
AHA
AmortizedHeap Space UsageAnalysis

Marko van Eekelen, Bart Jacobs, Erik Poll, and Sjaak Smetsers
Radboud University Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
Contact:marko@cs.ru.nl

August 2005

1c. Principal Investigator

Dr. Marko van Eekelen. (http://www.cs.ru.nl/ ∼marko)

2a. Summary

This project involves research into an amortized analysis of heap-space usage by func-
tional and imperative programs. Estimating heap consumption is an active research
area since it becomes more and more an issue in many applications. Examples include
programming for small devices, e.g. smart cards, mobile phones, embedded systems
and distributed computing, e.g GRID computing. The standard technique for estimat-
ing heap consumption gives in many cases unrealistically high bounds. Therefore,
in practice amounts of heap are used that are unnecessarily expensive and for small
devices highly unpractical. A more accurate analysis is wanted for these cases in par-
ticular, and for high integrity real-time applications in general.

Amortized analysis is a technique which is used to obtain accurate bounds of re-
source consumption and gain. For the amortization analysis of a resource one considers
not the worst case of a single operation but the worst case of a sequence of operations.
The overall amortized cost of a sequence is calculated by taking into account both the
higher costs of one operation and the lower costs of another weighing them accord-
ing to their distribution. In many cases amortized analysis can give rise to much more
accurate resource consumption estimates than the standard worst case analysis.

A combination of amortization and type theory allows to check linear heap con-
sumption bounds for functional programs with explicit memory deallocation. Recently,
substantial progress has been made showing that the method can be adapted to deal with
non-linearbounds for programs over lists written in a strict functional programming
language.

This project proposes to extend this method to a lazy functional language as well
as to transfer the results of the functional programming community to the imperative
object-oriented programming world by applying the amortized method to derive ac-
curate bounds for heap usage of Java programs. In this way the potential impact of
amortized analysis is increased significantly.

1

2b. Abstract for laymen (in Dutch)

Dit project onderzoekt de mogelijkheden om te analyseren hoeveel geheugen een pro-
gramma gebruikt, met als uiteindelijke doel om, vóór een programma geëxecuteerd
gaat worden, te kunnen voorspellen hoeveel geheugen een programma gaat gebruiken.
Dit is vooral van belang voor computers met zeer beperkte geheugencapaciteit, zoals
chipkaarten of mobiele telefoons, waar problemen op kunnen treden als tijdens exe-
cutie van een programma blijkt dat het beschikbare geheugen niet toereikend is. Daar-
naast kan het gebruikt worden om de effecten van optimalisaties geı̈ntroduceerd bij de
compilatie van programma’s beter te analyseren.

3. Classification

Computer science.
Subdisciplines: 6. Fundamenten: 6.1 Complexiteitstheorie, 6.5 Formele methoden

1. Computer- en netwerksystemen: 1.3 Dependability
3. Software engineering: 3.2 Specificatiemethoden

The NOAG-i themes most relevant to this research is ‘Methoden voor Ontwerpen en
Bouwen’. Enhancing specification and analysis techniques a contribution is made to
attacking the challenge of ’Quality by Design’.

4. Composition of the research team

Name Specialism Involvement
(fte)

dr. Marko van Eekelen functional programming/semantics,
program analysis

0.1

dr.ir Erik Poll program logics, type theory,
JML, Java

0.1

dr. Sjaak Smetsers functional programming,
type systems for functional languages,
compiler technology

0.1

Prof.dr. Bart Jacobs semantics, type theory, Java,
use of proof tools (esp. PVS)

p.m.

project postdoc (candidate
dr. Olha Shkaravska)

complexity theory,
automated theorem proving

1.0

project PhD student
(no candidate)

1.0

5. Research School

The research group participates in the national research schoolInstitute for Program-
ming research and Algorithmics(IPA). The proposed research falls within IPA’s main
themeFormal Methods, more specifically in the sub-themesSemanticsandSpecifica-
tion, verification and testing, and the themeSoftware Technology, more specifically in
the sub-themesConstruction process and architecture.

