

Univariate representations of χ_n

<u>Jan Schoone</u>, Joan Daemen Radboud University 9 February 2024

ESCADA

$$\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n, \ \vec{x} \mapsto \vec{y}$$
$$y_i = x_i + (x_{i+1} + 1)x_{i+2}$$

Investigate univariate form of χ_n :

- Power function;
- Degree;
- Number of monomials;
- Different forms.

- Choosing an isomorphism (of vector spaces) from 𝔽ⁿ₂ to 𝔽_{2ⁿ}: χ_n as a univariate polynomial function: χ^u_n(X) on 𝔽_{2ⁿ}.
- In practice: interpolation on the inputs and outputs for χ_n to obtain $\chi_n^u(X)$.
- Different outcomes for $\chi_n^u(X)$ possible.

Example

Take $\mathbb{F}_{2^3} := \mathbb{F}_2(\alpha) = \mathbb{F}_2[X]/(X^3 + X + 1)$, then the set $\{\alpha^3, \alpha^6, \alpha^5\}$ is a linearly independent set. Let $\varphi : \mathbb{F}_2^3 \to \mathbb{F}_{2^3}$ be given by $(a, b, c) \mapsto a\alpha^3 + b\alpha^6 + c\alpha^5$.

$$\begin{split} \mathbb{F}_{2^3}^* &= \{1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6\}:\\ \alpha^3 &= \alpha + 1\\ \alpha^4 &= \alpha^2 + \alpha\\ \alpha^5 &= \alpha^3 + \alpha^2 = \alpha^2 + \alpha + 1\\ \alpha^6 &= (\alpha + 1)^2 = \alpha^2 + 1 \end{split}$$

Hence, $\chi_{3}^{u}(t) = t^{6}$.

- A power function is a function $(-)^e \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}, \ t \mapsto t^e$.
- Invertible iff $gcd(e, 2^n 1) = 1$.
- Easy: χ_n is not a power function when n even. $\chi_n((01)^{n/2}) = 0^n \implies \alpha^e = 0$ for some non-zero $\alpha \in \mathbb{F}_{2^n}$.
- Less easy: χ_n is not a power function when n > 3.
 Done by investigating the differential probabilities for χ_n and power functions.

- Fact: Since χ_n has degree 2, all exponents in χ^u_n(X) need to have binary Hamming weight at most 2.
- The degree of χ_n^u is bounded by $2^n 1$ (= $\# \mathbb{F}_{2^n}^*$).
- Combining, yields maximum degrees for χ_n^u : $2^{n-1} + 2^{n-2}$.

п	3	5	7	9	11	13	15	17
$\max \deg(\chi_n^u)$	6	24	96	384	1,536	6,144	24,576	98,304
$2^{n} - 1$	7	31	127	511	2,047	8,191	32,767	131,071

- Fact: Since χ_n has degree 2, all exponents in χ^u_n(X) need to have binary hamming weight at most 2.
- $\chi_n(0^n) = 0^n$, so no constant term in $\chi_n^u(X)$.
- Number of monomials bounded by $\binom{n}{1} + \binom{n}{2}$.

п	3	5	7	9	11	13	15	17
max. mon. in χ_n^u	6	15	28	45	66	91	120	153
2 ⁿ	8	32	128	512	2,048	8,192	32,768	131,072

Definition (Normal basis)

Consider $\mathbb{F}_2 \subset \mathbb{F}_{2^n}$. Then $\beta \in \mathbb{F}_{2^n}$ is called a *normal element* of \mathbb{F}_{2^n} over \mathbb{F}_2 if the set $\{\beta, \beta^2, \beta^{2^2}, \dots, \beta^{2^{n-1}}\}$ is a linearly independent set. When considered as an ordered set, it is called a *normal basis* of \mathbb{F}_{2^n} over \mathbb{F}_2 .

Theorem

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a shift-invariant map. Let β be a normal element of \mathbb{F}_{2^n} and $\varphi_{\beta} : \mathbb{F}_2^n \to \mathbb{F}_{2^n}$, $(x_0, \ldots, x_{n-1}) \mapsto x_0\beta + \ldots + x_{n-1}\beta^{2^{n-1}}$. Consider the map $F^u : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ defined by $F^u := \varphi_{\beta} \circ F \circ \varphi_{\beta}^{-1}$. Then F^u is a polynomial function with $F^u(X) \in \mathbb{F}_2[X]$.

Different univariate expressions

- For 𝑘_{2ⁿ} := 𝑘₂[X]/(f(X)) with deg f = n. The choice of the polynomial does not matter!
- Choosing an (ordered) normal basis gives $\chi_n^u \in \mathbb{F}_2[X]$.
- Different normal elements possible.

Theorem (Number of normal elements (Ore, 1934))

Let $n \ge 1$ be an integer. There exist precisely $\Phi_2(X^n - 1)/n$ normal elements in \mathbb{F}_{2^n} (w.r.t. \mathbb{F}_2).

Different orderings of the normal basis possible.
 There are φ(n) different orderings given a normal element.

Theorem (Number of normal elements (Ore, 1934))

Let $n \ge 1$ be an integer. There exist precisely $\Phi_2(X^n - 1)/n$ normal elements in \mathbb{F}_{2^n} (w.r.t. \mathbb{F}_2).

Definition

For the number of coprime polynomials in $\mathbb{F}_2[X]$ that have lower degree than a certain f and are coprime to that f, we write $\Phi_2(f(X))$.

This is, in fact, an extension of the regular $\varphi(n)$ on the ring of integers. It is also equivalent to $\#(\mathbb{F}_2[X]/(f(X))^*)$.

Example

If f is irreducible, then $\Phi_2(f(X)) = 2^{\deg f} - 1$.

Let $f(X) = X^4 + X^3 + X + 1$, then $\Phi_2(f) = \Phi_2(X^2 + 1)\Phi_2(X^2 + X + 1) = 2 \cdot 3 = 6$.

Number of orderings of the normal basis

- Let gcd(k, n) = 1. We want to solve the equation φ^σ_β ∘ τ^k = (·)² ∘ φ^σ_β for σ ∈ S_n. We have σ(0) = 0, since χ_n is shift-invariant.
- n = 5, k = 3:

Thus: $\sigma = (1 \ 3 \ 4 \ 2)$.

Conclusions

- The map χ_n can be viewed as a univariate map;
- Although it is never a power function for $n \neq 1, 3$;
- deg $\chi_n^u \le 2^{n-1} + 2^{n-2}$;
- The number of monomials in χ_n^u is upper bounded by $\binom{n}{1} + \binom{n}{2}$;
- The number of different univariate expressions for χ_n^u is given by

$$\frac{\Phi_2(X^n-1)\cdot\varphi(n)}{n}$$

Thank you for your attention!