Black holes in algebra:

My introduction to Mathieu-Zhao spaces and research
Jan Schoone
15 October 2021
Radboud University, Nijmegen

Image by ADOBE stock: Vchalup

Image by EHT collaboration

Content

Mathieu-Zhao spaces

Background and improvement

Finite rings, e.g., Z/100Z

Main theorems of classification

Consider a quintuple $(R,+, \cdot, 0,1)$ where R is a set containing special elements that we call 0 and 1 , and $+: R \times R \rightarrow R$ and $\cdot: R \times R \rightarrow R$ are maps.
(1) $\forall a, b, c \in R:(a+b)+c=a+(b+c))$
(2) $\forall a \in R: a+0=0+a=a$
(3) $\forall a \in R \exists b \in R: a+b=b+a=0$
(4) $\forall a, b \in R: a+b=b+a$
(5) $\forall a, b, c \in R:(a b) c=a(b c)$
(6) $\forall a \in R: a \cdot 1=1 \cdot a=a$
(7) $\forall a, b \in R: a b=b a$

(8) $\forall a, b, c \in R: a(b+c)=a b+a c$
(9) $\forall a, b, c \in R:(b+c) a=b a+c a$
comm. ring \}commutative monoid

Recap on algebraic structures II

Example of a ring: $(\mathbf{Z},+, \cdot, 0,1)$.
Often we just write R and assume the operations are clear, e.g., \mathbf{Z}.
(1) R is a commutative ring
(2) $\forall a \in R \backslash\{0\} \exists b \in R: a b=b a=1\}$ field

Examples of fields: $\mathbf{Q}, \mathbf{R}, \mathbf{C}$.

Mathieu-Zhao spaces

Recap on ideals

Let R be a ring. An ideal I of R is a(n additive) subgroup of R such that for all a, b in R we have

$$
a \in I \Longrightarrow b a \in I .
$$

Hence in particular, for all a, b in R, if for all $m \geq 1$ we have a^{m} in I, then for all $m \geq 1$ we have $b a^{m}$ in $I:$

$$
\forall m \geq 1: a^{m} \in I \Longrightarrow \forall m \geq 1: b a^{m} \in I
$$

Generalising

So for ideals, for all a, b in R :

$$
\forall m \geq 1: a^{m} \in I \Longrightarrow \forall m \geq 1: b a^{m} \in I .
$$

We can relax this a bit, to: for all a, b in R :

$$
\forall m \geq 1: a^{m} \in I \Longrightarrow \forall m \gg 0: b a^{m} \in I .
$$

Or, more commonly written, for all a, b in R :

$$
\forall m \geq 1: a^{m} \in I \Longrightarrow \exists N>0 \forall m \geq N: b a^{m} \in I
$$

Definition

We now define a Mathieu-Zhao space of R as a(n additive) subgroup M of R for which the following property holds:

If a^{m} in M for all $m \geq 1$, then for any b in R we have $b a^{m}$ in M for all $m \gg 0$.

Example (Ideals)

Ideals of rings.
Not every Mathieu-Zhao space is an ideal!

Definition

We now define a Mathieu-Zhao space of R as a(n additive) subgroup M of R for which the following property holds:

If a^{m} in M for all $m \geq 1$, then for any b in R we have $b a^{m}$ in M for all $m \gg 0$.
Not every Mathieu-Zhao space is an ideal!

Example

Consider the finite field $\mathbb{F}_{4}=\{0,1, x, x+1\}$. We know that \mathbb{F}_{4} only has two ideals: (0) and $(1)=\mathbb{F}_{4}$. But the set $M:=\{0, x\}$ is also a Mathieu-Zhao space.

We have $x^{2}=x+1$. Since $x+1$ is not an element of $\{0, x\}$, we find that this set indeed satisfies the conditions for a Mathieu-Zhao space.

Non-example

Let R be any ring. Then $\Delta_{R}=\{(r, r) \mid r \in R\}$ is a subgroup of $R \times R$, but not a Mathieu-Zhao space:

We have:

$$
\forall a \in R \forall n \geq 1:(a, a)^{n}=\left(a^{n}, a^{n}\right) \in \Delta_{R}
$$

Hence, if Δ_{R} were a Mathieu-Zhao space, then we should have

$$
\forall(b, c) \in R \times R \exists N \geq 0 \forall m \geq N:(b, c)(a, a)^{m} \in \Delta_{R}
$$

Let a be any non-nilpotent element ($a^{n} \neq 0$ for all $n \geq 1$) and $(b, c)=(1,0)$ we have $(1,0)(a, a)^{m}=\left(a^{m}, 0\right) \notin \Delta_{R}$ for all $a \neq 0$.
So Δ_{R} is not a Mathieu-Zhao space.

