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Recap on algebraic structures

Consider a quintuple (R,+, ·, 0, 1) where R is a set containing special elements that we

call 0 and 1, and +: R × R → R and · : R × R → R are maps.

1 ∀a, b, c ∈ R : (a + b) + c = a + (b + c)

2 ∀a ∈ R : a + 0 = 0 + a = a

3 ∀a ∈ R ∃b ∈ R : a + b = b + a = 0

 group

4 ∀a, b ∈ R : a + b = b + a


abelian group

5 ∀a, b, c ∈ R : (ab)c = a(bc)

6 ∀a ∈ R : a · 1 = 1 · a = a

}
monoid

7 ∀a, b ∈ R : ab = ba

 commutative monoid

8 ∀a, b, c ∈ R : a(b + c) = ab + ac

9 ∀a, b, c ∈ R : (b + c)a = ba + ca



comm. ring
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Recap on algebraic structures II

Example of a ring: (Z,+, ·, 0, 1).

Often we just write R and assume the operations are clear, e.g., Z.

1 R is a commutative ring

2 ∀a ∈ R \ {0} ∃b ∈ R : ab = ba = 1

}
field

Examples of fields: Q,R,C.
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Mathieu-Zhao spaces
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Recap on ideals

Let R be a ring. An ideal I of R is a(n additive) subgroup of R such that for all a, b in

R we have

a ∈ I =⇒ ba ∈ I .

Hence in particular, for all a, b in R, if for all m ≥ 1 we have am in I , then for all

m ≥ 1 we have bam in I :

∀ m ≥ 1 : am ∈ I =⇒ ∀ m ≥ 1 : bam ∈ I
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Generalising

So for ideals, for all a, b in R:

∀ m ≥ 1 : am ∈ I =⇒ ∀ m ≥ 1 : bam ∈ I .

We can relax this a bit, to: for all a, b in R:

∀ m ≥ 1 : am ∈ I =⇒ ∀ m� 0 : bam ∈ I .

Or, more commonly written, for all a, b in R:

∀ m ≥ 1 : am ∈ I =⇒ ∃ N > 0 ∀m ≥ N : bam ∈ I .
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Definition

We now define a Mathieu-Zhao space of R as a(n additive) subgroup M of R for which

the following property holds:

If am in M for all m ≥ 1, then for any b in R we have bam in M for all m� 0.

Example (Ideals)

Ideals of rings.

Not every Mathieu-Zhao space is an ideal!
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Definition

We now define a Mathieu-Zhao space of R as a(n additive) subgroup M of R for which

the following property holds:

If am in M for all m ≥ 1, then for any b in R we have bam in M for all m� 0.

Not every Mathieu-Zhao space is an ideal!

Example

Consider the finite field F4 = {0, 1, x , x + 1}. We know that F4 only has two ideals:

(0) and (1) = F4. But the set M := {0, x} is also a Mathieu-Zhao space.

We have x2 = x + 1. Since x + 1 is not an element of {0, x}, we find that this set

indeed satisfies the conditions for a Mathieu-Zhao space.
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Non-example

Let R be any ring. Then ∆R = {(r , r) | r ∈ R} is a subgroup of R × R, but not a

Mathieu-Zhao space:

We have:

∀a ∈ R ∀n ≥ 1 : (a, a)n = (an, an) ∈ ∆R .

Hence, if ∆R were a Mathieu-Zhao space, then we should have

∀(b, c) ∈ R × R ∃N ≥ 0 ∀m ≥ N : (b, c)(a, a)m ∈ ∆R .

Let a be any non-nilpotent element (an 6= 0 for all n ≥ 1) and (b, c) = (1, 0) we have

(1, 0)(a, a)m = (am, 0) 6∈ ∆R for all a 6= 0.

So ∆R is not a Mathieu-Zhao space.
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Background and improvement
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Mathieu Conjecture

Mathieu Conjecture (1995) Let G be a compact connected real Lie group with Haar

measure σ. Let f be a complex-valued G -finite function on G such that
∫
G f m dσ = 0

for all m ≥ 1. Then for every G -finite function g on G , also
∫
G gf m dσ = 0 for all

large enough m.

The similarities to Mathieu-Zhao spaces is clear, and we can write (MC) in terms of

Mathieu-Zhao spaces:

Mathieu Conjecture Let G be a compact connected real Lie group with Haar

measure σ and let A be the algebra of complex-valued G -finite functions on G . Then{
f ∈ A |

∫
G
f dσ = 0

}
is a Mathieu-Zhao space of A.
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Duistermaat and Van der Kallen’s theorem

Theorem (Duistermaat-Van der Kallen (1998))

Let X1, . . . ,Xn be n commutative variables and let M be the subspace of the Laurent

polynomial algebra C[X1, . . . ,Xn,X
−1
1 , . . . ,X−1

n ] consisting of those Laurent

polynomials with no constant term. Then M is a Mathieu-Zhao space of

C[X1, . . . ,Xn,X
−1
1 , . . . ,X−1

n ]

1-dimensional case:

Theorem (DvdK 1-dimensional)

Let C[X ,X−1] be the Laurent polynomial algebra in one variable. Then

{f ∈ C[X ,X−1] | f0 = 0}

is a Mathieu-Zhao space of C[X ,X−1].
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Duistermaat and Van der Kallen’s theorem

The set {f ∈ C[X ,X−1] | f0 = 0} is the kernel of the linear map L : C[X ,X−1]→ C

defined by L(f ) = f0.

