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ABSTRACT

Software that models how people work is omnipresent in today’s so-

ciety. Current languages and frameworks often focus on usability by

non-programmers, sacrificing flexibility and high level abstraction.

Task-oriented programming (TOP) is a programming paradigm that

aims to provide the desired level of abstraction while still being

expressive enough to describe real world collaboration. It prescribes

a declarative programming style to specify multi-user workflows.

Workflows can be higher-order. They communicate through typed

values on a local and global level. Such specifications can be turned

into interactive applications for different platforms, supporting col-

laboration during execution. TOP has been around for more than a

decade, in the forms of iTasks and mTasks, which are tailored for

real-world usability. So far, it has not been given a formalisation

which is suitable for formal reasoning.

In this paper we give a description of the TOP paradigm and

then decompose its rich features into elementary language elements,

which makes them suitable for formal treatment. We use the simply

typed lambda-calculus, extended with pairs and references, as a base

language. On top of this language, we develop TopHat, a language

for modular interactive workflows. We describe TopHat by means

of a layered semantics. These layers consist of multiple big-step

evaluations on expressions, and two labelled transition systems,

handling user inputs.

With TopHat we prepare a way to formally reason about TOP

languages and programs. This approach allows for comparison

with other work in the field. We have implemented the semantic

rules of TopHat in Haskell, and the task layer on top of the iTasks

framework. This shows that our approach is feasible, and lets us

demonstrate the concepts by means of illustrative case studies. TOP

has been applied in projects with the Dutch coast guard, tax office,

and navy. Our work matters because formal program verification is

important for mission-critical software, especially for systems with

concurrency.
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1 INTRODUCTION

Many applications these days are developed to support workflows

in institutions and businesses. Take for example expense decla-

rations, order processing, and emergency management. Some of

these workflows occur on the boundary between organisations and

customers, like flight bookings or tax returns. What they all have

in common is that they need to interact with different people (end

users, tax officers, customers, etc.) and they use information from

multiple sources (input forms, databases, sensors, etc.).

1.1 Tasks

We call interactive units of work based on information sources tasks.
Tasks model real world collaboration between users, are driven by

work users do, and are assigned to some user. Users could be people

out in the field or sitting behind their desks, as well as machines

doing calculations or fetching data.

1.2 Task-oriented programming

Task-oriented programming (top) is a programming paradigm

which targets the sweet spot between faithful modelling workflows

and rapid prototyping of multi-user web applications supporting

these workflows [23]. top focusses on modelling collaboration pat-

terns. This gives rise to a user’s need to interact and share informa-

tion. Next to that, top automatically provides solutions to common

development jobs like designing guis, connecting to databases, and

servers-client communication.

Therefore, a language that supports top should choose the right

level of abstraction to support two things. Firstly, it should provide

primitive building blocks that are useful for high-level descriptions

of how users collaborate, with each other and with machines. These

building blocks are: editors, composition, and shared data. Secondly,

it should be able to generate applications, including graphical user

interfaces, from workflows modelled with said building blocks.

Users can work together in a number of ways, and this is re-

flected in top by task compositions. There is sequential composition,

parallel composition, and choice. Users need to communicate in

order to engage in these forms of collaboration. This is reflected in

top by three kinds of communication mechanisms. There is data

flow alongside control flow, where the result of a task is passed onto

the next. There is data flow across control flow, where information

is shared between multiple tasks. Finally, there is communication

with the outside world, where information is entered into the system

via input events. The end points where the outside world interacts

with top applications are called editors. In generated applications,

editors can take many forms, like input fields, selection boxes, or

map widgets.

https://doi.org/10.1145/3354166.3354182
https://doi.org/10.1145/3354166.3354182
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1.3 Utilisation

Currently, we know of two frameworks implementing top: iTasks

and mTasks. iTasks is an implementation of top, in the form of

a shallowly embedded domain-specific language in the lazy func-

tional programming language Clean. It is a library that provides

editors, monadic combinators, and shared data sources. iTasks uses

the generic programming facilities of Clean to derive rich client

and server applications from a single source. It has been used to

model an incident management tool for the Dutch coast guard [15].

Also it has been used numerous times to prototype ideas for Com-

mand and Control [12, 24], and in a case study for the Dutch tax

authority [25].

mTasks is a subset of iTasks, focusing on iot devices and de-

ployment on micro controllers. It has been used to control home

thermostats and other home automation applications [13]. Both

implementations currently lack formal semantics which are suited

to prove properties about tasks.

1.4 Challenges

Both iTasks and mTasks have been designed for developing real-

world applications. They are constantly being extended and im-

proved with this goal in mind. The different variations of task com-

binators and the details that come with real-world requirements,

make it hard to see what the essence of top is. Also, the tight in-

tegration of both frameworks with Clean, makes it difficult to see

where the boundaries are. This makes formal reasoning about top

programs impossible.

In this paper, we want to take a step back and look at the spirit

of top. We do this both formally and informally. Informally in

the sense that we give an intuitive description of the features that

define task-oriented programming. Formally in the sense that we

develop a language which formalises these features as language

constructs, and we give them a semantics in the style that is com-

mon in programming language research. We separate the task layer

and the underlying host language, both syntactically and seman-

tically. Thus making explicit which properties of top come from

the task layer, and which come from functional programming. Our

challenge, therefore, is to model the properties of top into a lan-

guage and pave the way for formal treatment of top programs. We

give this formal language the name t̂op (TopHat).

1.5 Contributions

Our contributions to workflow modelling, functional programming

language design, and rapid application development are as follows.

(i) We describe the essential concepts of task-oriented program-

ming. (ii) We present a formal language for modelling declarative

workflows, called t̂op, embedded in a simply typed λ-calculus. It

is based on the aforementioned essential top concepts. (iii) We

develop a layered operational semantics for t̂op that is driven by

user input. The semantics of the task language is clearly separated

from the semantics of the underlying host language. (iv) Along with

this semantics, we present the following semantic observations on

tasks: the current value, whether a term is stuck, the current user

interface, and the accepted inputs. (v) We prove progress and type

preservation for t̂op. (vi) Using both the essential concepts and

the formal language, we compare top with related work in areas

ranging from business process modelling, to process algebras and

reactive programming. (vii) We implemented the whole seman-

tic system in the functional programming language Haskell [16].

(viii) To create executable applications, we implemented the task

layer of t̂op in iTasks. This also demonstrates that the former is a

subset of the latter.

1.6 Structure

In Section 2 we demonstrate the functionality of t̂op by means of

an example, Section 3 gives an overview of the essential concepts

of top. Section 4 introduces the t̂op language syntax and Section 5

the semantics. Then in Section 6 we show that certain properties

hold for the language. We take a look at related work in Section 7

and conclude in Section 8.

2 EXAMPLE

In this section we develop an example program to demonstrate

the capabilities of t̂op. The example is a small flight booking sys-

tem. It demonstrates communication on all three levels: with the

environment, across control flow, and alongside it. Also, it shows

synchronisation and input validation.

The requirements of the application are as follows. (i) A user has

to enter a list of passengers for which to book tickets. (ii) At least

one of these passengers has to be an adult. (iii) After a valid list of

passengers has been entered, the user has to pick seats. (iv) Only

free seats may be picked. (v) Every passenger must have exactly

one seat. (vi) Multiple users should be able to book tickets at the

same time.

For this example we assume that the host language has lists

and four functions on them: all, any, intersect, and difference. The

functions all and any check if all or any elements in a list satisfy

a given predicate. The functions intersect and difference compute

the set-intersection and set-difference of two lists. We also make

use of string equality (≡), dereferencing (!), reference assignment

(:=), and expression sequencing (;). For brevity, we omit the type

annotations of variable bindings.

Figure 1: Running web application of the flight booking ex-

ample using a translation to iTasks. It shows three users

booking a flight simultaneously.Thefirst user entered name

and age and continued picking seats. The second is entering

details of two passengers. The ages are not filled in, there-

fore the Continue button is disabled. The message bubble

shows that the age field only accepts integer values. The

third user finished a booking, therefore, the first user can

not pick seats 1b and 1c any more.



TopHat: A formal foundation for task-oriented programming PPDP ’19, October 7–9, 2019, Porto, Portugal

Example 2.1 (Flight booking). We start by defining some type

aliases. A passenger is a pair with name and age. A seat is a pair

with a row number and a seat letter.

type Passenger = String × Int

type Seat = Int × String

Choosing seats requires reading and updating shared informa-

tion. The list of free seats is stored in a reference.

let freeSeats = ref [⟨1,”A”⟩ , ⟨1,”B”⟩ , ⟨1,”C”⟩ , …]
Now we develop our workflow in a top-down manner. Our flight

booking starts with an interactive task ⊠(List Passenger), where

users can enter a list of passengers. A task ⊠τ is an empty editor

that asks for a value of the given type τ . Passengers are valid if their

name is not empty and their age is at least 0. Lists of passengers are

valid if each passenger is valid, and at least one of the passengers is

an adult. When the user has entered a valid list of passengers, the

step after ▷ becomes enabled, and the user can proceed to picking

seats. In case of an invalid list of passengers, the step is guarded by

the failing task  .

let valid = λp. not (fst p ≡ ””) ∧ snd p ≥ 0 in
let adult = λp. snd p ≥ 18 in
let allValid = λps. all valid ps ∧ any adult ps in
let bookFlight = ⊠(List Passenger) ▷ λps.
if allValid ps then chooseSeats ps else  

A selection of seats is correct if every entered seat is free.

let correct = λss. intersect ss !freeSeats ≡ ss in
let chooseSeats = λps. ⊠(List Seat) ▷ λss.
if correct ss ∧ length ps ≡ length ss
then confirmBooking ps ss else  

The function confirmBooking removes the selected seats from

the shared list of free seats, and displays the end result using an

editor, denoted by □.

let confirmBooking = λps. λss.
freeSeats := difference !freeSeats ss; □⟨ps, ss⟩

The main task starts three bookFlight tasks, which could be

performed by three different users in parallel.

bookFlight Z bookFlight Z bookFlight

A screenshot of the running application is shown in Fig. 1.

All instances of the bookFlight task have access to the shared

list of free seats. Rewriting the example in a language without side

effects would not only be cumbersome, obfuscating the code with

explicit threading of state, but it would be impossible to model the

parallel execution of three bookFlight tasks. It is not known upfront

which task will finish first, and thus it is not possible to thread the

free seat list between the parallel tasks.

3 INTUITION

This section gives an overview of the core concepts of task-oriented

programming.

3.1 Tasks model collaboration

The central objective of top is to coordinate collaboration. The basic

building blocks of t̂op for expressing collaboration are task combi-

nators. They express ways in which people can work together. Tasks

can be executed after each other, at the same time, or conditionally.

This motivates the combinators step, parallel, and choice.

Example 3.1 (Breakfast). The following program shows the dif-

ferent collaboration operators in the setting of making breakfast.

Users have a choice (♢) whether they want tea or coffee. They al-

ways get an egg. The drink and the food are prepared in parallel

(Z). When both the drink and the food are prepared, users can step

(▷) to eating the result.

let mkBrkfst : Task Drink→ Task Food→ Task ⟨Drink,Food⟩

= λmkDrink. λmkFood. mkDrink Z mkFood in
mkBrkfst (mkTea ♢ mkCoffee) mkEgg ▷ enjoyMorning

The way the combinators are defined matches real life closely.

When we want to have breakfast, we have to complete several

other tasks first before we can do so. We decide what we want

to have and then prepare it. We can prepare the different items

we have for breakfast in parallel, but not at the same time. For

example, it is impossible to scramble eggs, and put on the kettle

for tea simultaneously. Instead, what is meant by parallel is that

the order in which we do tasks and the smaller tasks that they are
composed of, does not matter. Then finally, only when every item we

want to have for breakfast is ready, can we sit down and enjoy it.

3.2 Tasks are reusable

There are three ways in which tasks are modular. First, larger tasks

are composed of smaller ones. Second, tasks are first-class, they can

be arguments and results of functions. Third, tasks can be values

of other tasks. These aspects make it possible for programmers to

model custom collaboration patterns. Example 3.1 demonstrates

how tasks can be parameterised by other tasks: mkBrkfst is a col-

laboration pattern that always works the same way, regardless of

which food and drink are being prepared.

