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ABSTRACT

Software that models how people work is omnipresent in today’s so-
ciety. Current languages and frameworks often focus on usability by
non-programmers, sacrificing flexibility and high level abstraction.
Task-oriented programming (TOP) is a programming paradigm that
aims to provide the desired level of abstraction while still being
expressive enough to describe real world collaboration. It prescribes
a declarative programming style to specify multi-user workflows.
Workflows can be higher-order. They communicate through typed
values on a local and global level. Such specifications can be turned
into interactive applications for different platforms, supporting col-
laboration during execution. TOP has been around for more than a
decade, in the forms of iTasks and mTasks, which are tailored for
real-world usability. So far, it has not been given a formalisation
which is suitable for formal reasoning.

In this paper we give a description of the TOP paradigm and
then decompose its rich features into elementary language elements,
which makes them suitable for formal treatment. We use the simply
typed lambda-calculus, extended with pairs and references, as a base
language. On top of this language, we develop TopHat, a language
for modular interactive workflows. We describe TopHat by means
of a layered semantics. These layers consist of multiple big-step
evaluations on expressions, and two labelled transition systems,
handling user inputs.

With TopHat we prepare a way to formally reason about TOP
languages and programs. This approach allows for comparison
with other work in the field. We have implemented the semantic
rules of TopHat in Haskell, and the task layer on top of the iTasks
framework. This shows that our approach is feasible, and lets us
demonstrate the concepts by means of illustrative case studies. TOP
has been applied in projects with the Dutch coast guard, tax office,
and navy. Our work matters because formal program verification is
important for mission-critical software, especially for systems with
concurrency.
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1 INTRODUCTION

Many applications these days are developed to support workflows
in institutions and businesses. Take for example expense decla-
rations, order processing, and emergency management. Some of
these workflows occur on the boundary between organisations and
customers, like flight bookings or tax returns. What they all have
in common is that they need to interact with different people (end
users, tax officers, customers, etc.) and they use information from
multiple sources (input forms, databases, sensors, etc.).

1.1 Tasks

We call interactive units of work based on information sources tasks.
Tasks model real world collaboration between users, are driven by
work users do, and are assigned to some user. Users could be people
out in the field or sitting behind their desks, as well as machines
doing calculations or fetching data.

1.2 Task-oriented programming

Task-oriented programming (TOP) is a programming paradigm
which targets the sweet spot between faithful modelling workflows
and rapid prototyping of multi-user web applications supporting
these workflows [23]. Top focusses on modelling collaboration pat-
terns. This gives rise to a user’s need to interact and share informa-
tion. Next to that, Top automatically provides solutions to common
development jobs like designing Guis, connecting to databases, and
servers-client communication.

Therefore, a language that supports Tor should choose the right
level of abstraction to support two things. Firstly, it should provide
primitive building blocks that are useful for high-level descriptions
of how users collaborate, with each other and with machines. These
building blocks are: editors, composition, and shared data. Secondly,
it should be able to generate applications, including graphical user
interfaces, from workflows modelled with said building blocks.

Users can work together in a number of ways, and this is re-
flected in ToP by task compositions. There is sequential composition,
parallel composition, and choice. Users need to communicate in
order to engage in these forms of collaboration. This is reflected in
TOP by three kinds of communication mechanisms. There is data
flow alongside control flow, where the result of a task is passed onto
the next. There is data flow across control flow, where information
is shared between multiple tasks. Finally, there is communication
with the outside world, where information is entered into the system
via input events. The end points where the outside world interacts
with Top applications are called editors. In generated applications,
editors can take many forms, like input fields, selection boxes, or
map widgets.
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1.3 Utilisation

Currently, we know of two frameworks implementing Top: iTasks
and mTasks. iTasks is an implementation of Top, in the form of
a shallowly embedded domain-specific language in the lazy func-
tional programming language Clean. It is a library that provides
editors, monadic combinators, and shared data sources. iTasks uses
the generic programming facilities of Clean to derive rich client
and server applications from a single source. It has been used to
model an incident management tool for the Dutch coast guard [15].
Also it has been used numerous times to prototype ideas for Com-
mand and Control [12, 24], and in a case study for the Dutch tax
authority [25].

mTasks is a subset of iTasks, focusing on 10T devices and de-
ployment on micro controllers. It has been used to control home
thermostats and other home automation applications [13]. Both
implementations currently lack formal semantics which are suited
to prove properties about tasks.

1.4 Challenges

Both iTasks and mTasks have been designed for developing real-
world applications. They are constantly being extended and im-
proved with this goal in mind. The different variations of task com-
binators and the details that come with real-world requirements,
make it hard to see what the essence of Top is. Also, the tight in-
tegration of both frameworks with Clean, makes it difficult to see
where the boundaries are. This makes formal reasoning about Top
programs impossible.

In this paper, we want to take a step back and look at the spirit
of Tor. We do this both formally and informally. Informally in
the sense that we give an intuitive description of the features that
define task-oriented programming. Formally in the sense that we
develop a language which formalises these features as language
constructs, and we give them a semantics in the style that is com-
mon in programming language research. We separate the task layer
and the underlying host language, both syntactically and seman-
tically. Thus making explicit which properties of Top come from
the task layer, and which come from functional programming. Our
challenge, therefore, is to model the properties of ToP into a lan-
guage and pave the way for formal treatment of Top programs. We
give this formal language the name Top (TopHat).

1.5 Contributions

Our contributions to workflow modelling, functional programming
language design, and rapid application development are as follows.

(i) We describe the essential concepts of task-oriented program-
ming. (ii) We present a formal language for modelling declarative
workflows, called Top, embedded in a simply typed A-calculus. It
is based on the aforementioned essential ToP concepts. (iii) We
develop a layered operational semantics for Top that is driven by
user input. The semantics of the task language is clearly separated
from the semantics of the underlying host language. (iv) Along with
this semantics, we present the following semantic observations on
tasks: the current value, whether a term is stuck, the current user
interface, and the accepted inputs. (v) We prove progress and type
preservation for Top. (vi) Using both the essential concepts and
the formal language, we compare TopP with related work in areas
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ranging from business process modelling, to process algebras and
reactive programming. (vii) We implemented the whole seman-
tic system in the functional programming language Haskell [16].
(viii) To create executable applications, we implemented the task
layer of ToP in iTasks. This also demonstrates that the former is a
subset of the latter.

1.6 Structure

In Section 2 we demonstrate the functionality of TOP by means of
an example, Section 3 gives an overview of the essential concepts
of ToP. Section 4 introduces the Top language syntax and Section 5
the semantics. Then in Section 6 we show that certain properties
hold for the language. We take a look at related work in Section 7
and conclude in Section 8.

2 EXAMPLE

In this section we develop an example program to demonstrate
the capabilities of Top. The example is a small flight booking sys-
tem. It demonstrates communication on all three levels: with the
environment, across control flow, and alongside it. Also, it shows
synchronisation and input validation.

The requirements of the application are as follows. (i) A user has
to enter a list of passengers for which to book tickets. (ii) At least
one of these passengers has to be an adult. (iii) After a valid list of
passengers has been entered, the user has to pick seats. (iv) Only
free seats may be picked. (v) Every passenger must have exactly
one seat. (vi) Multiple users should be able to book tickets at the
same time.

For this example we assume that the host language has lists
and four functions on them: all, any, intersect, and difference. The
functions all and any check if all or any elements in a list satisfy
a given predicate. The functions intersect and difference compute
the set-intersection and set-difference of two lists. We also make
use of string equality (=), dereferencing (!), reference assignment
(:=), and expression sequencing (;). For brevity, we omit the type
annotations of variable bindings.

e0ve < jin] localhost & & o
User 1 User 2 User 3

Pick a seat Passenger details Booking

Name*: Ms Piggy © ©|© Passengers: Name: Statler
2 | . .

3 Age*: 0 Age: 87

2c Name: Waldorf

Name*: Kermit ©olee Age: 89

ow

‘This value not in the required format of a whole number ) 1

1item

Pick

Figure 1: Running web application of the flight booking ex-
ample using a translation to iTasks. It shows three users
booking a flight simultaneously. The first user entered name
and age and continued picking seats. The second is entering
details of two passengers. The ages are not filled in, there-
fore the Continue button is disabled. The message bubble
shows that the age field only accepts integer values. The
third user finished a booking, therefore, the first user can
not pick seats 1B and 1c any more.
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Example 2.1 (Flight booking). We start by defining some type
aliases. A passenger is a pair with name and age. A seat is a pair
with a row number and a seat letter.

type PASSENGER = STRING X INT
type SEAT = INT X STRING

Choosing seats requires reading and updating shared informa-
tion. The list of free seats is stored in a reference.

let freeSeats = ref [(1,”A”), (1,”B”), (1,”C”), ...]

Now we develop our workflow in a top-down manner. Our flight
booking starts with an interactive task ®(LisT PASSENGER), where
users can enter a list of passengers. A task R 7 is an empty editor
that asks for a value of the given type 7. Passengers are valid if their
name is not empty and their age is at least 0. Lists of passengers are
valid if each passenger is valid, and at least one of the passengers is
an adult. When the user has entered a valid list of passengers, the
step after > becomes enabled, and the user can proceed to picking
seats. In case of an invalid list of passengers, the step is guarded by
the failing task 4 .

let valid = Ap. not (fst p =

let adult = Ap. snd p > 18 in

let allValid = Aps. all valid ps A any adult ps in

let bookFlight = ®(LisT PASSENGER) &> Aps.

if allValid ps then chooseSeats ps else 4

9

)Asnd p>0in

A selection of seats is correct if every entered seat is free.
let correct = Ass. intersect ss !freeSeats = ss in

let chooseSeats = Aps. R(LIST SEAT) > Ass.

if correct ss A length ps = length ss
then confirmBooking ps ss else 4

The function confirmBooking removes the selected seats from
the shared list of free seats, and displays the end result using an
editor, denoted by O

let confirmBooking = Aps. Ass.

freeSeats := difference !freeSeats ss; O{ps, ss)

The main task starts three bookFlight tasks, which could be
performed by three different users in parallel.

bookFlight »a bookFlight >« bookFlight
A screenshot of the running application is shown in Fig. 1.

All instances of the bookFlight task have access to the shared
list of free seats. Rewriting the example in a language without side
effects would not only be cumbersome, obfuscating the code with
explicit threading of state, but it would be impossible to model the
parallel execution of three bookFlight tasks. It is not known upfront
which task will finish first, and thus it is not possible to thread the
free seat list between the parallel tasks.

3 INTUITION

This section gives an overview of the core concepts of task-oriented
programming.

