Univariate representations of χ_{n}

Jan Schoone, Joan Daemen
Radboud University
9 February 2024

ESCADA

$$
\begin{gathered}
\chi_{n}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}, \vec{x} \mapsto \vec{y} \\
y_{i}=x_{i}+\left(x_{i+1}+1\right) x_{i+2}
\end{gathered}
$$

Investigate univariate form of χ_{n} :

- Power function;
- Degree;
- Number of monomials;
- Different forms.

Univariate expressions

- Choosing an isomorphism (of vector spaces) from \mathbb{F}_{2}^{n} to $\mathbb{F}_{2^{n}}: \chi_{n}$ as a univariate polynomial function: $\chi_{n}^{u}(X)$ on $\mathbb{F}_{2^{n}}$.
- In practice: interpolation on the inputs and outputs for χ_{n} to obtain $\chi_{n}^{u}(X)$.
- Different outcomes for $\chi_{n}^{u}(X)$ possible.

Example

Take $\mathbb{F}_{2^{3}}:=\mathbb{F}_{2}(\alpha)=\mathbb{F}_{2}[X] /\left(X^{3}+X+1\right)$, then the set $\left\{\alpha^{3}, \alpha^{6}, \alpha^{5}\right\}$ is a linearly independent set. Let $\varphi: \mathbb{F}_{2}^{3} \rightarrow \mathbb{F}_{2^{3}}$ be given by $(a, b, c) \mapsto a \alpha^{3}+b \alpha^{6}+c \alpha^{5}$.

$$
\begin{aligned}
& \mathbb{F}_{2^{3}}^{*}=\left\{1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right\}: \\
& \alpha^{3}=\alpha+1 \\
& \alpha^{4}=\alpha^{2}+\alpha \\
& \alpha^{5}=\alpha^{3}+\alpha^{2}=\alpha^{2}+\alpha+1 \\
& \alpha^{6}=(\alpha+1)^{2}=\alpha^{2}+1
\end{aligned}
$$

Hence, $\chi_{3}^{\mu}(t)=t^{6}$.

- A power function is a function $(-)^{e}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}, t \mapsto t^{e}$.
- Invertible iff $\operatorname{gcd}\left(e, 2^{n}-1\right)=1$.
- Easy: χ_{n} is not a power function when n even.
$\chi_{n}\left((01)^{n / 2}\right)=0^{n} \Longrightarrow \alpha^{e}=0$ for some non-zero $\alpha \in \mathbb{F}_{2^{n}}$.
- Less easy: χ_{n} is not a power function when $n>3$.

Done by investigating the differential probabilities for χ_{n} and power functions.

Bounds on degrees

- Fact: Since χ_{n} has degree 2 , all exponents in $\chi_{n}^{u}(X)$ need to have binary Hamming weight at most 2.
- The degree of χ_{n}^{u} is bounded by $2^{n}-1\left(=\# \mathbb{F}_{2^{n}}^{*}\right)$.
- Combining, yields maximum degrees for $\chi_{n}^{u}: 2^{n-1}+2^{n-2}$.

n	3	5	7	9	11	13	15	17
$\max \operatorname{deg}\left(\chi_{n}^{u}\right)$	6	24	96	384	1,536	6,144	24,576	98,304
$2^{n}-1$	7	31	127	511	2,047	8,191	32,767	131,071

Bounds on sparsity

- Fact: Since χ_{n} has degree 2 , all exponents in $\chi_{n}^{u}(X)$ need to have binary hamming weight at most 2 .
- $\chi_{n}\left(0^{n}\right)=0^{n}$, so no constant term in $\chi_{n}^{u}(X)$.
- Number of monomials bounded by $\binom{n}{1}+\binom{n}{2}$.

n	3	5	7	9	11	13	15	17
max. mon. in χ_{n}^{u}	6	15	28	45	66	91	120	153
2^{n}	8	32	128	512	2,048	8,192	32,768	131,072

Definition (Normal basis)

Consider $\mathbb{F}_{2} \subset \mathbb{F}_{2^{n}}$. Then $\beta \in \mathbb{F}_{2^{n}}$ is called a normal element of $\mathbb{F}_{2^{n}}$ over \mathbb{F}_{2} if the set $\left\{\beta, \beta^{2}, \beta^{2^{2}}, \ldots, \beta^{2^{n-1}}\right\}$ is a linearly independent set. When considered as an ordered set, it is called a normal basis of $\mathbb{F}_{2^{n}}$ over \mathbb{F}_{2}.