3.3 Tasks are driven by user input

Input events drive evaluation of tasks. When the system receives a

valid event, it applies this event to the current task, which results in

a new task. In this way the system communicates with the environ-

ment. Inputs are synchronous, which means the order of execution

is completely determined by the order of the inputs.

In t̂op, editors are the basic method of communication with the

environment. Editors are modelled after input widgets from graphi-

cal user interfaces. There are different editors, denoted by different

box symbols. Take for example an editor holding the integer seven:

□ 7. Such an editor reacts to change events, for example the values

42 or 37, which are of the same type.

The sole purpose of editors is to interact with users by remem-

bering the last value that has been sent to them. There are no output

events. As values of editors can be observed, for example by a user

interface, editors facilitate both input and output. An empty editor

(⊠) stands for a prompt to input data, while a filled editor (□) can

be seen either as outputting a value, or as an input that comes with

a default value.

Example 3.2 (Vending machine). This example demonstrates ex-

ternal communication and choice. It is a vending machine that

dispenses a biscuit for one coin and a chocolate bar for two coins.

let vend : Task Snack = ⊠Int ▷ λn. if n ≡ 1 then □Biscuit
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else if n ≡ 2 then □ChocolateBar else  

The editor ⊠ Int asks the user to enter an amount of money. This

editor stands for a coin slot in a real machine that freely accepts and

returns coins. There is a continue button that is initially disabled,

due to the fact that the left hand side of the step combinator has no

value. When the user has inserted exactly 1 or 2 coins, the continue

button becomes enabled. When the user presses the continue button,

the machine dispenses either a biscuit or a chocolate bar, depending

on the amount of money. Snacks are modelled using a custom type.

3.4 Tasks can be observed

Several observations can be made on tasks. One of those is deter-

mining the value of a task. Not all tasks have a value, the empty

editor for instance, which makes value observation partial. I.e., the

value of □ 7 is 7, but the value of ⊠ Int is ⊥.

Another observation is the set of input events a task can react

to. For example, the task □ 7 can react to value events, as discussed

before.

In order to render a task, we need to observe a task’s user in-

terface. This is done compositionally. User interfaces of combined

tasks are composed of the user interfaces of the components. For

example, of two tasks combined with a step combinator, only the

left hand side is rendered. Two parallel tasks are rendered next

to each other. Combining this information with the task’s value

and possible inputs, we can display the current state of the task,

together with buttons that show the actions a user can engage in.

The final observation is to determine whether a task results

in a failure, denoted by  . The step combinator ▷ and the choice

combinator ♢ use this to prevent users from picking a failing task.

3.5 Tasks are never done

Tasks never terminate, they always keep reacting to events. Editors

can always be changed or cleared, and step combinators move on

to new tasks.

In a step t ▷ e , the decision to move on from a task t to its continu-

ation e is taken by ▷, not by t . The decision is based on a speculative

evaluation of e . The step combinator in t ▷ e passes the value v of t
to the continuation e . Steps act like t as long as the step is guarded.

A step is guarded if either the left task has no value, or the specula-

tive evaluation of e applied to v yields the failure task  . Once it

becomes unguarded, the step continues as the result of e v . Specula-

tive evaluation is designed so that possible side effects are undone.

The task t ▷ e additionally requires a continue event C to proceed.

Step combinators give rise to a form of internal communication.

They represent data flow that follows control flow.

3.6 Tasks can share information

The step combinator is one form of internal communication, where

task values are passed to continuations. Another form of inter-

nal communication is shared data. Shared data enables data flow

across control flow, in particular between parallel tasks. Shared data

sources are assignable references whose changes are immediately

visible to all tasks interested in them. Users can not directly inter-

act with shared data, a shared editor is required for that. If x is a

reference of type τ , then ■x is an editor whose value is that of x .

The semantics of t̂op requires all updates to shared data and all

enabled internal steps to be processed before any further commu-

nication with the environment can take place.

Example 3.3 (Cigarette smokers). The cigarette smokers problem

by Downey [7] is a surprisingly tricky synchronisation problem.

We study it here because it demonstrates the capabilities of guarded

steps. The problem is stated as follows. In order to smoke a cigarette,

three ingredients are required: tobacco, paper, and a match. There

are three smokers, each having one of the ingredients and requiring

the other two. There is an agent that randomly provides two of

those. The difficulty lies in the requirement that only the smoker

may proceed whose missing ingredients are present.

Downey models availability of the ingredients with a semaphore

for each ingredient. The agent randomly signals two of the three.

The solution proposed by Downey involves an additional mutex,

three additional semaphores, three additional threads called pushers,
and three regular Boolean variables. The job of the pushers is to

record availability of their ingredient in their Boolean variable, and

check availability of other resources, waking the correct smoker

when appropriate.

What is important is that the implementation of what is essen-

tially deadlock-free waiting for two semaphores requires a sub-

stantial amount of additional synchronisation, together with non-

trivial conditional statements. t̂op allows a simple solution to this

problem, using guarded steps. Steps can be guarded with arbitrary

expressions. The parallel combinator can be used to watch two

shared editors at the same time. Let match, paper, and tobacco be

references to Booleans. The smokers are defined as follows.

let continue = λ⟨x,y⟩ . if x ∧ y then smoke else  in
let tobaccoSmoker = (■ match Z ■paper) ▷ continue in
let paperSmoker = (■ tobacco Z ■match) ▷ continue in
let matchSmoker = (■ tobacco Z ■paper) ▷ continue in
tobaccoSmoker Z paperSmoker Z matchSmoker

When the agent supplies two of the ingredients by setting the

respective shares to True, only the step of the smoker that waits

for those becomes enabled.

3.7 Tasks are predictable

Let t1 and t2 be tasks. The parallel combination t1 Z t2 stands for

two independent tasks carried out at the same time. This operator

introduces interleaving concurrency. For the system it does not

matter if the tasks are executed by two people actually in parallel,

or by one person who switches between the tasks. The inputs sent

to the component tasks are interleaved into a serial stream, which is

sent to the parallel combinator. We assume that such a serialization

is always possible. The tasks are truly independent of each other, all

interleavings are permitted. The environment must prefix events to

t1 and t2 respectively by F (first) and S (second). This unambiguously

renames the inputs, removing any source of nondeterminism.

With concurrency comes the need for synchronisation, in situ-

ations where only some but not all interleavings are desired. The

basic method for synchronisation in t̂op is built into the step com-

binator. The task t ▷ e can only continue execution when two condi-

tions are met: Task t must have a valuev , and e v must not evaluate

to  . Programmers can encode arbitrary conditions in e v , which
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are evaluated atomically between interaction steps. This allows a

variety of synchronisation problems to be solved in an intuitive

and straight-forward manner.

Hoare [9] states that nondeterminism is only ever useful for spec-
ifying systems, never for implementing them. t̂op is meant solely

for implementation and does not have any form of nondeterminism.

Input events for parallel tasks are disambiguated, internal steps

(▶) have a well-defined evaluation order, and internal choice (♦) is

left-biased.

3.8 Recap

Collaboration in the real world consists of three aspects: commu-

nication, concurrency, and synchronisation. These aspects are re-

flected in top on a high level of abstraction, hiding the details of

communication. For example, the cigarette smokers communicate

with each other, but the programs do not explicitly mention sending

or receiving events.

By focusing on collaboration instead of communication, top

leads to specifications closer to real-world workflows which, at

the same time, can be used to generate multi-user applications to

support such workflows.

4 LANGUAGE

In this section, we present the constructs of t̂op, our modular inter-

active workflow language. We define the host and task language,

the types, and the static semantics. Then we describe the workings

of each construct using examples. These constructs are formalised

in Section 5.

4.1 Expressions

The host language is a simply typed λ-calculus, extended with some

basic types and ml-style references. We use references to represent

shared data sources. The grammar in Fig. 2 defines the syntax of

the host language. It has abstractions, applications, variables, and

constants for booleans, integers and strings. The symbol ⋆ stands

for binary operators. For the result of parallel tasks we need pairs.

Conditionals come in handy for defining guards. References will

be used to implement shared editors. Our treatment of references

closely follows the one by Pierce [22]. Creating a reference using the

keyword ref yields a location l . While x denotes program variables,

l denotes store locations. Locations are not intended to be directly

manipulated by the programmer. The symbols ! and := stand for

dereferencing and assignment. The unit value will be used as the

result of assignments.

e ::= Expressions

| λx : τ . e | e1 e2 – abstraction, application

| x | c | e1 ⋆ e2 – variable, constant, operation

| if e1 then e2 else e3 | ⟨⟩ – branch, unit

| ⟨e1, e2 ⟩ | fst e | snd e – pair, projections

| ref e | !e | e1 := e2 | l – references, location

| p – pretask

c ::= Constants

| B | I | S – boolean, integer, string

Figure 2: Language grammar

We use double quotation marks to denote strings. Integers are

denoted by their decimal representation, and booleans are written

True and False. We freely make use of the logic operators not, ∧,

and ∨, arithmetic operators +, −, ×, and the string append operator

++. Furthermore, we use standard comparison operations <, ≤, ≡,

., ≥, and >. The symbol ⋆ stands for any of those. The notation

e1; e2 is an abbreviation for (λx : Unit . e2) e1, where x is a fresh

variable. The notation letx : τ = e1 in e2 is an abbreviation for

(λx : τ . e2) e1.

The grammar in Fig. 3 specifies the syntactic category of pre-
tasks. Pretasks are tasks that have unevaluated subexpressions with

respect to the host language. How expressions are evaluated will

be discussed in Section 5.1. Each pretask will be discussed in more

detail in the following subsections. We use open symbols (□,⊠,▷, ♢)
for tasks that require user input, and closed symbols (■, ▶, ♦) for

tasks that can be evaluated without user input.

p ::= Pretasks

| □ e | ⊠ τ | ■ e – editors: valued, unvalued, shared

| e1 ▶ e2 | e1 ▷ e2 – steps: internal, external

|  | e1 Z e2 – fail, combination

| e1 ♦ e2 | e1 ♢ e2 – choice: internal, external

Figure 3: Task grammar

Typing. Figure 4 shows the grammar of types used by t̂op. It has

functions, pairs, basic types, unit, references, and tasks.

τ ::= Types

| τ1 → τ2 | τ1 × τ2 | β – function, product, basic

| Unit | Ref τ | Task τ – unit, reference, task

β ::= Basic types

| Bool | Int | String – boolean, integer, string

Figure 4: Type grammar

Typing rules are of the form Γ, Σ ⊢ e : τ , which should be read

as “in environment Γ and store typing Σ, expression e has type τ ”.

Typing rules for expressions in the host language are presented

in the appendix. The typing rules for pretasks are given in Fig. 5.

Most typing rules lift the type of their subexpressions into the Task-

type. The typing rules for steps make sure the continuations e2 are

functions which accept a well-typed value from the left hand side

(T-Then, T-Next). References, and therefore shared editors, can

only be of a basic type so they do not introduce implicit recursion

(T-Update).

4.2 Editors

Programs in t̂op model interactive workflows. Interaction means

communication with end users. End users should be able to enter

information into the system, change it, clear it, reenter it, and so on.

To do this, we introduce the concept of editors. Editors are typed

containers that either hold a value or are empty. Editors that have

a value can be changed. Empty editors can be filled. This is depicted

as a state diagram in Fig. 6 below.

Editors stand for various forms of input and output, for example

widgets in a gui, form fields on a webpage, sensors, or network con-

nections. Consider the editor for a person’s age from Example 2.1.

Users can change the value until they are satisfied with it. Editors

are meant to capture this constantly changing nature of user input.

The user interface of an editor depends on its type. This could be

an input field for strings, a toggle switch for booleans, or even a
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Γ, Σ ⊢ e : τ

T-Edit

Γ, Σ ⊢ e : τ
Γ, Σ ⊢ □ e : Task τ

T-Enter

Γ, Σ ⊢ ⊠ τ : Task τ

T-Update

Γ, Σ ⊢ e : Ref β
Γ, Σ ⊢ ■ e : Task β

T-Then

Γ, Σ ⊢ e1 : Task τ1

Γ, Σ ⊢ e2 : τ1 → Task τ2

Γ, Σ ⊢ e1 ▶ e2 : Task τ2

T-Next

Γ, Σ ⊢ e1 : Task τ1

Γ, Σ ⊢ e2 : τ1 → Task τ2

Γ, Σ ⊢ e1 ▷ e2 : Task τ2

T-Fail

Γ, Σ ⊢  : Task τ

T-And

Γ, Σ ⊢ e1 : Task τ1 Γ, Σ ⊢ e2 : Task τ2

Γ, Σ ⊢ e1 Z e2 : Task (τ1 × τ2)

T-Or

Γ, Σ ⊢ e1 : Task τ
Γ, Σ ⊢ e2 : Task τ

Γ, Σ ⊢ e1 ♦ e2 : Task τ

T-Xor

Γ, Σ ⊢ e1 : Task τ
Γ, Σ ⊢ e2 : Task τ

Γ, Σ ⊢ e1 ♢ e2 : Task τ

Figure 5: Typing rules

shared

Change
un-

valued valued

Clear

Fill
Change

Figure 6: Possible states of an editor and its transitions.

