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Introduction to χn

Definition 1 (χn)

The map χn : Fn2 → Fn2 , x 7→ y is given by:

yi = xi + (xi+1 + 1)xi+2 i ∈ Z/nZ.

We have: xi is followed by xi+1 = 0 and xi+2 = 1 if and only if
yi = xi + 1.

Keccak-f, the SHA-3 standard: χ5.

ASCON, the Lightweight Cryptography winner: χ5.
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Properties of χn

χn has (algebraic) degree 2:
yi = xi + xi+1xi+2 + xi+2;

χn is shift invariant:
χn(x� 1) = χn(x)� 1;

χn is invertible if and only if n is odd:
(01)n 7→ 02n 7→(10)n;

ord(χn) = 2blgnc.
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Univariate polynomials

Fn2
φ
��

χn // Fn2
φ
��

F2n
χ̂n
// F2n

φ(~x) =

n−1∑
i=0

xiβ
qi
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Definition 2 (Normal basis)

Consider F2 ⊂ F2n . Then β ∈ F2n is called a normal element of
F2n if the set {β, β2, β22 , . . . , β2n−1} is a linear independent set.
This set is then called a normal basis of F2n .
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Definition 2 (Normal basis)

Consider F2 ⊂ F2n . Then β ∈ F2n is called a normal element of
F2n if the set {β, β2, β22 , . . . , β2n−1} is a linear independent set.
This set is then called a normal basis of F2n .

Theorem 3

If F : Fn2 → Fn2 is shift invariant and the isomorphism φ is induced

by a normal element, then F̂ has coefficients in F2.
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Univariate polynomials

Fn2
φ
��

χn // Fn2
φ
��

F2n
χ̂n
// F2n

φ(~x) =

n−1∑
i=0

xiβ
qi

Example 2

Consider the map χ3. Let F23 := F2(α) = F2[X]/(X3 +X + 1).
Then α3 is a normal element. We define χ̂3 := φ ◦ χ3 ◦ φ−1. By
using Lagrange interpolation we find that χ̂3(t) = t6.
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Power functions

Definition 3 (Power functions)

A power function is a polynomial function that can be represented
by a single monomial in F2n [X]. We write ∗e : F2n → F2n for a
power function, here e ≥ 0.

A power function ∗e : F2n → F2n is invertible if and only if
gcd(e, 2n − 1) = 1.

The order of an invertible power function ∗e is given by the
(multiplicative) order of e in Z/(2n − 1)Z.

Why power functions?
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Question, answer and small results

Is χn a power function (for any choice of (normal) basis)?
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Question, answer and small results

Is χn a power function (for any choice of (normal) basis)?

No! (For n 6= 1, 3.)

Proposition 1

For any even n, there is no (normal) basis representation such that
χ̂n is a power function.

Proof.

Suppose that it does exist. Since χn((01)
n/2) = 0n, there needs to

exist some nonzero α ∈ F2n with αs = 0 for some integer s.
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Question, answer and small results

Is χn a power function (for any choice of (normal) basis)?

No! (For n 6= 1, 3.)

Proposition 1 (Excluding Mersenne-exponents)

If n > 3 is such that 2n− 1 is a prime number, then there exists no
(normal) basis representation of χn such that χ̂n is a power
function.
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Question, answer and small results

Is χn a power function (for any choice of (normal) basis)?

No! (For n 6= 1, 3.)

Proposition 1 (Excluding Mersenne-exponents)

If n > 3 is such that 2n− 1 is a prime number, then there exists no
(normal) basis representation of χn such that χ̂n is a power
function.

Proof.

Since 2n − 1 is a prime number, ϕ(2n − 1) = 2n − 2. The order of
χn is divisible by 4 for all n > 3. The expression 2n − 2 has only
one factor 2 .
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Historical attempts
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State diagrams

Definition 4 (State diagram)

Let S be a set. The state diagram for a map F : S → S is a
directed graph (V,A), where V = S and A = {(a, F (a)) | a ∈ S}.

The state diagram of χn consists of cycles of length
1, 2, 4, 8, . . . , ord(χn).
Each length occurs at least once!

