Is χ_n a power function?

Jan Schoone

13 July 2023

Introduction

Introduction	
000000	

Proof technique

Introduction to χ_n

Definition 1 (χ_n)

The map $\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n, \ x \mapsto y$ is given by:

 $y_i = x_i + (x_{i+1} + 1)x_{i+2}$ $i \in \mathbb{Z}/n\mathbb{Z}.$

Introduction to χ_n

Definition 1 (χ_n)

The map $\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n, \ x \mapsto y$ is given by:

$$y_i = x_i + (x_{i+1} + 1)x_{i+2}$$
 $i \in \mathbb{Z}/n\mathbb{Z}.$

We have: x_i is followed by $x_{i+1} = 0$ and $x_{i+2} = 1$ if and only if $y_i = x_i + 1$.

Introduction to χ_n

Definition 1 (χ_n)

The map $\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n, \ x \mapsto y$ is given by:

$$y_i = x_i + (x_{i+1} + 1)x_{i+2}$$
 $i \in \mathbb{Z}/n\mathbb{Z}.$

We have: x_i is followed by $x_{i+1} = 0$ and $x_{i+2} = 1$ if and only if $y_i = x_i + 1$.

KECCAK-f, the SHA-3 standard: χ_5 .

Introduction to χ_n

Definition 1 (χ_n)

The map $\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n, \ x \mapsto y$ is given by:

$$y_i = x_i + (x_{i+1} + 1)x_{i+2}$$
 $i \in \mathbb{Z}/n\mathbb{Z}.$

We have: x_i is followed by $x_{i+1} = 0$ and $x_{i+2} = 1$ if and only if $y_i = x_i + 1$.

 ${\rm Keccak}{\mbox{-}f},$ the SHA-3 standard: $\chi_5.$

ASCON, the Lightweight Cryptography winner: χ_5 .

Proof technique

Properties of χ_n

• χ_n has (algebraic) degree 2: $y_i = x_i + x_{i+1}x_{i+2} + x_{i+2}$;

Proof technique 00000

Properties of χ_n

- χ_n has (algebraic) degree 2:
 y_i = x_i + x_{i+1}x_{i+2} + x_{i+2};
- χ_n is shift invariant: $\chi_n(x\ll 1) = \chi_n(x) \ll 1;$

Properties of χ_n

- χ_n has (algebraic) degree 2:
 y_i = x_i + x_{i+1}x_{i+2} + x_{i+2};
- χ_n is shift invariant: $\chi_n(x \ll 1) = \chi_n(x) \ll 1;$
- χ_n is invertible if and only if n is odd: $(01)^n \mapsto 0^{2n} \leftrightarrow (10)^n$;

Proof technique 00000

Properties of χ_n

- χ_n has (algebraic) degree 2:
 y_i = x_i + x_{i+1}x_{i+2} + x_{i+2};
- χ_n is shift invariant: $\chi_n(x \ll 1) = \chi_n(x) \ll 1;$
- χ_n is invertible if and only if n is odd: $(01)^n \mapsto 0^{2n} \leftrightarrow (10)^n$;
- $\operatorname{ord}(\chi_n) = 2^{\lfloor \lg n \rfloor}.$

Proof technique 00000

Univariate polynomials

$$\phi(\vec{x}) = \sum_{i=0}^{n-1} x_i \beta^{q^i}$$

Proof technique 00000

Univariate polynomials

Definition 2 (Normal basis)

Consider $\mathbb{F}_2 \subset \mathbb{F}_{2^n}$. Then $\beta \in \mathbb{F}_{2^n}$ is called a *normal element* of \mathbb{F}_{2^n} if the set $\{\beta, \beta^2, \beta^{2^2}, \dots, \beta^{2^{n-1}}\}$ is a linear independent set. This set is then called a *normal basis* of \mathbb{F}_{2^n} .