Shared editors cannot be cleared.

map with a pin for locations. It could also be a parser that tries to

parse a line of text to match the type of the editor.

Valued and unvalued editors (□ e,⊠τ ). Editors that hold an ex-

pression e : τ have type Taskτ . Empty editors are annotated with a

type in order to ensure type safety and type preservation during

evaluation.

Shared editors (■ e). Shared editors watch references, lifting their

value into the task domain. If e is a reference Refτ , then ■ e is of

type Taskτ . Shared editors cannot be cleared, only changed.

Changes to a shared editor are immediately visible to all shared

editors watching the same reference. Imagine two users, Marco and

Christopher, both watching shared editors of the same coordinates.

The editors are visualised as a pin on a map. When Marco moves

his pin, he updates the value of the shared editor, thereby changing

the value of the reference. This change is immediately reflected on

Christopher’s screen: The pin changes its position on his map. This

way Marco and Christopher can work together to edit the same

information.

Two other important use cases for shared editors are sensors

and time. Sensors can be represented as external entities that pe-

riodically update a shared editor with their current sensor value.

Similarly, the current time can be stored in a shared editor (■time)

which is periodically updated by a clock. The actual sensor and

the clock are not modelled in t̂op. We assume that they exist as

external users that send update events to the system. This allows

programmers to write tasks that react to sensor values or timeouts.

4.3 Steps

Editors represent atomic units of work. In this section we look

at ways to compose smaller tasks into bigger ones. Composing

tasks can be done in two ways, sequential and parallel. Parallel

composition comes in two variants: combining two tasks (and-

parallel) and choosing between two tasks (or-parallel). We study

sequential composition first, and after that combining and choosing.

Internal and external step (t ▶ e, t ▷ e). Sequential composition

has a task t on the left and a continuation e on the right. External

steps (▷) must be triggered by the user, while internal steps (▶) are

taken automatically. The accompanying typing rules are T-Then

and T-Next. According to these rules, the left hand side must be a

task t : Taskτ1, and the right hand side e : τ1 → Taskτ2 must be

a function that, given the task value of t , calculates the task with

which to continue.

Steps are guarded, which means that the step combinators can

only proceed when the following conditions are met. The left hand

side must have a value, only then can the right hand side calculate

the successor task. The successor task must not be  , introduced

below. This is enforced on the semantic level, as described in the

next section. The internal step can proceed immediately when these

conditions are met. The external step must additionally receive a

continue event C.

Example 4.1 (Conditional stepping). Consider the following:

⊠Int ▶ λn. if n ≡ 42 then □”Good” else □”Bad”
Initially, the step is guarded because the editor does not have a value.

When users enter an integer, the program continues immediately

with either □”Good” or □”Bad”, depending on the input.

Fail ( ). Fail is a task that never has a value and never accepts in-

put. The typing rule T-Fail states that it has type Taskτ for any type

τ . Programmers can use  to tell steps that no sensible successor

task can be determined.

Example 4.2 (Guarded stepping). Consider this slight variation

on Example 4.1:

⊠Int ▶ λn. if n ≡ 42 then □”Good” else  
The user is asked to enter an integer. As long as the right hand side

of ▶ evaluates to  , the step cannot proceed, and the user can keep

editing the integer. As soon as the value of the left hand side is 42,

the right hand side evaluates to something other than  , and the

step proceeds to □”Good”.

Example 4.3 (Waiting). With the language constructs seen so far

it is possible to create a task that waits for a specified amount of

time. To do this, we make use of a shared editor holding the current

time (see Section 4.2), and a guarded internal step.

let wait : Int→ Task Unit = λamount : Int.
■time ▶ λstart : Int.
■time ▶ λnow : Int.

if now > start + amount then □⟨⟩ else  
The first step is immediately taken, resulting in start to be the time

at the moment wait is executed. The second step is guarded until the

current time is greater to the start time plus the requested amount.

4.4 Parallel

A common pattern in workflow design is splitting up work into mul-

tiple tasks that can be executed simultaneously. In t̂op, all parallel
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branches can progress independently, driven by input events. This

requires inputs to be tagged in order to reach the intended task.

There are two ways to proceed after a parallel composition. One

way is to wait for all tasks to produce results and combine those,

the other to pick the first available result. Both ways introduce

explicit forks and implicit joins in t̂op.

Combination (e1 Z e2). A combination of two tasks is a parallel

and. It has a value only if both branches have a value. This is re-

flected in the typing rule T-And, It shows that if the first task has

type τ1, and the second has type τ2, their combination has the pair

type τ1 × τ2.

Example 4.4 (Combining). The task

⊠Int Z □” Batman” ▶ λ⟨n, s⟩ . □(replicate n ”Na” ++ s)

can only step when both editors have values. When it steps, the

continuation uses the pair to calculate the result.

Internal and external choice (e1 ♦ e2, e1 ♢ e2). Internal choice (♦)
is a parallel or. It picks the leftmost branch that has a value. Its

typing rule T-Or states that both branches must have the same

type Taskτ . For example ⊠ Int ♦□ 37 normalizes to □ 37, because

⊠ Int doesn’t have a value. Users can work on both branches of an

internal choice simultaneously.

External choice (♢) is different in this regard. An external choice

requires users to pick a branch before continuing with it. This means

users cannot work on the branches of an external choice before

picking one.

Example 4.5 (Delay). We illustrate the use of internal and external

choice by means of an example that asks users to proceed with a

given task or to cancel. If the user does not make a choice within a

given time frame, the program proceeds automatically. The example

makes use of the task wait from Example 4.3.

let cancel : Task Unit = □⟨⟩ in
let delay : Int→ Task Unit → Task Unit = λn. λproceed.
(proceed ♢ cancel) ♦ (wait n ▶ λu : Unit. proceed)

Note that delay is higher-order. It is a task which takes another

task as parameter.

4.5 Annotations

Tasks can be annotated with additional information. The system

can use this information in various ways. Possible use cases are

labels for the user interface, resource consumption information

for static resource analysis, or messages for automatic end-user

feedback. Annotations are not covered in this paper. Our Haskell

implementation of t̂op supports annotating tasks with user ids, so

that individual tasks in a large workflow can be assigned to different

users. These annotations are used to filter the user interfaces for

each user so that they can only see their part of the workflow.

5 SEMANTICS

In this section we formalise the semantics of the language constructs

described in Section 4. We organise this by following the structure

of the language. Firstly, the task language is embedded in a simply

typed λ-calculus. This requires a specification of the evaluation of

terms in the host language, and how it handles the task language.

Secondly, there are two ways to drive evaluation of task expressions,

internally by the system itself, and externally by the user. This is

done in two additional semantics, one for the internal normalisation
of tasks, and another for the interaction with the end user.

The three main layers of semantics are thus evaluation, normali-

sation, and interaction. The semantics, together with observations,
will be discussed in the following subsections. Figure 7 shows the

relation between all semantics arrows. It also shows that there are

two helper semantics, handle and stride. We use the convention that

downward arrows are big-step semantics, and rightward arrows

are small-step semantics.

evaluate (↓) normalise (⇓)

handle (⟶)

interact (⟹)
uses

uses

uses

uses

stride (⇝)

uses uses

Figure 7: Semantic functions defined in this report and their

relation.

One of our explicit goals is to keep the semantics for evaluation

and normalisation separate, to not mix general purpose program-

ming notions with workflow specific semantics. This is achieved

by letting tasks be values in the host language.

5.1 Evaluating expressions

The host language evaluates expressions using a big-step semantics.

Evaluating an expression e in state σ into a value v in state σ ′
is

denoted by e,σ ↓ v,σ ′
. To ease reasoning about references, we

choose a call-by-value evaluation strategy.

Figure 8 shows values with respect to the evaluation semantics.

Tasks are values, and the operands of task constructors are evalu-

ated eagerly. Exceptions to this are steps and external choice, where

some or all of the operands are not evaluated.

v ::= Values

| λx : τ . e | ⟨v1, v2 ⟩ | ⟨⟩ – abstraction, pair, unit

| c | l | t – constant, location, task

t ::= Tasks

| □v | ⊠ τ | ■ l – editors

| t1 ▶ e2 | t1 ▷ e2 – steps

|  | t1 Z t2 – fail, combination

| t1 ♦ t2 | e1 ♢ e2 – choices

Figure 8: Value grammar

The rules to evaluate expressions e do not differ from standard

work, except for the task constructs. The evaluation rules for tasks

can be deduced from the value grammar. They are given in the

appendix. Most task constructors are strict in their arguments. Only

steps keep their right hand side unevaluated to delay side effects

till the moment the step is taken. The same holds for both branches

of the external choice.

5.2 Task observations

The normalisation and interaction semantics make use of observa-

tions on tasks. Observations are semantic functions on the syntax

tree of tasks. There are four semantic functions: V for the current

task value, F to determine if a task fails, I for the currently ac-

cepted input events, and a function for generating user interfaces.

The semantics make use of V and F , while I is used for proving
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safety. The function for user interfaces is not used by the semantics,

but by our implementation. It is only described in passing here.

Observable values (V). Task values are used by steps to calculate

the successor task. Filled editors are tasks which contain values, as

are shared editors. Unvalued editors do not contain values, neither

does the fail task. These facts propagate through all other task

constructors. The partial function V associates a value v to tasks t
where possible. Its definition is given in Fig. 9.

V : Tasks × States ⇀ Values

V(□v , σ ) = v
V(⊠ τ , σ ) = ⊥

V(■ l , σ ) = σ (l )
V( , σ ) = ⊥

V(t1 ▶ e2, σ ) = ⊥

V(t1 ▷ e2, σ ) = ⊥

V(t1 Z t2, σ ) =
{

⟨v1, v2 ⟩ when V(t1, σ ) = v1 ∧ V(t2, σ ) = v2

⊥ otherwise

V(t1 ♦ t2, σ ) =


v1 when V(t1, σ ) = v1

v2 when V(t1, σ ) = ⊥ ∧ V(t2, σ ) = v2

⊥ otherwise
V(t1 ♢ t2, σ ) = ⊥

Figure 9: Values

Internal and external steps do not have an observable value,

because calculating the value would require evaluation of the con-

tinuation. Parallel composition only has a value when both branches

have values, in which case these values are paired. Internal choice

has a value when one of the branches has a value. When both

branches have a value, it takes the value of the left branch. External

choice does not have a value because it waits for user input.

Failing (F ). In Section 4.3 we introduced  to stand for an im-

possible task. Combinations of tasks can also be impossible. Take

for example the parallel composition of two fails ( Z  ). This ex-

pression is equivalent to  , because it can not handle input and

can not be further normalised. This intuition is formalised by the

function F in Fig. 10. It determines whether a task is impossible.

Such tasks are called failing.

F : Tasks × States → Booleans

F(□v , σ ) = False

F(⊠ τ , σ ) = False

F(■ l , σ ) = False

F( , σ ) = True

F(t1 ▶ e2, σ ) = F(t1, σ )
F(t1 ▷ e2, σ ) = F(t1, σ )
F(t1 Z t2, σ ) = F(t1, σ ) ∧ F(t2, σ )
F(t1 ♦ t2, σ ) = F(t1, σ ) ∧ F(t2, σ )
F(e1 ♢ e2, σ ) = F(t1, σ ′

1
) ∧ F(t2, σ ′

2
)

where e1, σ ⇓ t1, σ ′
1
and e2, σ ⇓ t2, σ ′

2

Figure 10: Failing

Steps whose left hand sides are failing can never proceed because

of the lack of an observable value. Therefore they are itself failing.