2

The research also addresses one of the four application areas selected by IPA,
namelySecurity, more specifically the topicsSoftware securityandSmart cards: mem-
ory usage of software is an important security concern for devices with limited memory
such as smart cards, as a simple way for malicious (or incorrect) code to succeed in a
denial-of-service attack is to exhaust all available memory.

6. Description of the proposed research

Since memory exhaustion will invoke garbage collection, manipulations over a heap
indirectly slow down execution and hence influence time complexity. A heap usage
analysis for a language with explicit heap-cell deallocation will therefore enable a more
accurate estimation of time consumption. With an amortized analysis we aim for a
fairly accurate estimate.

In an amortized analysis [18, 20] one considerscreditsandpotentials. A credit,
which is the (nonnegative) difference between an amortized and the actual cost of an
operation, is used to cover the resource consumption by other operations. Apotential
is the sum of the credits associated with an entire data structure.

In [11] the authors present an annotated type system which allows an amortized
analysis inferring linear bounds on a heap-space consumption/gain for strict first-order
functional programs with explicit memory deallocation. The types are annotated with
rational constants playing a role of coefficients for the linear bounds, considered as
functions of the size of input/output.

In 2005 [21] it was shown that the method may be adapted for non-linear bounds
for first-order functional programs over polymorphic lists.

The type-checking/inference is reduced to a consistency-check/solving of a set of
constraints which are numerical side conditions collected from the type-derivation tree
for a program. If the system of the constraints is consistent then the program is type
correct. Type inference can be achieved if the system of theparametricalconstraints
is solvable.

Annotations in the type system are credits for constructors. The typing rules are
designed in such a way, that annotations are always nonnegative functions and overall
amortized cost/gain is not less/more than an actual cost/gain. If annotations are incor-
rect, then the type-checking procedure fails due to inconsistency of the corresponding
set of constraints – see [21] for an example.

Amortized Analysis

For the amortization of a resource one considers not single operations but their combi-
nations. This defines a mechanism of obtaining accurate bounds for the consumption.

As a very small example consider the composition of two functions,f andg, such
thatrange(g) ⊂ dom(f) wheref andg are defined as follows:

f x = match x with Nil ⇒ cons(1, Nil)
|| cons(h, t) ⇒ cons(1, cons(2, Nil))

g x = Nil

Trivially, in the worst-casef consumes 2 heap units.
The type system from [21] is able to infer that the heap consumption forf , is

defined by the following bound functionT :

3

T (l) =
{

1, l = 0
2, l ≥ 1

wherel is the length of an input list.
Using the boundT an amortized analysis easily shows thatf(g(x)) always con-

sumes1 heap unit, improving on the worst case analysis.
Another case where amortized analysis is profitable is for calculating the heap con-

sumption of a vector array: instead of multiplying the worst case for each element a
careful analysis can take all ups and downs of different kinds of elements into account
and achieve a lower overall estimate.

Proposed Research Lines

We propose to investigate on one hand the extension to lazy evaluation of the method
of [21] and on the other hand the transfer of this method to an imperative setting. In
this way the project both enhances fundamental theory and practical impact.

6a. Research questions and expected results

The proposed project investigates the possibilities for analysing heap usage both for
functional and imperative object-oriented languages, more specifically Clean and Java.
It aims to answer the following research questions:

• It is clear, that the heap analysis for functional languages can be improved so that
a wider class of resource usage bounds than just linear bounds can be guaranteed.
The question is how complex the type-checking and inference procedures may
be. In particularly, which arithmetics and constraint solvers will be needed and
for which classes of programs?

• Can heap space analysis be done for lazy functional languages?

Heap space analysis for lazy functional languages is clearly more complicated
than for strict languages, because the heap space is also used for unevaluated
expressions (closures). The amount of memory that is used at a certain moment
depends on the evaluation order of expressions, which in its turn is influenced by
the strictness analyser of the compiler that generates the code.

• How successfully can one adopt the approach for object-oriented imperative lan-
guages? The ultimate aim here is to be able to prove – or, better still, derive –
properties about the heap space consumption for Java programs specified in an
extension of JML (Java Modeling Language) [15, 8].

