Is χ_{n} a power function?

Jan Schoone
Radboud University
13 July 2023

Introduction

Introduction to χ_{n}

Definition $1\left(\chi_{n}\right)$
The map $\chi_{n}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}, x \mapsto y$ is given by:

$$
y_{i}=x_{i}+\left(x_{i+1}+1\right) x_{i+2} \quad i \in \mathbb{Z} / n \mathbb{Z}
$$

Introduction to χ_{n}

Definition $1\left(\chi_{n}\right)$
The map $\chi_{n}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}, x \mapsto y$ is given by:

$$
y_{i}=x_{i}+\left(x_{i+1}+1\right) x_{i+2} \quad i \in \mathbb{Z} / n \mathbb{Z}
$$

We have: x_{i} is followed by $x_{i+1}=0$ and $x_{i+2}=1$ if and only if $y_{i}=x_{i}+1$.

Introduction to χ_{n}

Definition $1\left(\chi_{n}\right)$

The map $\chi_{n}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}, x \mapsto y$ is given by:

$$
y_{i}=x_{i}+\left(x_{i+1}+1\right) x_{i+2} \quad i \in \mathbb{Z} / n \mathbb{Z}
$$

We have: x_{i} is followed by $x_{i+1}=0$ and $x_{i+2}=1$ if and only if $y_{i}=x_{i}+1$.

Keccak-f, the SHA-3 standard: χ_{5}.

Introduction to χ_{n}

Definition $1\left(\chi_{n}\right)$

The map $\chi_{n}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}, x \mapsto y$ is given by:

$$
y_{i}=x_{i}+\left(x_{i+1}+1\right) x_{i+2} \quad i \in \mathbb{Z} / n \mathbb{Z}
$$

We have: x_{i} is followed by $x_{i+1}=0$ and $x_{i+2}=1$ if and only if $y_{i}=x_{i}+1$.

Keccak-f, the SHA-3 standard: χ_{5}.

ASCON, the Lightweight Cryptography winner: χ_{5}.

Properties of χ_{n}

- χ_{n} has (algebraic) degree 2 :

$$
y_{i}=x_{i}+x_{i+1} x_{i+2}+x_{i+2} \text {; }
$$

Properties of χ_{n}

- χ_{n} has (algebraic) degree 2 :

$$
y_{i}=x_{i}+x_{i+1} x_{i+2}+x_{i+2}
$$

- χ_{n} is shift invariant:
$\chi_{n}(x \ll 1)=\chi_{n}(x) \ll 1 ;$

Properties of χ_{n}

- χ_{n} has (algebraic) degree 2:

$$
y_{i}=x_{i}+x_{i+1} x_{i+2}+x_{i+2}
$$

- χ_{n} is shift invariant:
$\chi_{n}(x \ll 1)=\chi_{n}(x) \ll 1 ;$
- χ_{n} is invertible if and only if n is odd: $(01)^{n} \mapsto 0^{2 n} \hookleftarrow(10)^{n}$;

Properties of χ_{n}

- χ_{n} has (algebraic) degree 2:

$$
y_{i}=x_{i}+x_{i+1} x_{i+2}+x_{i+2}
$$

- χ_{n} is shift invariant:
$\chi_{n}(x \ll 1)=\chi_{n}(x) \ll 1 ;$
- χ_{n} is invertible if and only if n is odd: $(01)^{n} \mapsto 0^{2 n} \hookleftarrow(10)^{n}$;
- ord $\left(\chi_{n}\right)=2^{\lfloor\lg n\rfloor}$.

Univariate polynomials

Univariate polynomials

Definition 2 (Normal basis)

Consider $\mathbb{F}_{2} \subset \mathbb{F}_{2^{n}}$. Then $\beta \in \mathbb{F}_{2^{n}}$ is called a normal element of $\mathbb{F}_{2^{n}}$ if the set $\left\{\beta, \beta^{2}, \beta^{2^{2}}, \ldots, \beta^{2^{n-1}}\right\}$ is a linear independent set. This set is then called a normal basis of $\mathbb{F}_{2^{n}}$.