The internal choice of two failing tasks is failing. External choices

let the user pick a side and only then evaluate the corresponding

subexpression. To determine if an external choice is failing, it needs

to peek into the future to check if both subexpressions are failing.

User interface. t̂op is designed such that a user interface can

be generated from a task’s syntax tree. A possible graphical user

interface is shown in Fig. 1, where tasks are rendered as html pages.

Editors are rendered as input fields, external choices are represented

by two buttons, and parallel tasks are rendered side by side. Steps

only show the interface of their left hand side. In case of an external

step they are accompanied by a button. When the guard condition

of a step is not fulfilled, the button is disabled.

5.3 Normalising tasks

The normalisation semantics is responsible for reducing expressions

of type Task until they are ready to handle input. It is a big-step se-

mantics, and makes use of evaluation of the host language. We write

e,σ ⇓ t,σ ′
to describe that an expression e in state σ normalises

to task t in state σ ′
.

Normalisation rules are given in Fig. 11. Both rules ensure that

expressions are first evaluated by the host language ( ↓ ), and then

by the stride semantics (⇝ ). These two actions are repeated until

the resulting state and task stabilise.

e , σ ⇓ t , σ ′

N-Done

e , σ ↓ t , σ ′ t , σ ′ ⇝ t ′, σ ′′

e , σ ⇓ t , σ ′
σ ′ = σ ′′ ∧ t = t ′

N-Repeat

e , σ ↓ t , σ ′ t , σ ′ ⇝ t ′, σ ′′ t ′, σ ′′ ⇓ t ′′, σ ′′′

e , σ ⇓ t ′′, σ ′′′
σ ′ , σ ′′ ∨ t , t ′

Figure 11: Normalisation semantics

The striding semantics is responsible for reducing internal steps

and internal choices. A stride from task t in state σ to t ′ in state σ ′
is

denoted by t,σ ⇝ t ′,σ ′
. The rules for striding are given in Fig. 12.

Tasks like editors, fail and external choice are not further reduced.

For external choice and parallel there are congruence rules.

The split between striding and normalisation is due to mutable

references. Consider the following example, where σ = {l 7→

False}.

(■ l ▶ λx:Bool. if x then e else  ) Z (l := True; □⟨⟩ )

S-And reduces this expression in one step to

(■ l ▶ λx:Bool. if x then e else  ) Z (□ ⟨⟩ )

with σ ′ = {l 7→ True}. This expression is not normalised, because

the left task can take a step. The issue here lies in the fact that

the right task updates l . To overcome this problem, the N-Done

and N-Repeat rules ensure that striding is applied until the state σ
becomes stable and no further normalisation can take place.

Principles of stepping. Stepping away from task t1 can only be

performed when t1 has a value: V(t1) = v1. Only then can a new

task t2 be calculated from the expression e . On top of that, t2 must

not be failing: ¬F (t2). These principles lead to the stepping rules

in Fig. 12. S-ThenStay does nothing, because the left side does not

have a value. S-ThenFail covers the case that the left side has a

value but the calculated successor task is failing. This rule uses the

semantics of the host language to evaluate the application e2 v1.

When all required conditions are fulfilled, S-ThenCont allows

stepping to the successor task.
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t , σ ⇝ t ′, σ ′

Step.
S-ThenStay

t1, σ ⇝ t ′
1
, σ ′

t1 ▶ e2, σ ⇝ t ′
1
▶ e2, σ ′

V(t ′
1
, σ ′) = ⊥

S-ThenFail

t1, σ ⇝ t ′
1
, σ ′ e2 v1, σ ′ ↓ t2, σ ′′

t1 ▶ e2, σ ⇝ t ′
1
▶ e2, σ ′

V(t ′
1
, σ ′) = v1 ∧ F(t2, σ ′′)

S-ThenCont

t1, σ ⇝ t ′
1
, σ ′ e2 v1, σ ′ ↓ t2, σ ′′

t1 ▶ e2, σ ⇝ t2, σ ′′
V(t ′

1
, σ ′) = v1 ∧ ¬F(t2, σ ′′)

Choose.
S-OrLeft

t1, σ ⇝ t ′
1
, σ ′

t1 ♦ t2, σ ⇝ t ′
1
, σ ′

V(t ′
1
, σ ′) = v1

S-OrRight

t1, σ ⇝ t ′
1
, σ ′ t2, σ ′ ⇝ t ′

2
, σ ′′

t1 ♦ t2, σ ⇝ t ′
2
, σ ′′

V(t ′
1
, σ ′) = ⊥ ∧ V(t ′

2
, σ ′′) = v2

S-OrNone

t1, σ ⇝ t ′
1
, σ ′ t2, σ ′ ⇝ t ′

2
, σ ′′

t1 ♦ t2, σ ⇝ t ′
1
♦ t ′

2
, σ ′′

V(t ′
1
, σ ′) = ⊥ ∧ V(t ′

2
, σ ′′) = ⊥

Ready.
S-Edit

□v , σ ⇝ □v , σ

S-Fill

⊠ τ , σ ⇝ ⊠ τ , σ

S-Update

■ l , σ ⇝ ■ l , σ
S-Fail

 , σ ⇝  , σ

S-Xor

e1 ♢ e2, σ ⇝ e1 ♢ e2, σ

Congruence.
S-Next

t1, σ ⇝ t ′
1
, σ ′

t1 ▷ e2, σ ⇝ t ′
1
▷ e2, σ ′

S-And

t1, σ ⇝ t ′
1
, σ ′ t2, σ ′ ⇝ t ′

2
, σ ′′

t1 Z t2, σ ⇝ t ′
1
Z t ′

2
, σ ′′

Figure 12: Striding semantics

Principles of choosing. Choosing between two tasks t1 and t2
can only be done when at least one of them has a value: V(t1) =
v1 ∨ V(t2) = v2. When both have a value, the left task is chosen.

When none has a value, none can be chosen. These principles lead

to the rules S-OrLeft, S-OrRight, and S-OrNone, which encode

that the choice operator picks the leftmost task that has a value.

5.4 Handling user inputs

The handling semantics is the outermost layer of the stack of se-

mantics. It is responsible for performing external steps and choices,

and for changing the values of editors. The rules of the interaction

semantics are given in Fig. 13. The semantics is only applicable to

normalised t . Sending an input event i to a task t first handles the

event and then prepares the resulting task for the next input by

normalising it.

Inputs i are formed according to the grammar in Fig. 14. F and

S in an input encode the path to the task for which the input is

designated. There is a function I which calculates the possible

input events a given task expects. It takes a normalised task and a

state and returns a set of inputs that can be handled. The definition

of this function is listed in Fig. 15.

t , σ
i
=⇒ t ′, σ ′

I-Handle

t , σ
i
−−→ t ′, σ ′ t ′, σ ′ ⇓ t ′′, σ ′′

t , σ
i
=⇒ t ′′, σ ′′

Figure 13: Interaction semantics

i ::= Inputs

| a | F i | S i – action, pass to first, pass to second

a ::= Actions

| v | C – change, continue

| L | R – go left, go right

Figure 14: Input grammar

I : Tasks × States → P(Inputs)

I(□v , σ ) = {v ′ | � ⊢ v ′
: τ } ∪ {E} where □v : Task τ

I(⊠ τ , σ ) = {v ′ | � ⊢ v ′
: τ }

I(■ l , σ ) = {v ′ | � ⊢ v ′
: τ } where ■ l : Task τ

I( , σ ) = �

I(t1 ▶ e2, σ ) = I(t1, σ )
I(t1 ▷ e2, σ ) = I(t1, σ ) ∪ {C | V(t1, σ ) = v1 ∧

e2 v1, σ ⇓ t2, σ ′ ∧ ¬F(t2, σ ′)}

I(t1 Z t2, σ ) = {F i | i ∈ I(t1, σ )} ∪ {S i | i ∈ I(t2, σ )}
I(t1 ♦ t2, σ ) = {F i | i ∈ I(t1, σ )} ∪ {S i | i ∈ I(t2, σ )}
I(e1 ♢ e2, σ ) = {L | e1, σ ⇓ t1, σ ′ ∧ ¬F(t1, σ ′)} ∪

{R | e2, σ ⇓ t2, σ ′ ∧ ¬F(t2, σ ′)}

Figure 15: Inputs

Handling input is done by the handling semantics shown in

Fig. 16. It is a small step semantics with labelled transitions. It takes

a task t in a state σ and an input i , and yields a new task t ′ in a

new state σ ′
.

H-Change, H-Fill, H-Update: Input eventsv are used to change

the value of editors. Editors only accept values of the correct type.

H-Next: The C(ontinue) action triggers an external step. As with

internal stepping, this is only possible if the left side has a value

and the continuation is not failing.

H-PickLeft, H-PickRight: L and R are used to pick the left or

right option of an external choice.

H-PassThen, H-PassNext: The step combinators pass all events

other than C to the left side.

H-FirstAnd, H-SecondAnd, H-FirstOr, H-SecondOr: Inputs

F(irst) and S(econd) are used to direct inputs to the correct branch

of parallel combinations.

5.5 Implementation

The semantics have been implemented in the Haskell programming

language [16]. We use techniques presented by Jaskelioff et al. [10],

Swierstra [27], and Peyton Jones [21]. The source code can be found

on GitHub.
1

A command-line interface is part of this implementa-

tion. It prompts users to type input events, which get parsed and

processed by the interaction semantics.

Also, we made an implementation of t̂op combinators on top

of iTasks, so that t̂op specifications can be compiled to runnable

applications. This shows that t̂op is a subset of iTasks.

1
https://github.com/timjs/tophat-haskell

https://github.com/timjs/tophat-haskell
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t , σ
i
−−→ t ′, σ ′

Editing.
H-Change

□v , σ
v ′

−−−→ □v ′, σ
v , v ′

: τ
H-Fill

⊠ τ , σ
v ′

−−−→ □v ′, σ
v ′

: τ

H-Update

■ l , σ
v ′

−−−→ ■ l , σ [l 7→ v ′]

σ (l ), v ′
: τ

Continuing.
H-Next

e2 v1, σ ⇓ t2, σ ′

t1 ▷ e2, σ
C

−−→ t2, σ ′

V(t1, σ ) = v1 ∧ ¬F(t2, σ ′)

H-PickLeft

e1, σ ⇓ t1, σ ′

e1 ♢ e2, σ
L

−−→ t1, σ ′

¬F(t1, σ ′)

H-PickRight

e2, σ ⇓ t2, σ ′

e1 ♢ e2, σ
R

−−→ t2, σ ′

¬F(t2, σ ′)

Passing.
H-PassThen

t1, σ
i
−−→ t ′

1
, σ ′

t1 ▶ e2, σ
i
−−→ t ′

1
▶ e2, σ ′

H-PassNext

t1, σ
i
−−→ t ′

1
, σ ′

t1 ▷ e2, σ
i,C
−−−−→ t ′

1
▷ e2, σ ′

H-FirstAnd

t1, σ
i
−−→ t ′

1
, σ ′

t1 Z t2, σ
F i
−−−→ t ′

1
Z t2, σ ′

H-SecondAnd

t2, σ
i
−−→ t ′

2
, σ ′

t1 Z t2, σ
S i
−−−→ t1 Z t ′

2
, σ ′

H-FirstOr

t1, σ
i
−−→ t ′

1
, σ ′

t1 ♦ t2, σ
F i
−−−→ t ′

1
♦ t2, σ ′

H-SecondOr

t2, σ
i
−−→ t ′

2
, σ ′

t1 ♦ t2, σ
S i
−−−→ t1 ♦ t ′

2
, σ ′

Figure 16: Handling semantics

6 PROPERTIES

In order to show our semantics is sane, we show that our evalua-

tion, normalisation and handling semantics is type preserving. We

additionally prove a progress theorem for our small-step handling

semantics. We show that our failing function F indeed only in-

dicates expressions that can not be normalised and that allow no

further interaction. Finally, we prove that the function to compute

all possible inputs I is sound and complete.

6.1 Type preservation

We show that the following three preservation Theorems hold.

Theorem 6.1 (Type preservation under evaluation). For all
expressions e and states σ such that Γ, Σ ⊢ e : τ and Γ, Σ ⊢ σ , if
e,σ ↓ e ′,σ ′, then Γ, Σ ⊢ e ′ : τ and Γ, Σ ⊢ σ ′.