3.1 Tasks model collaboration

The central objective of TOP is to coordinate collaboration. The basic
building blocks of ToP for expressing collaboration are task combi-
nators. They express ways in which people can work together. Tasks
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can be executed after each other, at the same time, or conditionally.
This motivates the combinators step, parallel, and choice.

Example 3.1 (Breakfast). The following program shows the dif-
ferent collaboration operators in the setting of making breakfast.
Users have a choice (¢0) whether they want tea or coffee. They al-
ways get an egg. The drink and the food are prepared in parallel
(). When both the drink and the food are prepared, users can step
(>) to eating the result.

let mkBrkfst : TAsk Drink — TAsk Food — Task (Drink,Food)

= AmkDrink. AmkFood. mkDrink » mkFood in

mkBrkfst (mkTea ¢ mkCoffee) mkEgg > enjoyMorning

The way the combinators are defined matches real life closely.
When we want to have breakfast, we have to complete several
other tasks first before we can do so. We decide what we want
to have and then prepare it. We can prepare the different items
we have for breakfast in parallel, but not at the same time. For
example, it is impossible to scramble eggs, and put on the kettle
for tea simultaneously. Instead, what is meant by parallel is that
the order in which we do tasks and the smaller tasks that they are
composed of; does not matter. Then finally, only when every item we
want to have for breakfast is ready, can we sit down and enjoy it.

3.2 Tasks are reusable

There are three ways in which tasks are modular. First, larger tasks
are composed of smaller ones. Second, tasks are first-class, they can
be arguments and results of functions. Third, tasks can be values
of other tasks. These aspects make it possible for programmers to
model custom collaboration patterns. Example 3.1 demonstrates
how tasks can be parameterised by other tasks: mkBrkfst is a col-
laboration pattern that always works the same way, regardless of
which food and drink are being prepared.

3.3 Tasks are driven by user input

Input events drive evaluation of tasks. When the system receives a
valid event, it applies this event to the current task, which results in
a new task. In this way the system communicates with the environ-
ment. Inputs are synchronous, which means the order of execution
is completely determined by the order of the inputs.

In TOP, editors are the basic method of communication with the
environment. Editors are modelled after input widgets from graphi-
cal user interfaces. There are different editors, denoted by different
box symbols. Take for example an editor holding the integer seven:
O 7. Such an editor reacts to change events, for example the values
42 or 37, which are of the same type.

The sole purpose of editors is to interact with users by remem-
bering the last value that has been sent to them. There are no output
events. As values of editors can be observed, for example by a user
interface, editors facilitate both input and output. An empty editor
(=) stands for a prompt to input data, while a filled editor (O) can
be seen either as outputting a value, or as an input that comes with
a default value.

Example 3.2 (Vending machine). This example demonstrates ex-
ternal communication and choice. It is a vending machine that
dispenses a biscuit for one coin and a chocolate bar for two coins.

let vend : TASk SNACK = RINT > An. if n = 1 then OBiscuit
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else if n= 2 then OChocolateBar else 4

The editor ® INT asks the user to enter an amount of money. This
editor stands for a coin slot in a real machine that freely accepts and
returns coins. There is a continue button that is initially disabled,
due to the fact that the left hand side of the step combinator has no
value. When the user has inserted exactly 1 or 2 coins, the continue
button becomes enabled. When the user presses the continue button,
the machine dispenses either a biscuit or a chocolate bar, depending
on the amount of money. Snacks are modelled using a custom type.

3.4 Tasks can be observed

Several observations can be made on tasks. One of those is deter-
mining the value of a task. Not all tasks have a value, the empty
editor for instance, which makes value observation partial. Le., the
value of O 7 is 7, but the value of ® INT is L.

Another observation is the set of input events a task can react
to. For example, the task 07 can react to value events, as discussed
before.

In order to render a task, we need to observe a task’s user in-
terface. This is done compositionally. User interfaces of combined
tasks are composed of the user interfaces of the components. For
example, of two tasks combined with a step combinator, only the
left hand side is rendered. Two parallel tasks are rendered next
to each other. Combining this information with the task’s value
and possible inputs, we can display the current state of the task,
together with buttons that show the actions a user can engage in.

The final observation is to determine whether a task results
in a failure, denoted by /. The step combinator > and the choice
combinator ¢ use this to prevent users from picking a failing task.

3.5 Tasks are never done

Tasks never terminate, they always keep reacting to events. Editors
can always be changed or cleared, and step combinators move on
to new tasks.

In a step t > e, the decision to move on from a task t to its continu-
ation e is taken by >, not by t. The decision is based on a speculative
evaluation of e. The step combinator in ¢ > e passes the value v of ¢
to the continuation e. Steps act like ¢ as long as the step is guarded.
A step is guarded if either the left task has no value, or the specula-
tive evaluation of e applied to v yields the failure task 4. Once it
becomes unguarded, the step continues as the result of e v. Specula-
tive evaluation is designed so that possible side effects are undone.
The task ¢ > e additionally requires a continue event C to proceed.

Step combinators give rise to a form of internal communication.
They represent data flow that follows control flow.

3.6 Tasks can share information

The step combinator is one form of internal communication, where
task values are passed to continuations. Another form of inter-
nal communication is shared data. Shared data enables data flow
across control flow, in particular between parallel tasks. Shared data
sources are assignable references whose changes are immediately
visible to all tasks interested in them. Users can not directly inter-
act with shared data, a shared editor is required for that. If x is a
reference of type 7, then B x is an editor whose value is that of x.
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The semantics of TOP requires all updates to shared data and all
enabled internal steps to be processed before any further commu-
nication with the environment can take place.

Example 3.3 (Cigarette smokers). The cigarette smokers problem
by Downey [7] is a surprisingly tricky synchronisation problem.
We study it here because it demonstrates the capabilities of guarded
steps. The problem is stated as follows. In order to smoke a cigarette,
three ingredients are required: tobacco, paper, and a match. There
are three smokers, each having one of the ingredients and requiring
the other two. There is an agent that randomly provides two of
those. The difficulty lies in the requirement that only the smoker
may proceed whose missing ingredients are present.

Downey models availability of the ingredients with a semaphore
for each ingredient. The agent randomly signals two of the three.
The solution proposed by Downey involves an additional mutex,
three additional semaphores, three additional threads called pushers,
and three regular Boolean variables. The job of the pushers is to
record availability of their ingredient in their Boolean variable, and
check availability of other resources, waking the correct smoker
when appropriate.

What is important is that the implementation of what is essen-
tially deadlock-free waiting for two semaphores requires a sub-
stantial amount of additional synchronisation, together with non-
trivial conditional statements. ToP allows a simple solution to this
problem, using guarded steps. Steps can be guarded with arbitrary
expressions. The parallel combinator can be used to watch two
shared editors at the same time. Let match, paper, and tobacco be
references to Booleans. The smokers are defined as follows.

let continue = A(x,y) . if x A y then smoke else / in

let tobaccoSmoker = (B match > mpaper) > continue in
let paperSmoker = (m tobacco >« mmatch) > continue in
let matchSmoker = (m tobacco < mpaper) > continue in
tobaccoSmoker > paperSmoker < matchSmoker

When the agent supplies two of the ingredients by setting the
respective shares to True, only the step of the smoker that waits
for those becomes enabled.

3.7 Tasks are predictable

Let t; and t; be tasks. The parallel combination #; > 5 stands for
two independent tasks carried out at the same time. This operator
introduces interleaving concurrency. For the system it does not
matter if the tasks are executed by two people actually in parallel,
or by one person who switches between the tasks. The inputs sent
to the component tasks are interleaved into a serial stream, which is
sent to the parallel combinator. We assume that such a serialization
is always possible. The tasks are truly independent of each other, all
interleavings are permitted. The environment must prefix events to
t; and t; respectively by F (first) and S (second). This unambiguously
renames the inputs, removing any source of nondeterminism.
With concurrency comes the need for synchronisation, in situ-
ations where only some but not all interleavings are desired. The
basic method for synchronisation in Top is built into the step com-
binator. The task t > e can only continue execution when two condi-
tions are met: Task ¢ must have a value v, and e v must not evaluate
to 4. Programmers can encode arbitrary conditions in e v, which
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are evaluated atomically between interaction steps. This allows a
variety of synchronisation problems to be solved in an intuitive
and straight-forward manner.

Hoare [9] states that nondeterminism is only ever useful for spec-
ifying systems, never for implementing them. TOP is meant solely
for implementation and does not have any form of nondeterminism.
Input events for parallel tasks are disambiguated, internal steps
(») have a well-defined evaluation order, and internal choice (4) is
left-biased.

3.8 Recap

Collaboration in the real world consists of three aspects: commu-
nication, concurrency, and synchronisation. These aspects are re-
flected in ToOP on a high level of abstraction, hiding the details of
communication. For example, the cigarette smokers communicate
with each other, but the programs do not explicitly mention sending
or receiving events.

By focusing on collaboration instead of communication, Top
leads to specifications closer to real-world workflows which, at
the same time, can be used to generate multi-user applications to
support such workflows.

4 LANGUAGE

In this section, we present the constructs of TOP, our modular inter-
active workflow language. We define the host and task language,
the types, and the static semantics. Then we describe the workings
of each construct using examples. These constructs are formalised
in Section 5.

4.1 Expressions

The host language is a simply typed A-calculus, extended with some
basic types and ML-style references. We use references to represent
shared data sources. The grammar in Fig. 2 defines the syntax of
the host language. It has abstractions, applications, variables, and
constants for booleans, integers and strings. The symbol * stands
for binary operators. For the result of parallel tasks we need pairs.
Conditionals come in handy for defining guards. References will
be used to implement shared editors. Our treatment of references
closely follows the one by Pierce [22]. Creating a reference using the
keyword ref yields a location . While x denotes program variables,
I denotes store locations. Locations are not intended to be directly
manipulated by the programmer. The symbols ! and := stand for
dereferencing and assignment. The unit value will be used as the
result of assignments.

e = Expressions
Ax:7.e | e; e - abstraction, application
x| c| exe - variable, constant, operation
ife;theneyelsees | () - branch, unit
(e1,e3) | fste | snde — pair, projections

refe |le | e;:=e; | I - references, location
P - pretask
c = Constants
| B|I|S - boolean, integer, string

Figure 2: Language grammar

We use double quotation marks to denote strings. Integers are
denoted by their decimal representation, and booleans are written
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True and False. We freely make use of the logic operators not, A,
and V, arithmetic operators +, —, X, and the string append operator
+. Furthermore, we use standard comparison operations <, <, =,
#, >, and >. The symbol % stands for any of those. The notation
e1; e2 is an abbreviation for (Ax : UNIT. e2) eq, where x is a fresh
variable. The notation letx : 7 = eq iney is an abbreviation for
(Ax:7.e2) €.