The expected results are:

• Accurate and expressive analyses for strict and lazy functional languages, that
can guarantee a wider range of heap space usage properties. The functional
language Clean will serve as a test-bed.

• Techniques to verify heap space usage constraints for object-oriented imperative
programs, in particular of Java programs, incorporated into a tool for program
verification. Extensions of the program specification language JML to express
such constraints.

4

6b. Methodology

The project will have two research lines.

• A fundamental theoretical one in which amortized heap analysis with non linear
bounds is extended to a lazy language.

• A practical line in which the theoretical results are transferred to a more practical
imperative object-oriented setting.

Below, for both research lines we describe and motivate the methodology, the start-
ing point analysis and the language which is chosen as a vehicle for expressing pro-
grams.

6b1. Towards Amortized Heap Analysis of a Lazy Language

An amortized time analysis for call-by-need1 languages is considered in [18]. Instead
of credits it usesdebtsto cover costs ofclosures(suspensions). A closure is allowed to
be forced only after its debt is “payed off” by the operations preceding the operation
which forces the closure.

S. Jost has been adopting the results from [11] for higher-order functions, see [13].
The heap-aware inference system takes into account sizes of closures and enable de-
ferred evaluation.

Very recently, O. Shkaravska [21] has adapted this method to achieve non-linear
bounds for first-order functional programs over polymorphic lists.

Choice of Programming Language To consider heap usage analysis for lazy func-
tional programming languages, we will begin with a strict version of core-Clean. We
have chosen Clean since Clean’s uniqueness typing [3] makes Clean more suited as a
starting point than e.g. Haskell, since with uniqueness typing reuse of nodes can be
analysed in a sophisticated manner.

For this strict Core-Clean language we will define an operational semantics (based
on [23]) which will take heap usage into account, and then formulate a (dependent)
type system in which annotations in types express costs.

In the context of the European Mobile Resource Guarantees project (MRG) [1],
Shkaravska [21] used Camelot [17], an ML-like strict first order functional language
with polymorphism and algebraic data types, as a test-bed. To enable analysis of heap
usage Camelot makes a syntactic distinction between destructive and non-destructive
pattern matchings, where destructive pattern matching allows a node of heap space
to be reclaimed; it is expected to be relatively easy to transfer such a distinction to
a language that has uniqueness typing, as this can enforce the safe use of destructive
pattern matching. Therefore, we expect that the results achieved for Camelot will be
quickly transferred to the strict version of core-Clean.

Starting Point Analysis To improve heap space analysis for functional languages
beyond guaranteeing linear bounds for memory usage, we generalise the method of
[11]. Initially, this will be expressed in a dependent type system, in which each typing
rule has numerical side conditions.

1Following [18] we associatecall-by-valuewith strict languages,call-by-namewith lazy languages with-
out memoization, andcall-by-needwith lazy languages with memoization.

5

For instance, in [21],Ll(Int , k) denotes a list of integers of lengthl such that for
its ith element there arek(i) free heap units, i.e. a credit. Herek is a function from
natural numbers (without0) to nonnegative reals.

If an overall heap consumptionT is a smooth function on[α, ∞], with a bounded
derivativeT ′, and0 ≤ α < 1, one may connect the overall consumption and credits in
the following way. To check if a given program consumesT (x) heap units, one needs
to perform the type-checking withk(x) = T ′(x). We use an approximation of integrals
by sums: the total consumption is

∑l
i=1 k(i) ≈ ∫ l

i=α
k(x) d x = T (x)− T (α).

Research Methodology As a next step we will make incremental changes, by chang-
ing the strict semantics into a mixed lazy/strict semantics [23] and then investigate the
effect on the operational semantics and the type system.

This is not a big step in the dark since the heap-aware inference systems from [11]
and [21] already have some flavor of the call-by-need semantics. First, the weakening
rule, applied in a backward proof search, allows to exclude from the analysis variables
which are not free for an expression under consideration. Second,sharedusage of
variables by several expressions is treated, for instance, in theLET-rule from [21] and
theSHARE-rule in [11].

Ultimately, we want to implement the type systems for heap space usage, to obtain
an implementation that can check whether a given program, possibly with some type-
annotations, meets a given bound on heap space usage, or an implementation that can
actually compute such a bound.