Where Γ, Σ ⊢ σ means that for all l ∈ σ , it holds that Γ, Σ ⊢ σ (l) :

Σ(l).

Theorem 6.2 (Type preservation under normalisation). For
all expressions e and states σ such that Γ, Σ ⊢ e : Taskτ and Γ, Σ ⊢ σ ,
if e,σ ⇓ e ′,σ ′, then Γ, Σ ⊢ e ′ : Taskτ and Γ, Σ ⊢ σ ′.

Theorem 6.3 (Type preservation under handling). For all
expressions e , states σ and inputs i such that Γ, Σ ⊢ e : Taskτ and

Γ, Σ ⊢ σ , if e,σ
i
−−→ e ′,σ ′, then Γ, Σ ⊢ e ′ : Taskτ and Γ, Σ ⊢ σ ′.

All three Theorems are proven to be correct by induction over

e . The full proofs are listed in the appendix. From Theorem 6.3

and Theorem 6.2 we directly obtain that the driving semantics also

preserves types.

6.2 Progress

A well-typed term of a task type is guaranteed to progress after

normalisation, unless it is failing.

We define what we mean with progress in Theorem 6.4.

Theorem 6.4 (Progress under handling). For all well typed
expressions e and states σ , if e,σ ⇓ e ′,σ ′, then either F (e ′,σ ′) or

there exist e ′′, σ ′′, and i such that e ′,σ ′ i
−−→ e ′′,σ ′′.

Where a well typed expression e means that Γ, Σ ⊢ e : τ for some

type τ , and a well typed state means that Σ ⊢ σ .

If an expression e and state σ are well-typed, then after nor-

malisation, the pair e ′,σ ′
either fails, or there exists some input i

that can be handled by it under the handling semantics. In order to

prove this Theorem, we need to show that the failing function F

behaves as desired.

Theorem 6.5 (Failing means no interaction possible). For
all well typed expressions e and states σ , and e,σ ⇓ e ′,σ ′, we have
that F (e ′,σ ′) = True, if and only if there is no input i such that

e ′,σ ′ i
−−→ e ′′,σ ′′ for some e ′′ and σ ′′.

The Theorem above states that an expression e and state σ are

failing, if, after normalisation, there exists no input that can be

handled by it. We prove the theorem to be true by induction on e ′.
We now have the ingredients to prove Theorem 6.4.

Proof. Given Γ, Σ ⊢ e : Taskτ and Σ ⊢ σ and after normalisation

e,σ ⇓ e ′,σ ′
, we find ourselves in either one of the following

situations:

There exists an i such that e ′,σ ′ i
−−→ e ′′,σ ′′

.

There does not exist an i such that e ′,σ ′ i
−−→ e ′′,σ ′′

. In this

case, we know that F (e ′,σ ′) must be true, by Theorem 6.5. □

6.3 Soundness and Completeness of Inputs

In order to validate the function that calculates all possible inputs

I, we want to show that the set of possible inputs it produces is

both sound and complete with respect to the handle semantics. By

sound we mean that all inputs in the set of possible inputs can

actually be handled by the handle semantics, and by complete we

mean that the set of possible inputs contains all inputs that can be

handled by the handle semantics. Theorem 6.6 expresses exactly

this property.

Theorem 6.6 (Inputs function is sound and complete). For
all well typed expressions e , states σ , and inputs i , we have that

i ∈ I(e,σ ) if and only if e,σ
i
−−→ e ′,σ ′.

We prove the above theorem by induction over e . The proof is

listed in the appendix.

6.4 Outlook

At this point we have specified a formal language for task-oriented

programming, given its semantics, and proved its safety. The main
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motive to formalise this paradigm, is to be able to reason about

tasks. In future work, we plan on utilising the formalisation to do

so. Firstly, we would like to express properties of tasks and prove

them. For example, one would like to prove that, no matter what, in

Example 3.1 breakfast is always being served. Secondly, we would

like to explore what it means for two tasks to be equal. One could

have noticed that some operators have a monadic or applicative

feeling. The combination of Z and □ could form a (lax) monoidal

functor, ♦ is similar to applicative choice, and ▶ looks like a bind

operation. We need a correct understanding of equivalence of tasks,

taking the interactive setting into account, to prove this. Thirdly,

we do not know yet if the more complex combinators of iTasks are

expressible in the basic combinators of t̂op. We implemented t̂op

on top of iTasks, so we know it is a subset, but we also know iTasks

can do more. A more in depth description of future work can be

found in Section 8.

7 RELATEDWORK

The work presented in this paper lies on the boundary of many

areas of study. People have looked at the problem of how to model

and coordinate collaboration from many different perspectives. The

following subsections give an overview of related work from the

many different areas.

7.1 TOP implementations

iTasks. As mentioned earlier, iTasks is an implementation of top.

iTasks has many features, and its basic combinators are versatile

and powerful. Simpler combinators are implemented by restricting

the powerful ones. This is useful for everyday programming, where

having lots of functionality at one’s fingertips is convenient and

efficient. t̂op on the other hand does not include the many different

variations of the step- and parallel combinators of iTasks. To name

two examples, the combinators (¿¿—) and (——-) are variations of

step and parallel that ignore the value of the left task.

There have been two previous papers that describe semantics

of iTasks, by Koopman et al. [14] and Plasmeijer et al. [23]. Both

give a different semantics in the form of minimal implementations

of a subset of the interface of iTasks. These semantics however do

not make an explicit distinction between the host language and

task language and they do not provide an explicit formal semantics.

Therefore, the do not lend itself well for formal reasoning.

mTasks. The mTasks framework [13] is an implementation of

top geared towards iot devices. As t̂op its basic combinators are a

subset of iTasks. They are similar to those of t̂op. However, on iot

devices it is useful to continue running tasks endlessly, which is

done in mTasks using a forever combinator. This is currently not

possible in t̂op.

As for iTasks, there is currently no formal semantics for mTasks.

7.2 Worfklow modelling

Much research has been done into workflow modelling. This work

focusses on describing the collaboration between subsystems, rather

than the communication between them. The systems described in

the literature follow a boxes and arrows model of specifying work-

flows. Control flow, represented by arrows, usually can go unre-

stricted from anywhere to anywhere else in a workflow. We see

top as the functional programming of workflows, as opposed to

this goto-style.

Workflow patterns. Workflow patterns are regarded as special

kind of the design patterns in software engineering. They identify

recurring patterns in workflow systems, much like the combina-

tors defined by t̂op. Work by van der Aalst et al. [30] defines a

comprehensive list of these pattens, and examines their availabil-

ity in industry workflow software. Workflow patterns are usually

described in terms of control flow graphs, and no formal specifica-

tion is given, which makes comparison and formal reasoning more

difficult.

Workflow Nets & YAWL. Workflow Nets (wfn) [28] allow for the

modelling and analysis of business processes. They are graphical

in nature, and clearly display how every component is related to

each other. A downside of wfn is that they do not facilitate higher

order constructs. Also, they are often not directly executable.

A language based on wfn that is actually directly executable is

yawl by van der Aalst and ter Hofstede [29]. It facilitates modelling

and execution of dynamic workflows, with support for and, or and

xor workflow patterns. As mentioned, yawl programs consist of

wfn, and are therefore programmed visually.

BPEL. bpel [20] is another popular business process calculus.

The standardised language allows for the specification of actions

within business processes, using an xml format. The language is

mainly used for coordinating web services. Two workflow patterns

are supported; execution of services can be done sequential or in

parallel. On top of that, processes can be guarded by conditionals.

There is no support for higher order processes however. Processes

described in bpel can be regarded as activity graphs, and they can

also be rendered as such. The specified processes in bpel are directly

executable, just like yawl.

7.3 Process algebras

Differences. There are two main differences between top and

process algebras. The first is a difference in scope. Process algebras

focus on modelling the input/output behaviour of processes, by ex-

plicitly stating which actions are sent and received at certain points

in the program. The goal of process algebras is formal reasoning

about the interaction between processes. Typically, one wishes to

prove properties such as deadlock-freedom, liveness, or adherence

to a protocol specification.

The focus of top on the other hand is to model collaboration

patterns, with the explicit goal of not having to specify how ex-

actly subtasks communicate. The declarative specification of data

dependencies between subtasks enables top to hide such details.

The second difference concerns internal communication. There

are two forms of communication between tasks: Passing values to

continuations and sharing data. This is different from communica-

tion in process algebras, which is based on message-passing.

Similarities. There are some aspects that are similar in t̂op and

process algebras. Internal communication in Hoare’s CSP [9] is

introduced with the concealment operator. The semantics of CSP

requires that all concealed actions are handled to exhaustion before

any action with the environment can take place. This is somewhat
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similar to t̂op, where all enabled internal steps must be taken until

the system can react to input events again. Contrast this with

Milner’s CCS [18], where concealed actions are visible to the outside

as τ -actions, and can be interleaved with external communication.

Another similarity between t̂op and process algebras, or any

system with concurrency for that matter, is the need for synchroni-

sation. Broadly speaking, concurrency means that different parts

of a program can interact with the environment independently, in

an interleaved manner. Synchronisation means that only some, but

not all, of the possible interleavings are desirable. The semantics

of the step combinators in t̂op, together with the fact that internal

communication happens atomically, allows for concise and intuitive

synchronisation code.

7.4 Reactive programming

HipHop & Esterel. HipHop [3, 4] is a programming language

tailored to the development of synchronous reactive web systems.

From a single source, both server and client applications can be

generated. Programs are written in the Hop language, a Scheme

dialect. Communication is based on a reactive layer embedded

in Hop. The set of HipHop reactive statements is based on those

of the Esterel language [2, 5]. Each reactive component starts by

specifying possible input and output events. The component then

proceeds as a state machine.

Input events are sent to such a machine programmatically us-

ing Hop, or are explicitly wired to events from the client. They

are optionally associated with a Hop value. As Hop is a dynamic

language, and HipHop uses strings to identify events, events and

their possible associated values are not statically checked. Events

are aggregated until the moment the machine is asked to react. The

machine is executed and reacts by building a multi-set of output

events. The execution of a HipHop machine is atomic. The set of

inputs is not influenced by the current computations.

As with t̂op, HipHop is a dsl embedded in a general purpose

programming language. Another similarity is that both specifi-

cations lead to executable server and client applications from a

single source. However, both HipHop and Esterel are more low

level regarding their specification. Where t̂op takes tasks and col-

laboration as a starting point, HipHop focusses on synchronous

communication and atomic execution of reactive machines.

This difference in focus shows in the way both systems define

events. In HipHop programmers can define and use their own

events. Inputs in t̂op are not extensible and not visible to the devel-

oper. They are a completely separate entity living on the semantic

level.

Another important difference is the way in which both systems

handle events. In HipHop the programmer decides when a machine

should process its events. This could be just one event, or a multi-set

of events that are processed simultaneously. t̂op always processes

an input the moment it occurs and only handles a single event in

one instance.

Functional reactive programming. Functional Reactive Program-

ming (frp) is a paradigm to describe dynamic changes of values in

a declarative way. This is done by specifying networks of values,

called behaviours, that can depend on each other and on external

events. Behaviours can change over time, or triggered by events.

When a behaviour changes, all other behaviours that depend on

it are updated automatically. The underlying implementation that

takes care of the updating usually can tie input devices, like mouse

and keyboard, to event streams and behaviours to output facili-

ties, like text fields. This allows for declarative specifications of

applications with user interfaces.

The idea of frp was pioneered by Elliott and Hudak [8]. In the

meantime there are many variants and implementations, where

reactive-banana [1], FrTime [6], and Flapjax [17] belong to the most

well-known.

frp and top are different systems that have different goals in

mind. Whereas frp expresses automatically updating data depen-

dencies, top expresses collaboration patterns. top has no notion of

time. Tasks cannot change spontaneous over time, while behaviours

can. Only input events can change task values. The biggest concep-

tual difference between a workflow in top and a data network in

frp is that an event to a task only causes updates up until the next

step, while an event in frp propagates through the whole network.

That being said, there are some concepts that are similar in top

and frp. The stepper behaviour, for example, is associated with

an event and yields the value of the most recent event. This is

similar to editors in top. Furthermore, both systems can be used to

declaratively program user interfaces, albeit in frp the programmer

has to construct the gui elements manually, and connect inputs

and outputs to the correct events and behaviours. In top graphical

user interfaces are automatically derived.