Background and improvement

Mathieu Conjecture

Mathieu Conjecture (1995) Let G be a compact connected real Lie group with Haar measure σ. Let f be a complex-valued G-finite function on G such that $\int_{G} f^{m} d \sigma=0$ for all $m \geq 1$. Then for every G-finite function g on G, also $\int_{G} g f^{m} d \sigma=0$ for all large enough m.

The similarities to Mathieu-Zhao spaces is clear, and we can write (MC) in terms of Mathieu-Zhao spaces:

Mathieu Conjecture Let G be a compact connected real Lie group with Haar measure σ and let A be the algebra of complex-valued G-finite functions on G. Then

$$
\left\{f \in A \mid \int_{G} f d \sigma=0\right\}
$$

is a Mathieu-Zhao space of A.

Theorem (Duistermaat-Van der Kallen (1998))

Let X_{1}, \ldots, X_{n} be n commutative variables and let M be the subspace of the Laurent polynomial algebra $\mathbf{C}\left[X_{1}, \ldots, X_{n}, X_{1}^{-1}, \ldots, X_{n}^{-1}\right]$ consisting of those Laurent polynomials with no constant term. Then M is a Mathieu-Zhao space of $\mathrm{C}\left[X_{1}, \ldots, X_{n}, X_{1}^{-1}, \ldots, X_{n}^{-1}\right]$

1-dimensional case:

Theorem (DvdK 1-dimensional)

Let $\mathbf{C}\left[X, X^{-1}\right]$ be the Laurent polynomial algebra in one variable. Then

$$
\left\{f \in \mathbf{C}\left[X, X^{-1}\right] \mid f_{0}=0\right\}
$$

is a Mathieu-Zhao space of $\mathbf{C}\left[X, X^{-1}\right]$.

The set $\left\{f \in \mathbf{C}\left[X, X^{-1}\right] \mid f_{0}=0\right\}$ is the kernel of the linear map $L: \mathbf{C}\left[X, X^{-1}\right] \rightarrow \mathbf{C}$ defined by $L(f)=f_{0}$.

Properties:

- $L(1) \neq 0$;
- $L\left(X^{n}\right)=0$ for all $n \geq 1$ and all $n \leq-1$.

Theorem (DvdK1 - generalization)

Let $L: \mathbf{C}\left[X, X^{-1}\right] \rightarrow \mathbf{C}$ be a non-zero \mathbf{C}-linear map for which there exists an $N \geq 1$ such that $L\left(X^{n}\right)=0$ for all $n \in \mathbf{Z}_{\geq N}$ and all $n \in \mathbf{Z}_{\leq-N}$. Then $\operatorname{Ker} L$ is a Mathieu-Zhao space of $\mathbf{C}\left[X, X^{-1}\right]$ if and only if $L(1) \neq 0$.

MZ-spaces containing 1

From now on we shall say "MZ-space" instead of Mathieu-Zhao space.

Lemma

Let R be a ring. Let M be an $M Z$-space of R such that $1 \in M$. Then $M=R$.

Proof.

Since $1^{m}=1$ for all $m \geq 1$, we find that for all $b \in R$ we have $b 1^{m} \in M$ for all $m \gg 0$ since M is an MZ-space. Hence $b \in M$, and $M=A$.

Finite rings, e.g., Z/100Z

Z/100Z

Lemma ($\mathbf{Z} / n \mathbf{Z}$)

Let n be a positive integer and let R be the ring $\mathbf{Z} / n \mathbf{Z}$. Then all (additive) subgroups of $\mathbf{Z} / n \mathbf{Z}$ are actually ideals. Since ideals are MZ-spaces, we have now classified all the MZ-spaces of $\mathbf{Z} / n \mathbf{Z}$.

The MZ-spaces of $\mathbf{Z} / 100 \mathbf{Z}$ are:

$$
\langle 0\rangle, \quad\langle 50\rangle, \quad\langle 25\rangle, \quad\langle 20\rangle, \quad\langle 10\rangle, \quad\langle 5\rangle, \quad\langle 4\rangle, \quad\langle 2\rangle, \quad\langle 1\rangle .
$$

Alternate notation:
0, 50Z/100Z, 25Z/100Z, 20Z/100Z, 10Z/100Z, 5Z/100Z, 4Z/100Z, 2Z/100Z, Z/100Z.

Finite Fields

Lemma (Finite Fields)

Let p be a prime, $n \geq 1$ an integer and $q=p^{n}$. Then all (additive) subgroups of \mathbb{F}_{q} that do not contain 1 are $M Z$-spaces of \mathbb{F}_{q}, and of course \mathbb{F}_{q} itself is also an MZ-space.

Proof.