Proof technique

Univariate polynomials

Definition 2 (Normal basis)

Consider $\mathbb{F}_2 \subset \mathbb{F}_{2^n}$. Then $\beta \in \mathbb{F}_{2^n}$ is called a *normal element* of \mathbb{F}_{2^n} if the set $\{\beta, \beta^2, \beta^{2^2}, \dots, \beta^{2^{n-1}}\}$ is a linear independent set. This set is then called a *normal basis* of \mathbb{F}_{2^n} .

Theorem 3

If $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is shift invariant and the isomorphism ϕ is induced by a normal element, then \widehat{F} has coefficients in \mathbb{F}_2 .

Proof technique 00000

Univariate polynomials

Example 2

Consider the map χ_3 . Let $\mathbb{F}_{2^3} := \mathbb{F}_2(\alpha) = \mathbb{F}_2[X]/(X^3 + X + 1)$. Then α^3 is a normal element. We define $\widehat{\chi_3} := \phi \circ \chi_3 \circ \phi^{-1}$. By using Lagrange interpolation we find that $\widehat{\chi_3}(t) = t^6$.

Power functions

Definition 3 (Power functions)

A power function is a polynomial function that can be represented by a single monomial in $\mathbb{F}_{2^n}[X]$. We write $*^e \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ for a power function, here $e \ge 0$.

Power functions

Definition 3 (Power functions)

A power function is a polynomial function that can be represented by a single monomial in $\mathbb{F}_{2^n}[X]$. We write $*^e \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ for a power function, here $e \ge 0$.

A power function $*^e \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is invertible if and only if $\gcd(e,2^n-1)=1.$

Power functions

Definition 3 (Power functions)

A power function is a polynomial function that can be represented by a single monomial in $\mathbb{F}_{2^n}[X]$. We write $*^e \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ for a power function, here $e \ge 0$.

A power function $*^e \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is invertible if and only if $\gcd(e,2^n-1)=1.$

The order of an invertible power function $*^e$ is given by the (multiplicative) order of e in $\mathbb{Z}/(2^n - 1)\mathbb{Z}$.

Power functions

Definition 3 (Power functions)

A power function is a polynomial function that can be represented by a single monomial in $\mathbb{F}_{2^n}[X]$. We write $*^e \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ for a power function, here $e \ge 0$.

A power function $*^e \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is invertible if and only if $\gcd(e,2^n-1)=1.$

The order of an invertible power function $*^e$ is given by the (multiplicative) order of e in $\mathbb{Z}/(2^n - 1)\mathbb{Z}$.

Why power functions?

Is χ_n a power function (for *any* choice of (normal) basis)?

Is χ_n a power function (for *any* choice of (normal) basis)?

No!

Is χ_n a power function (for *any* choice of (normal) basis)?

No! (For $n \neq 1, 3$.)

Is χ_n a power function (for *any* choice of (normal) basis)?

No! (For $n \neq 1, 3$.)

Proposition 1

For any even n, there is no (normal) basis representation such that $\widehat{\chi_n}$ is a power function.

Is χ_n a power function (for *any* choice of (normal) basis)?

No! (For $n \neq 1, 3$.)

Proposition 1

For any even n, there is no (normal) basis representation such that $\widehat{\chi_n}$ is a power function.

Proof.

Suppose that it does exist. Since $\chi_n((01)^{n/2}) = 0^n$, there needs to exist some nonzero $\alpha \in \mathbb{F}_{2^n}$ with $\alpha^s = 0$ for some integer s. \Box

Is χ_n a power function (for *any* choice of (normal) basis)?

No! (For $n \neq 1, 3$.)

Proposition 1 (Excluding Mersenne-exponents)

If n > 3 is such that $2^n - 1$ is a prime number, then there exists no (normal) basis representation of χ_n such that $\widehat{\chi_n}$ is a power function.

Is χ_n a power function (for *any* choice of (normal) basis)?

No! (For $n \neq 1, 3$.)