Univariate polynomials

$$
\begin{aligned}
& \mathbb{F}_{2}^{n} \xrightarrow{\chi_{n}} \mathbb{F}_{2}^{n} \quad \phi(\vec{x})=\sum_{i=0}^{n-1} x_{i} \beta^{q^{i}} \\
& \phi \mid \\
& \mathbb{F}_{2^{n}} \xrightarrow[\widehat{\widehat{\chi_{n}}}]{ } \mathbb{F}_{2^{n}}
\end{aligned}
$$

Definition 2 (Normal basis)

Consider $\mathbb{F}_{2} \subset \mathbb{F}_{2^{n}}$. Then $\beta \in \mathbb{F}_{2^{n}}$ is called a normal element of $\mathbb{F}_{2^{n}}$ if the set $\left\{\beta, \beta^{2}, \beta^{2^{2}}, \ldots, \beta^{2^{n-1}}\right\}$ is a linear independent set. This set is then called a normal basis of $\mathbb{F}_{2^{n}}$.

Theorem 3

If $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is shift invariant and the isomorphism ϕ is induced by a normal element, then \widehat{F} has coefficients in \mathbb{F}_{2}.

Univariate polynomials

$$
\begin{aligned}
& \mathbb{F}_{2}^{n} \xrightarrow{\chi_{n}} \mathbb{F}_{2}^{n} \quad \phi(\vec{x})=\sum_{i=0}^{n-1} x_{i} \beta^{q^{i}} \\
& \left.\phi\right|_{\downarrow} \\
& \mathbb{H}_{2^{n}} \xrightarrow[\widehat{\widehat{\chi n}}]{ } \mathbb{F}_{2^{n}}
\end{aligned}
$$

Example 2

Consider the map χ_{3}. Let $\mathbb{F}_{2^{3}}:=\mathbb{F}_{2}(\alpha)=\mathbb{F}_{2}[X] /\left(X^{3}+X+1\right)$. Then α^{3} is a normal element. We define $\widehat{\chi_{3}}:=\phi \circ \chi_{3} \circ \phi^{-1}$. By using Lagrange interpolation we find that $\widehat{\chi_{3}}(t)=t^{6}$.

Power functions

Definition 3 (Power functions)

A power function is a polynomial function that can be represented by a single monomial in $\mathbb{F}_{2^{n}}[X]$. We write $*^{e}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ for a power function, here $e \geq 0$.

Power functions

Definition 3 (Power functions)

A power function is a polynomial function that can be represented by a single monomial in $\mathbb{F}_{2^{n}}[X]$. We write $*^{e}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ for a power function, here $e \geq 0$.

A power function $*^{e}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is invertible if and only if $\operatorname{gcd}\left(e, 2^{n}-1\right)=1$.

Power functions

Definition 3 (Power functions)

A power function is a polynomial function that can be represented by a single monomial in $\mathbb{F}_{2^{n}}[X]$. We write $*^{e}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ for a power function, here $e \geq 0$.

A power function $*^{e}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is invertible if and only if $\operatorname{gcd}\left(e, 2^{n}-1\right)=1$.

The order of an invertible power function $*^{e}$ is given by the (multiplicative) order of e in $\mathbb{Z} /\left(2^{n}-1\right) \mathbb{Z}$.

Power functions

Definition 3 (Power functions)

A power function is a polynomial function that can be represented by a single monomial in $\mathbb{F}_{2^{n}}[X]$. We write $*^{e}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ for a power function, here $e \geq 0$.

A power function $*^{e}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is invertible if and only if $\operatorname{gcd}\left(e, 2^{n}-1\right)=1$.

The order of an invertible power function $*^{e}$ is given by the (multiplicative) order of e in $\mathbb{Z} /\left(2^{n}-1\right) \mathbb{Z}$.

Why power functions?

Question, answer and small results

Is χ_{n} a power function (for any choice of (normal) basis)?

Question, answer and small results

Is χ_{n} a power function (for any choice of (normal) basis)?

No!

Question, answer and small results

Is χ_{n} a power function (for any choice of (normal) basis)?
No! (For $n \neq 1,3$.)

Question, answer and small results

Is χ_{n} a power function (for any choice of (normal) basis)?
No! (For $n \neq 1,3$.)

Proposition 1

For any even n, there is no (normal) basis representation such that $\widehat{\chi_{n}}$ is a power function.

Question, answer and small results

Is χ_{n} a power function (for any choice of (normal) basis)?
No! (For $n \neq 1,3$.)

Proposition 1

For any even n, there is no (normal) basis representation such that $\widehat{\chi_{n}}$ is a power function.

Proof.