7.5 Session types

Session types are a type discipline that can be used to check whether

communicating programs conform to a certain protocol. Session

types are expressions in some process calculus that describe the

input/output behaviour of such programs. Session types are useful

for programming languages where modules communicate with

each other via messages, like csp, π -calculus, or Go, to name a

few. The only form of messages in top are input events which

drive execution, but modules do not communicate using messages.

Therefore, session types are not applicable to top in the sense used

in the literature.

Formal reasoning about top programs is one of our future goals

for t̂op. The ideas and techniques of session types could be useful

for specifying that a list of inputs of a certain form leads to desired

task values. The details are a topic for future work.

8 CONCLUSION

In this paper we have identified and intuitively described the essence

of task-oriented programming. We then formalised this essence by

developing a domain-specific language for declarative interactive

workflows, called t̂op. The task language and the host language

are clearly separated, to make explicit where the boundaries are.

The semantics of the task layer is driven by user input. We have

compared t̂op with workflow modelling languages, process alge-

bras, functional reactive programming and session types to point

out differences and similarities. Finally, we have proven type safety

and progress for our language.

Future work. There are a couple of ways in which we would like

to continue this line of work.
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One of the main motivations to formalise task-oriented program-

ming is to be able to reason about programs. In this paper we reason

about the language itself, but it would be nice to prove properties

about individual programs. To this end, we are very interested to

see if it is possible to develop an axiomatic semantics for t̂op that

allows us to do so. There are certain properties of our language that

make this particularly complex: We have to deal with parallelism,

user interaction, and references.

We would also like to prove whether certain programs are equiv-

alent, for example to show that the monad laws hold for our step

combinator. This requires a notion of equality, which in the pres-

ence of side effects most certainly needs some form of coalgebraic

input-output conformance. We have implemented the reduction

semantics of our language in Haskell, whose type system could aid

in the formalisation of such proofs.

Another form of reasoning about programs is static analysis.

Klinik et al. [11] have developed a cost analysis for tasks that require

resources in order to be executed. This analysis was developed for

a simpler task language, and could be brought over to the one

developed here.

Naus and Jeuring [19] have looked at building a generic feedback

system for rule-based problems. A workflow system typically is

rule based, as outlined in their work. It would be interesting to fit

the generic feedback system to t̂op in order to support end-users

working in applications developed in this language.

Additionally, we would like to develop visualisations for t̂op

language constructs. An assistive development environment in-

tegrating these visualisations and the presented textual language

would aid domain experts to model workflows in a more acces-

sible manner. A system that visualises iTask programs has been

developed in the past [26].
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A ADDITIONAL RULES

A.1 Evaluation rules

e,σ ↓ v,σ ′

E-App

e1,σ ↓ λx : τ .e ′
1
,σ ′ e2,σ

′ ↓ v2,σ
′′ e ′

1
[x 7→ v2],σ

′′ ↓ v1,σ
′′′

e1e2,σ ↓ v1,σ ′′′

E-IfTrue

e1,σ ↓ True,σ ′ e2,σ
′ ↓ v,σ ′′

if e1 then e2 else e3,σ ↓ v,σ ′′

E-Ref

e,σ ↓ v,σ ′ l < Dom(σ ′)

ref e,σ ↓ l,σ ′[l 7→ v]

E-IfFalse

e1,σ ↓ False,σ ′ e3,σ
′ ↓ v,σ ′′

if e1 then e2 else e3,σ ↓ v,σ ′′

E-Deref

e,σ ↓ l,σ ′

!e,σ ↓ σ ′(l),σ ′

E-Value

v,σ ↓ v,σ

E-Assign

e1,σ ↓ l,σ ′ e2,σ
′ ↓ v2,σ

′′

e1 := e2,σ ↓ ⟨⟩,σ ′′[l 7→ v2]

E-Pair

e1,σ ↓ v1,σ
′ e2,σ

′ ↓ v2,σ
′′

⟨e1, e2⟩,σ ↓ ⟨v1,v2⟩,σ ′′

E-Edit

e,σ ↓ v,σ ′

□ e,σ ↓ □v,σ ′

E-Enter

⊠τ ,σ ↓ ⊠τ ,σ

E-Update

e,σ ↓ l,σ ′

■ e,σ ↓ ■ l,σ ′

E-Then

e1,σ ↓ t1,σ
′

e1 ▶ e2,σ ↓ t1 ▶ e2,σ ′

E-Next

e1,σ ↓ t1,σ
′

e1 ▷ e2,σ ↓ t1 ▷ e2,σ ′

E-And

e1,σ ↓ t1,σ
′ e2,σ

′ ↓ t2,σ
′′

e1 Z e2,σ ↓ t1 Z t2,σ ′′

E-Fail

 ,σ ↓  ,σ

E-Or

e1,σ ↓ t1,σ
′ e2,σ

′ ↓ t2,σ
′′

e1 ♦ e2,σ ↓ t1 ♦ t2,σ ′′

E-Xor

e1 ♢ e2,σ ↓ e1 ♢ e2,σ

A.2 Typing rules

Γ, Σ ⊢ e : τ

T-Var

x : τ ∈ Γ

Γ, Σ ⊢ x : τ

T-Loc

Σ(l) = β

Γ, Σ ⊢ l : Ref β

T-Pair

Γ, Σ ⊢ e1 : τ1 Γ, Σ ⊢ e2 : τ2

Γ, Σ ⊢ ⟨e1, e2⟩ : τ1 × τ2

T-Abs

Γ[x : τ1], Σ ⊢ e : τ2

Γ, Σ ⊢ λx : τ1.e : τ1 → τ2

T-App

Γ, Σ ⊢ e1 : τ1 → τ2 Γ, Σ ⊢ e2 : τ1

Γ, Σ ⊢ e1e2 : τ2

T-If

Γ, Σ ⊢ e1 : Bool Γ, Σ ⊢ e2 : τ Γ, Σ ⊢ e3 : τ

Γ, Σ ⊢ if e1 then e2 else e3 : τ

T-Ref

Γ, Σ ⊢ e : β

Γ, Σ ⊢ ref e : Ref β

T-Deref

Γ, Σ ⊢ e : Ref β

Γ, Σ ⊢ !e : β

T-Assign

Γ, Σ ⊢ e1 : Ref β Γ, Σ ⊢ e2 : β

Γ, Σ ⊢ e1 := e2 : Unit
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B PROOFS

B.1 Theorem 6.1

Proof. We prove Theorem 6.1 by induction on e:

Case e = λx : τ .e, e1e2, x, c, l, e1 ⋆ e2, if e1 then e2 else e3, ⟨e1, e2⟩, ⟨⟩, ref e, !e, e1 := e2

Preservation has been proven for these cases by Pierce [22].

Case

E-Edit

e,σ ↓ v,σ ′

□ e,σ ↓ □v,σ ′

Given that Γ, Σ ⊢ □ e : Taskτ and Γ, Σ ⊢ s ,T-Edit gives us that Γ, Σ ⊢ e : τ . The induction hypothesis gives us that e, s ↓ v, s ′ also

preserves, and thus Γ, Σ ⊢ v : τ and Γ, Σ ⊢ s ′. Therefore Γ, Σ ⊢ □v : Taskτ .

Case

E-Enter

⊠τ ,σ ↓ ⊠τ ,σ
Evaluation does not alter e and s , therefore this case holds trivially.

Case

E-Update

e,σ ↓ l,σ ′

■ e,σ ↓ ■ l,σ ′

Given that Γ, Σ ⊢ □ e : Taskτ and Γ, Σ ⊢ s , T-Update gives us that Γ, Σ ⊢ e : refτ . The induction hypothesis gives us that e, s ↓ l, s ′ also

preserves, and thus Γ, Σ ⊢ l : refτ and Γ, Σ ⊢ s ′. Therefore Γ, Σ ⊢ ■ l : Taskτ .

Case

E-Fail

 ,σ ↓  ,σ
Evaluation does not alter e and s , therefore this case holds trivially.

Case

E-Then

e1,σ ↓ t1,σ
′

e1 ▶ e2,σ ↓ t1 ▶ e2,σ ′

Given that Γ, Σ ⊢ e1 ▶ e2 : Taskτ and Γ, Σ ⊢ s , T-Then gives us that Γ, Σ ⊢ e1 : Taskτ1 and Γ, Σ ⊢ e2 : τ1 → Taskτ . By the induction

hypothesis, we know that e1, s ↓ t1, s
′

preserves and thus Γ, Σ ⊢ t1 : Taskτ1 and Γ, Σ ⊢ s ′. Therefore Γ, Σ ⊢ t1 ▶ e2 : Taskτ .

Case

E-Next

e1,σ ↓ t1,σ
′

e1 ▷ e2,σ ↓ t1 ▷ e2,σ ′

Given that Γ, Σ ⊢ e1 ▷ e2 : Taskτ and Γ, Σ ⊢ s , T-Next gives us that Γ, Σ ⊢ e1 : Taskτ1 and Γ, Σ ⊢ e2 : τ1 → Taskτ . By the induction

hypothesis, we know that e1, s ↓ t1, s
′

preserves and thus Γ, Σ ⊢ t1 : Taskτ1 and Γ, Σ ⊢ s ′. Therefore Γ, Σ ⊢ t1 ▷ e2 : Taskτ .

Case

E-And

e1,σ ↓ t1,σ
′ e2,σ

′ ↓ t2,σ
′′

e1 Z e2,σ ↓ t1 Z t2,σ ′′

Given that Γ, Σ ⊢ e1 Z e2 : Task(τ1 × τ2) and Γ, Σ ⊢ s , T-And gives us that Γ, Σ ⊢ e1 : Taskτ1 and Γ, Σ ⊢ e2 : Taskτ2. By the induction

hypothesis, we know that both e1, s ↓ t1, s
′

and e2, s
′ ↓ t2, s

′′
preserve and thus Γ, Σ ⊢ t1 : Taskτ1, Γ, Σ ⊢ s ′, Γ, Σ ⊢ t2 : Taskτ2 and

Γ, Σ ⊢ s ′′. Therefore Γ, Σ ⊢ t1 Z t2 : Task(τ1 × τ2).

Case

E-Or

e1,σ ↓ t1,σ
′ e2,σ

′ ↓ t2,σ
′′

e1 ♦ e2,σ ↓ t1 ♦ t2,σ ′′

Given that Γ, Σ ⊢ e1 ♦ e2 : Taskτ and Γ, Σ ⊢ s , T-Or gives us that Γ, Σ ⊢ e1 : Taskτ and Γ, Σ ⊢ e2 : Taskτ . By the induction hypothesis, we

have that both e1, s ↓ t1, s
′

and e2, s
′ ↓ t2, s

′′
preserve and thus Γ, Σ ⊢ t1 : Taskτ , Γ, Σ ⊢ s ′, Γ, Σ ⊢ t2 : Taskτ and Γ, Σ ⊢ s ′′. Therefore

Γ, Σ ⊢ t1 ♦ t2 : Taskτ .

Case

E-Xor

e1 ♢ e2,σ ↓ e1 ♢ e2,σ

Evaluation does not alter e and s , therefore this case holds trivially.

□
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B.2 Lemma B.1

Lemma B.1 (Task value preserves types). For all expressions e and states σ such that Γ, Σ ⊢ e : Taskτ and Γ, Σ ⊢ σ , ifV(e,σ ) = v , then
v : τ .

Proof. We prove Lemma B.1 by induction over e .

CaseV(□v, s) = v

By T-Edit, if Γ, Σ ⊢ □v : Taskτ , then Γ, Σ ⊢ v : τ .

CaseV(⊠τ , s) = ⊥

Since this case does not lead to a value, the lemma holds trivially.

CaseV(■ l, s) = s(l)

Given that Γ, Σ ⊢ ■ l : Taskτ and Γ, Σ ⊢ s , we know that Γ, Σ ⊢ s(l) : τ by definiton.

CaseV( , s) = ⊥

Since this case does not lead to a value, the lemma holds trivially.

CaseV(t1 ▶ e2, s) = ⊥

Since this case does not lead to a value, the lemma holds trivially.

CaseV(t2 ▷ e2, s) = ⊥

Since this case does not lead to a value, the lemma holds trivially.