Proposition 1 (Excluding Mersenne-exponents)

If n > 3 is such that $2^n - 1$ is a prime number, then there exists no (normal) basis representation of χ_n such that $\widehat{\chi_n}$ is a power function.

Proof.

Since $2^n - 1$ is a prime number, $\varphi(2^n - 1) = 2^n - 2$. The order of χ_n is divisible by 4 for all n > 3. The expression $2^n - 2$ has only one factor 2.

State diagrams

Definition 4 (State diagram)

Let S be a set. The state diagram for a map $F: S \to S$ is a directed graph (V, A), where V = S and $A = \{(a, F(a)) \mid a \in S\}$.

Definition 4 (State diagram)

Let S be a set. The state diagram for a map $F: S \to S$ is a directed graph (V, A), where V = S and $A = \{(a, F(a)) \mid a \in S\}$.

The state diagram of χ_n consists of cycles of length $1, 2, 4, 8, \dots, \operatorname{ord}(\chi_n)$.

Definition 4 (State diagram)

Let S be a set. The state diagram for a map $F: S \to S$ is a directed graph (V, A), where V = S and $A = \{(a, F(a)) \mid a \in S\}$.

The state diagram of χ_n consists of cycles of length $1, 2, 4, 8, \ldots, \operatorname{ord}(\chi_n)$. Each length occurs at least once!

Definition 4 (State diagram)

Let S be a set. The state diagram for a map $F: S \to S$ is a directed graph (V, A), where V = S and $A = \{(a, F(a)) \mid a \in S\}$.

The state diagram of χ_n consists of cycles of length $1, 2, 4, 8, \ldots, \operatorname{ord}(\chi_n)$. Each length occurs at least once!

Theorem 5 (Ahmad's Theorem)

Let m, q be positive integers with $q = p^n$ for some prime number pand $n \ge 1$. Let $*^e \colon \mathbb{F}_q^* \to \mathbb{F}_q^*$, $x \mapsto x^e$ be a power function. Then $*^e$ has a cycle of length precisely m if and only if there exists some $t \mid q-1$ such that the order of e modulo t is equal to m.

Definition 4 (State diagram)

Let S be a set. The state diagram for a map $F: S \to S$ is a directed graph (V, A), where V = S and $A = \{(a, F(a)) \mid a \in S\}$.

The state diagram of χ_n consists of cycles of length $1, 2, 4, 8, \ldots, \operatorname{ord}(\chi_n)$. Each length occurs at least once!

Theorem 5 (Ahmad's Theorem)

Let m, q be positive integers with $q = p^n$ for some prime number pand $n \ge 1$. Let $*^e \colon \mathbb{F}_q^* \to \mathbb{F}_q^*$, $x \mapsto x^e$ be a power function. Then $*^e$ has a cycle of length precisely m if and only if there exists some $t \mid q-1$ such that the order of e modulo t is equal to m.

Not every length necessarily occurs!

Corollary

Theorem 6 (Necessary conditions for χ_n to be a power function)

Let n > 3 be an odd integer. Write $o := \operatorname{ord}(\chi_n) = 2^{\lfloor \lg(n) \rfloor}$. Then χ_n can only be a power function if $2^n - 1$ factors as

$$2^n - 1 = p_1^{e_1} \cdots p_r^{e_r},$$

such that there exists some permutation $\sigma \in S_r$ with

$$\begin{split} \varphi(p_{\sigma(1)}^{e_{\sigma(1)}}) & \text{is a multiple of } o \\ \varphi(p_{\sigma(2)}^{e_{\sigma(2)}}) & \text{is a multiple of } \frac{o}{2} \\ & \vdots \\ \varphi(p_{\sigma(t)}^{e_{\sigma(t)}}) & \text{is a multiple of } 2 \end{split}$$

for some t < r.

Introduction	Historical attempts	Proof technique
000000	000●	00000
Results		

Using these conditions, we can verify¹ that χ_n is not a power function for any $n \leq 1115$, except for n = 63 and n = 441.