The grammar in Fig. 3 specifies the syntactic category of pre-
tasks. Pretasks are tasks that have unevaluated subexpressions with
respect to the host language. How expressions are evaluated will
be discussed in Section 5.1. Each pretask will be discussed in more
detail in the following subsections. We use open symbols (O, R, &>, ¢)
for tasks that require user input, and closed symbols (m, », ¢) for
tasks that can be evaluated without user input.

Pretasks
- editors: valued, unvalued, shared

p n=

| DOe | ®mz | me
| e1»ey | eg>ex - steps: internal, external
| 4 | exxe - fail, combination
|

e;4ey | eg0ey;  — choice: internal, external

Figure 3: Task grammar

Typing. Figure 4 shows the grammar of types used by Top. It has
functions, pairs, basic types, unit, references, and tasks.

T o= Types
| mm—>mn | mxrn | f - function, product, basic
| UNit | REF7 | TAsKk7 - unit, reference, task

p = Basic types
|

BooL | INT | STRING - boolean, integer, string

Figure 4: Type grammar

Typing rules are of the form I, X e : 7, which should be read
as “in environment I' and store typing 3, expression e has type 7”.
Typing rules for expressions in the host language are presented
in the appendix. The typing rules for pretasks are given in Fig. 5.
Most typing rules lift the type of their subexpressions into the Task-
type. The typing rules for steps make sure the continuations e; are
functions which accept a well-typed value from the left hand side
(T-THEN, T-NEXT). References, and therefore shared editors, can
only be of a basic type so they do not introduce implicit recursion
(T-UPDATE).

4.2 Editors

Programs in ToP model interactive workflows. Interaction means
communication with end users. End users should be able to enter
information into the system, change it, clear it, reenter it, and so on.
To do this, we introduce the concept of editors. Editors are typed
containers that either hold a value or are empty. Editors that have
a value can be changed. Empty editors can be filled. This is depicted
as a state diagram in Fig. 6 below.

Editors stand for various forms of input and output, for example
widgets in a Gul, form fields on a webpage, sensors, or network con-
nections. Consider the editor for a person’s age from Example 2.1.
Users can change the value until they are satisfied with it. Editors
are meant to capture this constantly changing nature of user input.
The user interface of an editor depends on its type. This could be
an input field for strings, a toggle switch for booleans, or even a
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T-Ep1T T-ENTER T-UPDATE
IYXre:r I 2re:Rerf
I,XrOe:TASKT [LE+r®7:Taskt I, +me:Taskf

T-THEN
I,2+ e :TAsk 71
I,2Fey: 7 — TAsK Ty
I,ZFe »ey:Task

T-NEXT
I,2F e :Task Ty
I,XFey: 7 — TasKk Ty
I,2Fe >ey: TASK Ty

T-FarL T-AND
I,2F e :TaskT I,2Fey:Task Ty
[,XF 4 :TaskT T,3F ey ey : TAsK (71 X 72)
T-Or T-Xor
I,2Fe :TaskT I,XFe :TaskT
I,2+Fey:TaskT I,2+Fey:TaskT
I, re 4ey:TaskT I,Xre 0ey:TaskT

4 Change

Figure 5: Typing rules

4 Change

Fill

Clear

Figure 6: Possible states of an editor and its transitions.
Shared editors cannot be cleared.

map with a pin for locations. It could also be a parser that tries to
parse a line of text to match the type of the editor.

Valued and unvalued editors (O e, ® 7). Editors that hold an ex-
pression e : 7 have type Task 7. Empty editors are annotated with a
type in order to ensure type safety and type preservation during
evaluation.

Shared editors (@ e). Shared editors watch references, lifting their
value into the task domain. If e is a reference REF 7, then m e is of
type Task 7. Shared editors cannot be cleared, only changed.

Changes to a shared editor are immediately visible to all shared
editors watching the same reference. Imagine two users, Marco and
Christopher, both watching shared editors of the same coordinates.
The editors are visualised as a pin on a map. When Marco moves
his pin, he updates the value of the shared editor, thereby changing
the value of the reference. This change is immediately reflected on
Christopher’s screen: The pin changes its position on his map. This
way Marco and Christopher can work together to edit the same
information.

Two other important use cases for shared editors are sensors
and time. Sensors can be represented as external entities that pe-
riodically update a shared editor with their current sensor value.
Similarly, the current time can be stored in a shared editor (mtime)
which is periodically updated by a clock. The actual sensor and
the clock are not modelled in Top. We assume that they exist as
external users that send update events to the system. This allows
programmers to write tasks that react to sensor values or timeouts.

4.3 Steps

Editors represent atomic units of work. In this section we look
at ways to compose smaller tasks into bigger ones. Composing
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tasks can be done in two ways, sequential and parallel. Parallel
composition comes in two variants: combining two tasks (and-
parallel) and choosing between two tasks (or-parallel). We study
sequential composition first, and after that combining and choosing.

Internal and external step (t » e, t > ). Sequential composition
has a task ¢ on the left and a continuation e on the right. External
steps (>) must be triggered by the user, while internal steps (») are
taken automatically. The accompanying typing rules are T-THEN
and T-NexT. According to these rules, the left hand side must be a
task t : TAsk 71, and the right hand side e : 71 — Task 72 must be
a function that, given the task value of t, calculates the task with
which to continue.

Steps are guarded, which means that the step combinators can
only proceed when the following conditions are met. The left hand
side must have a value, only then can the right hand side calculate
the successor task. The successor task must not be 4, introduced
below. This is enforced on the semantic level, as described in the
next section. The internal step can proceed immediately when these
conditions are met. The external step must additionally receive a
continue event C.

Example 4.1 (Conditional stepping). Consider the following:
RINT » An. if n = 42 then 0°Good” else 0”Bad”

Initially, the step is guarded because the editor does not have a value.
When users enter an integer, the program continues immediately
with either 0”Good” or 0”Bad”, depending on the input.

Fail (4). Fail is a task that never has a value and never accepts in-
put. The typing rule T-FAI1L states that it has type Task 7 for any type
7. Programmers can use 4 to tell steps that no sensible successor
task can be determined.

Example 4.2 (Guarded stepping). Consider this slight variation
on Example 4.1:

RINT » An. if n =42 then 0”Good” else
The user is asked to enter an integer. As long as the right hand side
of » evaluates to 4, the step cannot proceed, and the user can keep
editing the integer. As soon as the value of the left hand side is 42,
the right hand side evaluates to something other than ¢, and the
step proceeds to 0”Good”.

Example 4.3 (Waiting). With the language constructs seen so far
it is possible to create a task that waits for a specified amount of
time. To do this, we make use of a shared editor holding the current
time (see Section 4.2), and a guarded internal step.

let wait : INT — Task UNIT = Aamount : INT.

mtime » Astart : INT.
mtime » Anow: INT.
if now > start + amount then 0O() else 4
The first step is immediately taken, resulting in start to be the time
at the moment wait is executed. The second step is guarded until the
current time is greater to the start time plus the requested amount.

4.4 Parallel

A common pattern in workflow design is splitting up work into mul-
tiple tasks that can be executed simultaneously. In Top, all parallel
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branches can progress independently, driven by input events. This
requires inputs to be tagged in order to reach the intended task.

There are two ways to proceed after a parallel composition. One
way is to wait for all tasks to produce results and combine those,
the other to pick the first available result. Both ways introduce
explicit forks and implicit joins in TOP.

Combination (ej ™ e2). A combination of two tasks is a parallel
and. It has a value only if both branches have a value. This is re-
flected in the typing rule T-AND, It shows that if the first task has
type 71, and the second has type 77, their combination has the pair
type 11 X 2.

Example 4.4 (Combining). The task
RINT b« O” Batman” » A(n, s) . O(replicate n "Na” + s)

can only step when both editors have values. When it steps, the
continuation uses the pair to calculate the result.

Internal and external choice (e1 ¢ e2, €1 ¢ e2). Internal choice (#)
is a parallel or. It picks the leftmost branch that has a value. Its
typing rule T-OR states that both branches must have the same
type Task 7. For example ® INT ¢ O 37 normalizes to 037, because
® INT doesn’t have a value. Users can work on both branches of an
internal choice simultaneously.

External choice (¢) is different in this regard. An external choice
requires users to pick a branch before continuing with it. This means
users cannot work on the branches of an external choice before
picking one.

Example 4.5 (Delay). We illustrate the use of internal and external
choice by means of an example that asks users to proceed with a
given task or to cancel. If the user does not make a choice within a
given time frame, the program proceeds automatically. The example
makes use of the task wait from Example 4.3.

let cancel : Task UNIT = O() in

let delay : INT — Task UNIT — TAsk UNIT = An. Aproceed.

(proceed ¢ cancel) ¢ (wait n » Au: UNIT. proceed)
Note that delay is higher-order. It is a task which takes another
task as parameter.

4.5 Annotations

Tasks can be annotated with additional information. The system
can use this information in various ways. Possible use cases are
labels for the user interface, resource consumption information
for static resource analysis, or messages for automatic end-user
feedback. Annotations are not covered in this paper. Our Haskell
implementation of TOP supports annotating tasks with user 1ps, so
that individual tasks in a large workflow can be assigned to different
users. These annotations are used to filter the user interfaces for
each user so that they can only see their part of the workflow.

5 SEMANTICS

In this section we formalise the semantics of the language constructs
described in Section 4. We organise this by following the structure
of the language. Firstly, the task language is embedded in a simply
typed A-calculus. This requires a specification of the evaluation of
terms in the host language, and how it handles the task language.
Secondly, there are two ways to drive evaluation of task expressions,
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internally by the system itself, and externally by the user. This is
done in two additional semantics, one for the internal normalisation
of tasks, and another for the interaction with the end user.

The three main layers of semantics are thus evaluation, normali-
sation, and interaction. The semantics, together with observations,
will be discussed in the following subsections. Figure 7 shows the
relation between all semantics arrows. It also shows that there are
two helper semantics, handle and stride. We use the convention that
downward arrows are big-step semantics, and rightward arrows
are small-step semantics.

stride (w)

handle (—)
/ }uses % [uses
uses use.

evaluate (]) «—— normalise (|) — _ interact =)

Figure 7: Semantic functions defined in this report and their
relation.

One of our explicit goals is to keep the semantics for evaluation
and normalisation separate, to not mix general purpose program-
ming notions with workflow specific semantics. This is achieved
by letting tasks be values in the host language.

5.1 Evaluating expressions

The host language evaluates expressions using a big-step semantics.
Evaluating an expression e in state o into a value v in state ¢’ is
denoted by e,0 | v,0’. To ease reasoning about references, we
choose a call-by-value evaluation strategy.