Theorem 5 (Ahmad’s Theorem)

Let m, q be positive integers with q = pn for some prime number p
and n ≥ 1. Let ∗e : F∗q → F∗q , x 7→ xe be a power function. Then
∗e has a cycle of length precisely m if and only if there exists some
t | q − 1 such that the order of e modulo t is equal to m.

Not every length necessarily occurs!
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Corollary

Theorem 6 (Necessary conditions for χn to be a power function)

Let n > 3 be an odd integer. Write o := ord(χn) = 2blg(n)c. Then
χn can only be a power function if 2n − 1 factors as

2n − 1 = pe11 · · · p
er
r ,

such that there exists some permutation σ ∈ Sr with

ϕ(p
eσ(1)
σ(1) ) is a multiple of o

ϕ(p
eσ(2)
σ(2) ) is a multiple of

o

2
...

ϕ(p
eσ(t)
σ(t) ) is a multiple of 2

for some t < r.
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Results

Using these conditions, we can verify1 that χn is not a power
function for any n ≤ 1115, except for n = 63 and n = 441.

Remaining cases:

n = 63:

≈ 212.59 out of ≈ 262.742 possible e;
Algebraic degree of power function is wt2(e);
None have algebraic degree 2.

n = 441:2

235.322 out of ≈ 2440.742 possible e;
None have algebraic degree 2.

1Using Magma in under 2 minutes!

2This takes way longer to compute...
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Proof technique
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Differential distributions

Definition 7 (Differential probability (Biham, Shamir))

Let f : G→ H be a map between finite groups G and H. Let
g ∈ G and h ∈ H be arbitrary. Then we define the differential
probability of f at (g, h) as

DPf (g, h) = #{x ∈ G | f(x)− f(x− g) = h}/|G|.

input difference
χ3 000 001 010 011 100 101 110 111

ou
tp

u
t

d
iff

er
en

ce

000 1 - - - - - - -
001 - 1/4 - 1/4 - 1/4 - 1/4
010 - - 1/4 1/4 - - 1/4 1/4
011 - 1/4 1/4 - - 1/4 1/4 -
100 - - - - 1/4 1/4 1/4 1/4
101 - 1/4 - 1/4 1/4 - 1/4 -
110 - - 1/4 1/4 1/4 1/4 - -
111 - 1/4 1/4 - 1/4 - - 1/4

13 / 16
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Differential distribution for χ

Proposition 2 (Differential probabilities for χ (Daemen))

Let n > 1 be an arbitrary odd integer. Let a ∈ Fn2 be arbitrary.
Then for any compatible b ∈ Fn2 we have DPχn(a, b) = 2−w(a),
where

w(a) =

{
n− 1 if a = 1n;

wt(a) + r else,

where r is the number of (cyclic) 001-substrings in a.

Let n > 3 be odd.

a = 110n−2 =⇒ DPχn(a, b) =
1
8 ;

a′ = 10n−1 =⇒ DPχn(a
′, b) = 1

4 .
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Invariant

Proposition 3 (Differential probabilities under linear isomorphisms)

Let G
ϕ∼= H be isomorphic groups. Let f : G→ G be a map and let

f̂ : H → H be the map induced through the isomorphism. Then
DPf̂ (g, h) = DPf (ϕ

−1(g), ϕ−1(h)) for all g, h ∈ H.

Proposition 4 (Differential probabilities for power functions
(Blondeau, Canteaut, Charpin))

Let 0 ≤ e ≤ 2n − 1 and let f = ∗e : F2n → F2n be a power
function. Then DPf (a, b) = DPf (ya, y

eb) for all y ∈ F∗2n .

Proof.

Substitute x := yy−1x = yx′ in
DPf (ya, y

eb) = #{x ∈ F2n | xe + (x+ ya)e = yeb}/2n.

Thus, we have that the rows of the DDT all have the same
number of occurrences of 0, 2, 4, . . ..
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Conclusion and corollary

Theorem 8

Let n 6= 1, 3 be a positive integer. Then χ̂n is not a power
function.

Corollary 9

There is no function Fn that is extended affine equivalent to χn
(AFnB + C = χn), such that F̂n is a power function.

Thank you for your attention!
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