Algebraic and Higher-Order Differential Cryptanalysis of Pyjamask-96

C. Dobraunig, Y. Rotella, J. Schoone

28 February 2020

Pyjamask is a second-round candidate for the NIST lightweight competition, by Goudarzi, Jean, Kölbl, Peyrin, Rivain, Sasaki, Sim

- Pyjamask-128-AEAD
 - based on Pyjamask-128
 - uses OCB as mode
- Ø Pyjamask-96-AEAD
 - based on Pyjamask-96
 - uses OCB as mode

Focus on the block cipher Pyjamask-96.

Key recovery attack on full-round Pyjamask-96

Pyjamask-96 state:

$x_{_0}$	$x_{_{1}}$	x_{2}	x_{3}	x_4	x_5	x_{6}	x_7	x_{s}	x_9	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	x_{17}	x_{18}	x_{19}	x_{20}	x_{21}	x_{22}	x_{23}	x_{24}	x_{25}	x_{26}	x_{27}	x_{28}	x_{29}	x_{30}	$x_{_{31}}$
x_{32}	x_{33}	x_{34}	x_{35}	x_{36}	x_{37}	x_{38}	x_{39}	x_{40}	x_{41}	x_{42}	x_{43}	x_{44}	x_{45}	x_{46}	x_{47}	x_{48}	x_{49}	x_{50}	x_{51}	x_{52}	x_{53}	x_{54}	x_{55}	x_{56}	x_{57}	x_{58}	x_{59}	x_{60}	x_{61}	x_{62}	x_{63}
$x_{_{64}}$	$x_{_{65}}$	x_{66}	x_{67}	x_{68}	$x_{_{69}}$	x_{70}	x_{71}	x_{72}	x_{73}	x_{74}	x_{75}	x_{76}	x_{77}	x_{78}	x_{79}	x_{80}	x_{81}	x_{82}	x_{83}	x_{84}	x_{85}	x_{86}	x_{87}	x_{88}	x_{89}	$x_{_{90}}$	$x_{_{91}}$	$x_{_{92}}$	$x_{_{93}}$	$x_{_{94}}$	$x_{_{95}}$

- **O** AddRoundKey: linear key schedule applied to key of 128 bits
- **2** SubBytes: [1,3,6,5,2,4,7,0] on columns (degree 2)
- MixRows: circulant binary matrix to rows

Pyjamask-96 consists of 14 rounds

Higher order derivatives

Definition 1 (Derivative (Lai 1994))

Let $F\colon\mathbb{F}_2^n\to\mathbb{F}_2^n$ and $a\in\mathbb{F}_2^n$ be given. Then the derivative of F to a is $\Delta_aF(x)=F(x+a)+F(x)$

Properties:

- $\Delta_{a_k} \Delta_{a_{k-1}} \cdots \Delta_{a_1} F(x) = \sum_{v \in \llbracket a_1, \dots, a_k \rrbracket} F(x+v)$
- $\deg \Delta_V F(x) \le \deg F \dim V$
- If $\dim V > \deg F$, then we have $\Delta_V F(x) = 0$

The degrees of the $n\mbox{-}{\rm round}$ versions of Pyjamask-96 are upper bounded by

n	1	2	3	4	5	6	7	8	9	10	11 +
degree	2	4	8	16	32	64	80	88	92	94	95

Bounds by Boura, Canteaut, De Cannière [FSE2011]

Affine spaces ${\cal V}$ of dimension 94 give distinguisher

$$\sum_{v \in V} \operatorname{Pyj}_K^{10}(x+v) = C^{\operatorname{st}}$$

Same for $Pyj^{-1}!$

- Smartly choosing affine ciphertext space gives 11 rounds instead
- ② Taking key-bits as variables gives system of equations
 - Full codebook gives 448 equations
 - Too many monomials
- Smart guesses to reduce number of monomials
 - $\bullet\,$ Guessing 100 bits reduces to 411 monomials

Solving a system of polynomials equations is hard.

Solving a system of linear equations is easy.

 \implies Linearization: Assign a new variable to every monomial of degree > 1.

Example 2

$$\begin{pmatrix}
x_0x_1 + x_2 = 1 \\
x_0 + x_1 + x_2 = 0 \\
x_0x_1 + x_1 = 0 \\
x_1x_2 + x_0 = 1 \\
x_0 + x_1 = 0
\end{pmatrix} \implies \begin{cases}
y_0 + x_2 = 1 \\
x_0 + x_1 + x_2 = 0 \\
y_0 + x_1 = 0 \\
y_1 + x_0 = 1 \\
x_0 + x_1 = 0
\end{cases}$$

Complexities

Rounds	Time	Data
	(in Pyjamask-96 calls)	(in blocks)
14/14	2^{115}	2^{96}
13/14	2^{99}	2^{96}
12/14	2^{96}	2^{96}
11/14	2^{91}	2^{95}
10/14	2^{83}	2^{87}
9/14	2^{67}	2^{71}
8/14	2^{35}	2^{39}
7/14	2^{27}	2^{23}

Further Research

- Attacking Pyjamask-96 with better complexities
- Attacking Pyjamask-128
- Attacking Pyjamask-96-AEAD
 - $\bullet\,$ We got to 7 rounds with 2^{86} time complexity, 2^{41} data
- Attacking Pyjamask-128-AEAD