6b2. Adaptation to Object-Orientation

Choice of Programming Language As the object-oriented programming languages
to be studied we have chosen Java. We will use the Java semantics developed in the
LOOP project [12], which includes an explicit formalisation of the heap.

This will first require accurately accounting of heap usage in the type-theoretic
memory model underlying the LOOP tool [4].

The Java Modeling Language JML, a specification language tailored to Java, al-
ready provides a syntax for specifying heap usage [16], but this part of JML is as yet
without any clear semantics. We want to provide a rigorous semantics for these prop-
erties about heap space usage and then develop an associated programming logic for
proving such properties.

Starting Point Analysis An obvious starting point is the analysis of [21]. The gen-
eral principle to adjust this for imperative object-oriented (OO) programs is to apply
it for classes that admit a functionalalgebraic data-type (ADT) interface, i.e. these
classes can be considered as defining a number of operations on an algebraic data type.
One extracts basic imperative routines which contain explicit allocation/deallocation,
and correspond to (co)algebraic operations, and have functional counterparts, like data
constructors and pattern matching(s). A field assignment, for example, may be pre-
sented as a composition of the destructive match and a constructor.

Heap-aware typing judgments must be defined for these macro-operations and the
language constructs likeif-branching, sequencing andwhile-repetition. The sound-
ness of the typing judgments is to be proven w.r.t. the imperative operational semantics.

This approach is considered in [5]. Building on the results of [11], the authors
investigate the possibility of proving linear bounds of heap usage for an imperative

6

languageGrail, an abstract representation of a Java-like byte code. Imperative pro-
grams under consideration are the programs obtained as a result of compilation from
a high-level functional languageCamelot. These low-level imperative programs are
built from the constructs described above, see [5] for more detail.

The idea to adjust a heap-aware annotated type system for functional ADT is
sketched in [10]. A time-aware amortized analysis for functional ADT with linear
usage of data is investigated in [20]. A simple example of a (co)ADT-like class to-
gether with typing rules and a valid specification of a field-updating routine one can
find in [21].

Research Methodology With the transferred method of [21] we will consider pro-
gramming with classes which admit a (co)algebraic data type interface. For instance,
programs over binary trees may be composed fromnull and non-null constructors and
case-analysis for the destructor and look-up operations.

These basic routines and imperative constructs have natural counterparts in the
functional language. For instance, the case analysis for the destructor corresponds
to the destructive pattern matching in the functional language:

if (x ==null)
e1;
else { Int a = x.getRoot();

Tree l = x.getLeft();
Tree r = x.getRight();
delete(x);
e2}

The typing rules for constructors and the case-analysis for the destructor and look-
up mirror the corresponding ones for the functional language. Their soundness is to be
proven using imperative operational semantics.

One can model a field update by the appropriate staticswap-method, like for in-
stance,
public static PairTree swapLeft(PairTree x)

{
if (x ==null)
return (null);
else {

t = x.first;
newLeft = x.second;
delete(x);
if (t ==null)
return (new PairTree(newLeft, null));
else { Int a = t.getRoot();

Tree l = t.getLeft();
Tree r = t.getRight();
delete(t);
Tree y = new Tree(a, newLeft, r);
return (new PairTree(y, l)) }

}
}

In JML-annotated programs annotations can be expressed as auxiliary variables,
so-calledmodel fields[7]. We want to investigate if using suitably chosen model fields,

7

we can arrive at a programming logic for the verification of resource properties of
JML-annotated Java programs.

One of the main problems for heap space analysis will be aliasing. We believe that
the results of [2], [14] and Reynold’s separation logic [19] can contribute to a solution.
Aliasing-aware type systems and logics presented in these works may be considered
separately from the resource-aware typing system and are to be combined with it at the
very last stage of the design of the proof system. This should improve management
of the development. The technique of building such combinations of logics is given in
[22].