Let M be a (n additive) subgroup of \mathbb{F}_{q} that does not contain 1 . Let $x \in M$ be such that $x^{n} \in M$ for all $n \geq 1$. If $x \neq 0$, then this implies $1 \in M$, a contradiction. So only $x=0$ satisfies the hypothesis $x^{n} \in M$ for all $n \geq 1$ and clearly for all $y \in \mathbb{F}_{q}$ we then have $y \cdot 0^{m}=0 \in M$ for all $m \gg 0$.

The finite field \mathbb{F}_{4} has MZ-spaces $\{0\},\{0, x\},\{0, x+1\}, \mathbb{F}_{4}$.

Main theorems of classification

We introduce here the definition $r(M)=\left\{a \in A \mid a^{n} \in M \forall n \geq 1\right\}$. (We call this the radical of M.)

Lemma (Radical of nilpotents)

Let R be a ring and M a(n additive) subgroup of R with $r(M) \subset \mathfrak{n}(R)$ where $\mathfrak{n}(R)$ is the set of nilpotent elements of R, then M is an MZ-space of R.

Theorem (First Classification Theorem)

Let R be a finite ring. Let M be a(n additive) subgroup of R. Write $E(R)$ for the set of idempotents $\left(e^{2}=e\right.$) of R. If $M \cap E(R)=0$, then $r(M)=\mathfrak{n}(R)$ and M is an MZ-space.

Partial converse to the product lemma, or: Classification Theorem \#2

Theorem (Second Classification Theorem')

Let R be a finite ring of the form $R \cong R_{1} / \mathfrak{m}_{1}^{k_{1}} \times R_{2} / \mathfrak{m}_{2}^{k_{2}}$. Then every MZ-space that is not of the form $r(M) \subset \mathfrak{n}(R)$ is of the form $M_{1} \times M_{2}$ where each $M_{i} \subset R_{i} / \mathfrak{m}_{i}^{k_{i}}$ is an MZ-space of $R_{i} / \mathfrak{m}_{i}^{k_{i}}$.

Example

Let $R:=\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 4 \mathbf{Z}$. The product MZ-spaces are:

$$
\begin{gathered}
0=0 \times 0, \quad 0 \times 2 \mathbf{Z} / 4 \mathbf{Z}, \quad 0 \times \mathbf{Z} / 4 \mathbf{Z} \\
\mathbf{Z} / 2 \mathbf{Z} \times 0, \quad \mathbf{Z} / 2 \mathbf{Z} \times 2 \mathbf{Z} / 4 \mathbf{Z}, \quad \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 4 \mathbf{Z}=R
\end{gathered}
$$

By the above theorem, the remaining subspaces have the property that $r(M) \subset \mathfrak{n}(R)$.

Example, continued

Example

Still, $R:=\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 4 \mathbf{Z}$. We have previously met the MZ-space $\{(0,0),(1,2)\}$.
How do we proceed to find other MZ-spaces M with $r(M) \subset \mathfrak{n}(R)$?
If $M \cap E(R) \neq 0$, then we can determine a non-zero idempotent $e \in M$. Hence $e^{n}=e \in M$ for all $n \in \mathbf{N}$, and $e \in r(M)$. This contradicts $r(M) \subset \mathfrak{n}(R)$. Thus we must have $M \cap E(R)=0$.

Furthermore, if there exists some $x \in M$ such that $n x=e$ for some $n \in \mathbf{N}$ and non-zero $e \in E(R)$, then since M is a(n additive) subgroup we have $e \in M$. This contradicts $M \cap E(R)=0$.

Example, continued

Example

The elements of $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 4 \mathbf{Z}$ that are not idempotent or nilpotent are:

$$
(0,3), \quad(1,2), \quad(1,3) .
$$

Those nilpotent are

$$
(0,0), \quad(0,2)
$$

Note that $3 \cdot(0,3)=(0,1)$ and $3 \cdot(1,3)=(1,1)$.
Leaves: $(0,0),(0,2)$ and $(1,2)$ for M. If $(0,2)$ and $(1,2)$ are both elements of M, then their sum, $(1,0)$ is also an element of M. But this was ruled out before. Hence we have the following possibilities:

$$
\{(0,0)\}, \quad\{(0,0),(0,2)\}, \quad\{(0,0),(1,2)\} .
$$

$$
\begin{array}{ccr}
0=0 \times 0, & 0 \times 2 \mathbf{Z} / 4 \mathbf{Z}, \quad 0 \times \mathbf{Z} / 4 \mathbf{Z}, & \mathbf{Z} / 2 \mathbf{Z} \times 0 \\
\mathbf{Z} / 2 Z \times 2 \mathbf{Z} / 4 \mathbf{Z}, & \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 4 \mathbf{Z}=R, & \{(0,0),(1,2)\}
\end{array}
$$

Thank you all for your attention!