CaseV(t1 Z t2, s) = ⟨v1,v2⟩ given that V(t1, s) = v1 ∧V(t2, s) = v2

By T-And we have that Γ, Σ ⊢ t1 Z t2 : Task(τ1 × τ2) and Γ, Σ ⊢ t1 : τ1 and Γ, Σ ⊢ t2 : τ2. By the induction hypothesis, V(t1, s) = v1 and

V(t2, s) = v2 preserve, and thus Γ, Σ ⊢ v1 : τ1 and Γ, Σ ⊢ v2 : τ2. This gives us that Γ, Σ ⊢ ⟨v1,v2⟩ : Task(τ1 × τ2).

CaseV(t1 Z t2, s) = ⊥ given that ¬(V(t1, s) = v1 ∧V(t2, s) = v2)

Since this case does not lead to a value, the lemma holds trivially.

CaseV(t1 ♦ t2, s) = v1 given that V(t1, s) = v1

By T-Or we have that Γ, Σ ⊢ t1 ♦ t2 : Taskτ , and Γ, Σ ⊢ t1 : Taskτ and Γ, Σ ⊢ t2 : Taskτ . By the induction hypothesis, we have that

Γ, Σ ⊢ v1 : τ .

CaseV(t1 ♦ t2, s) = v2 given that V(t1, s) = ⊥ ∧V(t2, s) = v2

By T-Or we have that Γ, Σ ⊢ t1 ♦ t2 : Taskτ , and Γ, Σ ⊢ t1 : Taskτ and Γ, Σ ⊢ t2 : Taskτ . By the induction hypothesis, we have that

Γ, Σ ⊢ v2 : τ .

CaseV(t1 ♦ t2, s) = ⊥ given that V(t1, s) = ⊥ ∧V(t2, s) = ⊥

Since this case does not lead to a value, the lemma holds trivially.

CaseV(t1 ♢ t2, s) = ⊥

Since this case does not lead to a value, the lemma holds trivially.

□
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B.3 Lemma B.2

Lemma B.2 (Striding preserves types). For all expressions e and states σ such that Γ, Σ ⊢ e : Taskτ and Γ, Σ ⊢ σ , if e,σ ⇝ e ′,σ ′, then
Γ, Σ ⊢ e ′ : Taskτ and Γ, Σ ⊢ σ ′.

Proof. We prove Lemma B.2 by induction on e:

Case

S-Fail

 ,σ ⇝  ,σ
Since this case does not alter the expression, the theorem holds trivially.

Case

S-Xor

e1 ♢ e2,σ ⇝ e1 ♢ e2,σ
Since this case does not alter the expression, the theorem holds trivially.

Case

S-Update

■ l,σ ⇝ ■ l,σ
Since this case does not alter the expression, the theorem holds trivially.

Case

S-Fill

⊠τ ,σ ⇝ ⊠τ ,σ
Since this case does not alter the expression, the theorem holds trivially.

Case

S-Edit

□v,σ ⇝ □v,σ
Since this case does not alter the expression, the theorem holds trivially.

Case

S-And

t1,σ ⇝ t ′
1
,σ ′ t2,σ

′ ⇝ t ′
2
,σ ′′

t1 Z t2,σ ⇝ t ′
1
Z t ′

2
,σ ′′

Given that Γ, Σ ⊢ t1 Z t2 : Task(τ1 × τ2), by T-And we have Γ, Σ ⊢ t1 : τ1 and Γ, Σ ⊢ t2 : τ2. By the induction hypothesis, we also have

Γ, Σ ⊢ t ′
1

: τ1 and Γ, Σ ⊢ t ′
2

: τ2. This gives us that Γ, Σ ⊢ t ′
1
Z t ′

2
: Task(τ1 × τ2).

Case

S-Next

t1,σ ⇝ t ′
1
,σ ′

t1 ▷ e2,σ ⇝ t ′
1
▷ e2,σ ′

Given that Γ, Σ ⊢ e1 ▷ e2 : Taskτ , T-Then gives us that Γ, Σ ⊢ t1 : Taskτ1 and Γ, Σ ⊢ e2 : τ1 → Taskτ . By the induction hypothesis, we

know that t1 ⇝ t ′
1

preserves and thus Γ, Σ ⊢ t ′
1

: Taskτ1. Therefore Γ, Σ ⊢ t ′
1
▷ e2 : Taskτ .

Case

S-OrLeft

t1,σ ⇝ t ′
1
,σ ′

t1 ♦ t2,σ ⇝ t ′
1
,σ ′

V(t ′
1
,σ ′) = v1

Given that Γ, Σ ⊢ t1 ♦ t2 : Taskτ , by T-Or we have Γ, Σ ⊢ t1 : Taskτ . By the induction hypothesis, we know that t1 ⇝ t ′
1

preserves and

thus Γ, Σ ⊢ t ′
1

: Taskτ .

Case

S-OrRight

t1,σ ⇝ t ′
1
,σ ′ t2,σ

′ ⇝ t ′
2
,σ ′′

t1 ♦ t2,σ ⇝ t ′
2
,σ ′′

V(t ′
1
,σ ′) = ⊥ ∧V(t ′

2
,σ ′′) = v2

Given that Γ, Σ ⊢ t1 ♦ t2 : Taskτ , by T-Or we have Γ, Σ ⊢ t2 : Taskτ . By the induction hypothesis, we know that t2 ⇝ t ′
2

preserves and

thus Γ, Σ ⊢ t ′
2

: Taskτ .

Case

S-OrNone

t1,σ ⇝ t ′
1
,σ ′ t2,σ

′ ⇝ t ′
2
,σ ′′

t1 ♦ t2,σ ⇝ t ′
1
♦ t ′

2
,σ ′′

V(t ′
1
,σ ′) = ⊥ ∧V(t ′

2
,σ ′′) = ⊥

Given that Γ, Σ ⊢ t1 ♦ t2 : Taskτ , by T-Or we have Γ, Σ ⊢ t1 : Taskτ and Γ, Σ ⊢ t2 : Taskτ . By the induction hypothesis, we know that

t1 ⇝ t ′
1

and t2 ⇝ t ′
2

preserve, and thus Γ, Σ ⊢ t ′
1
♦ t ′

2
: Taskτ .
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Case

S-ThenStay

t1,σ ⇝ t ′
1
,σ ′

t1 ▶ e2,σ ⇝ t ′
1
▶ e2,σ ′

V(t ′
1
,σ ′) = ⊥

Given that Γ, Σ ⊢ t1 ▶ e2 : Taskτ , by T-Then we have Γ, Σ ⊢ t1 : Taskτ1 and Γ, Σ ⊢ e2 : τ1 → Taskτ . By the induction hypothesis, we know

that t1 ⇝ t ′
1

preserves, and thus Γ, Σ ⊢ t ′
1
▶ e2 : Taskτ .

Case

S-ThenFail

t1,σ ⇝ t ′
1
,σ ′ e2 v1,σ

′ ↓ t2,σ
′′

t1 ▶ e2,σ ⇝ t ′
1
▶ e2,σ ′

V(t ′
1
,σ ′) = v1 ∧ F (t2,σ ′′)

Given that Γ, Σ ⊢ t1 ▶ e2 : Taskτ , by T-Then we have Γ, Σ ⊢ t1 : Taskτ1 and e2 : τ1 → Taskτ . By the induction hypothesis, we know that

t1 ⇝ t ′
1

preserves, and thus Γ, Σ ⊢ t ′
1
▶ e2 : Taskτ .

Case

S-ThenCont

t1,σ ⇝ t ′
1
,σ ′ e2 v1,σ

′ ↓ t2,σ
′′

t1 ▶ e2,σ ⇝ t2,σ ′′
V(t ′

1
,σ ′) = v1 ∧ ¬F (t2,σ ′′)

Given that Γ, Σ ⊢ t1 ▶ e2 : Taskτ , by T-Then we have Γ, Σ ⊢ t1 : Taskτ1 and Γ, Σ ⊢ e2 : τ1 → Taskτ . By the induction hypothesis, we know

that t1 ⇝ t ′
1

preserves. By Lemma B.1, we know that V(t ′
1
) = v1 preserves. By Theorem 6.1 we know that e2v1 ↓ t2 preserves. And

finally by the induction hypothesis, we know that t2 ⇝ t ′
2

preserves. Therefore Γ, Σ ⊢ t ′
2

: Taskτ .

□

B.4 Theorem 6.2

Proof. We prove Theorem 6.2 by induction on e:

Case

N-Done

e,σ ↓ t,σ ′ t,σ ′ ⇝ t ′,σ ′′

e,σ ⇓ t,σ ′
σ ′ = σ ′′ ∧ t = t ′

Given that Γ, Σ ⊢ e : Taskτ and Γ, Σ ⊢ s , we know that Γ, Σ ⊢ t : Taskτ and Γ, Σ ⊢ s ′ by Theorem 6.1. Then by Lemma B.2, we have

Γ, Σ ⊢ t ′ : Taskτ and Γ, Σ ⊢ s ′′.

Case

N-Repeat

e,σ ↓ t,σ ′ t,σ ′ ⇝ t ′,σ ′′ t ′,σ ′′ ⇓ t ′′,σ ′′′

e,σ ⇓ t ′′,σ ′′′
σ ′ , σ ′′ ∨ t , t ′

Given that Γ, Σ ⊢ e : Taskτ and Γ, Σ ⊢ s , we know that Γ, Σ ⊢ t : Taskτ and Γ, Σ ⊢ s ′ by Theorem 6.1. Then by Lemma B.2, we have

Γ, Σ ⊢ t ′ : Taskτ and Γ, Σ ⊢ s ′′. Then by the induction hypothesis, we finally obtain that Γ, Σ ⊢ t ′′ : Taskτ and Γ, Σ ⊢ s ′′′.
□

B.5 Theorem 6.3

We require the following Lemma for this proof.

Lemma B.3. Given that Γ, Σ ⊢ s , Σ(l) = τ and Γ, Σ ⊢ v : τ , it holds that Γ, Σ ⊢ s[l 7→ v]

This lemma follows immediately from definition.

Proof. We prove Theorem 6.3 by induction on e:

Case

H-Change

□v,σ
v ′

−−−→ □v ′,σ
v,v ′

: τ

Given that Γ, Σ ⊢ □v : Taskτ and Γ, Σ ⊢ s , the H-Change rule additionally gives us that v,v ′
: τ . Therefore by T-Edit we have that

Γ, Σ ⊢ □v ′
: Taskτ .

Case

H-Fill

⊠τ ,σ
v ′

−−−→ □v ′,σ
v ′

: τ

Given that Γ, Σ ⊢ ⊠τ and Γ, Σ ⊢ s , the H-Fill rule additionally gives us that v ′
: τ . Then by T-Enter we have Γ, Σ ⊢ □v ′

: Taskτ .
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Case

H-Update

■ l,σ
v ′

−−−→ ■ l,σ [l 7→ v ′]

σ (l),v ′
: τ

Given that Γ, Σ ⊢ ■ l : Taskτ and Γ, Σ ⊢ s . This gives us that Σ(l) = τ , and we additionally obtain s(l),v ′
: τ by H-Update. By application

of Lemma B.3 this case holds.

Case

H-PickLeft

e1,σ ⇓ t1,σ
′

e1 ♢ e2,σ
L

−−→ t1,σ ′

¬F (t1,σ ′)

Given that Γ, Σ ⊢ t1 ♢ t2 : Taskτ and Γ, Σ ⊢ s , then by T-Xor we have Γ, Σ ⊢ t1 : Taskτ .

Case

H-PickRight

e2,σ ⇓ t2,σ
′

e1 ♢ e2,σ
R

−−→ t2,σ ′

¬F (t2,σ ′)

Given that Γ, Σ ⊢ t1 ♢ t2 : Taskτ and Γ, Σ ⊢ s , then by T-Xor we have Γ, Σ ⊢ t2 : Taskτ .

Case

H-Next

e2 v1,σ ⇓ t2,σ
′

t1 ▷ e2,σ
C

−−→ t2,σ ′

V(t1,σ ) = v1 ∧ ¬F (t2,σ ′)

Given that Γ, Σ ⊢ t1 ▷ e2 : Taskτ and Γ, Σ ⊢ s . Then by T-Next, we have Γ, Σ ⊢ t1 : Taskτ1 and Γ, Σ ⊢ e2 : τ1 → Taskτ . Then by T-Then we

obtain Γ, Σ ⊢ t1 ▶ e2 : Taskτ .