Properties:

• L(1) 6= 0;

• L(X n) = 0 for all n ≥ 1 and all n ≤ −1.

Theorem (DvdK1 - generalization)

Let L : C[X ,X−1]→ C be a non-zero C-linear map for which there exists an N ≥ 1

such that L(X n) = 0 for all n ∈ Z≥N and all n ∈ Z≤−N . Then Ker L is a

Mathieu-Zhao space of C[X ,X−1] if and only if L(1) 6= 0.
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MZ-spaces containing 1

From now on we shall say ”MZ-space” instead of Mathieu-Zhao space.

Lemma

Let R be a ring. Let M be an MZ-space of R such that 1 ∈ M. Then M = R.

Proof.

Since 1m = 1 for all m ≥ 1, we find that for all b ∈ R we have b1m ∈ M for all

m� 0 since M is an MZ-space. Hence b ∈ M, and M = A.
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Finite rings, e.g., Z/100Z
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Z/100Z

Lemma (Z/nZ)

Let n be a positive integer and let R be the ring Z/nZ. Then all (additive) subgroups

of Z/nZ are actually ideals. Since ideals are MZ-spaces, we have now classified all

the MZ-spaces of Z/nZ.

The MZ-spaces of Z/100Z are:

〈0〉, 〈50〉, 〈25〉, 〈20〉, 〈10〉, 〈5〉, 〈4〉, 〈2〉, 〈1〉.

Alternate notation:

0, 50Z/100Z, 25Z/100Z, 20Z/100Z,

10Z/100Z, 5Z/100Z, 4Z/100Z, 2Z/100Z, Z/100Z.
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Finite Fields

Lemma (Finite Fields)

Let p be a prime, n ≥ 1 an integer and q = pn. Then all (additive) subgroups of Fq

that do not contain 1 are MZ-spaces of Fq, and of course Fq itself is also an

MZ-space.

Proof.

Let M be a (n additive) subgroup of Fq that does not contain 1. Let x ∈ M be such

that xn ∈ M for all n ≥ 1. If x 6= 0, then this implies 1 ∈ M, a contradiction. So only

x = 0 satisfies the hypothesis xn ∈ M for all n ≥ 1 and clearly for all y ∈ Fq we then

have y · 0m = 0 ∈ M for all m� 0. 4

The finite field F4 has MZ-spaces {0}, {0, x}, {0, x + 1},F4.

18 / 24



Main theorems of classification
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Classification Theorem #1.

We introduce here the definition r(M) = {a ∈ A | an ∈ M ∀n ≥ 1}. (We call this the

radical of M.)

Lemma (Radical of nilpotents)

Let R be a ring and M a(n additive) subgroup of R with r(M) ⊂ n(R) where n(R) is

the set of nilpotent elements of R, then M is an MZ-space of R.

Theorem (First Classification Theorem)

Let R be a finite ring. Let M be a(n additive) subgroup of R. Write E (R) for the set

of idempotents (e2 = e) of R. If M ∩ E (R) = 0, then r(M) = n(R) and M is an

MZ-space.
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Partial converse to the product lemma, or: Classification Theorem #2

Theorem (Second Classification Theorem’)

Let R be a finite ring of the form R ∼= R1/m
k1
1 × R2/m

k2
2 . Then every MZ-space that

is not of the form r(M) ⊂ n(R) is of the form M1 ×M2 where each Mi ⊂ Ri/m
ki
i is

an MZ-space of Ri/m
ki
i .

Example

Let R := Z/2Z× Z/4Z. The product MZ-spaces are:

0 = 0× 0, 0× 2Z/4Z, 0× Z/4Z,

Z/2Z× 0, Z/2Z× 2Z/4Z, Z/2Z× Z/4Z = R.

By the above theorem, the remaining subspaces have the property that r(M) ⊂ n(R).
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Example, continued

Example

Still, R := Z/2Z× Z/4Z. We have previously met the MZ-space {(0, 0), (1, 2)}.
How do we proceed to find other MZ-spaces M with r(M) ⊂ n(R)?

If M ∩ E (R) 6= 0, then we can determine a non-zero idempotent e ∈ M. Hence

en = e ∈ M for all n ∈ N, and e ∈ r(M). This contradicts r(M) ⊂ n(R). Thus we

must have M ∩ E (R) = 0.

Furthermore, if there exists some x ∈ M such that nx = e for some n ∈ N and

non-zero e ∈ E (R), then since M is a(n additive) subgroup we have e ∈ M. This

contradicts M ∩ E (R) = 0.

22 / 24



Example, continued

Example

The elements of Z/2Z× Z/4Z that are not idempotent or nilpotent are:

(0, 3), (1, 2), (1, 3).

Those nilpotent are

(0, 0), (0, 2).

Note that 3 · (0, 3) = (0, 1) and 3 · (1, 3) = (1, 1).

Leaves: (0, 0), (0, 2) and (1, 2) for M. If (0, 2) and (1, 2) are both elements of M,

then their sum, (1, 0) is also an element of M. But this was ruled out before. Hence

we have the following possibilities:

{(0, 0)}, {(0, 0), (0, 2)}, {(0, 0), (1, 2)}.
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MZ-spaces of Z/2Z× Z/4Z

0 = 0× 0, 0× 2Z/4Z, 0× Z/4Z, Z/2Z× 0

Z/2Z × 2Z/4Z, Z/2Z× Z/4Z = R, {(0, 0), (1, 2)}

Thank you all for your attention!
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