $\deg \Delta_V F(x) \leq \deg F \dim V$ - If dim $V > \deg F$, then we have $\Delta_V F(x) = 0$ #### Cube attack Degrees of the *n*-round versions of Pyjamask-96 are upper bounded by Bounds by Boura, Canteaut, De Cannière [2011] Affine spaces V of dimension 94 give distinguisher $$\sum_{v \in V} \mathsf{Pyj}_K^{10}(x+v) = C^{\mathsf{st}}$$ Same for the inverse of Pyjamask-96! #### Meet-in-the-middle - Smartly choosing affine ciphertext space gives 11 rounds instead - $\mathcal{U} = \{ u \in \mathbb{F}_2^{96} \mid u_0 = u_{32} = u_{64} = 0 \}$ has codimension 3 - $V_0 = \{0, v\}$ where $v_i = 0$ for all $i \in \{1, ..., 31, 33, ..., 63, ..., 95\}$ - $\mathcal{V} = \mathcal{U} \oplus V_0$ has dimension 94 and - $\sum_{v \in \mathcal{V}} \mathsf{Pyj}_K^{11}(x+v)$ constant ## **Solving equations** - Taking key-bits as variables gives system of equations - Linearise to solve linear system of monomials - Full codebook gives 448 equations - Too many monomials ## **Reducing monomials** Reducing in S-box: $$S(P + K)_0 = (p_0 + k_0)(p_2 + k_2) + p_1 + k_1$$ = $S(P)_0 + S(K)_0 + p_0k_2 + p_2k_0$ Applying further MixRows and AddRoundKey: $$(L \circ S)(P) + (L \circ S)(K_0) + K_1 + \sum_{\substack{i,j \in I \\ |I| = 11,13}} p_i k_j + p_j k_i$$ - Equivalent key: $\kappa = (L \circ S)(K_0) + K_1$, - Equivalent plaintext: $P' = (L \circ S)(P)$ - Still too many monomials #### **Guess-and-determine** - Guess-and-determine on roundkey bits - Guess all bits in first roundkey: - 96 guesses \rightarrow 569 monomials - Guess four more bits in the second roundkey: - 100 guesses \rightarrow 411 monomials - Introduces a 2¹⁰⁰ factor in computation ## **Complexities** | Rounds | Time | Data | | | | | |--------|------------------------|-----------------|--|--|--|--| | | (in Pyjamask-96 calls) | (in blocks) | | | | | | 14/14 | 2 ¹¹⁵ | 2 ⁹⁶ | | | | | | 13/14 | 2^{99} | 2^{96} | | | | | | 12/14 | 2^{96} | 2 ⁹⁶ | | | | | | 11/14 | 2^{91} | 2^{95} | | | | | | 10/14 | 2 ⁸³ | 2 ⁸⁷ | | | | | | 9/14 | 2 ⁶⁷ | 2 ⁷¹ | | | | | | 8/14 | 2 ³⁵ | 2^{39} | | | | | | 7/14 | 2^{27} | 2 ²³ | | | | | #### **Further research** - Attacking Pyjamask-96-AEAD - We got to 7 rounds with 2^{86} time complexity, 2^{41} data. - Attacking Pyjamask-128-AEAD