¹Using MAGMA in under 2 minutes!

Introduction 000000	Historical attempts 000●	Proof technique
Results		

Using these conditions, we can verify¹ that χ_n is not a power function for any $n \leq 1115$, except for n = 63 and n = 441.

Remaining cases:

•
$$n = 63$$

• $\approx 2^{12.59}$ out of $\approx 2^{62.742}$ possible e;

¹Using MAGMA in under 2 minutes!

Introduction	Historical attempts	Proof technique
000000	000●	00000
Results		

Using these conditions, we can verify¹ that χ_n is not a power function for any $n \leq 1115$, except for n = 63 and n = 441.

Remaining cases:

- n = 63:
 - $\approx 2^{12.59}$ out of $\approx 2^{62.742}$ possible e;
 - Algebraic degree of power function is $wt_2(e)$;

¹Using MAGMA in under 2 minutes!

Introduction	Historical attempts	Proof technique
	0000	

Results

Using these conditions, we can verify¹ that χ_n is not a power function for any $n \leq 1115$, except for n = 63 and n = 441.

Remaining cases:

- n = 63:
 - $\approx 2^{12.59}$ out of $\approx 2^{62.742}$ possible e;
 - Algebraic degree of power function is $wt_2(e)$;
 - None have algebraic degree 2.

¹Using MAGMA in under 2 minutes!

Results

Using these conditions, we can verify¹ that χ_n is not a power function for any $n \leq 1115$, except for n = 63 and n = 441.

Remaining cases:

- n = 63:
 - $\approx 2^{12.59}$ out of $\approx 2^{62.742}$ possible e;
 - Algebraic degree of power function is $wt_2(e)$;
 - None have algebraic degree 2.

•
$$n = 441:^2$$

• $2^{35.322}$ out of $\approx 2^{440.742}$ possible e;

¹Using MAGMA in under 2 minutes!

²This takes way longer to compute...

Results

Using these conditions, we can verify¹ that χ_n is not a power function for any $n \leq 1115$, except for n = 63 and n = 441.

Remaining cases:

- n = 63:
 - $\approx 2^{12.59}$ out of $\approx 2^{62.742}$ possible e;
 - Algebraic degree of power function is $wt_2(e)$;
 - None have algebraic degree 2.
- $n = 441:^2$
 - $2^{35.322}$ out of $\approx 2^{440.742}$ possible e;
 - None have algebraic degree 2.

¹Using MAGMA in under 2 minutes!

²This takes way longer to compute...

Proof technique

Differential distributions

Definition 7 (Differential probability (Biham, Shamir))

Let $f: G \to H$ be a map between finite groups G and H. Let $g \in G$ and $h \in H$ be arbitrary. Then we define the differential probability of f at (g, h) as

 $DP_f(g,h) = \#\{x \in G \mid f(x) - f(x-g) = h\}/|G|.$

Differential distributions

Definition 7 (Differential probability (Biham, Shamir))

Let $f: G \to H$ be a map between finite groups G and H. Let $g \in G$ and $h \in H$ be arbitrary. Then we define the *differential probability of f at* (g, h) as

$$\mathrm{DP}_f(g,h) = \#\{x \in G \mid f(x) - f(x-g) = h\}/|G|.$$

		input difference								
	χ_3	000	001	010	011	100	101	110	111	
output difference	000	1	-	-	-	-	-	-	-	
	001	-	$^{1/4}$	-	$^{1/4}$	-	$^{1/4}$	-	1/4	
	010	-	-	$^{1/4}$	1/4	-	-	1/4	1/4	
	011	-	$^{1/4}$	1/4	-	-	$^{1/4}$	1/4	_	
	100	-	-	-	-	1/4	1/4	1/4	1/4	
	101	-	$^{1/4}$	-	$^{1/4}$	1/4	-	1/4	_	
no	110	-	-	$^{1/4}$	1/4	1/4	$^{1/4}$	-	-	
	111	-	1/4	1/4	-	1/4	-	-	1/4	