Figure 8 shows values with respect to the evaluation semantics.
Tasks are values, and the operands of task constructors are evalu-
ated eagerly. Exceptions to this are steps and external choice, where
some or all of the operands are not evaluated.

§ | ity
t1 4t | e10e

- fail, combination

U u= Values

| Ax:7z.e | (v1,v2) | () - abstraction, pair, unit

| e |l ]t - constant, location, task
t o= Tasks

| Oov | =7 | ml - editors

| #Hwe | H>e - steps

|

|

- choices
Figure 8: Value grammar

The rules to evaluate expressions e do not differ from standard
work, except for the task constructs. The evaluation rules for tasks
can be deduced from the value grammar. They are given in the
appendix. Most task constructors are strict in their arguments. Only
steps keep their right hand side unevaluated to delay side effects
till the moment the step is taken. The same holds for both branches
of the external choice.

5.2 Task observations

The normalisation and interaction semantics make use of observa-
tions on tasks. Observations are semantic functions on the syntax
tree of tasks. There are four semantic functions: V for the current
task value, ¥ to determine if a task fails, 7 for the currently ac-
cepted input events, and a function for generating user interfaces.
The semantics make use of V and 7, while I is used for proving
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safety. The function for user interfaces is not used by the semantics,
but by our implementation. It is only described in passing here.

Observable values (V). Task values are used by steps to calculate
the successor task. Filled editors are tasks which contain values, as
are shared editors. Unvalued editors do not contain values, neither
does the fail task. These facts propagate through all other task
constructors. The partial function V associates a value v to tasks ¢
where possible. Its definition is given in Fig. 9.

V : Tasks X States — Values

YV(@o, o) =v

VRz,o0) = 1

YVml, o) = o(l)

V(s 0) =1

V(ti»e,o) = L

V(ty>ey,0) = L

V(tym by, ) = { (v1,v2) when (.V(tl, o)=v1 AV(tz,0) =1,
s otherwise
Uy when V(t;,0) =v;

V(t 4ty,0) = Uy when V(t;,0)=LAV(t2,0) =0,
L otherwise

V(i ot,0) = L

Figure 9: Values

Internal and external steps do not have an observable value,
because calculating the value would require evaluation of the con-
tinuation. Parallel composition only has a value when both branches
have values, in which case these values are paired. Internal choice
has a value when one of the branches has a value. When both
branches have a value, it takes the value of the left branch. External
choice does not have a value because it waits for user input.

Failing (). In Section 4.3 we introduced 4 to stand for an im-
possible task. Combinations of tasks can also be impossible. Take
for example the parallel composition of two fails (4 > ). This ex-
pression is equivalent to 7, because it can not handle input and
can not be further normalised. This intuition is formalised by the
function ¥ in Fig. 10. It determines whether a task is impossible.
Such tasks are called failing.

F : Tasks X States — Booleans

F(Owv, o) = False
F(RT,0) = False
F(ml, o) = False
F4,0) = True

f(t1>€2,0') = T(tl,a)
Flti>ez,0) = Flty, 0)
7:(1’11><1t2,0') = T(tl,a')/\f(l’z,o')
F(ti8t2,0) = Ft1,0) A Ftz, 0)
Fle1vez, 0) = Flt1, 0]) A Fltz, 0)

where e;,0 || t1,0]and ey, 0 | £, 0,

Figure 10: Failing

Steps whose left hand sides are failing can never proceed because
of the lack of an observable value. Therefore they are itself failing.
The internal choice of two failing tasks is failing. External choices
let the user pick a side and only then evaluate the corresponding
subexpression. To determine if an external choice is failing, it needs
to peek into the future to check if both subexpressions are failing.
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User interface. TOP is designed such that a user interface can
be generated from a task’s syntax tree. A possible graphical user
interface is shown in Fig. 1, where tasks are rendered as HTML pages.
Editors are rendered as input fields, external choices are represented
by two buttons, and parallel tasks are rendered side by side. Steps
only show the interface of their left hand side. In case of an external
step they are accompanied by a button. When the guard condition
of a step is not fulfilled, the button is disabled.

5.3 Normalising tasks

The normalisation semantics is responsible for reducing expressions
of type Task until they are ready to handle input. It is a big-step se-
mantics, and makes use of evaluation of the host language. We write
e,o || t, 0’ to describe that an expression e in state o normalises
to task ¢ in state o”.

Normalisation rules are given in Fig. 11. Both rules ensure that
expressions are first evaluated by the host language ( | ), and then
by the stride semantics ( ~» ). These two actions are repeated until
the resulting state and task stabilise.

¢ o t/,o'”

N-DoNE

e, o t,o’
l o =c"Nt=1t

e,o | t,o’

N-REPEAT

e,o | t,o/ t,o/ ~ t',o” t',o" | t' "

’ ” ’
eo U t.o" o' #+o"Vt+£t

Figure 11: Normalisation semantics

The striding semantics is responsible for reducing internal steps
and internal choices. A stride from task ¢ in state o to ¢’ in state o” is
denoted by t,0 ~» t’, ¢’ The rules for striding are given in Fig. 12.
Tasks like editors, fail and external choice are not further reduced.
For external choice and parallel there are congruence rules.

The split between striding and normalisation is due to mutable
references. Consider the following example, where ¢ = {l —
False}.

(m [» Ax:BooL. if x then e else 7 ) > ([:= True; O() )
S-AND reduces this expression in one step to
(m [» Ax:BooL. if xthen eelse 4 ) (O ())

with ¢’ = {l  True}. This expression is not normalised, because
the left task can take a step. The issue here lies in the fact that
the right task updates I. To overcome this problem, the N-DONE
and N-REPEAT rules ensure that striding is applied until the state o
becomes stable and no further normalisation can take place.

Principles of stepping. Stepping away from task t; can only be
performed when #; has a value: V(¢1) = v1. Only then can a new
task t, be calculated from the expression e. On top of that, t; must
not be failing: = (¢2). These principles lead to the stepping rules
in Fig. 12. S-THENSTAY does nothing, because the left side does not
have a value. S-THENFAIL covers the case that the left side has a
value but the calculated successor task is failing. This rule uses the
semantics of the host language to evaluate the application e v;.
When all required conditions are fulfilled, S-THENCoONT allows
stepping to the successor task.
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’ ’
t,o v t,o

Step.

S-THENSTAY
t,o ~w t],0

V(! ,o')= L
f»>ey, 0 > L >ey, 0 (#, ")
S-THENFAIL

t,o w t,0’ ev,o | o

V(t!, 0’) = v1 A F(tz, 0"
ti> e, 0 v t»ey, o’ ( ) ! (2 )
S-THENCONT

ti,o v t,0  ev,o | t,o!

ti» ey, o v ty, 0" YVt 01 = o1 A =T, )
B s
Choose.
S-ORLEFT
t,o ~w t], 0’
7 V@, ) =0
t14t,0 w tl’ o’/
S-OrRRIGHT

t,o w t, 0" b0~ t), 0"

V(! ,0')=LAV(t),o") =0
Héty 0w 1,0 (. o) (1, 07) = 2

S-OrNONE

t,0 w t,0 0wty 0"

V(t,o)=LAV(t),o")=1
t 4L, 0 > t 8, 0" ( ) (t, o)
Ready.

S-EpIT S-FiLL S-UPDATE

Ov,0 ~ 00,0 RT,0 »» RT,0 ml,oc ~ ml,o

S-Fa1L S-Xor

4,0 ™ 4,0 e10e, 0 w ej0e, o

Congruence.
S-NEXT S-AND

t,o ~w t], 0’ t,o w t,0"  h,o ~ ), 0"

t1>ez,awt{>ez,a’ tiMty, 0~ 1Mt o

Figure 12: Striding semantics

Principles of choosing. Choosing between two tasks t; and tp
can only be done when at least one of them has a value: V(t;) =
v1 V V(tp) = vy. When both have a value, the left task is chosen.
When none has a value, none can be chosen. These principles lead
to the rules S-ORLEFT, S-ORRIGHT, and S-ORNONE, which encode
that the choice operator picks the leftmost task that has a value.

5.4 Handling user inputs

The handling semantics is the outermost layer of the stack of se-
mantics. It is responsible for performing external steps and choices,
and for changing the values of editors. The rules of the interaction
semantics are given in Fig. 13. The semantics is only applicable to
normalised ¢. Sending an input event i to a task t first handles the
event and then prepares the resulting task for the next input by
normalising it.

Inputs i are formed according to the grammar in Fig. 14. F and
S in an input encode the path to the task for which the input is
designated. There is a function 7 which calculates the possible
input events a given task expects. It takes a normalised task and a
state and returns a set of inputs that can be handled. The definition
of this function is listed in Fig. 15.
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t,o = t',o
I-HANDLE

1
t, o t,, o’ t,, o’ U t,/, P

i
t,o = t", 0"

Figure 13: Interaction semantics

in= Inputs

| a | Fi | Si - action, pass to first, pass to second
a:= Actions

| o |C - change, continue

| L|R - go left, go right

Figure 14: Input grammar

T : Tasks X States — P(Inputs)

I(Ov,o) ={v|@+rv :t}U{E} where ODv:TAsSKT
I(®t,0) ={v |ord T}
I(ml, o) ={v |o+ro 1} where ! : TAsk T

I(4,0) =0
[(IIFCZ,O') = [(tl,o)
I(t1>€z,0') = I(l’l,O')U{CIrV(l],O'):Ul/\
ey v, O U tz,o'//\_\'}-(tz,o")}

I(t1=tp,0) = {Fili€el(t,o)}U{Siliecl(t,o)}
I(t18t2,0) = {Fili€eI(t,o)}U{Silie€l(ty,o)}
I(e10ex,0) = {L|e,o | t1,0" A=F(t1,0")} U

{Rlez, o | t3,0" A=Fltz,0")}

Figure 15: Inputs

Handling input is done by the handling semantics shown in
Fig. 16. It is a small step semantics with labelled transitions. It takes
a task t in a state o and an input i, and yields a new task t’ in a
new state o”’.

H-CuANGE, H-FiLL, H-UPDATE: Input events v are used to change
the value of editors. Editors only accept values of the correct type.

H-NExT: The C(ontinue) action triggers an external step. As with
internal stepping, this is only possible if the left side has a value
and the continuation is not failing.

H-P1ckLEFT, H-PIcKRIGHT: L and R are used to pick the left or
right option of an external choice.

H-PassTHEN, H-PassNEXT: The step combinators pass all events
other than C to the left side.