Suppose that it does exist. Since $\chi_{n}\left((01)^{n / 2}\right)=0^{n}$, there needs to exist some nonzero $\alpha \in \mathbb{F}_{2^{n}}$ with $\alpha^{s}=0$ for some integer s.

Question, answer and small results

Is χ_{n} a power function (for any choice of (normal) basis)?
No! (For $n \neq 1,3$.)

Proposition 1 (Excluding Mersenne-exponents)

If $n>3$ is such that $2^{n}-1$ is a prime number, then there exists no (normal) basis representation of χ_{n} such that $\widehat{\chi_{n}}$ is a power function.

Question, answer and small results

Is χ_{n} a power function (for any choice of (normal) basis)?
No! (For $n \neq 1,3$.)

Proposition 1 (Excluding Mersenne-exponents)

If $n>3$ is such that $2^{n}-1$ is a prime number, then there exists no (normal) basis representation of χ_{n} such that $\widehat{\chi_{n}}$ is a power function.

Proof.

Since $2^{n}-1$ is a prime number, $\varphi\left(2^{n}-1\right)=2^{n}-2$. The order of χ_{n} is divisible by 4 for all $n>3$. The expression $2^{n}-2$ has only one factor 2 .

Historical attempts

State diagrams

Definition 4 (State diagram)

Let S be a set. The state diagram for a map $F: S \rightarrow S$ is a directed graph (V, A), where $V=S$ and $A=\{(a, F(a)) \mid a \in S\}$.

State diagrams

Definition 4 (State diagram)

Let S be a set. The state diagram for a map $F: S \rightarrow S$ is a directed graph (V, A), where $V=S$ and $A=\{(a, F(a)) \mid a \in S\}$.

The state diagram of χ_{n} consists of cycles of length $1,2,4,8, \ldots, \operatorname{ord}\left(\chi_{n}\right)$.

State diagrams

Definition 4 (State diagram)

Let S be a set. The state diagram for a map $F: S \rightarrow S$ is a directed graph (V, A), where $V=S$ and $A=\{(a, F(a)) \mid a \in S\}$.

The state diagram of χ_{n} consists of cycles of length $1,2,4,8, \ldots, \operatorname{ord}\left(\chi_{n}\right)$.
Each length occurs at least once!

State diagrams

Definition 4 (State diagram)

Let S be a set. The state diagram for a map $F: S \rightarrow S$ is a directed graph (V, A), where $V=S$ and $A=\{(a, F(a)) \mid a \in S\}$.

The state diagram of χ_{n} consists of cycles of length $1,2,4,8, \ldots, \operatorname{ord}\left(\chi_{n}\right)$.
Each length occurs at least once!

Theorem 5 (Ahmad's Theorem)

Let m, q be positive integers with $q=p^{n}$ for some prime number p and $n \geq 1$. Let $*^{e}: \mathbb{F}_{q}^{*} \rightarrow \mathbb{F}_{q}^{*}, x \mapsto x^{e}$ be a power function. Then $*^{e}$ has a cycle of length precisely m if and only if there exists some $t \mid q-1$ such that the order of e modulo t is equal to m.

State diagrams

Definition 4 (State diagram)

Let S be a set. The state diagram for a map $F: S \rightarrow S$ is a directed graph (V, A), where $V=S$ and $A=\{(a, F(a)) \mid a \in S\}$.

The state diagram of χ_{n} consists of cycles of length $1,2,4,8, \ldots, \operatorname{ord}\left(\chi_{n}\right)$.
Each length occurs at least once!

Theorem 5 (Ahmad's Theorem)

Let m, q be positive integers with $q=p^{n}$ for some prime number p and $n \geq 1$. Let $*^{e}: \mathbb{F}_{q}^{*} \rightarrow \mathbb{F}_{q}^{*}, x \mapsto x^{e}$ be a power function. Then $*^{e}$ has a cycle of length precisely m if and only if there exists some $t \mid q-1$ such that the order of e modulo t is equal to m.

Not every length necessarily occurs!