Proof technique

Differential distribution for χ

Proposition 2 (Differential probabilities for χ (Daemen))

Let n > 1 be an arbitrary odd integer. Let $a \in \mathbb{F}_2^n$ be arbitrary. Then for any compatible $b \in \mathbb{F}_2^n$ we have $\mathrm{DP}_{\chi_n}(a,b) = 2^{-w(a)}$, where

$$w(a) = egin{cases} n-1 & \text{if } a = 1^n, \ \operatorname{wt}(a) + r & ext{else}, \end{cases}$$

where r is the number of (cyclic) 001-substrings in a.

Proof technique

Differential distribution for χ

Proposition 2 (Differential probabilities for χ (Daemen))

Let n > 1 be an arbitrary odd integer. Let $a \in \mathbb{F}_2^n$ be arbitrary. Then for any compatible $b \in \mathbb{F}_2^n$ we have $DP_{\chi_n}(a, b) = 2^{-w(a)}$, where

$$w(a) = egin{cases} n-1 & \mbox{if } a = 1^n; \\ {
m wt}(a) + r & \mbox{else}, \end{cases}$$

where r is the number of (cyclic) 001-substrings in a.

•
$$a = 110^{n-2} \implies$$

Proof technique

Differential distribution for χ

Proposition 2 (Differential probabilities for χ (Daemen))

Let n > 1 be an arbitrary odd integer. Let $a \in \mathbb{F}_2^n$ be arbitrary. Then for any compatible $b \in \mathbb{F}_2^n$ we have $DP_{\chi_n}(a, b) = 2^{-w(a)}$, where

$$w(a) = egin{cases} n-1 & \mbox{if } a = 1^n; \\ {
m wt}(a) + r & \mbox{else}, \end{cases}$$

where r is the number of (cyclic) 001-substrings in a.

•
$$a = 110^{n-2} \implies \operatorname{DP}_{\chi_n}(a, b) = \frac{1}{8};$$

Proof technique

Differential distribution for χ

Proposition 2 (Differential probabilities for χ (Daemen))

Let n > 1 be an arbitrary odd integer. Let $a \in \mathbb{F}_2^n$ be arbitrary. Then for any compatible $b \in \mathbb{F}_2^n$ we have $DP_{\chi_n}(a, b) = 2^{-w(a)}$, where

$$w(a) = egin{cases} n-1 & \mbox{if } a = 1^n; \\ {
m wt}(a) + r & \mbox{else}, \end{cases}$$

where r is the number of (cyclic) 001-substrings in a.

•
$$a = 110^{n-2} \implies DP_{\chi_n}(a, b) = \frac{1}{8};$$

• $a' = 10^{n-1} \implies$

Proof technique

Differential distribution for χ

Proposition 2 (Differential probabilities for χ (Daemen))

Let n > 1 be an arbitrary odd integer. Let $a \in \mathbb{F}_2^n$ be arbitrary. Then for any compatible $b \in \mathbb{F}_2^n$ we have $DP_{\chi_n}(a, b) = 2^{-w(a)}$, where

$$w(a) = egin{cases} n-1 & \mbox{if } a = 1^n; \\ {
m wt}(a) + r & \mbox{else}, \end{cases}$$

where r is the number of (cyclic) 001-substrings in a.

•
$$a = 110^{n-2} \implies DP_{\chi_n}(a, b) = \frac{1}{8};$$

• $a' = 10^{n-1} \implies DP_{\chi_n}(a', b) = \frac{1}{4}.$

Introduction	

Invariant

Proposition 3 (Differential probabilities under linear isomorphisms)

Let $G \stackrel{\varphi}{\cong} H$ be isomorphic groups. Let $f: G \to G$ be a map and let $\hat{f}: H \to H$ be the map induced through the isomorphism. Then $\mathrm{DP}_{\hat{f}}(g,h) = \mathrm{DP}_{f}(\varphi^{-1}(g), \varphi^{-1}(h))$ for all $g, h \in H$.