H-FIRSTAND, H-SECONDAND, H-FIRSTOR, H-SECONDOR: Inputs
F(irst) and S(econd) are used to direct inputs to the correct branch
of parallel combinations.

5.5 Implementation

The semantics have been implemented in the Haskell programming
language [16]. We use techniques presented by Jaskelioff et al. [10],
Swierstra [27], and Peyton Jones [21]. The source code can be found
on GitHub.! A command-line interface is part of this implementa-
tion. It prompts users to type input events, which get parsed and
processed by the interaction semantics.

Also, we made an implementation of ToP combinators on top
of iTasks, so that Top specifications can be compiled to runnable
applications. This shows that TOP is a subset of iTasks.

Uhttps://github.com/timjs/tophat-haskell
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i ’ ’
t,o0 — t,0

Editing.
H-CHANGE H-FiL
v, v :
o’ o’
Ov,0 — Ov,0 R7T,0 — 00,0

H-UppATE

- o(l),v : T
ml,oc — ml, o[l o]
Continuing.

H-NEexT

ey V1, O ts, o’
ool ol V(t1, 0) = v1 A =F(t2, 07)

t1>ey, 0 — Iy, 0
H-PickRIGHT
e, 0 | ty, 0

H-P1ckLEFT
ei,o0 | t,o

- ~F(t1, o) - ~Ft2, o)
e10ey, 0 — 11,0’ ejdez, 0 — 1,0’
Passing.
H-PAssNEXT

H-PAassTHEN

i ’ ’ i 7’ ’
t,o — t,0 hh,o — t,0

i i#C
ti>e,o — ti»eyo’ ti>e,o — t>ey 0’

H-FIRSTAND H-SEcONDAND

i ’ ’ i ’ ’
t1,0 — tI,O' t), o0 — tz,a

Fi Si
tiXty, 0 — t{ iy, 0’ tidty, 0 — ity o

H-FirsTOR H-SeEconDOR

i ’ ’ L ’ ’
1,0 — tl,cr t), 0 — l’Z,O'

Fi Si
t14t,0 LN t{ 412, 0’ t14t,0 = t 4ty 0’

Figure 16: Handling semantics

6 PROPERTIES

In order to show our semantics is sane, we show that our evalua-
tion, normalisation and handling semantics is type preserving. We
additionally prove a progress theorem for our small-step handling
semantics. We show that our failing function ¥ indeed only in-
dicates expressions that can not be normalised and that allow no
further interaction. Finally, we prove that the function to compute
all possible inputs 7 is sound and complete.

6.1 Type preservation
We show that the following three preservation Theorems hold.
THEOREM 6.1 (TYPE PRESERVATION UNDER EVALUATION). For all

expressions e and states o such thatT,2 + e : 7 and I, 2 + o, if
e,o | e,0’, thenT,X+e’ :tandT,X+ o’.

Where I, 3 + o means that for all [ € o, it holds that T, X + o(l) :
(D).

THEOREM 6.2 (TYPE PRESERVATION UNDER NORMALISATION). For
all expressions e and states o such thatT, X + e : TAsk 7 and T, X + o,
ife,c || e,0’,thenT,S+ e’ : Taskt andT, 2+ o’.

THEOREM 6.3 (TYPE PRESERVATION UNDER HANDLING). For all
expressions e, states o and inputs i such thatT,X v e : TAsk T and

1
I3+ o,ife,c — e',0’,thenl,Z+e’ : Taskt and[,Z + o’.
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All three Theorems are proven to be correct by induction over
e. The full proofs are listed in the appendix. From Theorem 6.3
and Theorem 6.2 we directly obtain that the driving semantics also
preserves types.

6.2 Progress

A well-typed term of a task type is guaranteed to progress after
normalisation, unless it is failing.
We define what we mean with progress in Theorem 6.4.

THEOREM 6.4 (PROGRESS UNDER HANDLING). For all well typed
expressions e and states o, ife,o || ¢’,0’, then either ¥ (e’,a”) or

. . 1
there existe’’, "', and i such thate’,c’ — e’’,c” .

Where a well typed expression e means that I', X + e : 7 for some
type 7, and a well typed state means that X + o.

If an expression e and state o are well-typed, then after nor-
malisation, the pair e’, ¢’ either fails, or there exists some input i
that can be handled by it under the handling semantics. In order to
prove this Theorem, we need to show that the failing function ¥
behaves as desired.

THEOREM 6.5 (FAILING MEANS NO INTERACTION POSSIBLE). For
all well typed expressions e and states o, ande,o || e’,0’, we have
that F(e’,0’") = True, if and only if there is no input i such that

13
e’/ — e, 0" forsomee’ and o’ .

The Theorem above states that an expression e and state o are
failing, if, after normalisation, there exists no input that can be
handled by it. We prove the theorem to be true by induction on e’.

We now have the ingredients to prove Theorem 6.4.

Proor. GivenT,> + e : TAsk r and X + o and after normalisation
e,o | e’,0’, we find ourselves in either one of the following
situations:

. ) i
There exists an i such thate’, 6’ — e’’,c”.

There does not exist an i such that e’, ¢’ N e”’, o . In this
case, we know that F(e’, ¢’) must be true, by Theorem 6.5. O

6.3 Soundness and Completeness of Inputs

In order to validate the function that calculates all possible inputs
I, we want to show that the set of possible inputs it produces is
both sound and complete with respect to the handle semantics. By
sound we mean that all inputs in the set of possible inputs can
actually be handled by the handle semantics, and by complete we
mean that the set of possible inputs contains all inputs that can be
handled by the handle semantics. Theorem 6.6 expresses exactly
this property.

THEOREM 6.6 (INPUTS FUNCTION IS SOUND AND COMPLETE). For
all well typed expressions e, states o, and inputs i, we have that
i € I(e,0) if and only ife, o N e/ o’

We prove the above theorem by induction over e. The proof is
listed in the appendix.

6.4 Outlook

At this point we have specified a formal language for task-oriented
programming, given its semantics, and proved its safety. The main
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motive to formalise this paradigm, is to be able to reason about
tasks. In future work, we plan on utilising the formalisation to do
so. Firstly, we would like to express properties of tasks and prove
them. For example, one would like to prove that, no matter what, in
Example 3.1 breakfast is always being served. Secondly, we would
like to explore what it means for two tasks to be equal. One could
have noticed that some operators have a monadic or applicative
feeling. The combination of > and O could form a (lax) monoidal
functor, ¢ is similar to applicative choice, and » looks like a bind
operation. We need a correct understanding of equivalence of tasks,
taking the interactive setting into account, to prove this. Thirdly,
we do not know yet if the more complex combinators of iTasks are
expressible in the basic combinators of Top. We implemented Top
on top of iTasks, so we know it is a subset, but we also know iTasks
can do more. A more in depth description of future work can be
found in Section 8.

7 RELATED WORK

The work presented in this paper lies on the boundary of many
areas of study. People have looked at the problem of how to model
and coordinate collaboration from many different perspectives. The
following subsections give an overview of related work from the
many different areas.

7.1 TOP implementations

iTasks. As mentioned earlier, iTasks is an implementation of ToP.
iTasks has many features, and its basic combinators are versatile
and powerful. Simpler combinators are implemented by restricting
the powerful ones. This is useful for everyday programming, where
having lots of functionality at one’s fingertips is convenient and
efficient. TOP on the other hand does not include the many different
variations of the step- and parallel combinators of iTasks. To name
two examples, the combinators (>>|) and (| |-) are variations of
step and parallel that ignore the value of the left task.

There have been two previous papers that describe semantics
of iTasks, by Koopman et al. [14] and Plasmeijer et al. [23]. Both
give a different semantics in the form of minimal implementations
of a subset of the interface of iTasks. These semantics however do
not make an explicit distinction between the host language and
task language and they do not provide an explicit formal semantics.
Therefore, the do not lend itself well for formal reasoning.

mTasks. The mTasks framework [13] is an implementation of
Top geared towards 10T devices. As TOP its basic combinators are a
subset of iTasks. They are similar to those of Top. However, on 10T
devices it is useful to continue running tasks endlessly, which is
done in mTasks using a forever combinator. This is currently not
possible in ToP.

As for iTasks, there is currently no formal semantics for mTasks.

7.2 Worfklow modelling

Much research has been done into workflow modelling. This work
focusses on describing the collaboration between subsystems, rather
than the communication between them. The systems described in
the literature follow a boxes and arrows model of specifying work-
flows. Control flow, represented by arrows, usually can go unre-
stricted from anywhere to anywhere else in a workflow. We see
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ToP as the functional programming of workflows, as opposed to
this goto-style.

Workflow patterns. Workflow patterns are regarded as special
kind of the design patterns in software engineering. They identify
recurring patterns in workflow systems, much like the combina-
tors defined by Top. Work by van der Aalst et al. [30] defines a
comprehensive list of these pattens, and examines their availabil-
ity in industry workflow software. Workflow patterns are usually
described in terms of control flow graphs, and no formal specifica-
tion is given, which makes comparison and formal reasoning more
difficult.

Workflow Nets & YAWL. Workflow Nets (WrN) [28] allow for the
modelling and analysis of business processes. They are graphical
in nature, and clearly display how every component is related to
each other. A downside of WFN is that they do not facilitate higher
order constructs. Also, they are often not directly executable.

A language based on WFN that is actually directly executable is
YAWL by van der Aalst and ter Hofstede [29]. It facilitates modelling
and execution of dynamic workflows, with support for and, or and
xor workflow patterns. As mentioned, YAWL programs consist of
WFN, and are therefore programmed visually.

BPEL. BPEL [20] is another popular business process calculus.
The standardised language allows for the specification of actions
within business processes, using an XML format. The language is
mainly used for coordinating web services. Two workflow patterns
are supported; execution of services can be done sequential or in
parallel. On top of that, processes can be guarded by conditionals.
There is no support for higher order processes however. Processes
described in BPEL can be regarded as activity graphs, and they can
also be rendered as such. The specified processes in BPEL are directly
executable, just like YawL.

7.3 Process algebras

Differences. There are two main differences between Top and
process algebras. The first is a difference in scope. Process algebras
focus on modelling the input/output behaviour of processes, by ex-
plicitly stating which actions are sent and received at certain points
in the program. The goal of process algebras is formal reasoning
about the interaction between processes. Typically, one wishes to
prove properties such as deadlock-freedom, liveness, or adherence
to a protocol specification.

The focus of ToP on the other hand is to model collaboration
patterns, with the explicit goal of not having to specify how ex-
actly subtasks communicate. The declarative specification of data
dependencies between subtasks enables Top to hide such details.

The second difference concerns internal communication. There
are two forms of communication between tasks: Passing values to
continuations and sharing data. This is different from communica-
tion in process algebras, which is based on message-passing.