Theorem

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be a shift-invariant map. Let β be a normal element of $\mathbb{F}_{2^{n}}$ and $\varphi_{\beta}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2^{n}},\left(x_{0}, \ldots, x_{n-1}\right) \mapsto x_{0} \beta+\ldots+x_{n-1} \beta^{2^{n-1}}$. Consider the map $F^{u}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ defined by $F^{u}:=\varphi_{\beta} \circ F \circ \varphi_{\beta}^{-1}$. Then F^{u} is a polynomial function with $F^{u}(X) \in \mathbb{F}_{2}[X]$.

- For $\mathbb{F}_{2^{n}}:=\mathbb{F}_{2}[X] /(f(X))$ with $\operatorname{deg} f=n$. The choice of the polynomial does not matter!
- Choosing an (ordered) normal basis gives $\chi_{n}^{u} \in \mathbb{F}_{2}[X]$.
- Different normal elements possible.

Theorem (Number of normal elements (Ore, 1934))

Let $n \geq 1$ be an integer. There exist precisely $\Phi_{2}\left(X^{n}-1\right) / n$ normal elements in $\mathbb{F}_{2^{n}}$ (w.r.t. \mathbb{F}_{2}).

- Different orderings of the normal basis possible.

There are $\varphi(n)$ different orderings given a normal element.

Number of normal elements

Theorem (Number of normal elements (Ore, 1934))

Let $n \geq 1$ be an integer. There exist precisely $\Phi_{2}\left(X^{n}-1\right) / n$ normal elements in $\mathbb{F}_{2^{n}}$ (w.r.t. \mathbb{F}_{2}).

Definition

For the number of coprime polynomials in $\mathbb{F}_{2}[X]$ that have lower degree than a certain f and are coprime to that f, we write $\Phi_{2}(f(X))$.

This is, in fact, an extension of the regular $\varphi(n)$ on the ring of integers. It is also equivalent to $\#\left(\mathbb{F}_{2}[X] /(f(X))^{*}\right.$.

Example

If f is irreducible, then $\Phi_{2}(f(X))=2^{\operatorname{deg} f}-1$.
Let $f(X)=X^{4}+X^{3}+X+1$, then $\Phi_{2}(f)=\Phi_{2}\left(X^{2}+1\right) \Phi_{2}\left(X^{2}+X+1\right)=2 \cdot 3=6$.

Number of orderings of the normal basis

- Let $\operatorname{gcd}(k, n)=1$. We want to solve the equation $\varphi_{\beta}^{\sigma} \circ \tau^{k}=(\cdot)^{2} \circ \varphi_{\beta}^{\sigma}$ for $\sigma \in S_{n}$. We have $\sigma(0)=0$, since χ_{n} is shift-invariant.
- $n=5, k=3$:

Thus: $\sigma=\left(\begin{array}{llll}1 & 3 & 4 & 2\end{array}\right)$.

- The map χ_{n} can be viewed as a univariate map;
- Although it is never a power function for $n \neq 1,3$;
- $\operatorname{deg} \chi_{n}^{u} \leq 2^{n-1}+2^{n-2}$;
- The number of monomials in χ_{n}^{u} is upper bounded by $\binom{n}{1}+\binom{n}{2}$;
- The number of different univariate expressions for χ_{n}^{u} is given by

$$
\frac{\Phi_{2}\left(X^{n}-1\right) \cdot \varphi(n)}{n}
$$

Thank you for your attention!