As a second step, research will be done to alleviate the restrictions that are set upon
the classes in order to make the analysis applicable. In order to relax these restrictions,
we will investigate the possibility of introducing amortized variants of existing specific
analyses. Examples of such non-amortized heap analyses for OO languages are in
the recently appeared papers [6] and [9]. In the first paper the authors, given a set
of constraints over input data, count the amount of paths which lead to calls ofnew.
No recursive function calls are treated. The second paper is devoted to a type system,
which allows to obtain symbolic expressions (where the free variables denote sizes of
the inputs) that capture the amount of heap and stack memory required to execute the
program. The type system treats aliasing as well.

Finally, it will be investigated how the new results that come up from the funda-
mental research line can be transferred to the more practical object-oriented setting.

6c. Relevance

Since memory exhaustion will invoke garbage collection, heap usage can indirectly
slow down execution and hence influence time complexity. A better heap space analy-
sis will therefore enable a more accurate estimation of time consumption. This is rel-
evant for time-critical applications. Analysing resource usage is also interesting for
optimisations in compilers for functional languages, in particular of memory alloca-
tion and garbage collection techniques. A more accurate estimation of heap usage
enables allocation of larger memory chunks beforehand instead of allocating memory
cells separately when needed, leading to a better cache performance.

Resource usage is an important aspect of any safety or security policy, as exhausting
available resources typically causes system failure. Indeed, resource usage is one of the
most important properties one wants to specify and verify for Java programs meant to
be executed on (embedded) Java-enabled devices with limited amounts of memory,
such as smart-cards implementing the Java Card platform, and MIDP mobile phones
implementing the Java 2 Micro Edition (J2ME) platform.

The Java Programming Language (JML) already provides some rudimentary possi-
bilities for specifying resource usage of Java programs. However, there is only syntax
for specifying this, without any clear semantics, and there are no tools for actually
monitoring – let alone, proving – that such constraints are met.

6d. Relationship with similar research

The most closely related research elsewhere is done at LMU (Ludwig Maximilians
University) in Munich and LFCS (Laboratory for Foundation of Computer Science)
in Edinburgh, especially in the MRG (Mobile Resource Guarantees) project supported

8

by the European Union (seehttp://groups.inf.ed.ax.uk/mrg). The work
proposed here is in part complementary in that it considers lazy functional language.
For the work on imperative language a difference is that we can build on a large existing
body of work on Java verification.

The HIJA project (www.hija.org) is a project that studies the specification and ver-
ification of memory usage using the Java Modelling Language JML. This project fo-
cuses on the area of real-time applications.

Resource bounds are also studied in the ConCert project (Certified Code for Grid
Computing, seehttp://www-2.cs.cmu.edu/ ∼concert/) at CMU in the USA.
But ConCert aims at producing proof carrying code, as does the MRG project, some-
thing not envisaged in this proposal.

We hope to be intensifying collaborations with LMU and LFCS in this project.
We are currently in the process of trying to obtain (travel) funding at EU level for
this. To cooperate with LMU, we may also try to obtain additional funding for travel
through the cooperation program between NWO and DFG (Deutsche Forschungsge-
meinschaft).

6e. Embedding

The computing science department at the Radboud University in Nijmegen provides an
excellent environment for the proposed research, which spans functional and impera-
tive languages. Van Eekelen and Smetsers contributed significantly to the programming
language Clean and have expertise in functional languages and advanced type systems
for functional languages. They recently joined the SoS group (formerly know as the
LOOP group) of Jacobs and Poll. This group is one of the leading groups investigating
semantics of Java and program verification. Considering that they complement each
other very well we expect this project to lead to a productive synergy between these
scientists.

The project also requires expertise in type theory, as the amortized analyses inves-
tigated use dependent types, and both Poll and Jacobs have a strong background in this
field. Moreover, the department in Nijmegen also has the Foundations group renowned
for its work on type theory.

7. Project Planning

Below we sketch a rough planning for the project. Of course, separation of work by the
PhD student (4 years) and the post-doc (3 years) will not be as strict as indicated here.

Year 1: The PhD student gets acquainted with amortized analysis and the method of
obtaining the linear bounds on heap space usage. For a simple functional lan-
guage (strict core-Clean with lists as the only algebraic data type), (s)he then
investigates type system(s) in which (dependent) types express limits on heap
space usage. The PhD student studies example programs, finding out which
dependencies arise from side conditions, and considers methods of finding solu-
tions to these side conditions.