Similarities. There are some aspects that are similar in ToP and
process algebras. Internal communication in Hoare’s CSP [9] is
introduced with the concealment operator. The semantics of CSP
requires that all concealed actions are handled to exhaustion before
any action with the environment can take place. This is somewhat
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similar to TOP, where all enabled internal steps must be taken until
the system can react to input events again. Contrast this with
Milner’s CCS [18], where concealed actions are visible to the outside
as r-actions, and can be interleaved with external communication.

Another similarity between TOP and process algebras, or any
system with concurrency for that matter, is the need for synchroni-
sation. Broadly speaking, concurrency means that different parts
of a program can interact with the environment independently, in
an interleaved manner. Synchronisation means that only some, but
not all, of the possible interleavings are desirable. The semantics
of the step combinators in Top, together with the fact that internal
communication happens atomically, allows for concise and intuitive
synchronisation code.

7.4 Reactive programming

HipHop & Esterel. HipHop [3, 4] is a programming language
tailored to the development of synchronous reactive web systems.
From a single source, both server and client applications can be
generated. Programs are written in the Hop language, a Scheme
dialect. Communication is based on a reactive layer embedded
in Hop. The set of HipHop reactive statements is based on those
of the Esterel language [2, 5]. Each reactive component starts by
specifying possible input and output events. The component then
proceeds as a state machine.

Input events are sent to such a machine programmatically us-
ing Hop, or are explicitly wired to events from the client. They
are optionally associated with a Hop value. As Hop is a dynamic
language, and HipHop uses strings to identify events, events and
their possible associated values are not statically checked. Events
are aggregated until the moment the machine is asked to react. The
machine is executed and reacts by building a multi-set of output
events. The execution of a HipHop machine is atomic. The set of
inputs is not influenced by the current computations.

As with Top, HipHop is a DsL embedded in a general purpose
programming language. Another similarity is that both specifi-
cations lead to executable server and client applications from a
single source. However, both HipHop and Esterel are more low
level regarding their specification. Where Top takes tasks and col-
laboration as a starting point, HipHop focusses on synchronous
communication and atomic execution of reactive machines.

This difference in focus shows in the way both systems define
events. In HipHop programmers can define and use their own
events. Inputs in TOP are not extensible and not visible to the devel-
oper. They are a completely separate entity living on the semantic
level.

Another important difference is the way in which both systems
handle events. In HipHop the programmer decides when a machine
should process its events. This could be just one event, or a multi-set
of events that are processed simultaneously. TOP always processes
an input the moment it occurs and only handles a single event in
one instance.

Functional reactive programming. Functional Reactive Program-
ming (FRP) is a paradigm to describe dynamic changes of values in
a declarative way. This is done by specifying networks of values,
called behaviours, that can depend on each other and on external
events. Behaviours can change over time, or triggered by events.

Tim Steenvoorden, Nico Naus, and Markus Klinik

When a behaviour changes, all other behaviours that depend on
it are updated automatically. The underlying implementation that
takes care of the updating usually can tie input devices, like mouse
and keyboard, to event streams and behaviours to output facili-
ties, like text fields. This allows for declarative specifications of
applications with user interfaces.

The idea of FRp was pioneered by Elliott and Hudak [8]. In the
meantime there are many variants and implementations, where
reactive-banana [1], FrTime [6], and Flapjax [17] belong to the most
well-known.

FRP and ToP are different systems that have different goals in
mind. Whereas FrP expresses automatically updating data depen-
dencies, ToP expresses collaboration patterns. Top has no notion of
time. Tasks cannot change spontaneous over time, while behaviours
can. Only input events can change task values. The biggest concep-
tual difference between a workflow in Top and a data network in
FRP is that an event to a task only causes updates up until the next
step, while an event in FRP propagates through the whole network.

That being said, there are some concepts that are similar in ToP
and Frp. The stepper behaviour, for example, is associated with
an event and yields the value of the most recent event. This is
similar to editors in Top. Furthermore, both systems can be used to
declaratively program user interfaces, albeit in FRp the programmer
has to construct the Gul elements manually, and connect inputs
and outputs to the correct events and behaviours. In Top graphical
user interfaces are automatically derived.

7.5 Session types

Session types are a type discipline that can be used to check whether
communicating programs conform to a certain protocol. Session
types are expressions in some process calculus that describe the
input/output behaviour of such programs. Session types are useful
for programming languages where modules communicate with
each other via messages, like csp, w-calculus, or Go, to name a
few. The only form of messages in TOP are input events which
drive execution, but modules do not communicate using messages.
Therefore, session types are not applicable to ToP in the sense used
in the literature.

Formal reasoning about Top programs is one of our future goals
for Top. The ideas and techniques of session types could be useful
for specifying that a list of inputs of a certain form leads to desired
task values. The details are a topic for future work.

8 CONCLUSION

In this paper we have identified and intuitively described the essence
of task-oriented programming. We then formalised this essence by
developing a domain-specific language for declarative interactive
workflows, called Top. The task language and the host language
are clearly separated, to make explicit where the boundaries are.
The semantics of the task layer is driven by user input. We have
compared ToP with workflow modelling languages, process alge-
bras, functional reactive programming and session types to point
out differences and similarities. Finally, we have proven type safety
and progress for our language.

Future work. There are a couple of ways in which we would like
to continue this line of work.
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One of the main motivations to formalise task-oriented program-
ming is to be able to reason about programs. In this paper we reason
about the language itself, but it would be nice to prove properties
about individual programs. To this end, we are very interested to
see if it is possible to develop an axiomatic semantics for Top that
allows us to do so. There are certain properties of our language that
make this particularly complex: We have to deal with parallelism,
user interaction, and references.

We would also like to prove whether certain programs are equiv-
alent, for example to show that the monad laws hold for our step
combinator. This requires a notion of equality, which in the pres-
ence of side effects most certainly needs some form of coalgebraic
input-output conformance. We have implemented the reduction
semantics of our language in Haskell, whose type system could aid
in the formalisation of such proofs.

Another form of reasoning about programs is static analysis.
Klinik et al. [11] have developed a cost analysis for tasks that require
resources in order to be executed. This analysis was developed for
a simpler task language, and could be brought over to the one
developed here.

Naus and Jeuring [19] have looked at building a generic feedback
system for rule-based problems. A workflow system typically is
rule based, as outlined in their work. It would be interesting to fit
the generic feedback system to TOP in order to support end-users
working in applications developed in this language.

Additionally, we would like to develop visualisations for Top
language constructs. An assistive development environment in-
tegrating these visualisations and the presented textual language
would aid domain experts to model workflows in a more acces-
sible manner. A system that visualises iTask programs has been
developed in the past [26].
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A ADDITIONAL RULES

A.1 Evaluation rules

E-Arp E-IFTRUE E-REF

e,o0 | Ax:tef,0’  eno’ | va,0”  eflx vl o’ | v,o" e;,o | True,o’ eo’ | v,d” e,c | v,0’ ¢ Dom(c’)

7

eie, 0 | v,0 ife; theneselsees, o | v, 0’ refe,oc | L,o/[l — v]

E-IFFALSE E-DEREF E-VALUE E-AssiGN
e;,0 | False,c’ e3,0" | v,0” e,o | Lo’ e,o | Lo’ eno’ | vy, 0"
ife; theneselsees, o | v, 0" le,o | o’(l), 0’ v,0 | v,0 e1:=ez0 | (),0”[l— vy]

E-PAIr E-EpiT E-ENTER E-UPDATE E-THEN
/7 7’ 14 7’ ’ 7’
e, | v,0' ey’ | w0 e,o | v,0 e,o | lo e,o | 1,0
(er,e2),0 | (v1,v2),0” Oe,0c | Ov,0’ Rr,0 | ®7,0 me,c | ml o’ e1»ey0 | t1»er o’

E-NExT E-AnD E-FaIL E-Or E-XoRr
e1,o0 | t1,0’ e1,o0 | t1,0’  exo’ | ta,0” - el,o | t1,07  eyo’ | ty,0”
e1>eyo | t1>e 0’ el Xez, 0 | t1 ™ty 0’ 4,01 4,0 e14ey0 | t1 ¢, 0" e10eso | e1deo

A.2 Typing rules

T-VAR T-Loc T-PaIr T-ABs T-Arp
x:7€Tl SHh=p ILYrer:rm TLEFer:m Tx:7],Zre: 1 ILYXtey:tp > ILXre:n
ILXrx:7T T,2+1:Rerf [, F (e, e2): 71 X1 ILXrAx:11.6:71 > 1y I, +eez: 1

T-Ir T-REF T-DEREF T-AssIiGN
INYXre:Boor T,Xrey:r T,Xre3:rT ILXre:p ILXFe:Rerf ILXFe;:REFf T, Ztre:p
I,X + ife; theneyelsees : 7 I,2rrefe: Rerf ILX+le:p T,XFep:=ey:UNIT
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B PROOFS
B.1 Theorem 6.1

Proor. We prove Theorem 6.1 by induction on e:

Casee = Ax : T.e,e1e2,x,¢, 1, e1 x ey, ife; thenes else es, (eq, e2), (), refe, le,e; := ey

Preservation has been proven for these cases by Pierce [22].

E-EpIT
Case e,o | v,0’
Oe,0 | Ov,0’
Given that I, 3 + Oe : Task7r and I, 3 + s, T-EpIT gives us that I, X + e : 7. The induction hypothesis gives us that e,s | v,s also
preserves, and thus I, X + v : 7 and T, 3 + s’. Therefore T, 2 + Ov : TAsk 7.
E-ENTER
Case
R7,0 | R1,0
Evaluation does not alter e and s, therefore this case holds trivially.
E-UPDATE
Case lLa
me,oc | ml o’
Given that T, 2 + Oe : Task 7 and T, 3 + s, T-UPDATE gives us that T, 3 + e : ref 7. The induction hypothesis gives us thate,s | I, s" also
preserves, and thus I, + [ : refr and I, 3 + s’. Therefore I, = + m [ : TAsk 7.
E-FaIL
e

é?o- J’ é’o.

Evaluation does not alter e and s, therefore this case holds trivially.

Cas

E-THEN
Case ei,o | ti,o’
ei» ez, 0 l t1» ey, 0’
Given that I, X + ey » ey : TAsk7 and I, 2 + s, T-THEN gives us that I, X + e; : TAsk7; and I', X + ep : 71 — Task 7. By the induction
hypothesis, we know that e1,s | t1,s” preserves and thus T, + t1 : TAsk 7y and T, 2 + s’ Therefore T, 2 + ¢ > ez : TASK 7.