Corollary

Theorem 6 (Necessary conditions for χ_{n} to be a power function)
Let $n>3$ be an odd integer. Write $o:=\operatorname{ord}\left(\chi_{n}\right)=2^{\lfloor\lg (n)\rfloor}$. Then χ_{n} can only be a power function if $2^{n}-1$ factors as

$$
2^{n}-1=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}},
$$

such that there exists some permutation $\sigma \in S_{r}$ with

$$
\begin{gathered}
\varphi\left(p_{\sigma(1)}^{e_{\sigma(1)}}\right) \text { is a multiple of } o \\
\varphi\left(p_{\sigma(2)}^{e_{\sigma(2)}}\right) \text { is a multiple of } \frac{o}{2} \\
\vdots \\
\varphi\left(p_{\sigma(t)}^{e_{\sigma(t)}}\right) \text { is a multiple of } 2
\end{gathered}
$$

for some $t<r$.

Results

Using these conditions, we can verify ${ }^{1}$ that χ_{n} is not a power function for any $n \leq 1115$, except for $n=63$ and $n=441$.

[^0]
Results

Using these conditions, we can verify ${ }^{1}$ that χ_{n} is not a power function for any $n \leq 1115$, except for $n=63$ and $n=441$.

Remaining cases:

- $n=63$:
- $\approx 2^{12.59}$ out of $\approx 2^{62.742}$ possible e;

[^1]
Results

Using these conditions, we can verify ${ }^{1}$ that χ_{n} is not a power function for any $n \leq 1115$, except for $n=63$ and $n=441$.

Remaining cases:

- $n=63$:
- $\approx 2^{12.59}$ out of $\approx 2^{62.742}$ possible e;
- Algebraic degree of power function is $\mathrm{wt}_{2}(e)$;

[^2]
Results

Using these conditions, we can verify ${ }^{1}$ that χ_{n} is not a power function for any $n \leq 1115$, except for $n=63$ and $n=441$.

Remaining cases:

- $n=63$:
- $\approx 2^{12.59}$ out of $\approx 2^{62.742}$ possible e;
- Algebraic degree of power function is $\mathrm{wt}_{2}(e)$;
- None have algebraic degree 2.

[^3]
Results

Using these conditions, we can verify ${ }^{1}$ that χ_{n} is not a power function for any $n \leq 1115$, except for $n=63$ and $n=441$.

Remaining cases:

- $n=63$:
- $\approx 2^{12.59}$ out of $\approx 2^{62.742}$ possible e;
- Algebraic degree of power function is $\mathrm{wt}_{2}(e)$;
- None have algebraic degree 2.
- $n=441:^{2}$
- $2^{35.322}$ out of $\approx 2^{440.742}$ possible e;

[^4]
Results

Using these conditions, we can verify ${ }^{1}$ that χ_{n} is not a power function for any $n \leq 1115$, except for $n=63$ and $n=441$.

Remaining cases:

- $n=63$:
- $\approx 2^{12.59}$ out of $\approx 2^{62.742}$ possible e;
- Algebraic degree of power function is $\mathrm{wt}_{2}(e)$;
- None have algebraic degree 2.
- $n=441:^{2}$
- $2^{35.322}$ out of $\approx 2^{440.742}$ possible e;
- None have algebraic degree 2 .

[^5]
Proof technique

Differential distributions

Definition 7 (Differential probability (Biham, Shamir))

Let $f: G \rightarrow H$ be a map between finite groups G and H. Let $g \in G$ and $h \in H$ be arbitrary. Then we define the differential probability of f at (g, h) as

$$
\mathrm{DP}_{f}(g, h)=\#\{x \in G \mid f(x)-f(x-g)=h\} /|G| .
$$

Differential distributions

Definition 7 (Differential probability (Biham, Shamir))

Let $f: G \rightarrow H$ be a map between finite groups G and H. Let $g \in G$ and $h \in H$ be arbitrary. Then we define the differential probability of f at (g, h) as

$$
\mathrm{DP}_{f}(g, h)=\#\{x \in G \mid f(x)-f(x-g)=h\} /|G|
$$

Differential distribution for χ

Proposition 2 (Differential probabilities for χ (Daemen))

Let $n>1$ be an arbitrary odd integer. Let $a \in \mathbb{F}_{2}^{n}$ be arbitrary. Then for any compatible $b \in \mathbb{F}_{2}^{n}$ we have $\mathrm{DP}_{\chi_{n}}(a, b)=2^{-w(a)}$, where

$$
w(a)= \begin{cases}n-1 & \text { if } a=1^{n} ; \\ \operatorname{wt}(a)+r & \text { else, }\end{cases}
$$

where r is the number of (cyclic) 001-substrings in a.