Invariant

Proposition 3 (Differential probabilities under linear isomorphisms)

Let $G \stackrel{\varphi}{\cong} H$ be isomorphic groups. Let $f: G \to G$ be a map and let $\hat{f}: H \to H$ be the map induced through the isomorphism. Then $\mathrm{DP}_{\hat{f}}(g,h) = \mathrm{DP}_{f}(\varphi^{-1}(g), \varphi^{-1}(h))$ for all $g, h \in H$.

Proposition 4 (Differential probabilities for power functions (Blondeau, Canteaut, Charpin))

Let $0 \le e \le 2^n - 1$ and let $f = *^e \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ be a power function. Then $DP_f(a, b) = DP_f(ya, y^e b)$ for all $y \in \mathbb{F}_{2^n}^*$.

Invariant

Proposition 3 (Differential probabilities under linear isomorphisms)

Let $G \stackrel{\varphi}{\cong} H$ be isomorphic groups. Let $f: G \to G$ be a map and let $\hat{f}: H \to H$ be the map induced through the isomorphism. Then $\mathrm{DP}_{\hat{f}}(g,h) = \mathrm{DP}_{f}(\varphi^{-1}(g), \varphi^{-1}(h))$ for all $g, h \in H$.

Proposition 4 (Differential probabilities for power functions (Blondeau, Canteaut, Charpin))

Let $0 \le e \le 2^n - 1$ and let $f = *^e \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ be a power function. Then $DP_f(a, b) = DP_f(ya, y^e b)$ for all $y \in \mathbb{F}_{2^n}^*$.

Proof.

Substitute $x := yy^{-1}x = yx'$ in $DP_f(ya, y^eb) = \#\{x \in \mathbb{F}_{2^n} \mid x^e + (x + ya)^e = y^eb\}/2^n.$

Invariant

Proposition 3 (Differential probabilities under linear isomorphisms)

Let $G \stackrel{\varphi}{\cong} H$ be isomorphic groups. Let $f: G \to G$ be a map and let $\hat{f}: H \to H$ be the map induced through the isomorphism. Then $\mathrm{DP}_{\hat{f}}(g,h) = \mathrm{DP}_{f}(\varphi^{-1}(g), \varphi^{-1}(h))$ for all $g, h \in H$.

Proposition 4 (Differential probabilities for power functions (Blondeau, Canteaut, Charpin))

Let $0 \le e \le 2^n - 1$ and let $f = *^e \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ be a power function. Then $DP_f(a, b) = DP_f(ya, y^e b)$ for all $y \in \mathbb{F}_{2^n}^*$.

Proof.

Substitute $x := yy^{-1}x = yx'$ in $DP_f(ya, y^eb) = \#\{x \in \mathbb{F}_{2^n} \mid x^e + (x + ya)^e = y^eb\}/2^n.$

Thus, we have that the rows of the DDT all have the same number of occurrences of $0, 2, 4, \ldots$

Conclusion and corollary

Theorem 8

Let $n \neq 1, 3$ be a positive integer. Then $\widehat{\chi_n}$ is not a power function.

Conclusion and corollary

Theorem 8

Let $n \neq 1, 3$ be a positive integer. Then $\widehat{\chi_n}$ is not a power function.

Corollary 9

There is no function F_n that is extended affine equivalent to χ_n $(AF_nB + C = \chi_n)$, such that $\widehat{F_n}$ is a power function.

Conclusion and corollary

Theorem 8

Let $n \neq 1, 3$ be a positive integer. Then $\widehat{\chi_n}$ is not a power function.

Corollary 9

There is no function F_n that is extended affine equivalent to χ_n $(AF_nB + C = \chi_n)$, such that $\widehat{F_n}$ is a power function.

Thank you for your attention!