The post-doc gets acquainted with the type-theoretic memory model for LOOP
[4], adapts this model to accurately reflect actual heap space usage of a Java
Virtual Machine, and verifies heap space usage properties of some example Java

9

programs at the semantic level (i.e. by reasoning about the semantics of programs
acting on an explicit representation of the heap). These results are compared with
those in [5], which use a correspondence between Java programs and functional
programs to obtain bounds on resource usage for the former.

Year 2+3: The PhD student investigates resource usage for lazy languages, by intro-
ducing lazy features into the programming language, and considers how the op-
erational semantics and types system(s) can be adapted for this. In due course,
extensions of the programming language with general algebraic data types rather
than just lists, and improvements to analysis beyond linear bounds (as sketched
in 6b.), will be tackled.

The post-doc develops the program logic for imperative languages, develops a
prototype program logic for verification of JML-annotated Java programs. This
program logic should be able to prove given resource bounds for simple pro-
grams. The restrictions for making the analysis applicable will be relaxed as
much as possible. The program logic is integrated either with the LOOP tool
or with ESC/Java2 [8], and tried out on serious examples. The post-doc also
investigates possibilities to derive bounds, rather than prove given bounds, with
as ultimate aim to implement a program that computes bounds.

Year 4: The PhD student will be using the fourth year for writing up.

Training of the PhD student

The PhD student employed in the project can take advantage of the local expertise
in functional and object-oriented programming and type theory in Nijmegen, e.g. by
participating in standard courses that are taught or activities organized on a more ad-
hoc basis for PhD students. The PhD student will participate in the training program of
the IPA research school and is also expected to participate in at least one international
summer school.

8. Expected Use of Instrumentation

None.

9. Literature

Before summarising the references that are cited in this proposal we first give the five
most important publications of the research team.

Five Most Important Publications

1. Bart Jacobs and Erik Poll, Coalgebras and Monads in the Semantics of Java.
Theoretical Computer Science, 291(3):329–349, Elsevier, 2003.

2. L. Beringer and M. Hofmann and A. Momigliano and O. Shkaravska,Automatic
Certification of Heap Consumption, in “Logic for Programming, Artificial Intel-
ligence and Reasoning: 11th International Conference, LPAR 2004”. Vol. 3452
Springer-Verlag, 2005, pp. 347-367.

10

3. R. Plasmeijer, and M. van Eekelen,Keep it Clean: A unique approach to func-
tional programming, In ACM Sigplan Notices, June 1999.

4. E. Barendsen, and S. Smetsers,Uniqueness typing for functional languages with
graph rewriting semantics, In Mathematical Structures in Computer Science 6,
pp. 579-612, 1996.

5. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J.R. Kiniry, G.T. Leavens, K.R.M. Leino,
and E. Poll. An overview of JML tools and applications.Software Tools for
Technology Transfer, Springer Verlag, 2004. To appear.

References
[1] D. Aspinalll, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile resource guar-

antees for smart devices. InConstruction and Analysis of Safe, Secure, and Interoperable
Smart Devices, Proceedings of the International Workshop CASSIS 2004.

[2] D. Aspinalll and M. Hofmann. Another type system for in-place update. InESOP’2002,
volume 2305 ofLNCS, pages 36 – 52. Springer, 2002.

[3] E. Barendsen and S. Smetsers. Uniqueness typing for functional languages with graph
rewriting semantics.Mathematical Structures in Computer Science, 6:579–612, 1996.

[4] J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A type-theoretic memory model for
verification of sequential Java programs. In D. Bert and C. Choppy, editors,Recent Trends
in Algebraic Development Techniques (WADT’99), volume 1827 ofLNCS. Springer, 2000.

[5] L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Automatic certification
of heap consumption. InLogic for Programming, Artificial Intelligence and Reasoning:
11th International Conference, LPAR 2004, volume 3452, pages 347–362. Springer-Verlag,
2005.