Differential distribution for χ

Proposition 2 (Differential probabilities for χ (Daemen))

Let $n>1$ be an arbitrary odd integer. Let $a \in \mathbb{F}_{2}^{n}$ be arbitrary. Then for any compatible $b \in \mathbb{F}_{2}^{n}$ we have $\mathrm{DP}_{\chi_{n}}(a, b)=2^{-w(a)}$, where

$$
w(a)= \begin{cases}n-1 & \text { if } a=1^{n} \\ \operatorname{wt}(a)+r & \text { else }\end{cases}
$$

where r is the number of (cyclic) 001-substrings in a.
Let $n>3$ be odd.

- $a=110^{n-2}$ \qquad

Differential distribution for χ

Proposition 2 (Differential probabilities for χ (Daemen))

Let $n>1$ be an arbitrary odd integer. Let $a \in \mathbb{F}_{2}^{n}$ be arbitrary. Then for any compatible $b \in \mathbb{F}_{2}^{n}$ we have $\mathrm{DP}_{\chi_{n}}(a, b)=2^{-w(a)}$, where

$$
w(a)= \begin{cases}n-1 & \text { if } a=1^{n} ; \\ \operatorname{wt}(a)+r & \text { else, }\end{cases}
$$

where r is the number of (cyclic) 001-substrings in a.
Let $n>3$ be odd.

- $a=110^{n-2} \Longrightarrow \mathrm{DP}_{\chi_{n}}(a, b)=\frac{1}{8}$;

Differential distribution for χ

Proposition 2 (Differential probabilities for χ (Daemen))

Let $n>1$ be an arbitrary odd integer. Let $a \in \mathbb{F}_{2}^{n}$ be arbitrary. Then for any compatible $b \in \mathbb{F}_{2}^{n}$ we have $\operatorname{DP}_{\chi_{n}}(a, b)=2^{-w(a)}$, where

$$
w(a)= \begin{cases}n-1 & \text { if } a=1^{n} \\ \operatorname{wt}(a)+r & \text { else }\end{cases}
$$

where r is the number of (cyclic) 001-substrings in a.
Let $n>3$ be odd.

- $a=110^{n-2} \Longrightarrow \mathrm{DP}_{\chi_{n}}(a, b)=\frac{1}{8}$;
- $a^{\prime}=10^{n-1} \Longrightarrow$

Differential distribution for χ

Proposition 2 (Differential probabilities for χ (Daemen))

Let $n>1$ be an arbitrary odd integer. Let $a \in \mathbb{F}_{2}^{n}$ be arbitrary. Then for any compatible $b \in \mathbb{F}_{2}^{n}$ we have $\operatorname{DP}_{\chi_{n}}(a, b)=2^{-w(a)}$, where

$$
w(a)= \begin{cases}n-1 & \text { if } a=1^{n} \\ \mathrm{wt}(a)+r & \text { else }\end{cases}
$$

where r is the number of (cyclic) 001-substrings in a.
Let $n>3$ be odd.

- $a=110^{n-2} \Longrightarrow \mathrm{DP}_{\chi_{n}}(a, b)=\frac{1}{8}$;
- $a^{\prime}=10^{n-1} \Longrightarrow \mathrm{DP}_{\chi_{n}}\left(a^{\prime}, b\right)=\frac{1}{4}$.

Invariant

Proposition 3 (Differential probabilities under linear isomorphisms)
Let $G \xlongequal{\varrho} H$ be isomorphic groups. Let $f: G \rightarrow G$ be a map and let $\hat{f}: H \rightarrow H$ be the map induced through the isomorphism. Then $\mathrm{DP}_{\hat{f}}(g, h)=\mathrm{DP}_{f}\left(\varphi^{-1}(g), \varphi^{-1}(h)\right)$ for all $g, h \in H$.

Invariant

Proposition 3 (Differential probabilities under linear isomorphisms)

Let $G \xlongequal{\varrho} H$ be isomorphic groups. Let $f: G \rightarrow G$ be a map and let $\hat{f}: H \rightarrow H$ be the map induced through the isomorphism. Then $\mathrm{DP}_{\hat{f}}(g, h)=\mathrm{DP}_{f}\left(\varphi^{-1}(g), \varphi^{-1}(h)\right)$ for all $g, h \in H$.