E-NExT
Case ei,o | t,0’
ej1>ez, 0 l t1>ey,0’
Given that T, X  e;>ey : TAsk7 and I', ¥ + s, T-NEXT gives us that I', 2 I e; : TAsk7; and I', X + ez : 71 — Task 7. By the induction
hypothesis, we know that e1,s | t1,s” preserves and thus T, + ¢ : Task 7y and I, 3 + s. Therefore I, 3 + t1 > e : TASK 7.

E-AND
Case ey, o l tl,O'/ 62,0', l tz,o‘”
e1™ez, 0 ,L t1 X tg, 0"
Given that I, X + e; ep : TAsk(r; X 72) and I, 3 + s, T-AND gives us that I, 3 + e; : Task7; and I, 3 + ey : TAsk 72. By the induction
hypothesis, we know that both ej,s | t1,s” and ez,s” | t,s”" preserve and thus I, + 7 : Task 71, [, 2 + s/, [, 3 + 5 : TASK 73 and
I3+ s”. Therefore I, 3  t; bty : TASK(ry X 72).

E-Or
Case ¢, 5 | 11,0’ eno’ | t2,0”
e14ex,0 | t1 #t,0"
Given that T, X + e; #e2 : TAsk 7 and I, 2 + s, T-OR gives us that I, ¥ + eg : TAsk 7 and I', T + e : TAsk 7. By the induction hypothesis, we
have that both e1,s | t1,s" and ez, s” | t2,s” preserve and thus I, 2 + t; : TAsk 7, [, 2 + s’, [, 2 + t3 : TAsk7 and I, ® + s”’. Therefore
Xkt 6ty : TAsKT.

E-Xor
Case

e10eo | e10eo
Evaluation does not alter e and s, therefore this case holds trivially.
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B.2 LemmaB.1

LEMMA B.1 (TASK VALUE PRESERVES TYPES). For all expressions e and states o such thatT, 2 + e : TAskt and T, X + o, if V(e,0) = v, then
VT,

ProoF. We prove Lemma B.1 by induction over e.

Case V(Ov,s) =v
By T-Edit, if T, + Ov : Task 7, then T, X F v : 7.

Case V(Rt1,s) = L

Since this case does not lead to a value, the lemma holds trivially.

Case V(ml,s) = s(l)
Given that T, X + [ : Task 7 and T, 3 + s, we know that T, 2 + s(I) : 7 by definiton.

Case V(4,s) =L

Since this case does not lead to a value, the lemma holds trivially.

Case V(t1 » e2,s) = L

Since this case does not lead to a value, the lemma holds trivially.

Case V(ta>e2,5) = L

Since this case does not lead to a value, the lemma holds trivially.

Case V(i1 »aty,s) = (v, v2) given that V(t1,s) = v1 A V(t2,s) = vy

By T-AND we have that T, X F t1 bty : TAsk(r1 X 72) and I, X F #1 : 7y and I, T + #3 : 7o. By the induction hypothesis, V(t1,s) = v; and
V(tz,s) = vg preserve, and thus I, 2 + v; : 77 and I, 2 + vy : 3. This gives us that I', 3 + (v1, v2) : TASK(] X 12).

Case V(1 ™ ty,s) = L given that =(V(t1,s) = v1 A V(i2,5) = v2)

Since this case does not lead to a value, the lemma holds trivially.

Case V(t1 ¢ £2,5) = v given that V(t1,s) = v;

By T-Or we have that I, X I t; 2 : TAskz, and I', 2  t; : TAsk7 and I, 2 + t5 : Task 7. By the induction hypothesis, we have that
ILXro:T.

Case V(t1 ¢ 12,s) = vy given that V(t1,5) = L A V(t2,5) = vg

By T-Or we have that I, X I t; 2 : TAskz, and I, 2  t; : Task7 and I, 2 + t3 : TAsk 7. By the induction hypothesis, we have that
ILXrovy:T.

Case V(t1 ¢ t2,5) = L given that V(t1,s) = L A V(t2,s) = L

Since this case does not lead to a value, the lemma holds trivially.

Case V(t1 0 t2,s) = L

Since this case does not lead to a value, the lemma holds trivially.
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B.3 Lemma B.2
LEMMA B.2 (STRIDING PRESERVES TYPES). For all expressions e and states o such thatT,3 + e : TAskt and [, + o, ife,o ~» e’,0’, then
I,S+e :Taskt andT, 2 + o’.

Proor. We prove Lemma B.2 by induction on e:

S-FaIL
Case
4,0 w 4,0
Since this case does not alter the expression, the theorem holds trivially.

S-Xor
Case

e10e,0 W e1dero
Since this case does not alter the expression, the theorem holds trivially.

S-U
Case PDATE

ml,oc ~» ml o
Since this case does not alter the expression, the theorem holds trivially.
S-FiLL
Case
R7,0 v R7,0
Since this case does not alter the expression, the theorem holds trivially.
S-Ep1T
Case
Ov,0 ~ 00,0
Since this case does not alter the expression, the theorem holds trivially.

S-AND
Case ;.0 ti,o!  to' w 10"

™My, 0 ~ t{ > tz’,a”
Given that I, 3 F #; b t3 : TAsk(z; X 72), by T-AND WE have I, 3 + #; : 77 and I, 3 + t : 72. By the induction hypothesis, we also have
[, +rt]:7and T, X+t : 2. This gives us that T, 2 + ¢ bat; : TAsk(ry X 12).

S-NEexXT
Case H,0 t{, o’

t1>e,0 ~ t{>ey 0’

Given that T, + e1 > ey : TAsk 7, T-THEN gives us that I', X + #; : TAsk 7y and I, X + e : 77 — Task 7. By the induction hypothesis, we
know that t; ~> t] preserves and thus T, 3 + ¢ : Task ;. Therefore T, 3 - t] > e : TASK 7.

S-ORLEFT
Case 1,0 t),o’
———— V(],0') =
i1 $12,0 w1, o’
Given that I, 3  t; 4 t2 : TAsk 7, by T-OR we have I', - t; : TAsk 7. By the induction hypothesis, we know that t; ~» t] preserves and
thus T, X + ¢] : Task 7.

S-ORRIGHT
Case t,6 t{,a’ ty, 0’ > tz’,o"'

V(@!,6')= LAV, 0")=v
41,0 ~ t),6" (t- ") (t3:0") = 02

Given that I, X + t1 ¢ t : TAsk 7, by T-OrR we have I', T + 3 : TAsk 7. By the induction hypothesis, we know that t; ~» té preserves and
thus T, X + tz’ : TASK T.

S-ORNONE
Case ;.0 o tl,o!  to' w 10"

V@, 6)=LAV(H,0")=1
t by, 0~ 6t 0" (t107) (t:)

Given that I, X I t; ¢ t2 : TAsk 7, by T-OR we have I', X + t; : Task 7 and I, ¥ F t3 : Task 7. By the induction hypothesis, we know that
t1 ~» t]and ty ~» t; preserve, and thus T, X + t] ¢t : TASK 7.
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S-THENSTAY
Case 1,0 w» [{’0"

V!, oc)=1
t1» ez, 0 v t{bez,o" (1 )

Given that T, 2 I t; » ep : TAsk 7, by T-THEN we have I, 2 + t; : TAsk 77 and I, X + ez : 71 — TAsk 7. By the induction hypothesis, we know
thatt; ~» t] preserves, and thus T, X - t] » ez : TAsk 7.

S-THENFAIL
Case ;.0 v tj,0'  exvi, 0’ | t,0”

V(t!,0’) =v1 A F(tz, 0"
t1»e2,0 > t{ ey 0’ (97 ! (82,07)

Given that T, 3 + t; » ep : TAsk 7, by T-THEN we have I', X + ¢; : TAsk 71 and e : 71 — TAsk 7. By the induction hypothesis, we know that
1w tl' preserves, and thus I, X + tl’ » ey : TASKT.

S-THENCONT
Case t,0 t;, o' exvi,o’ | to"

1L »eo s ty,0” (V(t{’ o) = v A =F(tz,0")

Given that T, X I t; » ez : TAsk 7, by T-THEN we have I', ¥ +- t; : TAsk 77 and I', £ + ez : 71 — Task 7. By the induction hypothesis, we know
that t; > t] preserves. By Lemma B.1, we know that V(¢]) = vy preserves. By Theorem 6.1 we know that ezv; | t; preserves. And
finally by the induction hypothesis, we know that t, ~» t; preserves. Therefore I', 3 - £} : TASK 7.

[m]

B.4 Theorem 6.2

ProoF. We prove Theorem 6.2 by induction on e:

N-DoNE
Case ¢ 5 | 1,6/ t,0’ w t,o"
e,o || t,o’
Given thatT,2 + e : TAsk7 and I, 2 + s, we know that T, 3 + ¢ : TAskr and I, 3 + s’ by Theorem 6.1. Then by Lemma B.2, we have
I+t :Taskr and T, 2 + s”’.

o' =ad’Nt=1t

N-REPEAT
Case e,o | to to! ~ t, o t,o" |t o
e, o U t, o’
Given that T, + e : TAsk7 and I, + s, we know that T, 2 + ¢ : TAsk7 and I, 2 + s’ by Theorem 6.1. Then by Lemma B.2, we have
I3+ ¢’ : Taskt and T, 2 + s”’. Then by the induction hypothesis, we finally obtain that T, X + ¢’ : TAskr and I, = + s"”/.

O";/:O'"Vt;tl"

[m]
B.5 Theorem 6.3
We require the following Lemma for this proof.
LEMMA B.3. Given thatT,2X+s,%(l) =t andT,3 + v : t, it holds thatT, % + s[l — v]

This lemma follows immediately from definition.
Proor. We prove Theorem 6.3 by induction on e:

H-CHANGE
Case

’

- v,v T
%
Ov,0 — 0Ov’,o
Given that I, 3 + Ov : Task7 and I, 3 + s, the H-CHANGE rule additionally gives us that v, v’ : 7. Therefore by T-Ep1T we have that

I, +0Ov" :TAskT.

H-FiLL
Case
N 4

v
vl
R7,0 —> 0O, 0

Given that T, + Rz and I, 3 + s, the H-FiLL rule additionally gives us that v’ : 7. Then by T-ENTER we have I, X + 00’ : TAsk 7.
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H-UpPDATE
Case

- o(l),v : 7

mlo — ml o[l ]
Given that I, X + m[ : Task 7 and I', 2 + s. This gives us that 2(I) = 7, and we additionally obtain s(I), v" : ¢ by H-UpPDATE. By application
of Lemma B.3 this case holds.