[6] V. Braberman, D. Garbervetsky, and S. Yovine. Synthesizing parametric specifications
of dynamic memory utilization in object-oriented programs. InFTfJP 2005: Formal
Techiques for Java-like Programs. Glasgow, Scotland, July 2005.

[7] C.-B. Breunesse and E. Poll. Verifying JML specifications with model fields. InFormal
Techniques for Java-like Programs. Proceedings of the ECOOP’2003 Workshop, Darm-
stadt, Germany, pages 51–60, 2003. Technical Report 408, ETH Zurich.

[8] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T. Leavens,
K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applications.Inter-
national Journal on Software Tools for Technology Transfer (STTT), 2004. To appear. An
earlier version appears in the proceedings of 8th International Workshop on Formal Meth-
ods for Industrial Critical Systems (FMICS’03), Volume 80 of ENTCS, Elsevier, 2003.

[9] W.-N. Chin, H. H. Nguen, S. Qin, and M. Rinard. Predictable memory usage for object-
oriented programs. Technical report, National University of Singapore, Massachusetts In-
stitute of Technology, 2004.

[10] M. Hofmann. A type system for bounded space and functional in-place update.Nordic
Journal of Computing, 7(4), 2000.

[11] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional
programs. InProceedings of the 30th ACM Symposium on Principles of Programming
Languages, volume 38, pages 185–197. ACM Press, 2003.

[12] B. Jacobs and E. Poll. Java program verification at Nijmegen: Developments and perspec-
tive. In International Symposium on Software Security (ISSS’2003), Tokyo, Japan, LNCS.
Springer, 2004. To appear.

11

[13] S. Jost. From higher-order art to arthur. A Talk at the Colloquium of ”Graduiertenkolleg
Logik in der Informatik” LMU Munich, December 2004.

[14] M. Konechny. Typing with conditions and guarantees for functional in-place update. In
TYPES 2002 Workshop, Nijmegen, volume 2646 ofLNCS, pages 182 – 199. Springer, 2003.

[15] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed design.
In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors,Behavioral Specifications of
Businesses and Systems, pages 175–188. Kluwer Academic Publishers, Boston, 1999.

[16] G.T. Leavens, E. Poll, C. Clifton, Y. Cheon, and C. Ruby. JML reference manual. Available
from http://www.jmlspecs.org/Documentation , 2002.

[17] H.-W. Loidl and K. MacKenzie. A Gentle Introduction to Camelot, September 2004.
http://groups.inf.ed.ac.uk/mrg/camelot/Gentle-Camelot/camelot-gentle-intro.html.

[18] Chris Okasaki.Purely Functional Data Structures. Cambridge University Press, 1998.

[19] J. Reynolds. Separation logic: a logic for shared mutable data structures, 2002. Invited
Paper, LICS’02, 2002.29.

[20] Berry Schoenmakers.Data Structures and Amostized Complexity in a Functional Setting.
PhD thesis, Eindhoven University of Technology, September 1992.

[21] Olha Shkaravska. Amortized heap-space analysis for first-order functional programs. Ac-
cepted at ”Trends in Functional Programming” TFP’05, Jule 2005.

[22] Olha Shkaravska. Types with semantics. Accepted at ”MEchanized Reasoning about Lan-
guages with varIable biNding” MERLIN’05, June 2005.

[23] M. van Eekelen and M. de Mol. Mixed lazy/strict natural semantics. Technical report,
Nijmegen Institute for Computing and Information Sciences, University of Nijmegen, The
Netherlands, 2004. Technical Report NIII-R0416.

10. Requested budget
In view of the breadth of the proposed research, which looks both at functional and imperative
languages, support is requested for two positions, a three year post-doc and a PhD student. The
post-doc will be focusing on transfer of results to imperative languages, which we feel requires
more experience. For the post-doc position we have an excellent candidate, dr. Olha Shkaravska,
currently working at Institute of Cybernetics, Tallinn.

Position Salary Bench fee
PhD student 160.029 EUR 5.000 EUR
Postdoc (3 yrs) 166.407 EUR 5.000 EUR

Totals 326.436 EUR 10.000 EUR

The total value of the application is336.436 EURO.

12