Proposition 4 (Differential probabilities for power functions (Blondeau, Canteaut, Charpin))
Let $0 \leq e \leq 2^{n}-1$ and let $f=*^{e}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ be a power function. Then $\mathrm{DP}_{f}(a, b)=\mathrm{DP}_{f}\left(y a, y^{e} b\right)$ for all $y \in \mathbb{F}_{2^{n}}^{*}$.

Invariant

Proposition 3 (Differential probabilities under linear isomorphisms)

Let $G \xlongequal{\varphi} H$ be isomorphic groups. Let $f: G \rightarrow G$ be a map and let $\hat{f}: H \rightarrow H$ be the map induced through the isomorphism. Then $\mathrm{DP}_{\hat{f}}(g, h)=\mathrm{DP}_{f}\left(\varphi^{-1}(g), \varphi^{-1}(h)\right)$ for all $g, h \in H$.

Proposition 4 (Differential probabilities for power functions (Blondeau, Canteaut, Charpin))
Let $0 \leq e \leq 2^{n}-1$ and let $f=*^{e}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ be a power function. Then $\mathrm{DP}_{f}(a, b)=\mathrm{DP}_{f}\left(y a, y^{e} b\right)$ for all $y \in \mathbb{F}_{2^{n}}^{*}$.

Proof.

Substitute $x:=y y^{-1} x=y x^{\prime}$ in
$\mathrm{DP}_{f}\left(y a, y^{e} b\right)=\#\left\{x \in \mathbb{F}_{2^{n}} \mid x^{e}+(x+y a)^{e}=y^{e} b\right\} / 2^{n}$.

Invariant

Proposition 3 (Differential probabilities under linear isomorphisms)

Let $G \stackrel{\varphi}{\cong} H$ be isomorphic groups. Let $f: G \rightarrow G$ be a map and let $\hat{f}: H \rightarrow H$ be the map induced through the isomorphism. Then $\mathrm{DP}_{\hat{f}}(g, h)=\mathrm{DP}_{f}\left(\varphi^{-1}(g), \varphi^{-1}(h)\right)$ for all $g, h \in H$.

Proposition 4 (Differential probabilities for power functions (Blondeau, Canteaut, Charpin))
Let $0 \leq e \leq 2^{n}-1$ and let $f=*^{e}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ be a power function. Then $\mathrm{DP}_{f}(a, b)=\mathrm{DP}_{f}\left(y a, y^{e} b\right)$ for all $y \in \mathbb{F}_{2^{n}}^{*}$.

Proof.

Substitute $x:=y y^{-1} x=y x^{\prime}$ in
$\mathrm{DP}_{f}\left(y a, y^{e} b\right)=\#\left\{x \in \mathbb{F}_{2^{n}} \mid x^{e}+(x+y a)^{e}=y^{e} b\right\} / 2^{n}$.
Thus, we have that the rows of the DDT all have the same number of occurrences of $0,2,4, \ldots$.

Conclusion and corollary

Theorem 8

Let $n \neq 1,3$ be a positive integer. Then $\widehat{\chi_{n}}$ is not a power function.

Conclusion and corollary

Theorem 8

Let $n \neq 1,3$ be a positive integer. Then $\widehat{\chi_{n}}$ is not a power function.

Corollary 9

There is no function F_{n} that is extended affine equivalent to χ_{n} $\left(A F_{n} B+C=\chi_{n}\right)$, such that $\widehat{F_{n}}$ is a power function.

Conclusion and corollary

Theorem 8

Let $n \neq 1,3$ be a positive integer. Then $\widehat{\chi_{n}}$ is not a power function.

Corollary 9

There is no function F_{n} that is extended affine equivalent to χ_{n} $\left(A F_{n} B+C=\chi_{n}\right)$, such that $\widehat{F_{n}}$ is a power function.

Thank you for your attention!

[^0]: ${ }^{1}$ Using MAGMA in under 2 minutes!

[^1]: ${ }^{1}$ Using MAGMA in under 2 minutes!

[^2]: ${ }^{1}$ Using MAGMA in under 2 minutes!

[^3]: ${ }^{1}$ Using MAGMA in under 2 minutes!

[^4]: ${ }^{1}$ Using Magma in under 2 minutes!
 ${ }^{2}$ This takes way longer to compute...

[^5]: ${ }^{1}$ Using Magma in under 2 minutes!
 ${ }^{2}$ This takes way longer to compute...