Case

H-PassThen

t1,σ
i
−−→ t ′

1
,σ ′

t1 ▶ e2,σ
i
−−→ t ′

1
▶ e2,σ ′

Given that Γ, Σ ⊢ t1 ▶ e2 : Taskτ and Γ, Σ ⊢ s , T-Then gives us that Γ, Σ ⊢ t1 : Taskτ1 and Γ, Σ ⊢ e2 : τ1 → Taskτ . By the induction

hypothesis, we know that t1, s
i
−−→ t ′

1
, s ′ also preserves and thus Γ, Σ ⊢ t ′

1
: Taskτ1 and Γ, Siдma ⊢ s ′. By T-Then we now obtain that

Γ, Σ ⊢ t ′
1
▶ e2 : Taskτ .

Case

H-PassNext

t1,σ
i
−−→ t ′

1
,σ ′

t1 ▷ e2,σ
i,C
−−−−→ t ′

1
▷ e2,σ ′

Given that Γ, Σ ⊢ t1 ▷ e2 : Taskτ and Γ, Σ ⊢ s , T-Next gives us that Γ, Σ ⊢ t1 : Taskτ1 and Γ, Σ ⊢ e2 : τ1 → Taskτ . By the induction

hypothesis, we know that t1, s
i
−−→ t ′

1
, s ′ also preserves and thus Γ, Σ ⊢ t ′

1
: Taskτ1 and Γ, Siдma ⊢ s ′. By T-Next we now obtain that

Γ, Σ ⊢ t ′
1
▷ e2 : Taskτ .

Case

H-FirstAnd

t1,σ
i
−−→ t ′

1
,σ ′

t1 Z t2,σ
F i
−−−→ t ′

1
Z t2,σ ′

Given that Γ, Σ ⊢ t1 Z t2 : Task(τ1 × τ2) and Γ, Σ ⊢ s , T-And gives us that Γ, Σ ⊢ t1 : Taskτ1 and Γ, Σ ⊢ t2 : Taskτ2. By the induction

hypothesis, we know that t1, s
i
−−→ t ′

1
, s ′ also preserves and thus Γ, Σ ⊢ t ′

1
: Taskτ1 and Γ, Σ ⊢ s ′. Therefore by T-Next we obtain

Γ, Σ ⊢ t ′
1
Z t2 : Task(τ1 × τ2).

Case

H-SecondAnd

t2,σ
i
−−→ t ′

2
,σ ′

t1 Z t2,σ
S i
−−−→ t1 Z t ′

2
,σ ′

Given that Γ, Σ ⊢ t1 Z t2 : Task(τ1 × τ2) and Γ, Σ ⊢ s , T-And gives us that Γ, Σ ⊢ t1 : Taskτ1 and Γ, Σ ⊢ t2 : Taskτ2. By the induction

hypothesis, we know that t2, s
i
−−→ t ′

2
, s ′ also preserves and thus Γ, Σ ⊢ t ′

2
: Taskτ2 and Γ, Σ ⊢ s ′. Therefore by T-Next we obtain

Γ, Σ ⊢ t1 Z t ′
2

: Task(τ1 × τ2).
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Case

H-FirstOr

t1,σ
i
−−→ t ′

1
,σ ′

t1 ♦ t2,σ
F i
−−−→ t ′

1
♦ t2,σ ′

Given that Γ, Σ ⊢ t1 ♦ t2 : Taskτ and Γ, Σ ⊢ s , T-Or gives us that Γ, Σ ⊢ t1 : Taskτ and Γ, Σ ⊢ t2 : Taskτ . By the induction hypothesis we

know that t1, s
i
−−→ t ′

1
, s ′ also preserves, and therefore Γ, Σ ⊢ t ′

1
: Taskτ and Γ, Σ ⊢ s ′. By T-Or we now obtain Γ, Σ ⊢ t ′

1
♦ t2 : Taskτ .

Case

H-SecondOr

t2,σ
i
−−→ t ′

2
,σ ′

t1 ♦ t2,σ
S i
−−−→ t1 ♦ t ′

2
,σ ′

Given that Γ, Σ ⊢ t1 ♦ t2 : Taskτ and Γ, Σ ⊢ s , T-Or gives us that Γ, Σ ⊢ t1 : Taskτ and Γ, Σ ⊢ t2 : Taskτ . By the induction hypothesis we

know that t2, s
i
−−→ t ′

2
, s ′ also preserves, and therefore Γ, Σ ⊢ t ′

2
: Taskτ and Γ, Σ ⊢ s ′. By T-Or we now obtain Γ, Σ ⊢ t1 ♦ t

′
2

: Taskτ .

□

B.6 Theorem 6.5

Proof. We prove Theorem 6.5 by induction on e ′.

Case e =  
F ( , s) = True, and there is no handling rule that applies to fail.

Case e = □v

Γ, Σ ⊢ □v : Taskτ , F (□v, s) = False, and there exists an input i , namely v ′
: τ .

Case e = ⊠τ

F (⊠τ ) = False, and there exists an in put i, namely v : τ .

Case e = ■ l

Given that Γ, Σ ⊢ ■ l : Taskτ , F (■ l, s) = False, and there exists an input i , namely v : τ .

Case e = t1 ▶ e2

F (t1 ▶ e2, s) = F (t1, s). If there exists an i for t1, then this i also applies to t1 ▶ e2. This case therefore holds by the induction hypothesis.

Case e = t1 ▷ e2

F (t1 ▷ e2, s) = F (t1, s). If there exists an i for t1, then this i also applies to t1 ▷ e2. This case therefore holds by the induction hypothesis.

Case e = e1 ♢ e2

We normalise the two expressions first, e1, s ⇝ t1, s
′
, e2, s ⇝ t2, s

′
and we can then be in two situations. One, we can have that F (t1, s

′)

and F (t2, s
′) are both true. If that is so, then by definition, we have both F (e1 ♢ e2, s) and no rule of the handling semantics applies, and

therefore there exists no input for this case.

Or we are in the situation where one or both of the two sub expressions does not fail. In that case, we know that F (e1 ♢ e2, s) does not

hold, and that at least one of the handling rules applies. Therefore, there must be an input i , namely L, R or both.

Case e = t1 Z t2

We can again find ourselves in one of two situations. In the first case, both sub expressions fail, F (t1, s) and F (t2, s). In that case, we

know that F (t1 Z t2, s) also fails by definition. By the induction hypothesis, we know that for both t1 and t2 there is no input that can be

handled. Since the only two rules for Z that handle input just pass this input on to one of the two expressions, we know that indeed no i
applies.

In the case that one or both sub expressions do not fail, then by definition t1 Z t2 not failing under s . Again by induction hypothesis,

we know that for one or both of the expressions, there exits an i that can be handled. Then by H-FirstAnd and H-SecondAnd, we know

that we can pass this i , by prefixing it with either F or S.

Case e = t1 ♦ t2

We can again find ourselves in one of two situations. In the first case, both sub expressions fail, F (t1, s) and F (t2, s). In that case, we know

that F (t1 ♦ t2, s) also fails by definition. By the induction hypothesis, we know that for both t1 and t2 there is no input that can be handled.

Since the only two rules for ♦ that handle input just pass this input on to one of the two expressions, we know that indeed no i applies.
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In the case that one or both sub expressions do not fail, then by definition t1 ♦ t2 not failing under s . Again by induction hypothesis, we

know that for one or both of the expressions, there exits an i that can be handled. Then by H-FirstOr and H-SecondOr, we know that we

can pass this i , by prefixing it with either F or S.

□

B.7 Theorem 6.6

Proof. Case e = □v : Taskτ , i = v ′
: τ

Given that

H-Change

□v,σ
v ′

−−−→ □v ′,σ
v,v ′

: τ
, we have by definition that I(□v : Taskτ , s) = {v ′

: τ , E}, which includes v ′
: τ .

Case e = ⊠τ , i = v ′
: τ

Given that

H-Fill

⊠τ ,σ
v ′

−−−→ □v ′,σ
v ′

: τ
, we have by definition that I(⊠τ , s) = {v ′

: τ }, which includes v ′
: τ .

Case e = ■ l : Taskτ , i = v ′
: τ

Given that

H-Update

■ l,σ
v ′

−−−→ ■ l,σ [l 7→ v ′]

σ (l),v ′
: τ

, we have by definition that I(■ l : Taskτ , s) = {v ′
: τ }, which includes v ′

: τ .

Case e = t1 ♢ t2, i = L

Given that

H-PickLeft

e1,σ ⇓ t1,σ
′

e1 ♢ e2,σ
L

−−→ t1,σ ′

¬F (t1,σ ′)
, we have by definition that I(t1 ♢ t2, s) = {L,R}, which includes L.

Case e = t1 ♢ t2, i = R

Given that

H-PickRight

e2,σ ⇓ t2,σ
′

e1 ♢ e2,σ
R

−−→ t2,σ ′

¬F (t2,σ ′)
, we have by definition that I(t1 ♢ t2, s) = {L,R}, which includes R.

Case e = t1 ▷ e2, i = C

Given that

H-Next

e2 v1,σ ⇓ t2,σ
′

t1 ▷ e2,σ
C

−−→ t2,σ ′

V(t1,σ ) = v1 ∧ ¬F (t2,σ ′)
, we have by definition that I(t1 ▷ e2, s) = I(t1, s) ∪ {C | V(t1, s) = v1 ∧

¬F (e2v1, s ⇝ )}. If the H-Next rule applies, this means that the conditions V(t1, s) = v1 ∧ ¬F (e2v1, s ⇝ ) are fulfilled, and therefore C

is contained.

Case e = t1 ▷ e2, i , C

Given that

H-PassNext

t1,σ
i
−−→ t ′

1
,σ ′

t1 ▷ e2,σ
i,C
−−−−→ t ′

1
▷ e2,σ ′

, we have by definition that I(t1 ▷ e2, s) = I(t1, s) ∪ {C | V(t1, s) = v1 ∧ ¬F (e2v1, s ⇝ )}. By

the induction hypothesis, we have that i ∈ I(t1, s), and by definition of I, i is therefore also included in this case.

Case e = t1 ▶ e2, i

Given that

H-PassThen

t1,σ
i
−−→ t ′

1
,σ ′

t1 ▶ e2,σ
i
−−→ t ′

1
▶ e2,σ ′

, we have by definition that I(t1 ▶ e2, s) = I(t1, s). By the induction hypothesis, we have that

i ∈ I(t1, s), and by definition of I, i is therefore also included in this case.

Case e = t1 Z t2, i = F i

Given that

H-FirstAnd

t1,σ
i
−−→ t ′

1
,σ ′

t1 Z t2,σ
F i
−−−→ t ′

1
Z t2,σ ′

we have by definition that I(t1 Z t2, s) = {F i | i ∈ I(t1, s)} ∪ {S i | i ∈ I(t2, s)}. By the induction

hypothesis, we have that i ∈ I(t1, s), and by definition of I, F i is therefore als included in this case.
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Case e = t1 Z t2, i = S i

Given that

H-SecondAnd

t2,σ
i
−−→ t ′

2
,σ ′

t1 Z t2,σ
S i
−−−→ t1 Z t ′

2
,σ ′

we have by definition that I(t1 Z t2) = {F i | i ∈ I(t1, s)} ∪ {S i | i ∈ I(t2, s)}. By the induction

hypothesis, we have that i ∈ I(t2, s), and by definition of I, S i is therefore als included in this case.

Case e = t1 ♦ t2, i = F i

Given that

H-FirstOr

t1,σ
i
−−→ t ′

1
,σ ′

t1 ♦ t2,σ
F i
−−−→ t ′

1
♦ t2,σ ′

we have by definition that I(t1 ♦ t2, s) = {F i | i ∈ I(t1, s)} ∪ {S i | i ∈ I(t2, s)}. By the induction

hypothesis, we have that i ∈ I(t1, s), and by definition of I, F i is therefore als included in this case.

Case e = t1 ♦ t2, i = S i

Given that

H-FirstOr

t1,σ
i
−−→ t ′

1
,σ ′

t1 ♦ t2,σ
F i
−−−→ t ′

1
♦ t2,σ ′

we have by definition that I(t1 ♦ t2, s) = {F i | i ∈ I(t1, s)} ∪ {S i | i ∈ I(t2, s)}. By the induction

hypothesis, we have that i ∈ I(t2, s), and by definition of I, S i is therefore als included in this case.

□
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