H-PickLEFT
Case  ¢0 | 11,0’

=5 (t1,0')
e10e,0 — 11,0’
Given that T, X + t; 0t : TAsk 7 and T, 2 + s, then by T-Xor we have I, X  t; : TASK 7.

H-PickRIGHT
’
Case ¢ 0 | 0

~F(t2, 07)
e10e,0 — fyo'
Given that T, X + t; 0t : TAsk 7 and T, 2 + s, then by T-Xor we have I, X  t3 : TASK 7.

H-NexT
Case ¢ 01,0 || 1,0

(V(tl, O') =v1 A —"7’_(1'2, O'/)

ti>ey, 0 — ty, 0’
Given thatI', ¥  t; > ey : TAsk 7 and I, T + s. Then by T-NexT, we have I, ¥ + t; : TAsk 71 and I', ¥ + ez : 771 — Task 7. Then by T-THEN we
obtain T, > + t; » ey : TASKT.

H-PAssTHEN

1
Case o — t{’o,l

t1»es0 = t]» ez, 0’
Given that T, X  ty » ez : Task7 and I', X + s, T-THEN gives us that I, X + t; : Task7; and I', 2 + ey : 71 — Task 7. By the induction

hypothesis, we know that #1, s N t;,s’ also preserves and thus I, X + t{ : Task 71 and T, Sigma + s’. By T-THEN we now obtain that
>+ t{ » ey : TASK T.

H-PassNEXT

1
Case t.o t{’o_l

i#C ,
t1>e,0 — tll>€2,(7
Given that T, X + t; >ey : Task7 and I, X + s, T-NEXT gives us that I, ¥  t; : Task7; and I, X + ez : 71 — Task 7. By the induction

hypothesis, we know that 1, s = t{,s’ also preserves and thus I, 2 + t] : Task 7y and T, Sigma + s’. By T-NEXT we now obtain that
Ir,>+ t{ > ey : TASKT.

H-FIRSTAND

1
Case t.o t{,a’

Fi o,
1 MWy, 0 — tllxltz,O"
Given that I, X F 1 paty : TAsk(r; X 72) and I, 2 + s, T-AND gives us that I, 2 + #; : Task 71 and I, 3 + t3 : TAsK 72. By the induction

hypothesis, we know that #1, s N t],s’ also preserves and thus I, X + t] : Taskry and I, X + s’. Therefore by T-NEXT we obtain
[,3 F t] sty : TASK(ry X 72).

H-SECONDAND

L
Case tro — 5,0’

Si i
t1 Mty 0 — ty >t 0’
Given that I, 3 F #; »aty : TAsk(r; X 72) and I, 2 + s, T-AND gives us that I, 3 + #; : TAsk 71 and I, 3 + tp : TAsK 72. By the induction

hypothesis, we know that 3, s LN t;,s’ also preserves and thus I, X + t; : TAskrz and I, X + 5. Therefore by T-NEXT we obtain
I2Ft té : TAsK(7y X 12).
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H-FIrsTOR

i
Case t,o tll’ o’

Fi ,
t1¢tr,0 —> t10t2,0'/
Given that T, X  t; #t2 : Task 7 and I, X + s, T-OR gives us that I, ¥ + ¢ : TAsk 7 and I, 2 + t : TAsk 7. By the induction hypothesis we

know that t1, s N t1,s’ also preserves, and therefore I, X + t] : TaAsk 7 and T, X + s”. By T-OR we now obtain I, = - ] # £ : TAsk .

H-SEcoNDOR

1
Case th, o tZ’,U’

Si ,
t1 4t 0 — 11 Qtz,(r’
Given that T, X  t; ¢ty : Task 7 and I, X + s, T-OR gives us that I, £ + ¢ : TAsk 7 and T, 2 + t : TAsk 7. By the induction hypothesis we

know that t5, s N t;,s’ also preserves, and therefore I', X + t : Task 7 and T, X + s”. By T-Or we now obtain I, 2 - t; # ¢ : TAsK 7.
O

B.6 Theorem 6.5

Proor. We prove Theorem 6.5 by induction on e’.

Casee =4

F(4,s) = True, and there is no handling rule that applies to fail.

Casee=0v

I3+ Ov:Taskz, F(Ov,s) = False, and there exists an input i, namely v’ : 7.

Casee=RT7T

F (= 1) = False, and there exists an in put i, namely v : 7.

Casee=m!

Given that T, X + m [ : Task 7, ¥ (m 1, s) = False, and there exists an input i, namely v : .

Casee =11 > ey

F(t1 > e2,5) = F(t1,5). If there exists an i for #1, then this i also applies to t; » 3. This case therefore holds by the induction hypothesis.

Casee=1t1>ep

F(t1 > ez, s) = F(t1, ). If there exists an i for #1, then this i also applies to t; > ez. This case therefore holds by the induction hypothesis.

Casee=¢e10¢e

We normalise the two expressions first, e1,s ~> t1,s”, e2,5 ~> 12,5 and we can then be in two situations. One, we can have that F(#1, s”)
and F(t2, s”) are both true. If that is so, then by definition, we have both F(e; ¢ e2, s) and no rule of the handling semantics applies, and
therefore there exists no input for this case.

Or we are in the situation where one or both of the two sub expressions does not fail. In that case, we know that ¥ (e; ¢ e2, s) does not
hold, and that at least one of the handling rules applies. Therefore, there must be an input i, namely L, R or both.

Casee =11 Xty

We can again find ourselves in one of two situations. In the first case, both sub expressions fail, ¥ (t1,s) and ¥ (2, s). In that case, we
know that F(#;  t2, s) also fails by definition. By the induction hypothesis, we know that for both #; and #; there is no input that can be
handled. Since the only two rules for > that handle input just pass this input on to one of the two expressions, we know that indeed no i
applies.

In the case that one or both sub expressions do not fail, then by definition #; > t; not failing under s. Again by induction hypothesis,
we know that for one or both of the expressions, there exits an i that can be handled. Then by H-FirstAnd and H-SecondAnd, we know
that we can pass this i, by prefixing it with either F or S.

Casee =11 41

We can again find ourselves in one of two situations. In the first case, both sub expressions fail, 7 (¢1, s) and 7 (¢2, s). In that case, we know
that (¢ # t2, s) also fails by definition. By the induction hypothesis, we know that for both #; and t; there is no input that can be handled.
Since the only two rules for ¢ that handle input just pass this input on to one of the two expressions, we know that indeed no i applies.
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In the case that one or both sub expressions do not fail, then by definition ¢; ¢ ¢ not failing under s. Again by induction hypothesis, we
know that for one or both of the expressions, there exits an i that can be handled. Then by H-FirstOr and H-SecondOr, we know that we
can pass this i, by prefixing it with either F or S.

O

B.7 Theorem 6.6

Proor. Casee=0v:Taskr,i=0": T

H-CHANGE
Given that , _,we have by definition that 7 (O v : Task 7,s) = {v" : 7, E}, which includes v” : 7.
v,V T

v/
Ov,0 — 0Ov/,0

Casee=Rr71,i=v":7

H-F
Given that tr , _»we have by definition that 7 (® 7, s) = {v” : 7}, which includes v : 7.
_ V7T

U/
R7,0 —> OV, 0

Casee=mI[:Taskr,i=v":1

H-U
Given that AT 0, v 7’ we have by definition that 7 (m![ : Taskz,s) = {v : 7}, which includes v’ : 7.
o), v : 7T

mlo N ml o[l 0]

Casee=1t101t,i =1L
H-PickLErT
Given that er,o | t,0’ ( ), we have by definition that 7 (¢ ¢ t2, s) = {L, R}, which includes L.
: . =F(t1,0’

e10e,0 — 11,0’

Casee=1;012,i=R
H-P1ckRIGHT
Given that e, 0 | to, 0’ ( y we have by definition that 7 (t; ¢ t2, s) = {L, R}, which includes R.
: . —F(t2, 0’

e10e, 0 — Iy,0’

Casee=1t1>ey,i=C
hat oy have by definition that 7(t; > e2,5) = Z(t1,5) U {C | Vi(t1,5)
Given that tr. o’ , we have by definition that 7 (t; > e2,s) = Z(t1,5) U {C | V(t1,s) = v1 A
esv,0 | ta,0 V(t1.0) = 01 A ~F (1. 0)

ti>e, 0 — t,0’
—F (e2v1,s ~> )}. If the H-Next rule applies, this means that the conditions V(t1, s) = v1 A =F (eav1,s ~» ) are fulfilled, and therefore C
is contained.

Casee=t1>ey,i#C
H-PAssNEXT

Given that , we have by definition that 7 (¢; > e, s) = I (t1,5) U {C | V(t1,5) = v1 A =F (e2v1,s ~ )}. By

! ’r
t1,0 — tl,a

i#C
1 >eyo0 — tll>ez,0"
the induction hypothesis, we have that i € 7(t, s), and by definition of 7, i is therefore also included in this case.

Casee =1t »ey,i
H-PAssTHEN

Given that , we have by definition that 7 (¢; » ez, s) = Z(t1,s). By the induction hypothesis, we have that

! ’ s
t,o — 1,0

t1» e, 0 LI » e, 0’
i € I(t1,s), and by definition of 7, i is therefore also included in this case.

Casee =t >ty i=Fi
H-FIRSTAND

Given that we have by definition that 7 (¢; > ty,s) = {F i | i € Z(t1,s)}U{S i | i € I (t2,s)}. By the induction

t o
t,o — tl,O'

>
1Mty 0 SN t{lxll'z,O”
hypothesis, we have that i € 7(t1, s), and by definition of 7, Fi is therefore als included in this case.
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Casee =t ty,i=Si
H-SEcoNDAND

Given that we have by definition that 7 (¢t; > ty) = {F i | i € Z(t1,s)} U{S i| i € I (t2,5)}. By the induction

1
tr,o0 — tj, 0’

5
t1 Xty 0 =2t tyvaty, o’
hypothesis, we have that i € 7(f, s), and by definition of 7, Si is therefore als included in this case.

Casee=1t1 #ty,i=Fi
H-FirsTOR

Given that we have by definition that 7 (¢; #t2,s) = {F i | i € T(t1,s)} U{S i | i € I(t2,5)}. By the induction

L ’r
t,o — tl,a

.
héto — t] 41,0
hypothesis, we have that i € 7 (¢, s), and by definition of 7, Fi is therefore als included in this case.

Casee =1t #12,i=Si
H-FirsTOR

Given that we have by definition that 7 (t; #t2,s) = {F i | i € I(t1,5)} U{S i | i € Z(t2,s)}. By the induction

L r o
t,o — tl,cr

>
t 4ty 0 — t{#t2,0’
hypothesis, we have that i € 7(f, s), and by definition of 7, Si is therefore als included in this case.
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